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DeepMutation++: a Mutation Testing Framework
for Deep Learning Systems

Qiang Hu1, Lei Ma1, Xiaofei Xie2 Bing Yu1, Yang Liu2 and Jianjun Zhao1,3
1Kyushu University, Japan 2Nanyang Technological University, Singapore 3Shanghai Jiao Tong University, China

Abstract—Deep neural networks (DNNs) are increasingly ex-
panding their real-world applications across domains, e.g., image
processing, speech recognition and natural language processing.
However, there is still limited tool support for DNN testing in
terms of test data quality and model robustness. In this paper,
we introduce a mutation testing-based tool for DNNs, DeepMuta-
tion++, which facilitates the DNN quality evaluation, supporting
both feed-forward neural networks (FNNs) and stateful recurrent
neural networks (RNNs). It not only enables static analysis of
the robustness of a DNN model against the input as a whole,
but also allows the identification of the vulnerable segments of
a sequential input (e.g. audio input) by runtime analysis. It is
worth noting that DeepMutation++ specially features the support
of RNNs mutation testing. The tool demo video can be found on
the project website https://sites.google.com/view/deepmutationpp.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved tremendous

success in many application domains such as autonomous driv-

ing, machine translation, healthcare, and robotics. In general,

the current state-of-the-art DNNs can be roughly categorized

into Feed-Forward Neural Networks (FNNs) and Recurrent

Neural Networks (RNNs). Both FNNs and RNNs play impor-

tant roles in handling specific types of applications.

A typical FNN (e.g. fully connected neural network, con-

volutional neural network) processes the input information

layer by layer as a forward pass until an output decision is

made. FNNs are demonstrated to be effective in extracting

and handling inputs with region-local features, and play as key

roles in many state-of-the-art image processing applications.

an RNN (e.g., long short-term memory (LSTM), gated

recurrent unit (GRU)), on the other hand, often leverages mem-

ory cells, control units, or partially propagates information

backward to capture the temporal information of a sequential

input. In particular, under the current time frame, an output of

an RNN is not only determined by the given input, but also

by its internal states. Such characteristics contribute to the

success of RNNs in handling sequential data such as speech

audio, natural language text, and financial stock prediction.

Although the quality assurance, especially the testing of

DNNs is highly demanding with some initial studies available,

the current testing of DNN is still at an early stage with many

challenging issues ahead. Testing tool support could be an

essential element to facilitate the solution exploration towards

addressing such challenges.

In traditional software, mutation testing is an important

technique to analyze the test data quality. A key idea is to

generate a set of mutant program by injecting faults into the

original program. The quality of the test data is then indicated

by its ability to differentiate the behaviors of the original

program and the mutants.

Following the similar spirit of mutation testing of traditional

software, in this paper, we introduce DeepMutation++, a

mutation testing framework for both FNNs and RNNs. Deep-

Mutation++ incorporates eight model-level operators for FNN

models introduced in DeepMutation [1] and further proposes

nine new operators specialized for RNN models. In particular,

to cater for the characteristics of RNNs, DeepMutation++

supports both static mutant generation to analyze the test

data as a whole and dynamic mutant generation to detect

the vulnerable segments of a test input at runtime. Note

that a segment is a chunk of input data that is processed

in an iteration of the RNN. Different from the structural

coverage criteria of DNN [2], [3], DeepMutation++ enables

directly provided feedback on the robustness of a DNN against

an input. Intuitively, an input that is close to the decision

boundary of a neural network is relatively difficult to be

handled by a DNN robustly. Therefore, the analysis of the

test data in differentiating the behaviors of a DNN and the

generated mutants enables evaluation of both 1) the robustness

of a DNN, and 2) the quality of the test data in potentially

triggering the vulnerable decision behaviors of a DNN.

We demonstrate the usefulness of DeepMutation++ on two

typical scenarios for DNN robustness analysis and test data

vulnerable segment detection: 1) the FNN (i.e. LetNet-5)

based image processing on MNIST dataset, and 2) the RNN

(i.e., LSTM and GRU) based text-based sentiment analysis

on IMDB dataset. We report the efficiency of our framework

in DNN mutant generation as well as the robustness analysis

results. We also find that the metrics defined based on mutation

testing could be an important indicator of DNN robustness,

with a strong correlation with the robustness of a DNN against

adversarial attacks.

II. THE FRAMEWORK DEEPMUTATION++

Figure 1 shows a simplified workflow overview of DeepMu-

tation++ framework. Overall, DeepMutation++ supports both

typical types of neural networks, i.e., FNNs and RNNs. Given

a DNN model and a set of test data under analysis, Deep-

Mutation++ first leverages the provided mutation operators to

generate a set of high quality DNN mutants with a user spec-

ified quality threshold. After a certain number of mutants are

generated, DeepMutation++ analyzes the behavior differences

of the original DNN and the generated DNN mutants against
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Fig. 1: The workflow overview of DeepMutation++ framework.

TABLE I: FNN Mutation operators

Level Operator Description

Weight
Gaussian fuzzing (GF) fuzz weight value
Weight Shuffle (WS) shuffle weights

Neuron Effect Block (NEB) block a neuron effect 0
Neuron Neuron Activation Inverse (NAI) invert the activation status

Neuron Switch (NS) switch two neurons of the same layer

Layer Remove (LR) remove one layer
Layer Layer Addition (LA) add a activation layer

Layer Duplication (LD) duplicate one layer

the provided test inputs for robustness analysis. Moreover,

DeepMutation++ specially features a dynamic mode to analyze

the vulnerable input segments for an RNN model based on the

mutant generated on-the-fly. Finally, DeepMutation++ outputs

the analysis reports that indicate test data quality and DNN

robustness at the same time.

A. Mutant Generation

Mutation operator is a key component in mutation testing.

DeepMutation++ supports eight FNN mutation operators and

nine RNN mutation operators.

FNN mutation operators: For FNNs, DeepMutation++

incorporates the 8 proposed model-level mutation operators

of DeepMutaion (see Table I). During the runtime mutation

operator selection of DeepMutation++, we favor more in

selecting weight-level and neuron-level operators, since we

find that the three layer-level operators could often generate

models below the quality threshold, increasing the time cost

in mutant generation. More details for each of these operators

are available in [1].

RNN mutation operators: Besides supporting FNNs,

DeepMutation+ also features in supporting mutation testing of

RNNs. In this paper, we focus on two typical types of RNNs,

i.e., LSTM and GRU. Except for the basic weights, RNN often

consists of gate unit and memory cell unit, where different

gates depart model weights into multiple parts. For example,

LSTM often consists of four types of units: input gate, forget

gate, output gate, and memory cell unit while a typical GRU

contains three types of units: reset gate, update gate, and

the memory cell unit. Consider the unique characteristics and

usage case of RNNs in mutation testing, DeepMutation++

supports RNN mutation operators from two levels, i.e., static

level and dynamic level.

Table II summarizes the proposed RNN mutation operators.

In particular, the static-level operators are used to perform

offline mutant model generation. The generated mutants are

stored in a user-specified location, after which the post-phase

mutation analysis could be performed. However, the generated

offline mutants only allow analyzing the quality of a sequential

input data as a whole. To enable the input segment-level

analysis, the dynamic operators mutate the internal runtime

status (i.e., memory state, gate control state) of an RNN

on-the-fly segment by segment. Note that the dynamic-level

operators don’t store mutants and they just modify the cal-

culation way of the units in the original model to obtain the

corresponding new prediction result. The descriptions of the

proposed RNN mutation operators are as follows.

•Weight Gaussian Fuzzing: Randomly sample a user-

specified ratio among all the weights of an RNN, and perform

Gaussian distribution based fuzzing on the chosen weights.

•Weight Precision Reduction: Randomly sample a user-

specified ratio of weights and reduce their precision.

• State Clear: Clear the run-time state value to zero to make

an RNN forget its previous memory.

• State Reset: Reset the current run-time state to a previous

state. Instead of forgetting all the memory, this operator

restores the RNN to a previous state.

• State Gaussian Fuzzing: Follow the Gaussian distribution

to mutate current run-time state.

• State Precision Reduction: Reduce the precision of the run-

time state, i.e., reducing the floating bit size or taking the

round-off results.

•Gate Clear: Choose a gate type and clear a run-time gate

value to zero, blocking the gate at the current iteration.

•Gate Gaussian Fuzzing: Randomly select a gate and follow

the Gaussian distribution to mutate a run-time gate value.

•Gate Precision Reduction: Randomly select a gate and

reduce the precision of the run-time gate value.
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TABLE II: RNN Mutation operators

Level Operator Description

Static Weight
Weight Gaussian Fuzzing (WGF) fuzz weights
Weight Precision Reduction (WPR) reduce weights’ precision

Dynamic

State

State Clear (SC) clear the state to 0
State Reset (SR) reset state to previous state
State Gaussian Fuzzing (SGF) fuzz state value
State Precision Reduction (SPR) reduce state value’s precision

Gate
Gate Clear (SC) clear the gate value to 0
Gate Gaussian fuzzing (GGF) fuzz gate value
Gate Precision Reduction (GPR) reduce gate value’s precision

B. Mutation Testing Analysis

Since the cost of mutation testing for traditional software is

a major concern, we explain the time cost of DeepMutation++

in terms of mutant generation phase and post-analysis phase.

The static mutant generation follows four key steps, 1) load

the model, 2) parse the parameters, 3) select and mutate the

parameters, and 4) store the generated mutant models. Among

these steps, parameters parsing, selection and mutation are

often very efficient. The time overhead is mainly due to the

model loading and storing. The dynamic mutant generation

perturbates runtime internal states of an RNN to analyze the

potential impacts on the DNN decision.

To analyze the robustness of a model against the inputs,

DeepMutation++ puts all test data which are correctly clas-

sified by the original model to each mutant to make the

prediction. Different from mutation testing of traditional soft-

ware, the test data prediction could be performed in batches.

With GPU support, prediction on a large number of data

could be completed efficiently. In addition, the prediction on

different mutant could also be easily conducted as the parallel

processes. For runtime analysis, since all the outputs difference

are analyzed online, DeepMutation++ only needs to calculate

average values as the segments’ vulnerability results, therefore,

the overhead of the segment level analysis is also very efficient.

The detailed results of time cost analysis are on our website1.

C. Metrics

DeepMutation++ currently supports two killing score met-

rics to approximate the vulnerability of an input or a segment.

Metric 1 (KScore1): Given an input t, a DNN m and its

mutant m′, we define t is killed by m′ if the outputs are

inconsistent at t, i.e., m(t) �= m ′(t). Given a set of mutant

DNNs M , we define the killing score as: KS1 (t ,m,M ) =
|{m′|m′∈M∧m(t)�=m′(t)}|

|M |
Metric 2 (KScore2): Given the i-th segment ti of an input

t, an RNN model m and its mutant m′ that is generated

by mutating ti with dynamic-level operators. Given a set of

mutant RNNs M , we define segment-level killing score as:

KS 2(ti,m,M) =
∑

m′∈M ||prob(ti,m)−prob(ti,m
′)}||p

|M | , which

indicates the prediction probability divergence on the output.

KScore1 is used to calculate the killing score of a whole-

data while KScore2 is used to calculate the killing score of

a segment. We define that, for an input, the larger the value

of KScore1, the less robust the model against the input. For a

segment of an input, the larger the value of KScore2, the less

robust the model against the segment.

D. Post-phase Robustness Analysis and Sorting
DeepMutation++ is able to analyze the model robustness

and detect the vulnerable data or the vulnerable segments of a

test data. It provides two interfaces sort data and sort segment
to do the post-phase robustness analysis.

Given the mutants resulting path and the test data, the

interface sort data sorts the test data according to the mutants

and metric KScore1. The result calculated using sort data
indicates the sorting of the inputs’ vulnerability from light to

severe. In the end, sort data outputs the analysis results as a

Numpy file and a histogram report file. The Numpy file saves

the KScore1 results and the histogram depicts the mutants

killing distribution.
For dynamic analysis, given a CSV file which records the

dynamic mutation results, sort segment sorts the segments of

data according to the results and metric KScore2. The result of

sort segment also represents the segments’ vulnerability from

light to severe. Finally, sort data will output a Numpy file

and a scatter report file. The Numpy file keeps the KScore2
results and the scatter plot depicts the behavior difference

at each segment before and after mutation. Note that, when

using dynamic-level operators to mutate state or gate values

at a segment, DeepMutation++ records the original output and

the new output after mutation, based on which KScore2 is

calculated.

E. Implementation
DeepMutation++ is implemented in Python based on

Keras2.2.4 with TensorFlow1.13 as a backend. The source

code and the detailed usage description of the tool are available

on our website1. The implementation of static mutation opera-

tors is directly on the top of Keras’ APIs, e.g., model.layer(),
model.get weights(). The RNN mutator implementation is

a bit difficult since it is unable to easily control the RNN’

internal state via Keras API, forcing us to have to bridge the

implementation partially inside the Keras library level, e.g.,

keras.layers.recurrent.py.

III. USAGE EXAMPLE: MUTANT DNN GENERATION

DeepMutation++ is current provided as a command line

tool. We give one basic usage example on the usage of

DeepMutaion++ to generate mutants. We put more detailed

tool usage, e.g., robustness analysis, on the website.

python generator.py -model_path mnist.h5
-data_type mnsit -threshold 0.9 -operator 0
-ratio 0.01 -save_path mutants -num 200
-standard_deviation 0.01

In this case, DeepMutation++ loads the model from the

path mnist.h5 (-model path) and follows the Gaussian Fuzzing

operator 0 (-operator) and mutation ratio 0.01 (-ratio) to

generate mutants. In order to manage the quality of the

mutants, DeepMutation++ loads all the mnits (-data type) test

data to calculate mutants’ accuracy, and only those mutants

with accuracy higher than the threshold 0.9 (-threshold) is

stored in the folder mutants (-save path).

1https://sites.google.com/view/deepmutationpp
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TABLE III: Number of LeNet-5 mutants in each KScore1
range under different mutation ratio

Ratio (0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1]

0.01 90 8 3 0

0.03 192 23 2 0

0.05 261 32 3 0

TABLE IV: Robustness of models at segments of inputs

RNN
Random Spearman Correlation
KS2 #E. rs p

LSTM 0.09 45.3 -0.508 7.83e-18
GRU 0.23 57.18 -0.362 3.53e-09

IV. EXPERIMENTS

We demonstrate two use cases of DeepMutation++ on

DNN robustness analysis on whole input level and segement

level. Based on the LeNet-5 model, we first use Gaussian

Fuzzing operator under different mutation ratio to generate 200

mutants. Then, we perform the analysis using these mutants

to calculate KScore1. Table III shows the results, where each

row gives the number of mutants whose score lie in the

corresponding range (as in each column). We can see that,

for each score range, the number of mutants tends to increase

as we increase the mutation ratio. In this case, the data whose

KScore1 is larger than 0.5 kill the most mutants, and these

data needs special attention for further analysis.

We further study the robustness of RNN models (i.e., LSTM

and GRU) on IMDB sentiment analysis. We only explain the

segment-level analysis and put more complete information on

our site. To be specific, we randomly select 50 test inputs

that are correctly handled by the original models. Suppose the

RNN processes it with n iterations (i.e., n segments), for each

of the n segments, we mutate the state value 100 times and

obtain 100 prediction results. Then, the KScore2 is computed

for each segment to measure robustness. For each segment,

we use FGSM adversarial attack difficulty (i.e., the number of

epochs for successful attacks) as a direct indicator of model

robustness against that segment. We analyze the correlation

between the KScore2 and the attacking difficulty (e.g., number

of attacking steps). Table IV summarizes the averaged results.

Column #KS2 shows the KScore2 of the all input segments.

Column #E. shows the average epochs used to generate

an adversarial example. The statistical analysis confirms the

significantly negative correlation. The results indicate that if

the KScore2 is small (resp. large), the model tends to be

more robust (resp. vulnerable) at the segment. The results

also confirm the usefulness of our mutation analysis tool for

measuring the RNN model robustness at the segment level.

V. RELATED WORK

DNN testing has been studied over the last several years [4]–

[8]. However, there are limited tools combine the FNN and

RNN mutation testing features as we know.

DeepXplore [2] proposes the neuron coverage criteria to

measure the percentage of the activated neurons. DeepGau-

gen [3] further proposes multi-granularity testing coverage for

deep learning systems based on the observation of DNNs’

internal state. A set of combinatorial testing criteria proposed

by DeepCT [9] balances the defect detection ability and a

reasonable number of tests. Different from the coverage guided

testing criteria, Kim et al. introduces a test adequacy criterion

which measures the surprise of an input as the difference in

DL system’s behaviour between the input and the training

data [10]. The biggest difference between DeepMutation++

and these existing works is that DeepmMutation++ is a muta-

tion testing technique based tool, all these exiting methods can

be further performed on the test data after mutation testing.
As the first mutation testing techniques for DL systems,

DeepMutation [1] proposes both source-level and model-level

operators to verify the quality of test data. Wang et al. [11]

use the model-level mutation operators in DeepMutaion to

generate mutants and detect adversary sample accordingly, this

work proves the usefulness of mutation testing from the side.

By contrast, DeepMutation++ not only contains all the model-

level mutation operators in DeepMutation, it also supports

RNN models.

VI. CONCLUSION

We present DeepMutation++, a tool for mutation testing of

deep learning systems. DeepMutation++ supports to statically

generate high-quality mutants for both FNNs and RNNs,

and dynamically mutate run-time states of an RNN. We

demonstrated the usage and usefulness of DeepMutation++

in analyzing DNN robustness, the vulnerable inputs, and the

corresponding vulnerable segments.
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