
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2019

MobiDroid: A performance-sensitive malware detection system MobiDroid: A performance-sensitive malware detection system

on mobile platform on mobile platform

Ruitao FENG

Sen CHEN

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Lei MA

Guozhu MENG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the OS and Networks Commons, and the Software Engineering Commons

Citation Citation
FENG, Ruitao; CHEN, Sen; XIE, Xiaofei; MA, Lei; MENG, Guozhu; LIU, Yang; and LIN, Shang-Wei. MobiDroid:
A performance-sensitive malware detection system on mobile platform. (2019). Proceedings of the 24th
International Conference on Engineering of Complex Computer Systems, Guangzhou, China, 2019
November 10-13. 61-70.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7073

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7073&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ruitao FENG, Sen CHEN, Xiaofei XIE, Lei MA, Guozhu MENG, Yang LIU, and Shang-Wei LIN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7073

https://ink.library.smu.edu.sg/sis_research/7073

MobiDroid: A Performance-Sensitive Malware
Detection System on Mobile Platform

Ruitao Feng1, Sen Chen1∗, Xiaofei Xie1, Lei Ma2, Guozhu Meng3, 4, Yang Liu1, Shang-Wei Lin1
1Nanyang Technological University, Singapore 2Kyushu University, Japan

3Institute of Information Engineering, Chinese Academy of Sciences, China
4School of Cyber Security, University of Chinese Academy of Sciences, China

Abstract—Currently, Android malware detection is mostly
performed on the server side against the increasing number
of Android malware. Powerful computing resource gives more
exhaustive protection for Android markets than maintaining
detection by a single user in many cases. However, apart
from the Android apps provided by the official market (i.e.,
Google Play Store), apps from unofficial markets and third-
party resources are always causing a serious security threat to
end-users. Meanwhile, it is a time-consuming task if the app
is downloaded first and then uploaded to the server side for
detection because the network transmission has a lot of overhead.
In addition, the uploading process also suffers from the threat of
attackers. Consequently, a last line of defense on Android devices
is necessary and much-needed. To address these problems, in
this paper, we propose an effective Android malware detection
system, MobiDroid, leveraging deep learning to provide a real-
time secure and fast response environment on Android devices.
Although a deep learning-based approach can be maintained
on server side efficiently for detecting Android malware, deep
learning models cannot be directly deployed and executed on
Android devices due to various performance limitations such
as computation power, memory size, and energy. Therefore, we
evaluate and investigate the different performances with various
feature categories, and further provide an effective solution to
detect malware on Android devices. The proposed detection
system on Android devices in this paper can serve as a starting
point for further study of this important area.

Index Terms—Android malware, Malware detection, Deep
neural network, Mobile platform

I. INTRODUCTION

With the currently increasing number of Android devices

and apps, more and more Android users store personal data

such as online banking and shopping in their Android devices.

Consequently, the security and privacy threats on Android

platform draw much attention. Undoubtedly, Android malware

is one of the most important security threats in this security

field [34], [35].

Therefore, how to detect Android malware becomes a severe

problem. End-users expect a secure environment which is

maintained by the Android markets. In other words, they

consider their app sources are all trustable and secure enough.

It is not surprising that the demands of Android malware

detection approaches have been proposed such as signature-

based approach [36]–[38], behavior-based approach [39]–[42],

information-flow analysis-based approach [43]–[45]. We note

that machine learning-based approach [1], [46]–[51] is one of

∗Sen Chen is the corresponding author

the most promising techniques in detecting Android malware.

With the available big data and hardware evolution over the

past decade, deep learning has achieved tremendous success

in many cutting-edge domains, including Android malware

detection. Actually, all of the above solutions are under server

side for Android markets. However, when a new Android

malware family is reported, not all the Android markets are

able to respond in a reasonable time. The current analysis

workflow always follows analyzing malicious behaviors in

apps, building the detection models with the generated features

and then performing the detection on the entire apps. Since

the number of the real-world Android apps is extremely

large, e.g., there are more than 3 million Android apps on

Google Play Store, it is a time-consuming task to perform the

complete detection with that large number of apps. Moreover,

the app from unofficial markets and third-party resources like

XDA1 are more vulnerable in the wild. The security of these

kinds of apps is indeed unpredictable and uncontrollable. The

traditional server-side based malware detection is challenging

to detect such applications: 1) it is time-consuming to upload

the app to server before the installation, especially for larger

apps; 2) the uploading process on the Internet is not secure.

For example, attackers may modify the malware during the

uploading period such that an incorrect “benign” result is

returned. As a result, the user will install the malware. Hence,

a last line of defense on Android devices is necessary and

much-needed. To address the severe problem, we intend to

conduct Android malware detection on Android devices.

Actually, machine learning-based approaches have achieved

better performance compared with other approaches in An-

droid malware detection. In this paper, we intend to deploy

the trained deep learning (DL) models on server-side to An-

droid devices. While a computational intensive deep learning

software could be executed efficiently on server-side with the

GPU support, such deep learning models usually cannot be

directly deployed and executed on other platforms supported

by small Android devices due to various computation resource

limitations, such as the computation power, memory size, and

energy. Therefore, we use TENSORFLOW LITE2 for Android

to migrate the deep learning trained models. Due to the per-

formance limitations of Android devices, We first summarize

1https://forum.xda-developers.com/
2https://www.tensorflow.org/lite/

61

2019 24th International Conference on Engineering of Complex Computer Systems (ICECCS)

978-1-7281-4646-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICECCS.2019.00014

and propose 7 feature categories such as permissions, API

calls, and opcode sequences according to the existing work

to investigate their corresponding performances with the deep

learning algorithm. Based on the metrics of accuracy and time

cost (i.e., time of feature extraction and model prediction),

we propose an effective Android malware detection system,

MobiDroid, leveraging deep learning models to provide a real-

time secure and fast response environment on Android devices.

The proposed system is performance-sensitive due to the

performance limitations of Android devices. Therefore, real

users are able to trade off classification accuracy and time

cost in practice. In our experiments, MobiDroid achieves

a relatively higher classification accuracy (i.e., over 97%

accuracy) with relatively lower overhead (i.e., 17.76 seconds

in total).

Overall, this paper makes the following contributions.

• We propose MobiDroid, a device-end solution to protect

Android devices from Android malware in real-time

efficiently. To the best of our knowledge, this is the

first work to detect Android malware directly on Android

devices rather than server side.

• We evaluate and investigate the different performances

with various feature categories for deep learning algo-

rithm, and further provide an effective solution according

to the classification accuracy and time cost. Moreover, the

corresponding results can be used to help users to trade

off classification accuracy and time cost in practice.

• In our experiments, we conduct a comparative study

between machine learning algorithm and deep learning

algorithm on Android devices in malware detection,

demonstrating the usefulness of our approach.

In summary, existing techniques mainly focus on detecting

Android malware on the server side based on the information

from the APK file and the source code. Different with the

existing techniques, this paper performs the first study on the

Android malware detection performances with various feature

categories on the mobile side, which serve as a starting point

for further study of this important area.

The rest of this paper is organized as follows: Section II

introduces the background of this work, Section III details our

proposed approach to detect Android malware. We conduct

our experiments in Section IV. Section V discusses the limi-

tations of MobiDroid. We list the related work in Section VI.

Finally, we conclude this paper and discuss the future work in

Section VII.

II. PRELIMINARIES

In this section, we briefly introduce the structure of Android

apps, the existing security mechanisms of Android apps, and

the migration/quantization procedure of trained deep leaning

models.

A. Android Apps

To execute the code of Android apps, Android developers

compile their source code and other components, like applica-

tion structure files and other resources, etc., into an Android

application package (APK). APK is a compressed application

file for Android platform, which is used to deliver Android

mobile applications. For each APK, it contains a manifest file,

Dex files, resources, assets, and certificates.

The manifest file contains the meta-data for Android apps,

which defines the package name and application ID, app

components like Intent filters, activities, and services, etc.,

permissions, device compatibility, like uses-feature and uses-

sdk, etc. Dex files as extension are Dalvik executable code,

which can be executed on Dalvik virtual machine in Android

OS and converted from Java bytecode via an alternative

instruction set. However, the instruction format in Dex is quite

complicated and hardly interpretable by a developer. To make

them more accessible, they are often decompiled into smali

files by reverse engineering, which contain the same contents

as Dex, but have a better syntax format before manual analysis.

B. Security Mechanisms

The existing security mechanisms can be mainly divided

into two categories, which are application market and Android

OS platform aspects in practice.

From the aspect of Android market, the official market

(i.e., Google Play Store) provides a security verification when

the APK uploaded. For instance, Google provides protection

backed by its machine learning algorithm. Some high-quality

third-party markets also present security check for the up-

loaded applications. For example, ApkMirror3 not only pro-

vides the signature verification, but also performs a protection

service provided by GuardSquare. However, most of current

security check service provided by third-party markets is very

simple and limited. Some of them only contain a signature

verification, which can be bypassed easily. Thus, users, who

download applications from the third-party markets, install and

use it at their own security risk.

On the device, there exist a lot of antivirus applications pro-

vided. The most famous applications, like Avast and Kasper-

sky, mainly provide their antivirus service by monitoring the

privacy-sensitive components on the device and an appli-

cation scanning with their on-cloud virus database. Besides

the protection from outside, Android OS also provides some

strong built-in security mechanism, like application sandbox,

etc. Application sandbox mechanism provides an independent

execution environment for every application. Hence, the attack

from an application can only work on its own requested com-

ponents. For instance, if Bluetooth permissions and actions

liked activities are not required in the application, the attack

can never access the functions provided by Bluetooth. Differ-

ent from other systems, like Linux and Windows, malicious

code in Android OS cannot easily hijack the whole system,

unless a developer promises it every available system-level

component hand by hand.

C. Deep Learning Model Migration and Quantization

After a DL model finishes the training process and is ready

to deploy to a target device, it oftentimes goes through either

3https://www.apkmirror.com/

62

Fig. 1. The processes of feature preparation and deep learning model training

quantization, or platform migration, or both, before deployed

to end-user applications, such as mobile devices, self-driving

cars, and video surveillance. This is because the training

phase requires a vast amount of computation and energy

resources. As the model size and the complexity of the tasks

grow, more data are needed to train the network till reaching

optimality, which could spend days, if not weeks, in training

on high-performance GPU clusters. On the other hand, the

deployment of the DNN models is usually faced with the

resource-constrained environment with limited computation,

storage, and power.

Due to environment difference of a target platform (e.g.,

mobile phones, green energy embedded systems) and training

platform (e.g., often equipped with GPUs), a DL model often

goes through a customization phase to cater specific software

and hardware constraints of a target platform. Quantization

reduces the precision of a DL model so as to improve

the computation efficiency, reduce memory consumption and

storage size, which has become a common practice when

migrating a large DL model trained on the cloud system to

a mobile or IoT devices with low computation power.

Recently, the rapid development of system-on-chip (SoC)

acceleration (e.g., Qualcomm Snapdragon, Kirin 970, Sam-

sung Exynos9) for AI applications provides the hardware sup-

port and foundation for universal deployment across platforms,

especially on mobile device, edge computing device and so

forth. Some lightweight solutions are proposed for mobile

platforms such as CoreML,4 TensorFlow Lite, Caffe2 Mobile

and Torch Android. Likewise, a solution is also proposed for

deploying DL models in the web environment (e.g., Tensor-

Flow.js). It proposes a chance to deploy the DL-based malware

detection task on a mobile device directly. Hence, in this paper,

we perform the first study on the performances of DL-based

malware detection on mobile devices.

III. APPROACH

In this section, we first introduce the overview of our

approach, and then detail each of the key phases.

4https://developer.apple.com/documentation/coreml/

A. Overview of MobiDroid

To achieve our approach, we propose MobiDroid, whose

functionality could be divided into two major parts. As

shown in Fig. 1, the first part of our system contains feature
preparation and DL model training. We select 3 kinds of

feature types based on the investigation of existing stud-

ies, which are manifest properties, API calls,
opcode sequences, as the input of our deep neural net-

work. The first part allows to generate a DL trained model
and a vector dictionary for the second part. To make the

model adaptive to Android devices, we then migrate the pre-

built DL model from the first part to a TENSORFLOW LITE

model, which is mobile readable format. Also, a quantization

phase5, which is a general technique to reduce model size

while also providing lower latency with little degradation in

accuracy, is presented as a performance optimization for the

mobile platforms.

As shown in Fig. 2, the second part loads the mi-

grated/quantized DL model and vector dictionary into mobile

device. After that, when an application is downloaded from

market or third-party resource, MobiDroid is able to extract

feature vector from it and deliver the result to our detection

system. Hence, after predicting with the loaded DL model, we

obtain a certain level of confidence based on predictive output

to know whether the downloaded Android app is a malware.

B. Feature Preparation

Android app is provided as a packed APK file, which

contains the compiled binary files, XML files, like manifest

file, and other resources, etc. In data processing progress, to

get the features from the APK file, we first decode the package

to separate files by using ApkTool.6 Among the decoded

application source files, we can extract three different feature

types, which are manifest properties, API calls, and opcode

sequences, from the raw application data. According to the

different contents in each feature, we presented two different

vector embedding methods to generate the inputs for the neural

network.

5https://www.tensorflow.org/lite/performance/post training quantization/
6https://ibotpeaches.github.io/ApkTool/

63

Besides, to determine the features used in our detection

system, we also perform a comparison of the extracting and an-

alyzing performance for most commonly used features, which

include features not used in our system, in previous malware

detection approaches. Based on the result, we selected three

performance-sensitive features as our model inputs. The details

of the feature selection part will be illustrated in section IV-C.

Feature definition and extraction. In Fig. 1, step 1© refers to

feature extraction. From manifest file in application package,

three features are extracted under XML tag uses-permission,

intent-filter, and uses-feature. uses-permission contains An-

droid system permissions, which are related to the privacy

of an Android user. Android apps must request the relative

permission before accessing sensitive user data or certain

system feature. Information from intent-filter refers to intent

objects. Each intent contains a message object which is used

to request actions from the app component by developers. This

feature define the basic actions, which may be used in attacks,

like sending SMS or reading the pictures, etc. from Android

devices. From uses-feature tags, we extract hardware features.

Such as Audio Hardware Features and Bluetooth Hardware

Features etc. Each feature refers to a basic hardware usage

defined in Android operation system.

From the decompiled smali code files, we extract 2 types of

features, which are API calls and opcode sequences. API call

contains both the method name and the package name of the

corresponding method. They may not only contain methods

from Android and Java packages, but also involve third-party

methods. The opcode sequences are generated by matching

the function name in smali files with their opcode hex. Each

sequence represents a single smali code file.

Feature vector generation. To represent the features extracted

from raw data as a computable format, we built a dictionary for

direct matching on permission, intent, hardware component,

and API call features. Due to the complexity among opcode

sequences, it is difficult to represent them through direct

matching. To handle this problem, we embedding them to a

one-hot vector per step in our neural network.

The dictionary for features in manifest are generated from

the Android source code which are predefined by Google

developers. Totally, there are 324 permissions, 213 intents and

76 hardware features listed in dictionary.

By extracting and analyzing the API calls from more than

50,000 real-world Android applications, we find that there are

a lot of API calls are not related to any sensitive components

in Android OS. For example, the View loading API is widely

used in most applications, but it cannot participate in any

kinds of attacks. Meanwhile, among our dataset, most API

calls from the third-party packages appeared only few times.

In other words, a third-party API call in an application may

never appear in others. Thus, we remove all uncommon third-

party packages and the API calls which are not related to any

sensitive components manually by experience and get the API

call dictionary, which contains 1509 APIs, in the step 2© of

Fig. 1.

According to the combined dictionary of manifest property

TABLE I
DEEP NEURAL NETWORK ARCHITECTURE

Input

Embedding Layer input: (None, None)
output: (None, None, 8)

Reshape input: (None, None, 8)
output: (None, 1, None, 8)

Convolutional Layer input: (None, 1, None, 8)
output: (None, 64, None, 1)
ReLU

Reshape input: (None, 64, None, 1)
output: (None, 64, None)

Global Max Pooling input: (None, 64, None)
output: (None, 64)

Linear Dense Layer input: (None, 64)
output: (None, 16)
ReLU

Linear Dense Layer input: (None, 16)
output: (None, 2)

Softmax Classification

and API call features, the size of vector is determined by the

dictionary size of features. For each Android app, the vector is

represented by mapping the retrieved values to the dictionary

size dimension vector space in step 3©.

C. DL Model Training

We present a convolution neural network (CNN) to train

the classifier for malicious and benign Android apps, with our

generated input feature vector delivered by step 4©. However, it

is difficult to figure out the correlation between each dimension

of feature vector and the detection target. Thus, we train 7 test

deep neural network models for each single feature category

and their combination, to determine which feature will be

considered as the input of our training network. By comparing

their accuracy, precision, and recall etc., we determine to use

the 3 feature categories (i.e., manifest properties, API calls,

and opcode sequences) combination model as our pre-trained

model, which can be deployed on mobile devices. The details

of our evaluation will be illustrated in section IV-C.

As shown in Table I, the first layer of our DL model is

feature embedding layer. With input vector and sequences,

we need to unite them as an entire input before sending to

the training parts. Hence, we transform the converted hex

sequences, which represent the opcode sequences, to a one-

hot vector within a lookup table for each sequences bundle.

We then combine the result vector with the vector, which

is generated by direct matching, together in a combination

layer. The resulting vector is reshaped to a matrix and send

to the next layer. The second layer is the convolution layer,

which receives the embedded matrix as its input and applies

convolution filters to produce activation maps for each batch.

As a result of the unfixed-length of the opcode sequences,

batches surely have different length. Thus, to transform the

results in fixed-length vector for the hidden layer, a global

max pooling is used after activation. Finally, the fixed length

vector is passed to a hidden full layer, which is a multi-layer

perception, for classification. To detect the relation between

the result vector, we construct two sublayers in the hidden

64

Fig. 2. The Overview and Workflow of MobiDroid

layer, each of them contains a Rectified Linear Unit activation

function. At last, the result from the hidden layer is passed to

a soft-max classifier function to get the final training result.

D. DL Model Migration and Quantization

To deploy our pre-trained DL model on Android platform,

we convert and migrate the model from our server-side

platform, which is implemented on Keras,7 to TensorFlow-

lite model, which is supported by Android operating system.

To achieve this target, we firstly migrate our pre-trained

model to a TensorFlow model first. Following the Google

TensorFlow guidance, we then migrate the TensorFlow model

to a mobile readable TensorFlow-lite model. Apart from the

model migration, we also quantize our pre-trained model to

improve the performance on the mobile platform, which does

not affect the accuracy of detection.

E. Detection System Architecture (MobiDroid)

Before conducting a real-time detection, the quantized

TensorFlow-lite model and feature dictionary should be de-

ployed to the detection system in advance. According to Fig. 2,

there are three steps before completing the prediction.

The first step of MobiDroid is feature preparation. While an

APK file is received, MobiDroid first decodes it into original

resources and smali files. Across the extraction step, there

include three features described above, which contains mani-

fest properties, API calls, and opcode sequences, generated as

outputs. To generate the input vector from extracted features,

we re-implemented our Python vector generation scripts in

Java to retrieve the prediction inputs for the target application.

Hence, we can get the manifest property vector and API call

vector, except for the opcode sequence. To combine the mul-

tiple kinds of inputs, we perform a binarization, which is the

same as the embedding idea used in our training layer, for the

7https://keras.io/

TABLE II
MALWARE DATASET

Malware Dataset Orginal Size Reorganized Size
Drebin 5,560 5,527

Genome 1,260 1,148
Contagio 360 338
Pwnzen 1,830 1,807

VirusShare 20,000 12,679
Total 29,010 21,499

sequence information. As a result, an opcode sequence vector

is generated. While all the features are transformed into a

vector. We connect them together as the detection model input

at the end of the second step. The third step is app prediction.

With the help of our migrated and quantized detection model,

which deployed from the training part, MobiDroid sends the

combined application vector to the detection system and obtain

the final prediction result.

IV. EXPERIMENTS

In this section, the goals of our experiments are to de-

termine: (1) the different performance of different feature

types (manifest properties, API calls, and opcode sequences);

(2) the different accuracy of different feature categories; (3)

the different performance between DL models and machine

learning models.

A. Dataset

As shown in Table II, we collect more than 50,000 Android

apps in total. Specifically, these apps consist of 29,010 mal-

ware, and others are benign apps crawled from Google Play

Store. However, these might be malware on the official market.

To filter the potential malware as far as possible, we upload

them to VirusTotal8, which is an online antivirus service with

over 50 scanners, to make a verification. The 29,010 malicious

samples contain 5,560 apps downloaded from Drebin [1],

1,260 apps validated in Genome project [35], 20,000 crawled

from VirusShare, and the remaining are used in KuafuDet

including 360 from Contagio Mobile Website and 1,830 from

Pwnzen Infotech Inc. In summary, we collect a large-scale

dataset of benign and malicious samples for the following

experiments.

Since our dataset come from multiple sources, there have

a lot of duplicated samples. Therefore, we perform a hash

check for eliminating redundant applications among malicious

and benign applications. During the data prepossessing, which

has raw data decoding and feature vector generation steps, we

receive some failed cases due to the capabilities of ApkTool

and the vector generation scripts. While the rest of the failures

are just caused by broken APK packages, we also remove them

directly. As a result, we choose 21,499 benign and malicious

samples respectively from our dataset to conduct the following

experiments.

8https://www.virustotal.com/

65

Fig. 3. Processing time of different feature types

B. Experimental environment

All the experiments are run on an Ubuntu 14.04 server

with two Intel Xeon E5-2699 V3 CPUs, 192GB RAM, and

NVIDIA Tesla P40 GPU and Nexus 6/6P mobile devices.

The implementation language of our system on server side is

Python. The data preprocessing is depended on AndroGuard9

and ApkTool. The deep neural network and training project are

implemented with Keras, Numpy, Scikit-learn and TensorFlow

libraries.

C. Feature Selection

To get access to the necessary information for our experi-

ments, we use 4 different kinds of existing tools, which are

ApkTool, AndroGuard, Soot10 and FlowDroid [43]. ApkTool

is a tool for reverse engineering Android apk files, which can

decode the apk file and generate the decompiled resources,

which contains manifest etc., and smali files. AndroGuard is

a python tool, which can not only decode the resources but

also disassemble bytecode to Java source code. Also, with the

help of AndroGuard, we can easily generate the call graph and

data flow graph for an Android app. Soot is a Java optimization

framework, which can be used with FlowDroid to extract the

call graph.

Performance comparison of feature types. Nowadays, An-

droid attacks are discovered to be more and more sophisti-

cated. Consequently, Google is still improving the defense

mechanism of Android OS. Most newly detected attacks

9https://github.com/androguard/androguard/
10https://github.com/Sable/soot/

are not limited to hijack the basic system components, and

some of them are triggered by the behaviors among app

components. Thus, The behaviors in Android apps become

a significant characteristic. Therefore, malware detection with

full-scale information graphs may have more semantics than

that with weak semantic information like permissions and

API calls, etc. Moreover, from the aspect of attacks, it is

more difficult to evade malicious behaviors under semantic

features. For example, a call graph represents calling relations

between subroutines in the source code. Data flow graph

is a graph not only represents calling relations, but also

provides information about the inputs and outputs of each

entity. Inter-component Communication Graph (ICCG) [33]

is a graph provides the communications between components

and threads inside Android applications and the components

itself. The communications contain Intent, Message, Binder

and Persistent storage, which construct the run-time inner

relations of Android application.

Apart from the above graph-related feature types. Per-

mission, intent filter, uses-feature are components defined in

Manifest.xml, which provide essential information about the

application. Permissions are related to the privacy of an An-

droid user, which are the most important part of Android OS

defense mechanism. Each Android app requests the relative

permission before accessing sensitive user data or certain

system feature. Therefore, the principle of a large number of

attacks is focusing on bypass the permission checking, while

invoking some sensitive components on devices. Intent filter

contains a message object which used to request actions from

the application component by developers. Basic actions, like

sending SMS or reading the pictures, etc., are defined in their

related Intents. Request these actions are the only way to

perform a system level action or modify a basic configuration

on devices, while an attack occurs. Uses-feature defines the

basic hardware features, like Wi-Fi hardware features and

Bluetooth hardware features, etc., for each Android application

component.

For example, considering a spy application, the core idea

of it should be monitoring the camera, microphone, etc.

Hence, the attacks often hide in some components, which have

hardware access defined in uses-feature. Otherwise, it is unable

to access the target hardware without them. API calls represent

the API calling information existed in the application, which

provides the name of API call and the corresponding package

name. Opcode sequences provide a whole map of opcode

functions for the entire application.

Since mobile device is often performance-sensitive, to pro-

vide detection service on a mobile device directly, we take

the performances of different feature types into consideration.

As a result, we analyze the processing and analyzing time

for each of the potential input features on both server-side

and mobile device to decide the feature type selection. The

result in Fig. 3 shows the time consuming of most full-scale

information graphs are too large for our performance-sensitive

approach on mobile device. For instance, the processing and

analyzing time of DFG takes more 196.87 seconds on 50MB

66

TABLE III
DIFFERENT PERFORMANCES OF FEATURE CATEGORIES

Feature Categories Accuracy (%) Precision (%) Recall (%)
Manifest Properties 77.65% 77.47% 77.47%
API Calls 92.00% 92.00% 92.00%
Opcode Sequences 94.79% 94.79% 94.79%
Manifest Properties & Opcode Sequences 95.66% 95.66% 95.66%
Manifest Properties & API Calls 90.37% 90.37% 90.37%
API Calls & Opcode Sequences 95.48% 95.48% 95.48%
Manifest Properties & API Calls & Opcode Sequences 96.87% 96.87% 96.87%

application and even 17.96 seconds on 5MB application on

average. In our approach, the detection should be performed

in a reasonable period comparing to the application installing

time, users cannot buy it if the reacting time takes too long.

Other features processing and analyzing time costs are quite

limited, compared with the average application installing time.

Consider the time cost of API calls. 5MB application only

takes 2.92 seconds and 50MB application takes 5 seconds.

Comparing to the full-scale graphs, like DFG and CG, the time

cost of opcode sequences, API calls, and manifest properties

are more acceptable. Therefore, we decide to accept there 3

kinds of feature types as our model inputs.

Accuracy comparison of feature categories. As shown in

Table III, to find out the correlation between selected features,

we list 7 feature categories to investigate their corresponding

accuracy. Consequently, we train 7 test models with both single

feature type and combined feature types as inputs. For each

test model input, we trained them with our convolution neural

network. The only difference between them is we remove

the embedding layer, while the input only contains manifest

properties and API calls vector. We divide our dataset, which

contains 21,499 malware and 21,499 benign applications, into

three parts, 70% of them are configured as training data,

other 30% are split into validating and testing set. Table III

shows the model results of each input configuration. The

results show the accuracy of combined features model is

obviously higher than any single feature models. However,

the accuracy of manifest properties & API calls categories

is larger than the manifest properties-based model, but it is

smaller than the accuracy of API calls-based model. Actually,

the feature category of manifest properties is always used to

detect Android malware. Consequently, the malware attackers

intent to evade some of the features such as adding good

features in Manifest file to attempt to bypass classifiers. So this

kind of feature type has some interference effects. Considering

both the 3 feature types (i.e., manifest properties, API calls,

and opcode sequences) combined model and the combination

of the manifest property features and opcode sequences have

a better result than the single feature models. We finally select

the 3 features combined model, which has the best result,

as our detection model. There are some reasons that the 3

feature types-based model has better performance than others.

For example, the selected category has more semantics than

other categories, and some combinations of different features

across these three feature types may trigger and reflect the

TABLE IV
PERFORMANCES OF MOBIDROID

Devices Quantization Accuracy Preparation
Time (s)

Prediction
Time (s)

Nexus 6 No 97.35%
16.60

9.35
Yes 97.35% 7.23

Nexus 6P No 97.35%
13.56

6.54
Yes 97.35% 4.20

sophisticated malicious behaviors.

D. Effectiveness Evaluation of MobiDroid

Accuracy and time cost on mobile device. To evaluate the

response time of our mobile detection system, MobiDroid, we

measure both feature preprocessing and prediction time for

both quantized and non-quantized DL models on our Android

devices (i.e., Nexus 6 and Nexus 6P).

The preprocessing time consists of raw data processing and

features analyzing time for each feature. Raw data processing

is the first step, which decodes the application into resource

files and smali files with ApkTool. This step costs more

than 80% of the prepossessing time. Because we have to

run ApkTool, which is a .jar package, on a JVM instead

of the original Android package compiling environment, the

performance of the processing still has a lot of space to be

optimized, if we have an implementation of decoding tool on

Android. Analyzing time contains the time cost for generating

manifest property and API call vector and opcode sequences

from the decoded features. The predicting time is the time

measured from loading inputs to get the result.

The test data contains 2,000 randomly selected applications,

half of them are malware, the others are benign applications. In

Table IV, by comparing quantized and non-quantized models,

the result of prediction time shows that quantization reduces a

lot of time cost (i.e., 16.60 vs. 13.56). Meanwhile, the accuracy

of our test remains unchanged (i.e., 97.35% accuracy). The

prediction time is also acceptable for mobile users (i.e., less

than 10 seconds).

Comparison between DL and ML on mobile device.
In addition, to show the strengths of our mobile malware

detection system, MobiDroid, we investigate a similar mobile

end malware detection approach which based on the machine

learning algorithm (i.e., SVM). The result in Table V shows

our approach can gain a much better accuracy with both Man-

ifest Properties (77.65% vs. 65.00%) and API calls (92.00%

67

TABLE V
COMPARISON BETWEEN MOBIDROID AND ML CLASSIFIER UNDER

DIFFERENT FEATURE CATEGORIES

Systems Feature Categories Accuracy (%)

MobiDroid
Manifest Properties 77.65%

API Calls 92.00%

ML Classifier
Manifest Properties 65.00%

API Calls 88.00%

vs. 88.00%) as input than the approach by machine learning-

based approach. As a result of the unfixed-length and content

of opcode sequences, we cannot apply the machine learning

algorithm on this kind of feature type directly.

Remarks: The feature types of manifest properties, API

calls, and opcode sequences have a better time performance

(i.e., less than 10 seconds) than DFG and CG. The combi-

nation of feature types including manifest properties, API

calls, and opcode sequences achieves a better detection

accuracy (i.e., over 97%) than other combinations. Com-

pared with machine learning-based approach, MobiDroid

performs a better detection accuracy on mobile platform.

V. LIMITATIONS AND THREATS TO VALIDITY

In this section, we introduce the limitations of our approach

and the threats to validity in this paper.

Limitations. Due to the limited application dataset, Mo-

biDroid has a similar limitation as to other deep neural

network-based malware detection ideas. Considering a new

malware family detected, the situation may be that only a few

malware in this family are confirmed in a long period. Thus,

there are not many new malware can be used as part of the

training dataset. If the proportion of this new family is quite

limited in dataset, there may have an uncertain training result,

which makes MobiDroid difficult to be applied as the first-

order protection to against the new detected malware family.

Threats to validity. There are several threats may influence

our validity. Currently, the most important threat is the hard-

ware performance of the deployed device. Considering our

experiment result in Table III, we apply our mobile malware

detection system on two devices (i.e., Nexus 6 and Nexus

6P). Nexus 6 and Nexus 6P are two Android smartphones

presented by Google in 2014 and 2015. We can consider their

hardware performance as an average among Android devices.

The preparation and prediction time on Nexus 6P is 13.56 and

4.2 seconds on average and the time on Nexus 6 is 16.6 and

7.23 seconds. Considering a worse case, if the device, which

we want to deploy MobiDroid has an old hardware spec, the

time cost may grow to an unacceptable number. However, the

newest Android devices provide GPU support to TensorFlow-

lite. With the performance promotion by GPU support added,

the speed of depth computing11 in Google camera can be

improved for 10 times on Pixel 3. Thus, in the future, the

11https://ai.googleblog.com/2018/11/learning-to-predict-depth-on-pixel-3.
html

performance of Android device will not be a threat to our

approach.

VI. RELATED WORK

In this section, we will summarize the current work about

malware detection. Generally, traditional techniques adopt

static analysis and dynamic analysis to classify benign ap-

plications and malware applications.

Some techniques are proposed based on analyzing the XML

files from the APK file. C.-Y. Huang et al. [2] classify the

benign data and malware data using the permission informa-

tion in manifest and files structure as features. Similarly, Z.

Aung et al. [3] also consider the permission. Differently, they

concentrate on the permission requires in the source code, not

only the static permission information in the manifest file. E.

Chin et al. [12] propose ComDroid, which detects malware by

analyzing the manifest file.

There are also some techniques which are based on the

API analysis [54]. L. Deshotels [4] et al. classify the be-

nign/malware applications based on the frequency of API calls.

M. Zhang et al. [5] develop a classifier, DroidSIFT, which

is based on the API dependency graphs. D. Arp et al. [7]

propose Drebin, which is a classifier using features from both

of XML files and API calls. In addition, Drebin can be used

in the mobile end solution. Y. Zhongyang et al. [11] introduce

DroidAlarm, which analyzes the inter-procedural call graphs

constructed by the relationship between permissions and the

interface to identify attacks. L. K. Yan et al. [20] propose

DroidScope, which generates semantic information from API

call traces and Dalvik opcode traces. D.-J. Wu et al. [8]

propose the technique, DroidMat, to detect malware with API

traces, intent, communication and some other the life-cycle

information.

Another line of research is conducted based on the program

analysis (e.g., control flow graph), which is more expensive

than the XML-based and API-based approach. However, the

result tends to be more precise. Narayanan et al. [18] present

an online SVM classifier, which uses the control flow graph

generated from the source code as input. W. Enck et al. [21]

propose TaintDroid, which is a taint analysis tool for Android

applications. It detects the leakages with the data flow analysis

on target sensitive data. G. Z. Meng et al. [32] propose

a deterministic symbolic automaton (DSA) based detection

system, in which DSA contains the corresponding components

of the target application. Furthermore, they develop a system,

DroidEcho, which detects attacks with the inter-component

communication graphs (ICCG). ICCG provides both the call

graphs and sensitive data flow in applications. In addition,

some CFG-based static analysis [55]–[57] could be useful to

capture more fine-grained features for detecting malware.

Deep learning has achieved great success in many applica-

tions, there exist also a lot of neural network based approaches.

Z. Yuan [28] et al. provide Droid-detector, which performs on

a deep belief network, W. Yu [29] et al. present a malware

detection system, which uses permission and API call traces

as input. N. McLaughlin [30] et al. use the convolution neural

68

network in detection. The raw opcode sequences of target

applications are used as the input feature. Kim [52] et al.

present a malware detection framework based on multiple

neural networks. Every network has a single feature input and

output score. The final detection result is a combination of all

the models. K. Xu [53] et al. proposed DeepRefiner, which is

an efficient two layer malware detection system. They involved

XML features as the first layer to perform a fast detection first.

At the end of the first layer, if it cannot promise the result with

a high rate, it will use some more complicated features, like

bytecode information, etc., in the second layer to determine

whether the target is a malware.

In addition, there are still some other techniques. A. De-

montis et al. [19] propose an algorithm to mitigates attacks

like malware data manipulation. T. Blsing et al. [22] introduce

AASandbox, which performs detection with combination in-

formation of both static and dynamic analysis. A. Shabtai et

al. [23] and A.-D. Schmidt et al. [24] provide the abnormalities

identification systems, which use run-time device information,

such as CPU usage etc.. J. Sun et al. [17] train a machine

learning based classifier, which use the distance of keywords

to detect the malware. L. Lu et al. [13], P. P. F. Chan et al. [14],

K. Lu et al. [15] and F. Wei et al. [16] focus on detecting

vulnerable components, which may hijack the applications.

W. Zhou et al. [9] provide a malware detection system,

DroidMoss, which uses hash comparison to detect repacked

Apks. M. Grace et al. [6] propose RiskRanker, which performs

detection via analyzing specific application behaviors.

Existing techniques mainly focus on detecting malware on

the server side based on the information from the APK file and

the source code. However, with the rapid development of AI

chips on mobile devices, the research about malware detection

on the mobile side is still rare and on demand. Different from

the existing techniques, this paper performs the first study

on the malware detection performances with various feature

categories on the mobile side.

Recently, some deep learning testing techniques [58]–[64],

which are used to test the quality of deep neuron networks,

have been proposed. We will adopt such techniques to testing

the trained model based on different features in the future.

VII. CONCLUSION AND FUTURE WORK

This paper presents MobiDroid, a performance-sensitive

Android malware detection system on the mobile platform.

It consists of two parts. The first server-side part is designed

for feature dictionary generation and deep neural network

training. The second mobile end part applies the trained model

and dictionary in a mobile detection system. Meanwhile, a

conversion and quantization phase is performed as a middle

adaptation for the trained model between two parts. According

to the effectiveness of selected features and the efficiency

of feature extraction, MobiDroid can provide a reliable (i.e.,

over 97% detection accuracy) and fast reactive (i.e., less

than 10 seconds) detection service on mobile device directly.

To validate the efficiency and reliability, we evaluate our

MobiDroid on two real mobile devices and make a comparison

to machines learning-based approach.

In the future, we will extend our current work from three

directions. Due to the limitations we mentioned in section V,

we would like to improve our system against new detected

malware families by updating our training dataset timely.

Another potential improvement is to improve the run-time

performance of mobile detection system, which can bring the

user a better user experience. We will also consider extending

our feature selection method to provide more application

information and increase feature semantics.

ACKNOWLEDGMENTS

This research was supported (in part) by the National

Research Foundation, Prime Ministers Office, Singapore

under its National Cybersecurity R&D Program (Award

No. NRF2018NCR-NCR005-0001), National Satellite of

Excellence in Trustworthy Software System (Award No.

NRF2018NCR-NSOE003-0001) administered by the National

Cybersecurity R&D Directorate, and JSPS KAKENHI Grant

19H04086, and Qdai-jump Research Program NO.01277.

REFERENCES

[1] D.Arp, M.Spreitzenbarth, M.Hubner, H.Gascon, and K.Rieck. Drebin:
Effective and explainable detection of Android malware in your pocket.
NDSS, 2014

[2] C.-Y. Huang et al, Performance evaluation on permission-based detection
for Android malware, in Advances in Intelligent Systems and Appli-
cations (Smart Innovation, Systems and Technologies), vol. 2. Berlin,
Germany: Springer, 2013, pp. 111120.

[3] Z. Aung et al, Permission-based Android malware detection, Int. J. Sci.
Technol. Res., vol. 2, no. 3, pp. 228234, 2013.

[4] L. Deshotels et al, DroidLegacy: Automated familial classification of
Android malware, in Proc. ACM SIGPLAN Program Protection Reverse
Eng. Workshop, 2014, Art. no. 3.

[5] M. Zhang et al, Semantics-aware Android malware classification using
weighted contextual API dependency graphs, in Proc. ACM Conf.
Comput. Commun. Secur. (CCS), 2014, pp. 11051116.

[6] M. Grace et al, RiskRanker: Scalable and accurate zero-day Android
malware detection, in Proc. ACM 10th Int. Conf. Mobile Syst., Appl.,
Service (Mobisys), 2012, pp. 281294.

[7] D. Arp et al, DREBIN: Effective and explainable detection of Android
malware in your pocket, in Proc. Netw. Distrib. Syst. Secur. Symp.
(NDSS), vol. 14, 2014, pp. 2326

[8] D.-J. Wu et al, DroidMat: Android malware detection through manifest
and API calls tracing, in Proc. 7th Asia Joint Conf. Inf. Secur. (Asia
JCIS), Aug. 2012, pp. 6269.

[9] W. Zhou et al, Detecting repackaged smartphone applications in third-
party Android marketplaces, in Proc. ACM Conf. Data Appl. Secur.
Privacy, 2012, pp. 317326.

[10] S. Hao et al, PUMA: Programmable UI-automation for large-scale
dynamic analysis of mobile apps, in Proc. ACM Int. Conf. Mobile Syst.,
Appl., Services (MobiSys), 2014, pp. 204217.

[11] Y. Zhongyang et al, DroidAlarm: An allsided static analysis tool for
Android privilege-escalation malware, in Proc. 8th ACM SIGSAC Symp.
Inf., Comput. Commun. Secur., 2013, pp. 353358.

[12] E. Chin et al, Analyzing interapplication communication in Android, in
Proc. 9th Int. Conf. Mobile Syst., Appl., Services, 2011, pp. 239252.

[13] L. Lu et al, CHEX: Statically vetting Android apps for component
hijacking vulnerabilities, in Proc. ACM Conf. Comput. Commun. Secur.,
2012, pp. 229240.

[14] P. P. F. Chan et al, DroidChecker: Analyzing Android applications for
capability leak, in Proc. ACM Conf. Secur. Privacy Wireless Mobile
Netw., 2012, pp. 125136.

[15] K. Lu et al, Checking more and alerting less: Detecting privacy leakages
via enhanced data-flow analysis and peer voting, in Proc. Netw. Distrib.
Syst. Secur. Symp. (NDSS), 2015, pp. 4:14:15.

69

[16] F. Wei et al, AmAndroid: A precise and general inter-component data
flow analysis framework for security vetting of Android apps, in Proc.
ACM Conf. Comput. Commun. Secur., 2014, pp. 13291341.

[17] J. Sun et al, Malware on Android smartphones using keywords vector
and SVM, in Proc. IEEE/ACIS 16th Int. Conf. Comput. Inf. Sci., May
2017, pp. 833838.

[18] A. Narayanan et al, Adaptive and scalable Android malware detection
through Online learning, in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2016, pp. 24842491.

[19] A. Demontis et al., Yes, machine learning can be more secure! A case
study on Android malware detection, IEEE Trans. Dependable Secure
Comput., to be published.

[20] L. K. Yan et al, DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis, in Proc.
21st USENIX Secur. Symp., 2012, pp. 569584.

[21] W. Enck et al., TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones, ACM Trans. Comput.
Syst., vol. 32, no. 2, p. 5, 2014.

[22] T. Blsing et al, An Android application sandbox system for suspicious
software detection, in Proc. 5th Int. Conf. Malicious Unwanted Softw.
(MALWARE), Oct. 2010, pp. 5562.

[23] A. Shabtai et al, Andromaly: A behavioral malware detection framework
for Android devices, J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161190, 2012.

[24] A.-D. Schmidt et al, Monitoring smartphones for anomaly detection,
Mobile Netw. Appl., vol. 14, no. 1, pp. 92106, 2009.

[25] R. Pascanu et al, Malware classification with recurrent networks, in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 19161920.

[26] O. E. David et al, DeepSign: Deep learning for automatic malware
signature generation and classification, in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2015, pp. 18.

[27] J. Saxe et al, Deep neural network based malware detection using two
dimensional binary program features, in Proc. 10th Int. Conf. Malicious
Unwanted Softw. (MALWARE), Oct. 2015, pp. 1120.

[28] Z. Yuan et al, Droiddetector: Android malware characterization and
detection using deep learning, Tsinghua Sci. Technol., vol. 21, no. 1,
pp. 114123, Feb. 2016.

[29] W. Yu et al, Towards neural network based malware detection on
Android mobile devices, in Cybersecurity Systems for Human Cognition
Augmentation. Cham, Switzerland: Springer, 2014, pp. 99117.

[30] N. McLaughlin et al., Deep Android malware detection, in Proc. ACM
Conf. Data Appl. Secur. Privacy (CODASPY), 2017, pp. 301308.

[31] H. Fereidooni et al, ANASTASIA: Android malware detection using
static analysis of applications, in Proc. 8th IFIP Int. Conf. New Technol.,
Mobility Secur., Nov. 2016, pp. 15

[32] Guozhu Meng et al, ”Semantic Modelling of Android Malware for Ef-
fective Malware Comprehension, Detection, and Classification,” in The
International Symposium on Software Testing and Analysis (ISSTA),
Saarbrcken, Germany, 2016, pp. 306–317.

[33] G. Meng et al. ”DroidEcho: an in-depth dissection of malicious behav-
iors in Android applications.” Cybersecurity, 2018, 1(1), 4.

[34] Tang, C. et al. (2019, May). A large-scale empirical study on industrial
fake apps. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice (pp. 183-192).
IEEE Press.

[35] Y. Zhou et al, ”Dissecting android malware: Characterization and
evolution.” In 2012 IEEE symposium on security and privacy, 2012,
(pp. 95-109). IEEE.

[36] Schlegel, R. et al. (2011, February). Soundcomber: A Stealthy and
Context-Aware Sound Trojan for Smartphones. In NDSS (Vol. 11, pp.
17-33).

[37] Zhou, Y. et al. (2012, February). Hey, you, get off of my market:
detecting malicious apps in official and alternative android markets. In
NDSS (Vol. 25, No. 4, pp. 50-52).

[38] Zhou, W. et al. (2013, February). Fast, scalable detection of piggybacked
mobile applications. In Proceedings of the third ACM conference on
Data and application security and privacy (pp. 185-196). ACM.

[39] Yan, L. K. et al. (2012). DroidScope: Seamlessly Reconstructing the OS
and Dalvik Semantic Views for Dynamic Android Malware Analysis. In
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12) (pp. 569-584).

[40] Wu, C. et al. (2014, February). AirBag: Boosting Smartphone Resistance
to Malware Infection. In NDSS.

[41] Tam, K. et al. (2015, February). CopperDroid: Automatic Reconstruction
of Android Malware Behaviors. In NDSS.

[42] Rasthofer, S. et al. (2016, February). Harvesting Runtime Values in
Android Applications That Feature Anti-Analysis Techniques. In NDSS.

[43] Arzt, S. et al. (2014). Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6), 259-269.

[44] Li, L. et al. (2015, May). Iccta: Detecting inter-component privacy leaks
in android apps. In Proceedings of the 37th International Conference on
Software Engineering-Volume 1 (pp. 280-291). IEEE Press.

[45] Wong, M. Y.,et al. (2016, February). IntelliDroid: A Targeted Input
Generator for the Dynamic Analysis of Android Malware. In NDSS
(Vol. 16, pp. 21-24).

[46] Yang, C. et al. (2014, September). Droidminer: Automated mining
and characterization of fine-grained malicious behaviors in android
applications. In European symposium on research in computer security
(pp. 163-182). Springer, Cham.

[47] Chen, S. et al. (2016, May). Stormdroid: A streaminglized machine
learning-based system for detecting android malware. In Proceedings of
the 11th ACM on Asia Conference on Computer and Communications
Security (pp. 377-388). ACM.

[48] Chen, S. et al. (2018). Automated poisoning attacks and defenses in
malware detection systems: An adversarial machine learning approach.
computers & security, 73, 326-344.

[49] Chen, S. et al. (2016, October). Towards adversarial detection of mobile
malware: poster. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking (pp. 415-416). ACM.

[50] Fan, L. et al. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security (pp. 1748-1750). ACM.

[51] Mariconti, E. et al. (2016). Mamadroid: Detecting android malware
by building markov chains of behavioral models. arXiv preprint
arXiv:1612.04433.

[52] Kim, TaeGuen, et al. ”A multimodal deep learning method for Android
Malware detection using various features.” IEEE Transactions on Infor-
mation Forensics and Security 14.3 (2018): 773-788.

[53] K. Xu et al, ”DeepRefiner: Multi-layer Android Malware Detection
System Applying Deep Neural Networks,” 2018 IEEE European Sym-
posium on Security and Privacy (EuroS&P), London, 2018, pp. 473-487.

[54] Li, Li et al, ”Characterising Deprecated Android APIs,” Proceedings of
the 15th International Conference on Mining Software Repositories, pp.
254–264, 2018.

[55] Xie, Xiaofei et al. ”Automatic loop summarization via path dependency
analysis.” IEEE Transactions on Software Engineering (2017).

[56] Xie, Xiaofei et al. ”S-looper: automatic summarization for multipath
string loops.” In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pp. 188-198. ACM, 2015.

[57] Xie, Xiaofei et al. ”Proteus: Computing disjunctive loop summary via
path dependency analysis.” In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software En-
gineering, pp. 61-72. ACM, 2016

[58] Ma, Lei et al. ”Deepgauge: Multi-granularity testing criteria for deep
learning systems.” In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 120-131. ACM,
2018.

[59] Ma, Lei et al. ”DeepMutation: Mutation Testing of Deep Learning Sys-
tems.” The 29th IEEE International Symposium on Software Reliability
Engineering (ISSRE) (2018).

[60] L. Ma et al. ”DeepCT: Tomographic Combinatorial Testing for Deep
Learning Systems.” 2019 IEEE 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER) (2019).

[61] Xie, Xiaofei et al. ”DeepHunter: A Coverage-guided Fuzz Testing
Framework for Deep Neural Networks.” Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA) (2019).

[62] Du, Xiaoning et al. ”DeepStellar: Model-based Quantitative Analysis
of Stateful Deep Learning Systems.” Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pp.477–487, Tallinn, Estonia,2019.

[63] Xie Xiaofei et al. ”DiffChaser: Detecting Disagreements for Deep Neural
Networks.” Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI),2019.

[64] Zhang, Jie M. et al. ”Machine Learning Testing: Survey, Landscapes
and Horizons.” arXiv e-prints 1906.10742,2019.

70

	MobiDroid: A performance-sensitive malware detection system on mobile platform
	Citation
	Author

	MobiDroid: A Performance-Sensitive Malware Detection System on Mobile Platform

