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ABSTRACT

As Deep Learning (DL) is continuously adopted in many industrial

applications, its quality and reliability start to raise concerns. Simi-

lar to the traditional software development process, testing the DL

software to uncover its defects at an early stage is an effective way

to reduce risks after deployment. According to the fundamental

assumption of deep learning, the DL software does not provide

statistical guarantee and has limited capability in handling data

that falls outside of its learned distribution, i.e., out-of-distribution

(OOD) data. Although recent progress has been made in designing

novel testing techniques for DL software, which can detect thou-

sands of errors, the current state-of-the-art DL testing techniques

usually do not take the distribution of generated test data into

consideration. It is therefore hard to judge whether the ”identified

errors” are indeed meaningful errors to the DL application (i.e., due

to quality issues of the model) or outliers that cannot be handled

by the current model (i.e., due to the lack of training data). Tofill

this gap, we take thefi rst step and conduct a large scale empirical

study, with a total of 451 experiment configurations, 42 deep neural

networks (DNNs) and 1.2 million test data instances, to investigate

and characterize the impact of OOD-awareness on DL testing. We

further analyze the consequences when DL systems go into produc-

tion by evaluating the effectiveness of adversarial retraining with

distribution-aware errors. The results confirm that introducing data

distribution awareness in both testing and enhancement phases

outperforms distribution unaware retraining by up to 21.5%.
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1 INTRODUCTION

Recently, deep learning (DL) achieved tremendous success and is

continuously adopted in many applications, such as image classifi-

cation [3], speech recognition [47], natural language processing [6],

video gaming [7], etc. Service operations are supported by simple

administrative tasks outsourced to deep learning software while

manufacturing further accelerates through automation via intelli-

gent robotics [5]. Furthermore, an increasing demand for automa-

tion and intelligent support is also witnessed in some safety-critical

areas, such as autonomous driving [45, 46] and healthcare [1].

As more and more DL software is applied to diverse application

domains, impacting our daily activities and lives, its quality and

reliability quickly raise lots of concerns, especially in the context of

safety-critical and security-critical scenarios. We have already wit-

nessed the accidents and negative social impacts that were caused

by quality issues of DL software, e.g., Tesla/Uber accidents [49, 50],

wrong diagnosis in healthcare, e.g. cancer or diabetes [1]. Therefore,

systematic testing to uncover the incorrect behavior and under-

stand the capability of the DL software is pressing and important,

which not only provides confidence in its quality but also reduces

the risks after deployment.

However, different from traditional software whose decision

logic is mostly programmed by the developer, deep learning adopts

a data-driven programming paradigm. In particular, the major tasks

of a DL developer are preparing the training data, labeling the

data, programming the architecture of the deep neural network

(DNN), and specifying the training configuration. All the decision

logic is automatically learned during the runtime training phase

and encoded in the obtained DNN (e.g., by weights, bias, and their

combinations). Due to the differences of programming paradigm,

the logic encoding format, and the tasks that a DNN is often devel-

oped for (e.g., image recognition), testing techniques for traditional

software cannot be directly applied and new testing techniques are

needed for DNNs.

While some recent progress has been made in proposing novel

testing criteria [17, 25, 33, 35] and test generation techniques for

quality assurance of DNNs [8, 33, 35, 43, 48, 55, 58], it still lacks

interpretation and understanding on the detected errors by such

techniques and their impact. For example, it is not clear whether

errors are indeed caused by missing training data or insufficient

training, etc. The fundamental assumption of deep learning is that
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the training data follows some distribution, based on which the

learning algorithms train the DNN to obtain its decision logic and

are able to handle future data that follow the similar distribution.

If the new unseen input data has a similar distribution as the

training data, deep learning provides some statistical guarantee on

its prediction correctness in terms of accuracy. However, if the new

input data does not follow the training data (i.e., out-of-distribution

(OOD)), deep learning does not provide statistical guarantee on its

prediction. For example, if a DNN is only trained on cat and dog

data for binary classification, given an input data offi sh, the DNN

can still produce a prediction result. However, this input data does

not follow the distribution of cat and dog data. Hence, handling the

fish data goes beyond the capability of this DNN and should not be

considered as valid input.

Intuitively, erroneous inputs that follow the distribution of train-

ing data may reveal the real weakness of the DNN since the DNN

is expected to handle such data. On the other hand, input errors

that are considered out-of-distribution may either inherit new in-

formation benefitting generalization as well as a domain shift or

are simply irrelevant to the DL application. Thereby, the root cause

of an error may be identified through analyzing its distribution

behavior, which makes us rethink how to define errors and how to

test the DNN by considering the effect on its trained distribution.

So far, the data in- and out-of-distribution analysis is still an

early and active research area [11]. The challenge of OOD detection

is that there is no perfect ground truth for validating whether one

sample is in-distribution (ID) or out-of-distribution. The common

approach of existing techniques to overcome this problem is utiliz-

ing significantly different datasets to approximate the ground truth.

For example, CIFAR-10 is used as the ID data and MNIST is used as

OOD data. When moving into thefi eld of DL testing, the differences

between data can become much less as only minor perturbations

are employed for generating new test cases [57], making the OOD

analysis of DL test data evenmore difficult. To the best of our knowl-

edge, it is currently still unknown how state-of-the-art DNN testing

techniques are performing under consideration of their distribution

behavior using existing OOD-detection techniques.

To bridge the gap from data distribution to DL testing activities,

we conduct a large scale empirical study of the impact of data

distribution awareness on the state-of-the-art DL testing techniques.

In particular, we investigate the following research questions along

four important perspectives:

• RQ1. Accuracy on the OOD Detection Techniques. Can ex-

isting OOD detection techniques detect the OOD data that is

close and far to the training data? Which technique can achieve

the best performance in the context of DL testing?

• RQ2. Relationship between Mutation Operators and Data

Distribution. Mutation operators are used to generate new test

cases. Thus, which mutation operator is more likely to generate

OOD data and which one is more likely to generate ID data?

• RQ3. Relationship between Testing Criteria and Data Dis-

tribution. Testing criteria provide the coverage guidance, which

filter new test cases to cover diverse internal behaviors of DNN.

Thus, what is the relation of testing criteria and data distribution,

i.e., which testing criterion is more likely to keep OOD data and

which one is more likely to keep ID data?

• RQ4. Root Cause Estimation for ID and OOD Errors and

Robustness Enhancement. Finally, we estimate root causes

for ID and OOD errors and ask: which type of errors in terms

of distribution is more effective when used for retraining in en-

hancing robustness?

Through answering these questions, we aim to identify the im-

pacts of the data distribution in deep learning testing. In particular,

we use three popular datasets from computer vision domain as

subject benchmarks and nine OOD datasets, together with a total

of 42 DNNs for evaluation, among which we trained 32 DNNs to

identify the optimal OOD detection technique for DL testing. Then,

to evaluate the effect of OOD for DL testing, we generate a total of

over 1.2 million test cases and train 10 DNN for robustness enhance-

ment. Regarding DL testing, our study further focuses on two of

its key elements, i.e., 8 mutation operators for new test generation

and 6 coverage criteria. All the datasets and results can be found

on our website [34].

To summarize, this paper makes the following contributions:

• We perform a large scale empirical study on how deep learning

testing affects the data distribution of the generated test cases;

and how distribution aware testing influences DNN model ro-

bustness.

• Our study identifies the impact of mutation operators and cover-

age criteria on the distribution of the generated test cases. We

find that image rotation, contrast and brightness tend to generate

more ID data while image blur is more likely to generate OOD

data. In terms of the coverage criteria, NBC and SNAC facilitate

to generate more OOD data than others.

• We demonstrate the effectiveness of distribution aware retrain-

ing, outperforming the state-of-the-art by up to 21.5%. Based on

our results, we provide guidelines on distribution-aware error

selection for robustness enhancement, by studying the effect of

root cause of ID and OOD errors.

To the best of our knowledge, this is thefi rst work that performed

a large-scale study on the impact of data distribution behavior on

DL testing. This work points out an important direction and calls

for the attention of data-awareness when designing new DL testing

techniques.

2 BACKGROUND

2.1 Deep Learning Testing

To test the data-driven deep neural networks, a common way is to

generate new data inputs so as to capture the DNN model behavior

and identify errors (e.g., incorrect prediction). The simplistic form

of deep learning testing involves splitting the collected data into

a training and testing set. After training the DNN model with

the training set, its accuracy is tested with the testing set. One

drawback is that it relies solely on the initially collected spectrum

of information that usually does not cover all of the observable

cases for an intended application.

Currently, quite a few techniques [8, 25, 33, 35, 43, 48, 55, 58]

are proposed to test the new data-driven DL software. Coverage-

guided testing is a representative and widely used technique, which

usually contains three main components: themutation operator, the

coverage criteria, and the oracle. The mutation operator is used to
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Figure 1: Study Workflow and Research Questions

generate diverse test cases such that more behaviors can be tested.

For example, in image classification, mutation operators such as

image brightness, blur or contrast are applied under consideration

of realistic settings. The coverage criteria measure the degree of

how much the DNN is tested. The newly generated test cases are

kept when they have achieved new coverage of the DNN. At last,

the oracle is used to judge whether a new test case is a benign test

case, (i.e., correctly predicted ), or an error test case, (i.e., incorrectly

predicted).

The assumption is that the test cases are generated by adding

minor perturbations on the original input, so they should have the

similar prediction result. However, the existing testing tools do not

consider the distribution of the training data, which determines

what data can or cannot be handled by the target DNN. The er-

rors may be caused by the defects of the DNN model itself (e.g.,

inappropriate model architecture, learning process) or the lack of

the training data. Hence, it is important to distinguish the different

types of errors (e.g., the ID and OOD errors), which provides more

feedback for the developers.

2.2 Data Distribution and Analysis Techniques

Given a dataset Given two databsetsA and B, which follow the data

distribution of DA and DB , respectively, a DNN is trained on A. If
A and B have similar distributions, the well trained DNN is more

likely to handle data from B correctly. If they have a totally different

distribution (e.g., cat andfi sh images), the DNN is not expected to

handle the data from B. Out-of-distribution techniques are mostly

evaluated by distinguishing two totally different datasets from one

another, where a large gap in corresponding distributions of scores

between DA and DB is considered OOD and a large overlap is

considered ID. More specifically, it calculates an OOD score for

the new input. If the score is below the defined threshold, it is ID.

Otherwise, it is OOD.

In practice, detecting the out-of-distribution data is a challenging

problem, especially for the high-dimensional data. Some OOD de-

tection has been recently proposed to address the high-dimensional

issues, such as [4, 15, 16, 20, 22, 22–24, 31, 36, 40, 44, 51]. These

techniques provide different ways to evaluate the distribution of

training data. This work inherits those techniques and studies the

distribution of the test cases generated by different DL testing

strategies (e.g., mutation operators, coverage criteria).

3 OVERVIEW OF OUR STUDY

Fig. 1 shows the overview of our study that focuses on the data

distribution and its effect on test cases generated by the cover-

age guided testing (CGT). Specifically, we focus on the three main

components of the CGT for DL: 1) the effect ofmutation on data dis-

tribution of the test cases, 2) the effect of coverage criteria and 3) the

effectiveness of the output test cases on robustness enhancement.

To perform the study, we select three widely used datasets (i.e.,

MNIST, CIFAR-10 and FashionMNIST [18, 21, 53]) andfi ve state-of-

the-art OOD detection techniques (i.e., Baseline [15], ODIN [24],

Mahalanobis [23], Outlier Exposure [16] and Likelihood-Ratio [40]).

These OOD detection techniques are mainly proposed to distin-

guish two totally different datasets (e.g., CIFAR-10 and MNIST).

However, in this work, the generated test cases are often similar to

the training data. Therefore, wefi rst design an experiment to inves-

tigate the effectiveness of existing OOD techniques in a novel and

more challenging scenario where the difference between datasets

for comparison is low (i.e., RQ1).

Based on the results of RQ1, we select the best OOD metric to

evaluate the relationship between the data distribution and the mu-

tation operators. In this work, we select the datasets in the image

classification domain. Hence, we select 8 popular image transfor-

mations, which are mainly used in the existing CGT tools (e.g.,

DeepTest [48], DeepHunter [55], and TensorFuzz [33]). Then, we

study which mutators tend to generate ID data and which ones tend

to generate OOD data (i.e.,RQ2). Next, we evaluate the relationship

between the data distribution and the coverage criteria guidance

in CGT. We select 6 popular testing criteria [25, 33, 35] to study

which coverage criteria are more likely to guide the generation of

OOD or ID data (i.e., RQ3). Adversarial training is a common way

to enhance the robustness of DNNs by including the detected error

data during training. Therefore, wefi nally study the possible root

cause for ID and OOD errors and study the effectiveness of the

OOD and ID data for DNN robustness enhancement (i.e., RQ4).

3.1 Subject Datasets and DNN Models

We select three publicly available datasets (i.e., MNIST [21], CIFAR-

10 [18] and Fashion-MNIST [53]), that are widely used in previous

work. For each dataset, we follow the best DL practice and choose

diverse DNN models that are able to achieve competitive results in
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Table 1: Subject Datasets and DNN Models.

Dataset Description DNN Train/Test Acc. (%)

CIFAR-10
General images VGG-11 97.16 / 87.92
(e.g., cats, dogs) DenseNet-121 99.97 / 94.46

ResNet-18 98.14 / 91.45

MNIST Digit images LeNet-5 99.49 / 98.94

FashionMNIST Fashion Images LeNet-5 92.53 / 90.25

terms of training and testing accuracy. Table 1 shows the details

about the datasets and the DNN models.

3.2 OOD Detection Techniques

We select 5 state-of-the-art OOD-detection techniques that are com-

monly used among related literature [4, 16, 23, 24, 36, 37, 40]. OOD

techniques use different approaches to retrieve an OOD score. Some

use input perturbation, and others require a specifically trained

new DNN. Therefore, this work includes techniques with various

approaches as follows:

• Simple Baseline [15]. The baseline identifies that in and out-

of-distribution samples are classified with different probability

distributions. The softmax prediction probability is used to de-

termine whether an input is ID or OOD.

• ODIN [24]. In addition to calculate the softmax prediction prob-

ability proposed by the baseline, ODIN adds temperature scaling

to the input as well as small input perturbations. They show that

small perturbations have stronger effects on in-distribution sam-

ples rather than out-of-distribution samples, achieving higher

ID/OOD classification performance.

• Mahalanobis [23]. Mahalanobis detection technique integrates

the information from all layers into the score calculation. It

takes the closest class for each layer, adds small noise to the

test sample andfi nally computes the score by measuring the Ma-

halanobis distance [29] between the test sample and the closest

class-conditional Gaussian distribution.

• Outlier Exposure [16]. Outlier Exposure stands out by classify-

ing inputs with a separately trained DNN which is exposed to the

same training data as the DNN used for the application. However,

in addition, out-of-distribution data is integrated into the training

procedure of the outlier exposure DNN model. Afterward, the

maximum softmax probability is taken similar to the baseline for

out-of-distribution detection.

• Likelihood-Ratio [40]. The latest contribution of thefi eld uti-

lizes a separately trained DNN, namely a generative DNN model

with PixelCNN++ architecture [38]. They use an estimate of in-

put complexity to derive a parameter-free OOD score, which can

be seen as a likelihood-ratio [40].

3.3 Evaluation Metrics of OOD Detection

Out-of-distribution detection for DL testing imposes new challenges

to the OOD-detectionfi eld as the compared data inherits more

similarities, while the OOD-detection techniques are designed on

datasets with significant differences such as comparing images of

birds (CIFAR-10) and street signs of houses (SVHN). Therefore, we

first select AUROC to compare the effectiveness of different OOD

detection techniques (for RQ1) in general, and additionally TPRN to

select a threshold based on which the OOD detector can distinguish

ID data and OOD data (for RQ2, 3, 4). As we will see later, having

Table 2: Mutation Operators and Coverage Criteria.

Mutation
Pixel-Level Affine Trans. Tools
Contrast, Blur Translation, Scale DeepTest [48], DeepHunter

Brightness, Noise Shear, Rotation TensorFuzz

Criteria

Neural Coverage (NC) DeepXplore[35], DeepTest
k-Multisection Neuron Coverage (KMNC)

DeepGauge[25]
Strong Neuron Activation Coverage (SNAC)

Top-k Neuron Coverage (TKNC)
DeepHunter[55]

Neuron Boundary Coverage (NBC)
Fast Approximate Nearest Neighbor (FANN) TensorFuzz[33]

multiple thresholds available is beneficial for analyzing differences

for more similar data.

• AUROC. Given an unknown input, OOD detection techniques

need to identify a threshold to classify it as ID or OOD. The area

under the receiver operating characteristic curve (AUROC) [14]

is usually used to evaluate the performance of a classification

method across multiple thresholds. The AUROC can be thought

of as the probability that an anomalous example is given a higher

OOD score than an in-distribution example [16]. Thus, the higher

AUROC, the better the OOD detector.

• TPRN , which is the true positive rate at N% true negative rate

(TPRN ). We regard OOD data as the positive class. First, we

use N% true negative rate to select one threshold for the OOD

detector. Then, with this threshold, we evaluate the true positive

rate of the detector.

Note that, for the parameter N in TPRN, a larger N means we

select a bigger threshold such that more data is perceived un-

der the threshold as ID (i.e., higher true negative rate). Thus, a

larger N provides more confident measurement for detecting OOD

data while a smaller N provides more confident measurement for

detecting ID data.

3.4 Mutation Operators and Coverage Criteria

For a thorough analysis of DL testing, we select 8 mutation opera-

tors and 6 coverage criteria, which represent the state-of-the-art

and are widely used in the existing testing tools, i.e., DeepTest [48],

DeepHunter [55] and TensorFuzz [33]. Table 2 shows the detailed

information about the selected mutation operators and coverage

criteria. Column Tools represents which techniques are utilized by

which tools. All mutation operator parameters are carefully chosen

by following previous work and maintaining realistic bounds, e.g.

rotation is capped at 40 degree. All configuration can be found on

our website [34].

3.5 Study Design

The empirical evaluation for each RQ is designed as follows:

RQ1. Accuracy on OOD Detection Techniques. For RQ1, we select

five aforementioned OOD detection techniques, which are widely

used to distinguish two totally different datasets. To compare their

effectiveness, we design three different experiments as follows:

(1) First, like the usual way, we evaluate the techniques in distin-

guishing the ID data and OOD data in two different datasets,

i.e., the training data as ID data and another dataset as OOD

data with significantly different features. For the target datasets

CIFAR-10, MNIST and FashionMNIST, we select 4 different

datasets that are regarded as OOD datasets.

(2) Second, we evaluate the inverse extreme case, by taking the

distribution difference between the training data and test data
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of the same benchmark dataset (e.g. CIFAR-10 train vs CIFAR-10

test). Since we can expect both datasets to follow the similar dis-

tribution, we validate that the OOD-techniques are able to iden-

tify in-distributions inputs, too, highlighting that the trained

distribution encompasses unknown data, which is relevant to

the DL application.

(3) Third, we present an evaluation technique by splitting the

benchmark’s training dataset into 2 subsets based on their

classes, i.e., half of the classes are taken as the training data

and the rest half of the classes are taken for OOD test set. Even

though the other half of classes are not trained, overall simi-

larities exist as they are from the same domain. Thereby, we

present a similar scenario as encountered for deep learning

testing.

The three settings are designed to showcase a difference in data

distribution. In Setting 1, the two datasets are expected to have

totally different distributions. In Setting 2, the two distributions

should be almost the same. Finally, Setting 3 should lie between

thefi rst two settings, as the classes are not known, however, the

compared datasets are from the same domain.

RQ2. Relationship Between Mutation Operators and Distribution.

In DL testing, mutation operators are used to generate diverse test

cases. Hence, RQ2 aims to study the effect of the mutation operator

by observing the data distribution of the generated test cases. We

use each of the aforementioned mutation operators to randomly

generate 2,000 test cases based on 200 seed inputs from the test

set. Based on the results of RQ1, we select the best OOD detection

technique to compare the distribution of generated test cases with

the original training data.

RQ3. Relationship Between Testing Criteria and Distribution. In

deep learning testing, coverage criteria provide the guidance for

test case generation. Specifically, they are used tofi lter some test

cases from randomly generated mutants and keep only the mutants

that can improve the coverage. RQ3 aims to study which coverage

criteria are more likely to generate ID or OOD data. To answer this

question, we generate for each DNN model 2,000 test cases for each

mutation operator for each coverage criterion based on the seeds of

RQ2. Then, we compare the distribution of the test cases generated

with different coverage criteria guidance.

RQ4. Root Cause for ID and OOD Errors and Robustness Enhance-

ment. After identifying the optimal OOD detection technique set-

ting for deep learning testing (from RQ1) and analyzing the effect

of mutation operators and coverage criteria (from RQ2 and RQ3),

we aim to study the root cause for ID and OOD errors and whether

distribution-aware test cases are more effective in enhancing ro-

bustness by retraining.

For robustness enhancement we select 1,000 uniformly class-

distributed seeds extracted from the training set. Based on these

seeds, we generate 5 different sets of data: ID-errors whereTPR85 =
0, ID-errors where TPR95 = 0, OOD-errors where TPR95 = 1, OOD-

errors whereTPR99 = 1 and random errors. Each set contains 10,000

error test cases. Then, we add each set of error test cases into the

original training set consisting of 50,000 samples for retraining the

DNN.

Figure 2: Visualization of the distribution difference be-

tween different datasets on DenseNet-121

4 EMPIRICAL STUDY

We summarize the important results andfi ndings in this paper,

while complete results can be found on our website [34].

Table 3: Average Results (AUROC) of different OOD detec-

tion techniques (in %)

Dataset DNN Base. ODIN Maha. OE Like.

CIFAR-10
DenseNet 98.8 98.9 94.1 99.5 68.0
ResNet 95.8 97.1 99.7 97.3 68.0
VGG-11 92.5 94.3 87.5 97.9 68.0

MNIST LeNet-5 98.7 98.7 98.6 99.7 93.4

Fashion-MNIST LeNet-5 91.2 91.9 99.9 99.4 63.0

4.1 RQ1: OOD Detection Accuracy.

Wefi rst evaluate the state-of-the-art of OOD detection techniques

to identify the optimal technique. The results (see Section 3.5) are

visualized by examples in Figure 2 and are as follows:

4.1.1 Results on totally different datasets. First, we perform a com-

parative study to investigate the performance of existing OOD-

detection techniques. We prepare frequently used OOD datasets

[15, 16, 23, 24, 40] and the training data of the DNN as ID data. We

select the OOD datasets: SVHN [32], iSUN [54], Picsum [39] and Om-

niglot [19]. Detailed description of each OOD dataset can be found

in [34]. In addition, we scale the benchmark datasets Imagenet,

CIFAR-10, MNIST and FashionMNIST to the same dimensions as

the trained dataset and convert them into grayscale when necessary,

e.g., for MNIST or FashionMNIST. Due to the significant difference

in datasets, a ground truth of ID and OOD can be assumed.

For each DNN, we evaluate the OOD detection performance on

different OOD datasets. Table 3 shows the average AUROC score of

each OOD detection technique on each DNN. The best results are

in bold. We can observe that, except for the Likelihood-Ratio, other

OOD detection techniques are effective (91%+) in detecting signif-

icantly different OOD data. Overall, Outlier Exposure shows the

highest overall performance while Mahalanobis is the second best.

For example, for VGG-11, OE achieves 97.9% AUROC score that is

much higher than others and Mahalanobis has 87.5% AUROC score.

Likelihood-Ratio has the same results for the three DNNs of CIFAR-

10 as its DNN-independent. Our results show that Likelihood-Ratio

performs the worst for CIFAR-10, MNIST and FashionMNIST (the

average score of AUROC is 74.8%).

4.1.2 Results on the training data and test data. In the previous

section, we evaluate the OOD techniques for detecting OOD data
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Table 4: Results of OOD detection on the test set. (in %)

OOD Tech. Base. ODIN Maha. OE Like.
TPRN 99 99.9 99 99.9 99 99.9 99 99.9 99 99.9

DenseNet-121 5.92 3.02 0.74 0.02 0.80 0.03 4.94 0.10 1.52 0.22
ResNet-18 2.06 0.08 0.64 0.00 1.29 0.00 1.46 0.08 1.52 0.22
VGG-11 2.40 0.26 0.90 0.08 1.14 0.00 0.96 0.14 1.52 0.22

MN. LeNet-5 1.48 0.38 1.24 0.06 1.37 0.03 2.00 0.38 0.42 0.02

FMN. LeNet-5 1.44 0.24 0.74 0.00 0.54 0.00 1.22 0.20 1.12 0.12

Table 5: Results of OOD detection when training half of the

classes of the training set while testing OOD with the other

half of untrained classes. (in %)

OOD Tech. Base. ODIN Maha. OE Like.
TPRN 95 99 95 99 95 99 95 99 95 99

DenseNet-121 22.7 7.6 25.0 9.2 13.7 2.5 23.8 3.4 1.8 0.1
ResNet-18 33.7 14.9 34.4 15.6 15.2 3.9 27.7 8.2 1.8 0.1
VGG-11 30.8 11.6 31.7 11.8 19.6 1.2 10.0 1.8 1.8 0.1

MN. LeNet-5 71.7 45.8 73.7 51.4 92.3 78.7 86.0 64.9 4.9 0.8

FMN. LeNet-5 15.3 2.5 18.5 4.0 98.9 93.3 82.8 76.8 14.5 3.2

that is very different from the training data. In this section, we

evaluate the techniques for distinguishing ID/OOD data in the

test set of the same benchmark dataset that follows a very similar

distribution as the training set.

Table 4 summarizes the results on the test data for each dataset.

We select twometrics TPR99 and TPR99.9 (in the second row), which

means that we select two thresholds with high accuracy in detecting

ID data (i.e., 99% and 99.9% high accuracy in detecting ID data).

Then, we observe how much of the test data is detected as OOD

data under these two thresholds. The results show that the overall

values are very small and follow our expectations that there is little

OOD data in the test set. It also demonstrates that all techniques are

effective in identifying ID data. Most importantly, it demonstrates

that the test set data follows almost an identical distribution as the

training data, highlighting that the trained distribution of the DNN

integrates unknown data, which is considered relevant to the DNN

application (middle of Figure 2).

4.1.3 Results of splitting the training data. After evaluating the

ability in detecting OOD and ID data in their extreme cases (i.e.,

Section 4.1.1 and 4.1.2), we design afi nal study that is between

these two extreme cases. We split the training dataset equally in

two separate sets based on their labels. Then, we train the same

DNN architectures as before but with onlyfi ve outputs, since we

only use half of the classes (e.g., 0-4). Similarly, we evaluate the

capability of the detection techniques by distinguishing the trained

classes from the non-trained classes of data.

Table 5 shows howmuch of the non-trained class data is detected

as OOD data. We can clearly see that the values lie between the

values in Table 3 and Table 4. Another observation is that more

OOD data can be identified in the grayscale images (i.e., MNIST

and FashionMNIST) while less OOD data is identified in the color

images. The reason may be that the grayscale images have lower

dimensionality. Thereby, it is easier to capture the content changes

between the two subsets. However, for the complex color images,

they may share a similar style in the same domain (e.g., the back-

ground), which makes it more difficult in distinguishing the two

classes. We also found that TPR95 can identify more OOD data

Table 6: OOD Data by Different Mutation Operators. (in %)

Mutators
DenseNet-121 ResNet-18 LeNet-5 (MNIST)

TPR85 TPR99 TPR85 TPR99 TPR85 TPR99

B
en
ig
n

Translation (-3, 3) 32 7 36 9 41 13
Scale (0.7, 1.2) 75 36 74 43 46 10
Shear (-0.6, 0.6) 65 18 53 17 84 54
Rotation (-40, 40) 63 13 45 11 67 21
Contrast (0.5, 0.13) 28 8 47 6 80 41
Brightness (-32, 32) 19 4 17 5 88 68

Blur (1, 10) 87 77 91 83 96 87
Noise (1, 4) 37 0 17 0 29 0
Average 50.6 20.5 47.3 21.7 66.2 36.8

E
rr
o
r

Translation (-3, 3) 77 48 59 21 97 84
Scale (0.7, 1.2) 99 90 96 85 96 66
Shear (-0.6, 0.6) 78 31 76 27 99 87
Rotation (-40, 40) 76 25 79 25 99 76
Contrast (0.5, 0.13) 77 66 54 28 100 99
Brightness (-32, 32) 94 1 64 43 100 99

Blur (1, 10) 96 86 98 91 100 100
Noise (1, 4) 97 77 83 64 100 18
Average 86.9 53.1 76.3 48.1 98.9 78.7

than TPR99 as TPR95 selects a smaller threshold of the trained

distribution.

The overall results give us directions on how to select the thresh-

old for different datasets. If the two datasets are very similar but

suspected to be from different distributions, we can select a smaller

N in TPRN, which can detect more OOD data. If the two datasets

are very different, we can select a larger N that can distinguish the

two datasets.

Answer to RQ1: Overall, our results show that Outlier Expo-

sure on Densenet-121 architecture performs the best and the

results are consistent on all benchmark datasets. The existing

techniques can detect the ID data effectively where most of

the test data are correctly classified as in-distribution. Split-

ting the classes of the training set imposes a challenge to the

detection techniques and grants a new perspective on their

performance for application-realistic settings.

4.2 RQ2. Relationship between Mutation
Operators and Data Distribution.

In the following experiments, we select Outlier Exposure as the op-

timal OOD-detection technique for DL testing based on the results

of RQ1. In addition, due to the space limit, for mutation operator

evaluation we only show the results of DenseNet-121, ResNet-18

and LeNet-5 for MNIST. VGG-11 has lower complexity and Fashion-

MNIST is very similar to MNIST. To evaluate the effect of the muta-

tion operators, we randomly select 200 data samples with uniformly

distributed classes from the benchmark’s test set as the seed images.

Then, we apply each mutation operator to the seeds, generating

2,000 benign test cases and 2,000 error test cases. Table 6 shows

the results of the OOD data generated by each mutation operator.

Column Mutators shows each mutation operator. The parameters

are chosen very conservatively and follow previous contributions

while changing the original image slightly [55]. The exact settings

for realistic mutation is at [34].

The generated test cases and the original dataset are similar.

Therefore, we build on ourfi ndings from RQ1 and introduce both

TPR85 and TPR99 settings to detect the OOD test cases. We can

be more certain that samples tend to be OOD with the threshold
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of 99%. Nevertheless, if TPR85 shows a low score, the likelihood is

more samples tend to be in-distribution.

Considering the results of the benign test cases and error test

cases, wefi nd that the errors test cases are considered out-of-

distribution at a higher rate than the benign test cases. Error test

cases for DNNs trained on CIFAR-10, namely DenseNet-121 and

ResNet-18, have an average TPR99-score of 50.6%, while the benign

test cases only show 21.1%. For example, focusing on the muta-

tion operator Image Noise, we can observe that benign test cases

seem to be entirely in-distribution (TPR99 = 0) while the error test

cases show a TPR99-score of 77%, 64% and 18% respectively for all

three DNNs. This behavior indicates that error test cases are more

likely to be out-of-distribution and thus they are more likely to be

predicted incorrectly.

Considering the results between different DNNs, wefi nd that

DenseNet-121 and ResNet-18 (trained on CIFAR-10) share similar

averages between all three evaluation metrics. However, they have

different trends when compared with LeNet-5 which is trained

on MNIST. This behavior shows that the results are data-driven,

highly depending on the trained datasets in general. For a simple

grayscale image (MNIST) which has low dimensionality, the muta-

tion operators may change it a lot and generate OOD data. However,

for more complex color images, the mutation operators (with the

defined conservative parameter setting) will change little on the

high dimensional data, which makes lower OOD data in CIFAR-10.

For example, in MNIST, the average results are 36.8% and 78.7%

for benign test cases and error test cases, respectively. While for

ResNet-18 on CIFAR-10, the results are 21.7% and 48.1%.

Comparing different mutation operators individually, wefind

that image blur tends to generate the most OOD data. The benign

and error test cases of Blur are considered 77% and 86% as OOD data

(based on TPR99). Image Scale follows a similar pattern especially

for error test cases on CIFAR-10 (85% and 90% for Densenet-121 and

ResNet-18 respectively). For Image Scale, after the image is becom-

ing smaller, the black color is used to complement the background,

and therefore is more likely to be OOD. However, in error test cases

of MNIST, the background of the original images is black already.

Hence, the Image Scale only generates 66% OOD data, which is the

smallest value in all mutation operators. In addition, wefi nd that

mutation operators, i.e., Translation, Shear, Rotation and Brightness

tend to generate fewer OOD data. For example, Brightness only

generates 1% OOD data for DenseNet-121 and Rotation generates

25% OOD data for both, DenseNet-121 and ResNet-18.

Answer to RQ2: The data distribution generated by mutation

operators is dependent on the datasets. Considering the same

mutation operators, more test cases tend to be more OOD

for grayscale images and less for color images. Image blur

and Image Scale are the mutations strategies where the high-

est OOD-score is observed, whereas Image Rotation, Shear,

Brightness and Contrast generate fewer OOD data. The error

test cases are more likely to be OOD than benign test cases.

Table 7: OOD data (under TPR99) generated by different cov-

erage guidance. (in %)

Rand NC KMNC NBC SNAC TKNC FANN

B
en
ig
n

D
en
se
N
et
-1
21

Rotation 13 8 14 33 22 7 8
Contrast 8 24 9 52 59 17 21
Brightness 4 14 5 40 42 13 14

Blur 77 36 58 77 51 40 53
All 14 38 11 34 42 14 13

Average 23 24 20 47 43 18 22

R
es
N
et
-1
8

Rotation 11 6 20 13 10 10 12
Contrast 6 8 9 43 44 14 9
Brightness 5 4 3 11 15 11 5

Blur 83 24 69 81 71 34 47
All 8 33 11 59 52 18 11

Average 23 15 22 41 38 17 17

L
eN

et
-5

Rotation 21 1 11 17 7 12 15
Contrast 41 1 3 16 4 15 25
Brightness 68 2 39 29 1 28 32

Blur 87 3 43 4 1 32 55
All 31 3 25 69 37 25 22

Average 49 2 24 27 10 23 30

E
rr
o
r

D
en
se
N
et
-1
21

Rotation 13 26 29 32 46 36 34
Contrast 8 95 40 75 85 72 62
Brightness 4 13 31 48 85 40 38

Blur 77 93 87 86 90 89 87
All 14 66 55 67 72 58 57

Average 23 59 48 61 76 59 56

R
es
N
et
-1
8

Rotation 25 35 26 26 34 37 29
Contrast 28 65 50 95 92 67 56
Brightness 43 20 9 13 10 33 36

Blur 91 86 89 93 89 87 85
All 56 60 52 66 68 59 55

Average 48 53 45 59 59 57 52

L
eN

et
-5

Rotation 76 56 59 68 59 73 77
Contrast 99 100 87 100 100 98 98
Brightness 99 100 100 100 100 100 100

Blur 100 81 95 91 80 97 97
All 82 73 74 91 86 82 78

Average 91 82 83 90 85 90 90

4.3 RQ3. Relationship between Testing Criteria
and Data Distribution.

In RQ2, we have identified the behavior of the mutation operators

without applying any guidance to the DL testingfl ow. Now, we add

coverage criteria to the testingfl ow to guide the test case generation.

Therefore, we evaluate the effect of coverage criteria on the data

distribution and compare it with the results of RQ2 as the baseline.

Based on the results of RQ2, we select 4 mutation operators,

i.e., Rotation, Contrast and Brightness which are more likely to

generate ID data and Blur which is more likely to generate OOD

data. Table 7 shows the results of how many test cases are OOD

data with different coverage guidance. The results are evaluated by

Outlier Exposure with TPR99. The third column shows themutation

operators. Row All means we use all default mutation operators

for test case generation. Column Rand shows the results without

coverage criteria guidance which is from Table 6. The columns

following Rand show the results for each coverage criterion. Note

that, in coverage-guided testing, benign test cases are generated

with the guidance of the coverage criteria while error test cases are

notfi ltered by the coverage criteria.

Considering the results of benign test cases (i.e., under coverage

guidance), wefi nd that, compared with the random generation (i.e.,

without coverage guidance), KMNC TKNC and FANN decrease

the OOD data ratio, whereas NBC and SNAC increase the OOD

data ratio. For example, in DenseNet-121, the average value with

random generation is 23% while the average values with KMNC,

TKNC and FANN guidance are 20%, 18% and 22%, respectively. The

average values with NBC and SNAC are 47% and 43%, respectively.
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Figure 3: Train/Test and Error Test Case Distributions col-

ored in different ranges defined by quantiles of train/test

distribution

It is consistent with their definitions. For example, KMNC mainly

considers major behaviors of the DNN and FANN generates test

cases that are near the original seeds. Thus, ID data is more likely

to be generated with the guidance of these two coverage criteria.

However, NBC and SNAC mainly consider the boundary of the

DNN. Hence, they can generate more OOD data.

Considering the specific mutation operators individually, wefind

that mutation and coverage criteria influence each other. For exam-

ple, for DenseNet-121 and ResNet-18 when using Image Contrast,

most of the coverage criteria increase the OOD data ratio including

KMNC, TKNC and FANN, where usually these coverage criteria

tend to decrease the OOD data ratio in all data. It indicates that the

coverage criteria guide the test case generation by covering more

diverse DNN behaviors for this particular mutation operator. In

the contrary, Image Blur changes the image a lot causing most test

cases to be OOD under the random mutation setting already. In

this case, all coverage criteria decrease the OOD data ratio com-

pared to the random mutation setting. This behavior means that

most OOD test cases generated by Image Blur may befi ltered by

the coverage criteria. For example, the coverage criteria in Deep-

Gauge [25] are defined based on the profiling of training data. The

blurred images are far from the training data, thus they cannot

achieve new coverage under these criteria. The results demonstrate

that existing coverage criteria have obvious effects on mutation

operators but vary in their behavior depending on the underlying

mutation operator.

Another interesting observation is found for MNSIT trained on

LeNet-5 which is different from the results for CIFAR-10. For the

benign test cases of LeNet-5, almost all coverage criteria decrease

the OOD data ratio, where for CIFAR-10 this behavior could only be

observed for selected mutation operators. It seems that for simple

black and white or grayscale images, the random mutation requires

much change to produce a test case, which is why a lot of OOD

data are generated. However, the testing criteriafi lter most of these

data points as they do not contribute to increasing the coverage.

For the error test cases, wefi nd that, compared with random mu-

tation, almost all the coverage criteria increase the OOD data ratio

in ResNet-18 and DenseNet-121. In LeNet-5, most of the erroneous

test cases tend to be OOD data (TPR99). Actually, error test cases

have no direct relationship with the coverage criteria as they are

notfi ltered by the criteria directly. However, they are generated by

mutating the benign data that are generated under the coverage

guidance.

Answer to RQ3: Our results show that, existing coverage

criteria affect the data distribution of generated test cases,

which is important to address when designing a test scenario.

KMNC, TKNC, NC and FANN tend to decrease the number of

OOD benign test cases while NC and NBC tend to increase the

OOD benign test cases. For the mutation operators that tend

to generate fewer OOD data such as rotation and contrast, the

existing coverage criteria can increase the number of OOD

data by covering more behaviors of the DNN. For the muta-

tion that tends to generate more OOD data such as blur, the

existing coverage criteria can decrease the number byfiltering

some data with the coverage guidance. For grayscale images,

the coverage criteria may decrease the number of OOD data

with random mutation operators. The coverage criteria may

increase the OOD data for generated error test cases.

4.4 RQ4. Root Cause of ID and OOD Errors and
Robustness Enhancement.

We hypothesize that ID error test cases tend to be a result of defects

in the DNN model while OOD error test cases tend to be a result

of missing data in the training set. Therefore, two experiments are

designed to study the hypothesis. First, we use other DNN models

with different architectures but trained on the same training data to

predict the ID and OOD errors of the model under test. Following

our hypothesis, we expect other DNN models to predict ID errors

more correctly than OOD errors. Second, we retrain the model

under test with additional ID and OOD error test cases. We expect

that the newly added data helps in correctly predicting OOD errors

more effectively.

4.4.1 Robustness Enhancement with Adjusting Models. For thefirst

hypothesis, i.e., ID error test cases tend to be a result of defects in

the DNN model, we select six other DNN variants (VGG-11, VGG-

13, ResNet-18, ResNet-34, DenseNet-121, DenseNet-169), which

differ in their architecture but are learned from the same training

dataset. Note that these models can be regarded as the simulation

of the potential improvement of the original model (e.g.,fi netune or

change in architecture). We expect errors found on, e.g. ResNet-18,

to be predicted correctly by some of the otherfi ve DNN variants

with special attention on whether ID errors tend to be predicted

correctly more likely than OOD errors.

Table 8 shows the results of the cross validation on otherfi ve

models. Full evaluation can be found on the website [34]. For each

model, we collect 10,000 ID errors and 10,000 OOD errors, respec-

tively. The accuracy shows how much data is correctly predicted

on average by the other models (i.e., it could be handled well by

improving the model). Overall, the results indicate that ID errors

tend to befi xed at a higher likelihood than OOD errors through

DNN adjustments such as changing its neural architecture, which

is consistent with our hypothesis. For example, by changing the

models, 32.4% ID errors could befi xed while only 20.4% OOD errors

could befi xed.

4.4.2 Robustness Enhancement by Adding Training Data. For the

second hypothesis, i.e., OOD error test cases tend to be a result
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Table 8: DNN Model Agreement on ID and OOD Errors.

Test Model Error Type Cross Validation
TPR85 TPR99 Accuracy (%)

ResNet-18
ID-Error 29.7

OOD-Error 21.2

DenseNet-121
ID-Error 32.4

OOD-Error 20.4

Table 9: Results for robustness enhancement on different

dataset and DNNs. (in %)

Test Set CIFAR-10 RANDOM ID85 ID95 OOD95 OOD99

R
es
N
et
-1
8 CIFAR-10 Test 91.5 90.1 90.5 90.2 90.1 89.8

ID Error 0.0 50.9 56.9 50.5 60.4 13.3
OOD Error 0.0 64.1 54.3 54.3 62.6 10.9
RAND Error 0.0 58.1 53.5 50.0 61.9 12.0

D
en
se
N
et CIFAR-10 Test 94.5 89.2 89.6 89.9 89.7 89.6

ID Error 0.0 60.7 47.3 47.0 60.5 49.1
OOD Error 0.0 46.6 55.1 49.9 59.0 58.3
RAND Error 0.0 48.7 53.5 47.7 59.2 55.0

Total Average 0 54.9 53.4 49.9 60.6 33.1

of missing training data, we generate multiple ID/OOD data and

evaluate the robustness by retraining with them.

Specifically, we proposefi ve datasets, each of which contains

original training data and 10,000 error test cases, which are gen-

erated from 1,000 initial seed inputs but vary in their OOD score

(presented by color and threshold in Figure 3: Orange and yellow

areas indicate ID error test cases with TPR85 and TPR95 to be 0%

respectively (related to as ID85 and ID95). Green and red areas

indicate OOD error test cases with TPR95 and TPR99 to be 100%,

respectively (related to as OOD95 and OOD99). We further use

errors drawn randomly from the distribution as another dataset.

In addition, we prepare four test sets: the original test set, 2,000

ID errors, 2,000 OOD errors and random errors, which are used

to test the new DNNs. Here, we only include two DNNs trained

on CIFAR-10 due to most of the errors for LeNet-5 on MNIST are

considered OOD.

Table 9 shows the results of the retrained DNNs. Overall, for

the new DNNs, the accuracy on test set is reduced on average by

1.5%. At the same time, the performance on correctly classifying

random errors is improved up to 61.9% percentage points. However,

the results vary quite a lot with the data distribution. OOD error

test cases (green area, column OOD95) show the highest overall

accuracy with 60.6% average accuracy, while ID85 and ID95 only

classify 53.4% and 49.9% correctly. This promotes the idea that OOD

errors are more effective in generalizing the model towards new

data. However, not all OOD errors can be considered effective for

retraining. Column OOD99 shows the lowest total average, which

indicates, that at some point error test cases can not be considered

directly benefiting the overall DNN application as they are too

different from the overall distribution.

Compared with random retraining which can be considered a

baseline of recent work, distribution aware retraining increases

robustness on average by 10.2% and up to 21.5% for Random Error

Test Set on DenseNet-121.

Answer to RQ4: The results demonstrate that ID-errors tend

to befi xed via DNN adjustments, while OOD-errors seem to re-

quire further training data for being correctly classified. When

retraining, OOD errors tend to be on average 10.4% more ef-

fective in improving the robustness of the DNN than ID errors

or randomly chosen ones. Furthermore, not all OOD errors

help the model to generalize, indicating that the OOD-score

distance towards the trained/tested DNN distribution matters

when choosing the right data for enhancing robustness.

4.5 Discussion and Research Guidance

Based on our results, we pinpoint the following research directions:

• OOD Detection for DL Testing (RQ1). In DL testing, it is still

challenging to distinguish ID and OOD data especially when

more similarities between the two tested data types exist. There-

fore,fi ne-grained thresholds seem helpful in gaining a better

understanding in similar cases. Our results in Fig. 2 provide the

following guidance: if the testing tool aims at generating ID test

cases, a smaller N should be selected. If we want to generate

OOD test cases, a larger N should be selected.

Research Guidance: a possible direction is to develop OOD

techniques, which can effectively detectfi ne-grained OOD data

for deep learning testing.

• Mutation Operators and Coverage Criteria (RQ2&3). Our

results show that the existing mutation and coverage criteria

have different effects on ID data or OOD data generation. To

build the distribution-aware DL testing tools, we could develop

distribution-based coverage criteria that canfi lter some OOD

data or ID data.

Research Guidance: DL testing tools should be aware of distri-

bution. A promising direction is to develop morefi ne-grained

distribution-aware criteria for the test selection.

• Robustness Enhancement (RQ4.)Our initial results have shown

that distribution-aware retraining is more effective in robustness

enhancement than the distribution-unaware retraining. It seems

that root causes for ID errors are partially model dependent while

OOD errors can be effectivelyfi xed with new training data.

Research Guidance: A future research direction is to further

analyze the root cause of ID and OOD errors, especially in an

even morefi ne grained setting which can provide guidance for re-

pairing the model from a data and DNN architecture perspective

under regard of the presented threshold of this work.

4.6 Threat to Validity

The selection of the datasets and DNNs could be a threat to validity.

We try to counter this by using eight publicly available and popu-

larly used datasets and cross-validating results on three different

DNN architectures. OOD detection is a very challenging problem as

there is no perfect ground truth, which could be a threat to validity.

To this end, we select multiple state-of-the-art OOD techniques for

a comparative study. In addition, we also design threefi ne-grained

experiments (in RQ1) where the ground truth can be approximated

by the inherited difference. Thereby, we can identify the optimal

OOD detection technique for DL testing to compare the distribution

performance for DL testing associated data. The results of Tables 4,
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5, 6, 7, 8 and 9 may be biased on the seeds and the generated data.

We try to counter this by randomly selecting the same number

of seeds for each class, generate a large number of mutants, and

compare the averaged results.

5 RELATEDWORKS

Deep Learning Testing. Adversarial attacks have been exten-

sively studied to perform perturbation on input data to fool a DNN

in different applications [2, 10, 13, 30, 41, 52]. However, such per-

turbations are often obtained through gradient- or optimized-based

searching, which may rarely happen in a physical environment.

In addition, it has been demonstrated that there are many issues

during the DL development and depolyment phases [12], which

calls for the requirement of systematic DL testing. Different from

the adversarial attack, DL testing considers generating new tests

by performing mutations that simulate noise patterns from the

physical environment (e.g., image brightness change, rotation) with

defined bounds to maintain realism, e.g., rotation is limited to 40

degrees. To estimate the DL testing sufficiency and providing test-

ing guidance, many testing criteria have been proposed. DeepX-

plore [35] originally proposed the neuron coverage. Inspired by

this, DeepGauge [25] proposed a set of morefi ne-grained testing

criteria such as KMNC, NBC, etc. DeepConcolic proposed MC/DC

test criteria [42]. Furthermore, combinatorial testing criteria [26]

and Surprise Adequacy [17] are also proposed. The testing criteria

above mainly focus on feed-forward neural networks, while Deep-

Stellar [8] proposed the model-based testing criteria for recurrent

neural networks.

These proposed testing criteria for DNN are used to guide the

test generation process, such as in [27, 28, 33, 35, 48, 55, 56, 59]. In

addition, DeepTest [48] and DeepRoad [58] also generate images

with Generative Adversarial Networks (GANs). Compared with the

basic transformations (e.g., adding noise, rotation), the GAN-based

techniques can perform advanced scene transformation, but are

computation-intensive requiring training a GAN, the quality of the

generated images can not be easily guaranteed.

Similarly, we also leverage the basic mutation operators and

coverage criteria in existing testing tools for the study. However,

this paper is orthogonal to existing DL testing work in that our

focus is to investigate the importance of data distribution and how it

impacts existing testing techniques. Our results show that, although

existing testing techniques are able to detect thousands of errors as

discussed in their original papers, a large portion of these errors

may not contribute directly to the desired result when retraining

or to the overall DL application. Therefore, considering the data

distribution during DL testing is of great importance to properly

identify the real weakness of a DNN for further processing.

Out-of-Distribution-Detection Techniques. While being im-

portant, the out-of-distribution analysis is challenging especially

for high-dimensional data. Dan Hendrycks et. al introduced a base-

line approach [15], which utilizes the maximum Softmax prob-

ability. Correctly classified examples tend to have greater maxi-

mum Softmax probabilities than erroneously classified and out-

of-distribution examples, allowing for their detection. The ODIN

[24] and Mahalanobis technique [23] propose to apply input per-

turbations by adding noise or temperature to the input, by which

they intensify the ability of the baseline algorithm to differentiate

confidence between in and out-of-distribution errors. Outlier Expo-

sure [16] takes a different approach. Here, a separate DNN is taken,

and trained with an additional infusion of declared OOD-samples,

such as large scale data images TinyImages [9], while the score is

calculated in a similar fashion to the baseline. One advantage of

the technique is independence towards the DNN used for the appli-

cation. Just towards the data. Thereby, a bias for OOD-detection

caused by a given DNN may be overcome more efficiently.

Finally, more recent contributions propose to use likelihood-

ratios at their core [36, 40] and utilize generative PixelCNN++ ar-

chitecture to retrieve bits per dimension to calculate OOD scores.

Other techniques, which are not capable of classifying single inputs

[31], require heavy DNN architectural adjustments, such as adding

an additional class [51] or taking multiple techniques as ensemble

[4, 20]. This is not considered in this work due to their imposed

limitations towards DL testing.

Existing OOD detectionmethods are mostly proposed to work on

datasets with a large difference. Therefore, it is still unclear whether

and to what extent existing OOD detection methods can be used for

the challenging DL testing scenario, where the generated test data

often differs from its original counterpart in a minor way. In this

work, we selected the state-of-the-art OOD-detection techniques to

investigate their effectiveness, its connection and usefulness for DL

testing purposes. Wefi nd that data-distribution awareness could

be a key for more effective and interpretable DL testing towards

providing better quality assurance.

6 CONCLUSION

In this paper, we conduct a large-scale empirical study on the state-

of-the-art OOD techniques towards understanding the data distri-

bution and its impact on DL testing activities. Our results show that

the existing OOD detection techniques can distinguish the OOD

data from the newly generated test cases, even for challenging

cases where the test data is very similar to the training data. Our

study further shows that existing image mutation operators and

testing criteria can greatly affect the distribution of the generated

test cases. Finally, we demonstrate that distribution-aware dataset

tends to be more effective in robustness enhancement. This study

makes thefi rst step along this direction towards understanding the

data-driven nature of DL software for testing activities. The results

of this paper call for the attention of data-distribution awareness

during designing testing and analysis techniques for DL software,

which builds the foundation towards developing more effective DL

testing techniques.
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