
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2019

An empirical study towards characterizing deep learning An empirical study towards characterizing deep learning

development and deployment across different frameworks and development and deployment across different frameworks and

platforms platforms

Qianyu GUO

Sen CHEN

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Lei MA

Qiang HU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
GUO, Qianyu; CHEN, Sen; XIE, Xiaofei; MA, Lei; HU, Qiang; LIU, Hongtao; LIU, Yang; ZHAO, Jianjun; and LI,
Xiaohong. An empirical study towards characterizing deep learning development and deployment across
different frameworks and platforms. (2019). Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering, San Diego, 2019 November 11-15. 810-822.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7069

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Qianyu GUO, Sen CHEN, Xiaofei XIE, Lei MA, Qiang HU, Hongtao LIU, Yang LIU, Jianjun ZHAO, and
Xiaohong LI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7069

https://ink.library.smu.edu.sg/sis_research/7069

An Empirical Study towards Characterizing Deep
Learning Development and Deployment across

Different Frameworks and Platforms

Qianyu Guo1, Sen Chen2∗, Xiaofei Xie2, Lei Ma3, Qiang Hu3, Hongtao Liu1,
Yang Liu2, Jianjun Zhao3, Xiaohong Li1∗

1College of Intelligence and Computing, Tianjin University, China
2Nanyang Technological University, Singapore 3Kyushu University, Japan

Abstract—Deep Learning (DL) has recently achieved tremen-
dous success. A variety of DL frameworks and platforms play a
key role to catalyze such progress. However, the differences in
architecture designs and implementations of existing frameworks
and platforms bring new challenges for DL software development
and deployment. Till now, there is no study on how various main-
stream frameworks and platforms influence both DL software
development and deployment in practice.

To fill this gap, we take the first step towards understanding
how the most widely-used DL frameworks and platforms support
the DL software development and deployment. We conduct a
systematic study on these frameworks and platforms by using
two types of DNN architectures and three popular datasets. (1)
For development process, we investigate the prediction accuracy
under the same runtime training configuration or same model
weights/biases. We also study the adversarial robustness of
trained models by leveraging the existing adversarial attack
techniques. The experimental results show that the comput-
ing differences across frameworks could result in an obvious
prediction accuracy decline, which should draw the attention
of DL developers. (2) For deployment process, we investigate
the prediction accuracy and performance (refers to time cost
and memory consumption) when the trained models are mi-
grated/quantized from PC to real mobile devices and web
browsers. The DL platform study unveils that the migration and
quantization still suffer from compatibility and reliability issues.
Meanwhile, we find several DL software bugs by using the results
as a benchmark. We further validate the results through bug
confirmation from stakeholders and industrial positive feedback
to highlight the implications of our study. Through our study, we
summarize practical guidelines, identify challenges and pinpoint
new research directions, such as understanding the characteris-
tics of DL frameworks and platforms, avoiding compatibility and
reliability issues, detecting DL software bugs, and reducing time
cost and memory consumption towards developing and deploying
high quality DL systems effectively.

Index Terms—Deep learning frameworks, Deep learning plat-
forms, Deep learning deployment, Empirical study

I. INTRODUCTION

With the big data explosion and hardware evolution over

the past decade, deep learning (DL) has achieved tremendous

success in many cutting-edge domains, such as real-time

strategy game [1], image processing [32], speech and language

processing [33], and autonomous vehicle [22]. The deep neural

∗Sen Chen (chensen@ntu.edu.sg) and XiaohongLi (xiaohongli@tju.edu.cn)
are the corresponding authors.

network (DNN) [3] plays a key role behind such recent success

of DL applications. It automatically learns the decision logic

from the training data, which is represented in the form of a

neural network and the connection strengths among neurons.

To transfer the learning theory into practice, a number of

DL frameworks (e.g., TENSORFLOW [14] and PYTORCH [49])

are developed towards realizing the demands of intelligent

software. Although most of the existing DL frameworks share

either static or dynamic computation paradigms [31], the

detailed architecture design and implementation of frameworks

are quite different. Actually, even the same DNN architecture

design with exactly the same runtime configuration (i.e., ran-

dom seed for initialization and hyper parameters for training)

might result in different decisions when implemented under

different DL frameworks, which brings new challenges for

DL software development process. Several DL benchmarking

studies have focused on some basic metrics of DL frame-

works [17], [18], [25], [59], such as training and testing accu-

racy, the influence of hardwares (i.e., GPU and CPU), and also

compared different frameworks with their default configuration

settings and training data specific parameters [40]. However,

there lacks an empirical study on the impacts that various

DL frameworks under the same runtime configuration or same

model weigths/biases have on the DL software development

process.

Moreover, with the great demand on deploying the DL

software to different platforms, it further poses new challenges

when DL models on the PC platform are migrated, quan-

tized, and deployed on other platforms such as real mobile

devices and web browsers. While a computational intensive

DL software could be executed efficiently on PC platform with

the GPU support, such DL models usually cannot be directly

deployed and executed on other platforms supported by small

devices due to various limitations, such as the computation

power, memory size and energy. Therefore, some DL frame-

works are specifically designed for mobile platforms, such as

TENSORFLOW LITE [28] for Android and CORE ML [16] for

iOS. Similarly, TENSORFLOW.JS [29] for web DL applications

is also proposed. Meanwhile, in terms of mobile devices, it

is a common practice that a DL model needs to undergo a

quantization process before the deployment, considering the

810

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00080

limited resources of memory and energy on mobile devices [8].

There lacks an empirical study focusing on the process of

migration and quantization on mobile and web platforms.

Although the diverse DL frameworks and platforms promote

the evolution of DL software, understanding the characteristics

of them becomes a time-consuming task for DL software

developers and researchers. Moreover, the differences com-

pared with the traditional software brings new challenges for

DL software development and deployment processes. These

challenges include that (1) for the development process, there

lacks a deep understanding of various frameworks under a)

the training and prediction accuracy given the same runtime

configuration; b) the prediction accuracy given the same

model weights/biases; and c) the robustness of trained models.

(2) For the deployment process, when deploying the trained

models from PC/Server to different platforms, there lacks a

benchmarking understanding of the migration and quantiza-

tion processes, such as the impacts on prediction accuracy,

performance (i.e., time cost and memory consumption).

To address the aforementioned challenges, with an over ten

man-month effort, we design and perform an empirical study

on the state-of-the-art DL frameworks and platforms from two

aspects to investigate the following research questions.

(1) As for the development process:

• RQ1: Accuracy on different frameworks. Given the same

runtime configuration or same model weights/biases, what

are the differences of training and prediction accuracy when

implemented with different DL frameworks?

• RQ2: Adversarial robustness of trained models. Do DL

models trained from different DL frameworks exhibit the

same adversarial robustness against adversarial examples?

(2) As for the deployment process:

• RQ3: Performance after migration and quantization.
What are the differences of performance (i.e., time cost and

memory consumption) in the capabilities of supporting DL

software when migrating or quantizing the trained models

to the real mobile devices and web browsers?

• RQ4: Prediction accuracy after migration and quan-
tization. Given the same trained DL model, what is the

prediction accuracy of the migrated model for mobile and

web platforms? How do quantization methods influence the

prediction accuracy of quantized model on mobile devices?

Through answering these research questions, we aim to

characterize the impacts of current DL frameworks and plat-

forms on DL software development and deployment processes,

and provide practical guidelines to developers and researchers

from different research communities such as SE and AI fields

and under different practical scenarios.

In summary, we make the following main contributions:

• To the best of our knowledge, this is the first empirical study

on how the current DL frameworks and platforms influence

the development and deployment processes, especially for

the study on the migration and quantization processes on

different DL platforms.

• For the development process, we find the computing dif-

ferences across frameworks might result in an obvious

prediction accuracy decline. That would be a great warning

to the DL developers and SE testing researchers. Our fur-

ther investigation finds the adverarial robustness of trained

models from different frameworks is also different.

• For the deployment process, 6 real mobile devices and 3

web browsers have different performance in capabilities of

supporting DL software. Mobile platforms have a better

prediction accuracy of migration than that of current web

platforms, and the web platforms have an obvious compat-

ibility issue (i.e., prediction accuracy drops over 5%). We

find a real bug according to the phenomenon and report

to the stakeholders. It is confirmed and appreciated by

developers. More bug information can be found on our

website [4]. Moreover, the quantization of mobile platforms

suffer from significant reliability issues on our generated

testing dataset, and it is hard to trigger such issue by the

widely-used original testing data. That would motivate the

SE researchers to conduct a further test in this field.

• We also conduct an online questionnaire [9] to validate the

usefulness of our study, and receive 20 industrial positive

feedback from the AI research teams in Baidu China,

Huawei Signapore, and NetEase China, which confirms the

usefulness of our study. In addition, we make all generated

testing dataset used in our evaluation on migrated and

quantized models publicly available [4], to facilitate further

study towards more systematic investigation.

• We highlight the challenges and propose new research

directions. Meanwhile, our empirical study can be used as

a benchmark and baseline for issues and bugs detection to

evaluate new DL frameworks and platforms.

II. BACKGROUND

In this section, we briefly introduce the current practice of

DL software development and deployment.

A. DL Software Development
DL software development contains several phases (e.g., data

collection and labelling, DNN design, runtime training, and

testing/validation). DL developers design the DNN architec-

ture and specify runtime configuration (e.g., random seed and

hyper parameters) before training on selected dataset. It is a

common practice that using the state-of-the-art DL frameworks

to accomplish training, followed by the validation/testing stage

for accuracy evaluation on the trained models.

B. DL Software Deployment
A DL software, that has been well tested and validated

and reaches a certain level of quality standard, is ready to

be deployed for application (e.g., web and mobile platforms).

Developers need to consider calibration (e.g., migration and

quantization) when deploying DL software across different

platforms.
For web platform, several solutions (e.g., TENSORFLOW.JS)

are proposed for deploying DL models under the web envi-

ronment. For mobile platform, although the rapid advances

811

Fig. 1: Overview of our study

in system-on-chip (SoC) [52] [66] [56] facilitate the AI

applications for mobile use, existing trained DL models on PC

could still not be directly deployed on mobile devices, due to

the limitations such as computing power, memory size and en-

ergy capacity. Some lightweight solutions (e.g.,TENSORFLOW

LITE and CORE ML) are proposed to support this migration.

Moreover, it is a common practice to conduct a quantization

process before deploying DL models on mobile devices, so as

to reduce memory cost and computing overhead [8].

TENSORFLOW provides two options for quantization (i.e.,

post-training quantization [62] and quantization aware train-

ing [63]), both of which fixedly convert model weights to 8-

bits integers from floating points, using a linear weights repre-

sentation. CORE ML supports flexible quantization modes [53]

(i.e., linear, linear lut, kmeans lut, and custom lut), along

with a nbits option, which allows to customize the bits of

per quantized weight (e.g., 32-bits to 16/8/4-bits).

III. OVERVIEW

In this section, we briefly introduce the overview of our

study and the evaluation objects and metrics.

A. Study Design

Fig. 1 shows the overview of our study, which contains

two main phases (i.e., development and deployment) to answer

the four research questions. For the development process, we

investigate the training and prediction accuracy and adversarial

robustness of trained models across different frameworks. To

achieve these goals, we select 4 widely-used frameworks

(i.e., TENSORFLOW [14], PYTORCH [49], CNTK [57], and

MXNET [23]) as our evaluation objects, and use 3 publicly

available datasets (i.e., MNIST, CIFAR-10, and IMDb) for

training and prediction on each of them. Correspondingly,

we choose 7 popular DNN models (i.e., LeNet-1, LeNet-

5 [37], RestNet-20 [32], VGG-16 [61], TextCNN [11], LSTM

(RNN) [7] and GRU (RNN) [5]) for inspection, including

CNN and RNN architectures.

For the deployment process, we focus on the model perfor-

mance and prediction accuracy after migrated and quantized

to different platforms. To conduct these evaluations, 2 popular

platforms are selected to evaluate (1) 3 popular web browsers

(Chrome, Firefox, and Safari); and (2) 6 real mobile devices:

3 Android devices (i.e., Nexus 6, Nexus 6P, and HUAWEI

Mate 20X) and 3 iOS devices (i.e., iPhone 6S, iPhone 8,

and iPad Pro). We migrate and deploy the models trained

in the development process to the two types of platforms.

Meanwhile, we follow the common practice to further conduct

model quantization for mobile devices to investigate their

performance and prediction accuracy.

B. DL Frameworks and Platforms

DL frameworks play an important role to bridge the DL the-

ory to the practice of DL software. We select the most updated

versions of four representative frameworks (i.e., TENSORFLOW-

1.12.0 from Google, PYTORCH-0.4.1 from Facebook, CNTK-

2.6 from Microsoft, and MXNET-1.4.0 maintained by Apache)

for investigation, where TENSORFLOW and CNTK adopt the

static computational graph paradigm, while PYTORCH follows

a dynamic computational paradigm. MXNET adopts both two

types. We investigate three DL platforms, where an urgent

demand on DL software solutions exists from industry. (1) PC,

the mainstream platform where most DL models are trained.

(2) Mobile platform such as Android and iOS mobile devices.

(3) Web platform (i.e., Chrome, Firefox, and Safari).

C. Datasets and DNN Models

In order to conduct our study, we select three publicly

available datasets (i.e., MNIST [38], CIFAR-10 [36], and

IMDb [6]) for training and prediction, all of them are widely

used in DL community. For each dataset, we follow the best

DL practice and choose diverse DNN models (i.e., LeNet-1,

LeNet-5, RestNet-20, VGG-16, TextCNN, LSTM (RNN) and

GRU (RNN)) that are able to achieve competitive results in

terms of training and testing accuracy. We detail the hyper-

parameters of each DNN model on specific dataset on [4].

MNIST is a collection of gray-scale images used for hand-

written digit recognition. For MNIST, we use two well-known

models from the LeNet family (i.e., LeNet-1 and LeNet-

5 [37]). CIFAR-10 is a collection of colored images (e.g.,

airplane, automobile, and bird) for object classification. For

CIFAR-10, we select two popular DNN models (i.e., ResNet-

20 [32] and VGG-16 [61]) for inspection, both of which could

812

achieve competitive prediction accuracy. IMDb is a collec-

tion of text-based movie reviews from the online database

IMDb [6], which is widely used for text sentiment classifica-

tion in the field of natural language processing. As for IMDb,

we select a CNN-based model TextCNN [11] and an RNN-

based model TextRNN for inspection, both of which are clas-

sical models in NLP. There are two types of implementations

for TextRNN (i.e., LSTM [30] and GRU [24]).

D. Evaluation Metrics

Accuracy in Training and Prediction. At the training stage,

we first ensure the same runtime configuration across dif-

ferent frameworks. Then we train the models with multiple

combinations of hyper parameters on these frameworks, and

evaluate the training and validation accuracy in this stage.

We select one combination as example shown in this paper,

which achieves comparable training accuracy for all selected

frameworks. For prediction stage, we evaluate the accuracy

and time cost using the testing data. Particularly, to investigate

the computing difference of different frameworks, we further

ensure the same weights/biases of the same model by using

MMDNN [45] across different frameworks, and evaluate the

prediction accuracy.

Adversarial Robustness. Robustness indicates the quality and

security of the trained DL models [34], [41]. We focus on

a typical robustness property adversarial robustness in this

paper. The adversarial robustness concerns whether there exists

an example x′ (close to a given input x) that x and x′ are

misclassified by the DNN. Such x′, once exists, is called an

adversarial example of x and the DNN is not adversarial

robust at x. Formally, a DNN’s adversarial robustness could be

analyzed by checking the d-local-robustness at an input x w.r.t

a distance parameter d if we have the following relation [34]:

∀x′ : ||x′ − x|| ≤ d⇒ C(x) = C(x′),
where x could be correctly predicted by the DNN. We follow

the currently best practice in machine learning [21] to generate

adversarial examples by exerting adversarial attacks [27] [48]

[20] on DL models.

Accuracy and Performance in Migration and Quantization.
It is common that a DL model with complex structure could

achieve competitive results on PC or cloud, but inevitably

introduce large computing and memory overheads at the same

time. When DL models are migrated from PC to web and mo-

bile platforms, we observe the accuracy and performance (i.e.,

time cost and memory consumption) change in this process.

Moreover, to deploy such DL models on the resource-limited

mobile devices, quantization is a common practice to ensure

the smooth running [8]. We study how quantization technique

influences the accuracy and time cost in prediction.

IV. EMPIRICAL STUDY

In this section, we first briefly introduce the experimental

environment for our study, and then we detail the numerous

experiments to answer the 4 research questions highlighted in

Section I.

(1) For the development study, we train 7 DL models

on 3 types datasets using 4 DL frameworks, respectively.

We use multiple combinations of hyper parameters for each

model in the training stage, aiming to obtain a relatively

good training accuracy on each framework and avoiding over-

fitting/under-fitting as much as possible. Meanwhile, we repeat

each model training and testing processes 5 times. (2) For the

deployment study, 7 trained models from TENSORFLOW are

migrated and executed on 3 web browsers, and 4 of them

are also converted to mobile devices. 6 real mobile devices

including Android/iOS devices are selected to run the 4 mi-

grated/quantized models. For each web browser/mobile device,

we conduct 5 parallel evaluations on each model to minimize

the random impacts as much as possible. The study takes

10 months, including the substantial effort on model training,

migration/quantization, and cross-platform evaluations.

Experimental Environment. We run all the PC application

experiments on a high performance computer cluster. Each

cluster node runs a GNU/Linux system with Linux kernel

4.4.0 on 2 18-core 2.3GHz Intel Xeon CPU E5-2699 with

190 GB RAM equipped with a NVIDIA Tesla P40 GPUs.

Web application experiments are conducted on a laptop with

64-bit Chrome 71.0.3578.98, Firefox 64.0.2 and Safari 12.0.2.

The host laptop is MacBook Pro with macOS 10.14.2 on a

2.7GHz Intel Core i7 CPU with 16GB RAM. The mobile

application experiments are conducted on real Android devices

(i.e., HUAWEI Mate 20X, HUAWEI Nexus 6P, and Motorola

Nexus 6) with Android 9.0 API 28, 7.1.1 API 25 and 8.1.0

API 27 and iOS devices (i.e., iPhone 8, iPhone 6S, and iPad

Pro) with iOS 12.1.2.

A. RQ1: Accuracy on Different Frameworks

1) Training Accuracy: To investigate the training accuracy

across different DL frameworks, 7 DNN models (i.e., LeNet-

1 and LeNet-5 for MNIST, ResNet-20 and VGG-16 for

CIFAR-10, TextCNN, LSTM (RNN), and GRU (RNN) for

IMDb) are trained on four different frameworks. For each

model, we ensure the same runtime configuration on different

frameworks. For example, we set identical learning rate (i.e.,

0.05), training epochs (i.e., 200), optimizer (i.e., SGD), batch

size (i.e., 128), etc. for LeNet-1 on all frameworks. Each DNN

model is repeatedly trained for 5 times under each framework,

and one with the highest validation accuracy is selected for

comparison. We only demonstrate the accuracy of training and

prediction by using 3 DNN models (i.e., LeNet-5, VGG-16,

and GRU (RNN)) based on three data types due to the space

limitation. More training plots can be found on our website [4].

Fig. 2 and 3 show the training and validation plots of LeNet-

5, VGG-16, and GRU (RNN) on GPU with the same runtime

configurations under different DL frameworks, respectively.

We can see that all frameworks exhibit similar training be-

haviours, but PYTORCH behaves more stably in both training

and validation processes and generally has higher training

accuracy compared to the other 3 frameworks in our study. It

is even more obvious for LeNet-5 and VGG-16, which have

813

(a) LeNet-5 (b) VGG-16 (c) GRU

Fig. 2: Training accuracy of LeNet-5, VGG-16, and GRU with

different DL frameworks

(a) LeNet-5 (b) VGG-16 (c) GRU

Fig. 3: Validation accuracy of LeNet-5, VGG-16, and GRU

with different DL frameworks

much larger amplitudes on these frameworks than PYTORCH,

as shown in Fig 2a, 2b and Fig 3a, 3b, respectively.

2) Prediction Accuracy: For each DNN model, we select

one with the highest validation accuracy to conduct prediction

on the testing dataset. We repeat 5 predictions on each model

and find the prediction accuracy is quite similar, with time

costs varying slightly. So we record the average accuracy and

average time cost for evaluation.

As shown in Table I, for each model, the prediction accuracy

of 4 frameworks is similar with a little difference. The result

is reasonable because these frameworks rely on different

computing libraries and provide different operator implemen-

tations (e.g., convolution operator), which finally makes the

weights/biases on the same layer different from each other. But

when it comes to time costs, models on the four frameworks

behave quite differently. We take GRU as an example (marked

in gray), it takes only 3.46 seconds on MXNET to predict

10,000 samples, but spends 85.88s and 114.69s on TENSOR-

FLOW and CNTK, respectively. Meanwhile, it exhibits an out of
memory error under PYTORCH, as marked by O/M in Table I.

This is mainly because PYTORCH dynamically loads the data

along with the graph building at each batch, without feeding in

advance. Thus, PYTORCH inevitably generates a large number

of temporary variables in an instant, leading to the memory

overflow. According to the results of prediction accuracy

and time costs, even given the same configuration, models

under different frameworks achieve different weights/biases,

resulting in different prediction accuracy and time costs. This

phenomenon inspires us to think if the difference is caused by

the inner implementation when conduct computing.

Driven by the above observations, we further investigate

the prediction accuracy of different frameworks with the same

weights/biases rather than the same runtime configuration.

Specifically, we take the TENSORFLOW models as benchmark,

TABLE I: Average prediction accuracy and average time costs

with input data samples 10,000 on different frameworks

DNN
Models

TensorFlow CNTK PyTorch MXNet
Acc(%) Time(s) Acc(%) Time(s) Acc(%) Time(s) Acc(%) Time(s)

LeNet-1 98.90 0.05 98.89 0.96 98.88 0.01 98.96 0.11

LeNet-5 99.30 0.10 99.30 1.02 99.21 0.01 99.27 0.12

ResNet-20 82.66 1.23 82.93 3.94 83.85 O/M 84.33 1.47

VGG-16 84.70 3.67 82.77 11.82 86.12 O/M 86.52 8.86

TextCNN 89.54 2.10 89.98 2.14 89.79 1.12 90.40 1.58

LSTM 90.11 103.93 90.50 55.60 90.56 O/M 89.17 3.60

GRU 90.73 85.88 90.92 114.69 91.59 O/M 89.80 3.46

TABLE II: The layer outputs in ResNet-20 on TENSORFLOW

model and CNTK variant. Idx. refers to label index.

(a) Activation 1 Layer

TensorFlow CNTK
2.50329142 2.50329163

0.0 0.0
4.07436941 4.07436941

0.0 0.0
0.0 0.0
· · · · · ·
0.0 0.0

3.72458271 3.72458232
0.62817883 0.62817895

L
ay

er
O

ut
pu

t

1.00697954 1.00697954

(b) Dense Layer (Last Weight Layer)

Idx. TensorFlow CNTK
0 5.7574983 1.9206836
1 2.6037812 -0.5768703
2 -0.6758407 1.2657206
3 1.3866315 0.73824847
4 -3.348287 -0.97601014
5 -4.9494123 -3.5435727
6 -2.8659112 -1.4083405
7 -4.317035 -2.079543
8 4.1992025 4.9673457

L
ay

er
O

ut
pu

t

9 2.2098625 -0.3072039

and further convert them to variants fit for other frameworks,

using the existing model conversion tool MMDNN [45]. The

outputs (i.e, the 3 variants) of MMDNN are able to share

identical weights/biases with the benchmarking TENSORFLOW

for each DNN model. Then we conduct predictions on them

using the same testing dataset. Most of the prediction accuracy

across the four models are the same, but an obvious accuracy

decline (i.e, 82.66% to 74.35%) occurs on ResNet-20 after

converted from TENSORFLOW to CNTK.

To understand the reason, we sample the images that have

inconsistent classification results by ResNet-20 on TENSOR-

FLOW and CNTK. Taking these samples as inputs for the

two models, we print the outputs of their each hidden layer.

Strikingly, the outputs of each corresponding layer in the two

models are gradually diverging as the layer deepens. As shown

in Table IIa, for Activation_1, the first activation layer,

there are only slight differences between TENSORFLOW and

CNTK (see the pair data marked by gray). When it comes

to the Dense layer (i.e., the last weight layer), the two

frameworks exhibit an obvious distinction, leading to diverging

classification. Consider the Table IIb, the TENSORFLOW model

predicts the image as label “0,” with the maximal output being

“5.7574983.” While the CNTK variant predicts it as label 8,

with the maximal output being “4.9673457.” Actually, we also

find similar issues between other frameworks, but not obvi-

ous enough to impact the prediction logic. The phenomenon

indicates that computation differences indeed exist between

TENSORFLOW and CNTK, which could be amplified in models

with deep layers, and introduce prediction errors. That should

draw the attention of developers and researchers who aim to

train a model on a framework and deploy on another with the

help of model conversion tools.

814

Answer to RQ1: Given DL models with the same runtime

configuration, PYTORCH generally provides more stable

training and validation process than TENSORFLOW, CNTK,

and MXNET in our study. Although it is understandable

that the computing differences exist across frameworks,

such differences can sometimes be very obvious under

certain scenarios (e.g., model conversion), leading to a

misclassification on DL models. The existing model con-

version between frameworks is currently not reliable due to

the computing differences, which requires special attention

and inspection before applying directly. Note that, 100%

participates in the questionnaire are interested in the quanti-

tative differences across frameworks and the corresponding

results can be used to provide development insights.

Challenge: How to identify real framework bugs according

to the computing differences? How to amplify the comput-

ing differences to help find more similar issues in SE testing

field?

B. RQ2: Robustness of Trained Model

In this section, we investigate the robustness of DL models

trained from different DL frameworks. For each model evalu-

ated in Table I, we examine the robustness against adversarial

examples in terms of success rate, by leveraging three state-

of-the-art representative adversarial attacks (i.e., FGSM [27],

Single-Pixel-Attack [48], and Boundary-Attack [20]). Given

an input, each attack generates crafted test cases to fool the

model, with following criteria:

• FGSM adds perturbations along the model’s gradient to craft

adversarial examples.

• Single-Pixel-Attack adds human-unnoticeable noises on im-

age pixel to generate adversarial images.

• Boundary-Attack firstly performs large adversarial perturba-

tions on input and then minimizes the L2-norm of pertur-

bations while staying adversarial.

In particular, we randomly select 1,000 images in MNIST

and CIFAR-10, which are correctly predicted by all the mod-

els. And these images are used as the inputs of aforementioned

attacks. To reduce randomness, each attack is repeated 10

times to calculate the average success rate. Thus, we perform

360 configurations of attacks (4 models× 4 frameworks × 3

types of attacks × 10 repetitions).

Fig. 4 shows the average attack success rates on models

trained from different frameworks. We can see Boundary-

Attack achieves 100% success rate on all DL models, because

it is the most effective decision-based adversarial attack [54]

to date. This indicates that models trained from the state-of-

the-art frameworks are still vulnerable against the advanced

attacks [20]. Moreover, models also behave distinctly against

other two attacks. Formally, we define the following equations

to quantify the model robustness under attacks.

P (mi, A) =

{
S

mi
A −min

max−min min < max

0 min = max
(1)

R(mi) = P (mi, A1) + . . .+ P (mi, Ak), k ≥ 1 (2)

where m1, . . . ,mn (n ≥ 1) represent the n models trained

from different frameworks, and Ak are the k types of at-

tacks. Sm
A represents the average success rate of attack A

on model m. Thus the min = MIN(Sm1
A , . . . , Smn

A) and

max = MAX(Sm1
A , . . . , Smn

A) in Equation 1 indicate the

minimum and maximum success rate of all models involved

under attack A, respectively. Based on these statistics, we can

compute the final robustness indicator R(mi) with Equation 2,

which quantifies the robustness of model mi in terms of

attacks A1, . . . , An. The smaller value R(mi) is, the better

robustness model mi exhibits. In this study, m1,m2,m3,m4

represent models from TENSORFLOW, PYTORCH, CNTK, and

MXNET, respectively. And A1, A2, A3 indicate FGSM attack,

Single-Pixel attack and Boundary attack, respectively.

Using above equations, we find that trained from the same

runtime configurations, the CNTK models generally exhibit

the best robustness compared to the models from the other

three frameworks. Because R(m3) comes to the minimum on

LeNet-1, LeNet-5 and VGG-16, with the value being 0.01,

0.00 and 0.02, respectively. By contrast, PYTORCH and MXNET

are more vulnerable to attacks by adversarial samples. More

results can be found on our website [4].

Answer to RQ2: Given the same architecture design and

runtime configuration, DL models from different frame-

works exhibit diverse robustness against adversarial attacks.

Generally, CNTK achieves the most robust result in our

evaluated settings among all the frameworks when training

DL models, and models trained from PYTORCH and MXNET

tend to be more vulnerable to adversarial attacks.

Challenge: How to improve the robustness of DL models

in training stage from the perspective of engineering DL

frameworks? How to develop advanced testing techniques

to generate specific tests for improving robustness?

C. RQ3: Time and Memory Performance of Migration and
Quantization on Diff-Platforms

In this section, we investigate the differences of capability in

supporting DL software across platforms, after the model mi-

gration/quantization from the PC/Server platform. We mainly

focus on the time costs and memory consumption during

prediction, which are the key runtime metrics of small devices.

The mobile platforms (e.g., Android OS and iOS systems) and

web platforms (e.g., web browsers) are selected for evaluation.

For the mobile platform, TENSORFLOW and CORE ML are

used to migrate the trained DL models to Android and iOS

platforms, respectively. Specifically, for each DNN model

trained by TENSORFLOW, we select one with the highest

prediction accuracy. After that, the API TocoConverter
in TENSORFLOW 1.11.0 helps migrate these trained models to

the Android platforms, and the TENSORFLOW LITE package

in Android applications provides runtime support for the

migrated model execution on Android devices. Similarly, the

coremltools in CORE ML 2.1.0 can convert the trained

models to the iOS platforms.

Apart from the model migration, TENSORFLOW and CORE

ML also provide quantization techniques to optimize a model

815

0

20

40

60

80

100

FGSM Single-Pixel Boundary

100

1

99 100

1

29

100

3

29

100

4

44

TensorFlow PyTorch CNTK MXNet

 A
tt

ac
k

S
uc

ce
ss

 R
at

e
(%

)

(a) LeNet-1

0

20

40

60

80

100

FGSM Single-Pixel Boundary

100

2

97 100

1

17

100

3

28

100

4

20

TensorFlow PyTorch CNTK MXNet

 A
tt

ac
k

S
uc

ce
ss

 R
at

e
(%

)

(b) LeNet-5

0

20

40

60

80

100

FGSM Single-Pixel Boundary

100

68

100 100

58

100 10098100 100

45

100

TensorFlow PyTorch CNTK MXNet

 A
tt

ac
k

S
uc

ce
ss

 R
at

e
(%

)

(c) ResNet-20

0

20

40

60

80

100

FGSM Single-Pixel Boundary

100

66

100 100

56

99 10099100 100

55

99

TensorFlow PyTorch CNTK MXNet

 A
tt

ac
k

S
uc

ce
ss

 R
at

e
(%

)

(d) VGG-16

Fig. 4: The robustness evaluation of DL models against adversarial attacks

so that it can execute faster and more efficiently on mobile

devices [8]. TENSORFLOW and CORE ML provide different

options to quantize the trained models for mobile platforms.

Since the post-training quantization is recommended as prior-

ity by the documentation of TENSORFLOW [62], and it fixedly

converts weight in trained models from 32-bits floating point

to 8-bit integer using a liner weight representation. We initially

set the nbits option to 8 and select the linear mode in CORE ML

for all DL models to ensure the consistency. Additionally, since

the VGG-16 model cannot be quantized to 8-bits in practice

[10], we only use a 16-bits quantization for VGG-16. In this

study, 6 representative real mobile devices (i.e., HUAWEI

Mate 20 X, HUAWEI Nexus 6P, and Motorola Nexus 6 with

Android OS and iPhone 8, iPhone 6S, and iPad Pro with iOS)

are selected for evaluation.

For the web platform, TENSORFLOW.JS 0.14.2 is used to

migrate the trained TENSORFLOW models to the format which

could be loaded by web browsers. The web platform refers to

the browsers on PC, rather than on mobile devices. We select

3 mainstream browsers (i.e., Chrome, Firefox, and Safari) for

web evaluation, and run them on a Macbook Pro.

Table III, IV, and V show the results of prediction accuracy

and time cost on different platforms and the effects of migra-

tion and quantization for mobile devices and web browsers.

For mobile platforms, four CNN models are evaluated, be-

cause we cannot convert the RNN models (i.e., LSTM and

GRU) to mobile platforms due to the “unsupported operation”

error [12], which indicates that the current supporting of DL

tasks on mobile platforms is unfledged. Note that quantization

is only performed on mobile devices in our study, because

there is no quantization support for web platforms until now.

For web browsers, all the seven trained DL models are selected

to migrate. We record the System Memory consumption in

prediction process. Notably, we do not record the system

memory consumption and energy of mobile devices since the

record process is inaccurate due to many limitations such as

the impacts of mobile system and runtime environment.

1) Time Performance: For mobile platform, Android and

iOS devices exhibit different time performance which depends

on DL model type. As shown in Table III (Column Pred.
Time), for the LeNet-1 and LeNet-5, there is a big difference

in time performance on iOS and Android devices. Android

devices take less than 9s to predict while iOS devices spend

TABLE III: Prediction accuracy and time cost on different

mobile devices

DNN
Mod. Plat. Device Quan. Size

Original Generated
Acc.
(%)

Pred.
Time(s)

Acc.
(%)

L
eN

et
-1

PC Server No 16KB 98.70 0.05 87.42

A
n
d
ro

id

Nexus 6
No 15KB 98.70 5.33 87.42
Yes 5.4KB 98.69 3.80 82.32

Nexus 6P
No 15KB 98.70 4.19 87.42
Yes 5.4KB 98.69 3.32 82.32

Mate 20X
No 15KB 98.70 2.09 87.42
Yes 5.4KB 98.69 1.51 82.32

iOS

iPhone 6S
No 14KB 98.70 235.66 86.51
Yes 4.5KB 98.70 238.27 81.46

iPhone 8
No 14KB 98.70 121.78 86.54
Yes 4.5KB 98.65 123.56 81.49

iPad Pro
No 14KB 98.70 145.92 86.51
Yes 4.5KB 98.66 147.41 81.46

L
eN

et
-5

PC Server No 178KB 99.13 0.10 89.24

A
n
d
ro

id

Nexus 6
No 176KB 99.13 8.31 89.24
Yes 50KB 99.13 5.30 83.31

Nexus 6P
No 176KB 99.13 6.16 89.24
Yes 50KB 99.13 4.26 83.31

Mate 20X
No 176KB 99.13 5.28 89.24
Yes 50KB 99.13 1.17 83.31

iOS
iPhone 6S

No 175KB 99.13 245.62 88.87
Yes 47KB 99.13 248.92 82.96

iPhone 8
No 175KB 99.13 128.84 88.96
Yes 47KB 99.09 130.47 83.04

iPad Pro
No 175KB 99.13 153.47 88.87
Yes 47KB 99.09 153.70 81.61

R
es

N
et

-2
0

PC Server No 1.1MB 83.05 1.23 77.70

A
n
d
ro

id

Nexus 6
No 1.1MB 83.05 565.30 77.70
Yes 290KB 83.06 320.41 73.49

Nexus 6P
No 1.1MB 83.05 495.21 77.70
Yes 290KB 83.06 262.24 73.49

Mate 20X
No 1.1MB 83.05 240.67 77.70
Yes 290KB 82.93 113.05 73.49

iOS

iPhone 6S
No 1.1MB 83.09 374.73 76.28
Yes 281KB 83.05 383.49 72.15

iPhone 8
No 1.1MB 83.04 224.23 77.03
Yes 281KB 83.02 229.41 72.86

iPad Pro
No 1.1MB 83.08 230.35 76.26
Yes 281KB 83.06 232.78 72.13

V
G

G
-1

6

PC Server No 129MB 84.20 3.67 79.25

A
n
d
ro

id

Nexus 6
No 129MB 84.20 2432.51 79.25
Yes 33MB 84.19 823.15 75.28

Nexus 6P
No 129MB 84.20 2909.95 79.25
Yes 33MB 84.19 1996.54 75.28

Mate 20X
No 129MB 84.20 1595.82 79.25
Yes 33MB 84.19 322.60 75.28

iOS

iPhone 6S
No 129MB 84.19 1699.90 77.54
Yes 65MB 84.22 1768.87 77.56

iPhone 8
No 129MB 84.21 1143.95 79.05
Yes 65MB 84.21 1210.45 78.93

iPad Pro
No 129MB 84.19 939.63 77.55
Yes 65MB 84.22 964.00 77.57

DNN Mod.: DNN models; Plat.: platform; Quan.: quantization; Acc: accuracy; Pred.
Time: prediction time; Original: original dataset; Generated: generated dataset

816

TABLE IV: Prediction performance of DNN models on

MNIST and CIFAR-10 with different web browsers

Original Data Generated DataDNN
Mod. Plat. Size Browser Acc.

(%)
Pred.
Time

System
Memory

Acc.
(%)

Pred.
Time

System
Memory

PC 52KB - 98.90 0.05 - 79.37 0.09 -
Chrome 98.90 0.68 - 79.37 2.14 -
Firefox 98.90 1.32 - 79.37 2.68 -

L
eN

et
-1

Web 20KB
Safari 98.90 0.99 - 79.37 2.92 -

PC 380KB - 99.30 0.10 - 78.60 0.16 -
Chrome 99.30 0.93 - 78.60 2.59 -
Firefox 99.30 1.72 - 78.60 3.15 -

L
eN

et
-5

Web 184KB
Safari 99.30 1.44 - 78.60 3.52 -

PC 2.4MB - 82.66 1.23 - 68.97 1.85 -
Chrome 77.08 22.80 2.41GB 61.96 31.07 2.46GB
Firefox 77.08 25.22 3.52GB 61.96 42.41 -

R
es

N
et

-2
0

Web 1.1MB
Safari 77.08 79.92 4.37GB 61.96 81.72 6.49GB

PC 258MB - 84.70 3.67 - 67.60 3.95 ∗
Chrome 84.70 139.83 2.06GB 67.60 167.50 2.52GB
Firefox 84.70 153.08 3.30GB 67.60 300.85 ∗

V
G

G
-1

6

Web 129MB
Safari 84.70 156.74 4.66GB 67.60 490.46 8.69GB

Mod.: models; Plat.: platform; Size: model size; Acc: accuracy; Pred. Time: prediction
time(s); Mem.: Memory
∗ means the exception on Firefox due to “allocation size overflow.”

more than 100s, and even up to 248.92s (i.e., iPhone 6S

for LeNet-5). Different from the LeNet family, iOS devices

predict faster than Android devices for ResNet-20 and VGG-

16. It seems that as the complexity of the model increases, the

performance advantage of iOS devices gradually emerges.

In terms of the prediction time of quantized models, pre-

dicting on Android devices after quantization is faster than

the original model, the improvement is more obvious for

complex models (e.g., ResNet-20 and VGG-16). Strikingly,

quantization on iOS slows down the prediction speed a little

as shown in Column Original-Pred. Time (in gray) in Table III,

which is an overall trend and confused phenomenon. Note that,

we have reported the issue to CORE ML.

As shown in Table III, we use two types of mobile devices

(i.e., Nexus 6 and Nexus 6P) to observe the time performance.

Most cases reflect the trend (i.e., Nexus 6P is an upgraded

version of Nexus 6, therefore, the prediction time on Nexus 6P

should be less than Nexus 6.). However, as shown in Column

Original-Pred. Time (in bold italic), Nexus 6P spends more

time than Nexus 6 when running VGG-16, which indicates

the platforms’ capability of supporting DL software is likely

related to specific model type.

For the time on web browsers, Chrome generally outper-

forms the other two browsers in our study. As shown in

Column Original Data-Pred. Time in Table IV and V, it spends

less time on Chrome than Firefox and Safari in predicting

the same amount of testing data. There is only one anomaly

occurs for VGG-16, which Chrome costs 284.62s longer than

the 191.45s on Safari.

2) Memory Performance: As shown in Table IV and V,

apart from prediction time, we also record the system memory

consumption on web platforms. System Memory consumption

is a more representative metric than prediction time, when

evaluating the supporting capability for DL software. Note that

we do not record the system memory on LeNet-1 and LeNet-

5, because their fleeting prediction processes make it hard to

TABLE V: Prediction performance of DNN models on IMDb

with different web browsers.

DNN
Models Platform Model

Size Browser
Original Data

Accuracy
(%)

Pred.
Time (s)

System
Memory

PC 40MB - 89.54 2.10 -
Chrome 89.54 65.57 253.65MB
Firefox 89.54 67.52 417MB

Te
xt

C
N

N

Web 13MB
Safari 89.54 69.33 1.07GB

PC 48MB - 90.11 103.93 -
Chrome 90.11 248.37 210.2MB
Firefox 90.11 375.20 1.24GBL

ST
M

Web 16MB
Safari 90.11 260.49 1.83GB

PC 45MB - 90.73 85.88 -
Chrome 90.73 284.62 232.9MB
Firefox 90.73 471.81 1.37GBG

R
U

Web 15MB
Safari 90.73 191.45 1.64GB

record the corresponding system memory.

As shown in Column System Memory, predicting on web

browsers are memory-consuming for all models. Among the

3 browsers, Safari consumes the largest system memory. And

according to our observation, the huge consumption of system

memory has affected the performance of the host computer.

Although the memory performance of Firefox and Chrome is

better than Safari, their memory overheads still reach several

GB size in most cases. For example, the memory overhead

is over 2.4GB when running ResNet-20 on the 3 browsers,

indicating the browsers’ capability of supporting DL software

is not satisfactory till now. Combined the metrics of prediction

time and system memory consumption, Chrome exhibits the

best performance in supporting DL tasks, which could be a

better choice when running DL applications on browsers.

Answer to RQ3: Different platform devices hold different

time and memory performance in capability of supporting

DL software. For mobile devices, Android devices take

much less time than iOS devices for simple DNN models.

However, as the complexity of the model increases, iOS

devices achieve better time performance. Moreover, the

capability of supporting DL software on mobile platform

is likely related to the types of specific DNN models. For

web platforms, Chrome generally outperforms others in

both prediction time cost and system memory consump-

tion in our study. The overall performance for web DL

software is unsatisfactory, especially running complex DL

models.

Challenge: How to reduce the time cost memory con-

sumption after model migration and quantization? How to

further test the performance of different platforms when

deploying and running DL software systematically?

D. RQ4: Accuracy of Migration and Quantization on Diff-
Platforms

In this section, we investigate the prediction accuracy after

DL model migration and quantization on different platforms

(i.e., mobile and web platforms).
1) Model Migration for Different Platforms: As shown in

Table III, IV and V, for each DNN model, we first compare

the accuracy of each model without quantization on different

817

TABLE VI: The layer outputs of ResNet-20 on PC and

Chrome. Idx. refers to label index.

(a) Conv2D Layer

PC Chrome
1.78371441 1.78371441
-1.47859037 -1.47859049
0.57163376 0.57163370
-0.01394593 -0.01394595
-2.42872572 -2.42872572
· · · · · ·

0.003037585 0.003037592
-0.43665951 -0.43665954
0.08801108 0.08801108

L
ay

er
O

ut
pu

t

0.174682378 0.174682394

(b) Dense Layer (Last Weight Layer)

Idx. PC Chrome
0 3.94917989 -1.03813171
1 -5.77517033 -3.22286654
2 5.10022831 3.76064563
3 -2.74950528 1.56391966
4 3.04771161 -1.47325206
5 -2.04092622 0.52656615
6 -6.07451582 -0.17675309
7 8.46383476 2.48092437
8 -0.23961751 1.38548911

L
ay

er
O

ut
pu

t

9 -3.68060803 -3.80600476

mobile platforms (marked as No in Column Quan.). We find

that the DNN model size does not change a lot after migrating

the TENSORFLOW model to mobile platforms. However, the

size of each model for web platform decreases by a large

margin.

Using the original test data, the accuracy of the mobile

migration is almost unchanged, the biggest change comes from

the data of iPhone 6S on VGG-16 (i.e., 84.19 vs. 84.20)

and iPhone 8 on ResNet-20 (i.e., 83.04 vs. 83.05). Similarly,

the accuracy of web migration generally shares the same

trend. However, a significant accuracy decline occurs on all

3 browsers for ResNet-20 (i.e., 77.08 vs. 82.66), as shown in

Table IV. To analyze and explain the reason for this severe

compatibility issue, we first compare the model structure and

weights between the two platforms (i.e., PC and web) and

confirm that they share the same properties of them. So we

further inspect the outputs of each layer for ResNet-20 on PC

and web browsers. Strikingly, given the same input image, we

find the outputs of each layer on PC and web browsers are

different. Moreover, the deeper the layer is, the more obvious

difference they exhibit.

We take Chrome as example to give an in-depth comparative

analysis on a certain image. As shown in Table VIa, for

Conv2D, the first weight layer connecting to the input, there

are only slight differences between Chrome and PC (see the

pair data marked by gray). When it comes to the Dense
layer (i.e., the last weight layer), the two platforms exhibit an

obvious distinction, leading to a misclassification on Chrome.

As shown in Table VIb, the PC model predicts the image

as label “7,” with the maximal output being “8.46383476.”

While Chrome predicts it as label 2, with the maximal output

being “3.76064563.” Other two browsers also show the similar

behaviours. The result indicates that browsers differ from PC

in inner-model computing, leading to the accuracy decline on

ResNet-20. Actually, similar compatibility issues also occur

on LeNet-1, LeNet-5, and VGG-16 when migrated from PC

to browsers, although the final prediction logic are not been

influenced. We reported these issues to the team of TENSOR-

FLOW.JS, and the developers have acknowledged as a real bug

when WebGL handles 1× 1 Conv2D kernels, and will fix it

in the new release version.

Answer to RQ4-1: The prediction accuracy on original

data has not been affected much by the migration process.

However, compatibility issues persist in model migration

from PC to browsers (e.g., 77.08 vs. 82.66 on ResNet-

20). Even worse, there still exists a obvious difference on

computation mechanism between PC and web browsers,

leading to a computing distinction of each layer within the

model, which has been acknowledged and confirmed by

the team of TENSORFLOW.JS. This result explains why the

industry has failed to meet expectations after model mi-

gration based on our online questionnaire, which provides

a reasonable explanation for the industrial developers.

2) Model Quantization for Mobile Platforms: Considering

the models marked as Yes in Column Quan. in Table III, the

model size decreases roughly 50% to 75% after quantization.

It saves much storage and memory for mobile devices, exactly

according with the intentions for designing quantization. The

quantization process does not significantly affect the prediction

accuracy on original testing data. Specifically, the biggest

change comes from HUAWEI Mate 20 X on ResNet-20

(i.e., 82.93 vs. 83.05). Even in some cases, the accuracy

of quantized model is higher. For example, the accuracy of

the quantized ResNet-20 model on other Android devices

increases by 0.01% and the quantized VGG-16 model on

iPhone 6S and iPad Pro rises by 0.03%.

Answer to RQ4-2: Quantization does not affect the pre-

diction accuracy obviously. Prediction on Android devices

after quantization is faster than the original model, and

the improvement is more significant for complex models.

Strikingly, quantization on iOS devices slows down the

prediction speed, which deserves further optimization for

CORE ML.

3) Migration and Quantization on Generated Data:
According to section IV-D1 and IV-D2, the migra-

tion/quantization does not affect the prediction accuracy obvi-

ously, there still exist some cases that the accuracy decreases,

especially for the quantization process. The results of accu-

racy in above two sections are based on the original testing

data. To further investigate the quality of migrated/quantized

models, we combine the existing tools TENSORFUZZ [46] and

DEEPHUNTER [67] as data generator. We generate a large-

scale testing data by using MNIST and CIFAR-10 as inputs

to capture the differential behaviors between the PC model

and the migrated/quantized model. 25,000 mutated MNIST

data are created for LeNet-1 and LeNet-5, respectively. 28,000

mutated CIFAR-10 data are generated for ResNet-20 and

VGG-16, respectively. We generate 106,000 samples for both

mobile and browser in total.

We run the migrated models repeatedly on our generated

data for the two platforms. As shown in Table III, the

prediction accuracy of migrated models remain unaltered on

Android devices, consistent to the result on original testing

data. However, iOS devices go through a relatively obvious

accuracy decline on our generated testing data. For example,

818

iPhone 6S, iPhone 8 and iPad Pro achieve 76.28%, 77.03%

and 76.26% accuracy on ResNet-20 respectively, which are

less than the 77.70% on server. In addition, LeNet-1 and

LeNet-5 show the similar phenomenon, which indicates the

migration process on iOS devices suffers from reliability issues

on the generated data. As for web platforms, the accuracy of

ResNet-20 still drops more than 5% accuracy (i.e., 61.96%

vs. 68.97%), which agrees with the result on the original data

(i.e., 77.08% vs. 82.66%). The similar result on generated

data validates our findings about the compatibility issues in

migration process.

Strikingly, as shown in Column Generated-Acc. (in gray),

the accuracy of all quantized models has a significant decline,

indicating the reliability of a quantizated model is unsatisfac-

tory to date. However, the different results on the two datasets

(i.e., original testing data and generated testing data) show

that it is hard to trigger the reliability issue with the original

widely-used datasets. Last but not least, for iOS devices, the

accuracy of quantized models on VGG-16 only drops a little,

since we follows a different modes (i.e., 32-bits to 16-bits),

compared to other three models when reducing the floating

point. To investigate whether the accuracy of quantized models

is relevant to the value of nbits in float reduction, we further

obverse the ResNet-20 as an example, and configure the nbits
as 8 and 4. Results show that the accuracy gradually declines

with a decreasing bit value. The accuracy are 77.57%, 74.42%

and 8.53% corresponding to the floating point from 32-bits to

16-bits, 8-bits and 4-bits on iPad Pro, respectively.

Remarks for inspection of generated data: (1) The

accuracy of migrated models does not change in our eval-

uation on Android devices, while has a relatively obvious

decline on iOS devices. As for the web platforms, the

results (i.e., compatibility bugs) are consistent to that on

original data. (2) The accuracy of all quantized models has

a significant decline on our generated testing data, which

indicates the quantization process still suffers from severe

reliability issues tested by generated data. Meanwhile, the

decline is correlated with the value nbits when reducing

the floating point on iOS devices. (3) Furthermore, we

conduct statistical analysis [13] on the accuracy-dropping

cases in Column Generated after quantization of Table III.

The results give a p < 0.05, indicating there exists a

statistically significant difference in accuracy on generated

data, which reconfirms the reliability issues.

Challenge: How to detect and fix the compatibility is-

sues/bugs when migrating the trained models to web

platforms and iOS devices, and the reliability issues when

quantizing the trained models to mobile platforms?

E. Threats to Validity

(1) The DNN models and datasets we used might not

be complete, thus our findings are not general for all sit-

uations. But we select models with CNN/RNN architecture

from various domains, ranging from image classification to

textual sentiment analysis. Moreover, the datasets contain

diverse types, including gray, color images and textual review,

to reduce such a threat. (2) The selected versions of DL

frameworks in our study might not be complete. However,

we do not focus on the multi-version evolution, but on reveal-

ing challenges/issues that developers and researchers need to

consider in development and deployment processes. (3) Three

Android devices and three iOS devices with fixed versions are

used to study the prediction performance on mobile platforms.

We mainly focus on the performance change after the model

migration/quantization from PC to mobile devices, the impacts

of mobile hardware and mobile system version on prediction

performance are beyond the scope of this work.

V. RELATED WORK

In this section, we review the related work in two aspects:

study of deep learning frameworks and platforms. Actually, for

the studies of model migration and quantization on different

deep learning platforms (i.e., mobile devices and browsers),

to the best our knowledge, we take the first step towards

this research field. Several deep learning benchmarking stud-

ies have been done on the basic results of deep learning

frameworks [17], [18], [25], [59] such as the influence of

different hardwares and training accuracy and time, and also

compared different frameworks using their default configu-

ration settings and parameters [40]. However, there lacks a

systemic study on the different impacts that various deep

learning frameworks under the same runtime configuration or

same model weights/biases have on the deep learning software

development and deployment, and also lacks an investigation

on quantitative showing the differences of frameworks for

developers and researchers.

A. Study of DL Platforms

Kaoru et al. [47] made a survey on deep learning for mobile

multimedia and introduced the low-complexity deep learning

algorithms, an optimized software framework for mobile en-

vironments and the specialized hardware for supporting the

computationally expensive processes of deep network training

and inference. AI-Benchmark [2] proposed a AI performance

ranking for current mainstream mobile phones. Nine testing

tasks such as object recognition and face recognition are used

as criteria for performance comparison. Alsing et al. [15]

summarized the latest mobile object detection methods us-

ing TENSORFLOW LITE and analyzed the performance and

latency payoff of different deep learning models on mobile

devices. Wang et al. [65] provided an overview of the current

achievements about mobile deep learning technologies and

applications. Xu et al. [69] conducted an empirical study on

a large-scale Android apps to investigate how deep learning

technique is adopted in practice. Ma et al. [44] investigated

seven JavaScript-based deep learning frameworks and mea-

sured their performance gaps when running different deep

learning tasks on Chrome. However, we focus on the differ-

ence of supporting capabilities when deep learning tasks are

deployed on various web browsers (i.e., Chrome, Firefox, and

Safari).

819

B. Study of DL Frameworks
The rapid emergence of deep learning frameworks attracts

researchers’ attention on the performance of deep learning

frameworks. The most related work is from Liu et al. [40],

they conducted a comparative study of three frameworks (i.e.,

TENSORFLOW, CAFFE, and TORCH). However, they observed

from various aspects such as the impacts of default settings and

dataset-dependent default settings, and framework-dependent

default settings in deep learning frameworks, which are totally

different from us. Moreover, Bahrampour et al. [19] presented

a comparative study on four deep learning frameworks (i.e.,

CAFFE, NEON, THEANO, and TORCH). They evaluated these

frameworks from three aspects (i.e., extensibility, hardware

utilization, and speed). Shams et al. [58] analyzed CAFFE,

TENSORFLOW and APACHE SINGA over several hardware

environments. In order to investigate the performance, they

measured the time per training iteration and the number

of images trained with in a millisecond for comparison.

Kochura et al. [35] compared the basic features (i.e., GPU

support, GUI, operating systems, and language support) of

TENSORFLOW, DEEP LEARNING4J and H2O and conducted

throughout performance tests. In particular, H20 was tested

under single threaded mode and multi-threaded mode. Li et

al. [39] evaluated the energy efficiency of CNNs on CPUs

and GPUs by calculating the energy and power consumption

of ten deep learning frameworks (K20-TORCH, TX-CAFFE,

etc.). Shaohuai et al. [60] calculated the time per mini-batch

with different threads (i.e., 1, 2, 4, 8) and deep neural network

models (FCN-S, RESNET-50, etc.) within CAFFE, CNTK,

TENSORFLOW, MXNET and TORCH. Amershi et al. [55]

provided a description of how several Microsoft software engi-

neering teams work on developing AI applications. Apart from

the above work on deep learning frameworks, several work

focused on the bug detection of deep learning frameworks.

For example, Zhang et al. [70] studied 175 TENSORFLOW

bugs and examied the root causes of these bugs. Pham el

al. [51] proposed CRADLE, a new approach that cross-checks

multiple backends to find and localize bugs in deep learning

software libraries.

C. Deep Learning Testing
Some existing techniques have been proposed to detect the

problems/issues during deep learning development and de-

ployment. DeepXplore [50] and DeepGauge [42] proposed the

new testing criteria for deep learning testing. DeepTest [64],

DeepHunter [67] and TensorFuzz [46] proposed coverage-

guided testing techniques, which mainly focus on feedforward

neural networks. DeepStellar [26] is proposed to perform the

quantitative analysis for recurrent neural networks (RNN).

DeepMutation [43] adopts the mutation testing techniques to

evaluate the quality of test data for a deep neural network.

In addition, DiffChaser [68] proposed a differential testing

technique to capture the minor disagreements of two deep

neural networks. The approach can be applied to detect the
issues of deep neural networks caused by deep learning

platforms and frameworks.

In summary, compared to these studies on deep learning

frameworks and platforms, our study conducted a systematic

study including training performance and prediction accu-

racy when given the same runtime configuration or model

weights/biases, adversarial robustness, model migration and

quantization on different frameworks and platforms, and the

capabilities and reliability of supporting deep learning soft-

ware on different platforms. Moreover, we not only conduct

evaluations on the PC/Server platform, but also shift the testing

on the real mobile devices and web browsers. Meanwhile,

based on our study, we also reported several real deep learning

software bugs and provide useful guidance for deep learning

developers and researchers. In addition, our study motivates

many new research directions such as deep learning software

bug detection when model migrated and quantized under

different deep learning platforms and model conversion.

VI. CONCLUSION

In this paper, we initiate the first step to investigate how

existing deep learning frameworks and platforms influence

the development and deployment of deep learning software.

Our study provides many practical guidelines for developers

and researchers under different scenarios for different research

communities. Given the same model weights/biases, an obvi-

ous accuracy decline occurs when the model is converted from

one framework to another. The compatibility and reliability

issues and accuracy loss would arise when migrating and quan-

tizing a deep learning model from the PC platform to other

platforms, and the accuracy loss is due to several deep learning

software bugs we found. In addition, the universal deep

learning solutions across platforms are desperately on demand,

especially for mobile and web platforms. This study makes

the first step along this direction towards building universal

deep learning software across various platforms based on our

practical guidelines. We hope our work draws the attention of

deep learning software community, altogether to address the

urgent demands towards the new challenges in deep learning

software development and deployment processes.

VII. ACKNOWLEDGMENTS

This research was partially been supported by the National

Science Foundation of China (No. 61872262, 61572349). It

was also sponsored by the National Research Foundation,

Prime Ministers Office, Singapore under its National Cyber-

security R&D Program (Award No. NRF2018NCR-NCR005-

0001), National Satellite of Excellence in Trustworthy Soft-

ware System (Award No. NRF2018NCR-NSOE003-0001) ad-

ministered by the National Cybersecurity R&D Directorate,

and JSPS KAKENHI Grant 19K24348, 19H04086, and Qdai-

jump Research Program NO.01277.

820

REFERENCES

[1] (2018) AI bots trained for 180 years a day to beat humans
at Dota2. [Online]. Available: https://www.theverge.com/2018/6/25/
17492918/openai-dota-2-bot-ai-five-5v5-matches/

[2] (2019) AI-Benchmark. [Online]. Available: http://ai-benchmark.com/
[3] (2019) DNN. [Online]. Available: https://en.wikipedia.org/wiki/Deep

learning#Deep neural networks
[4] (2019) DNN Study. [Online]. Available: https://sites.google.com/view/

dnnstudy/
[5] (2019) GRU. [Online]. Available: https://en.wikipedia.org/wiki/Gated

recurrent unit
[6] (2019) IMDb Dataset. [Online]. Available: https://www.imdb.com/

interfaces/
[7] (2019) LSTM. [Online]. Available: https://en.wikipedia.org/wiki/Long

short-term memory
[8] (2019) Model Quantization. [Online]. Available: https://

nervanasystems.github.io/distiller/quantization/
[9] (2019) Online Questionnaire. [Online]. Available: https://forms.gle/

MCnZ7ZYDDAdTKXqx7/
[10] (2019) Python ValueError: operands could not be

broadcast together with shapes. [Online]. Avail-
able: https://stackoverflow.com/questions/24560298/python-numpy-
valueerror-operands-could-not-be-broadcast-together-with-shapes

[11] (2019) TextCNN. [Online]. Available: https://github.com/DongjunLee/
text-cnn-tensorflow

[12] (2019) Unsupported Operation. [Online]. Available: https://github.com/
tensorflow/tensorflow/issues/15805/

[13] (2019) Wilcoxon Rank Sum Test. [Online]. Available: https://
en.wikipedia.org/wiki/MannWhitney U test

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265–283.

[15] O. Alsing, “Mobile object detection using TensorFlow Lite and transfer
learning,” 2018.

[16] Apple. (2019) Core ML. [Online]. Available: https://
developer.apple.com/documentation/coreml

[17] A. A. Awan, H. Subramoni, and D. K. Panda, “An in-depth per-
formance characterization of CPU-and GPU-based DNN training on
modern architectures,” in Proceedings of the Machine Learning on HPC
Environments. ACM, 2017, p. 8.

[18] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Com-
parative study of deep learning software frameworks,” arXiv preprint
arXiv:1511.06435, 2015.

[19] ——, “Comparative study of caffe, neon, theano, and torch for deep
learning,” arXiv, 2016.

[20] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

[21] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[22] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[23] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[24] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[25] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An end-
to-end deep learning benchmark and competition,” Training, vol. 100,
no. 101, p. 102, 2017.

[26] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
model-based quantitative analysis of stateful deep learning systems,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2019, pp. 477–487.

[27] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples (2014),” arXiv preprint arXiv:1412.6572, 2014.

[28] Google. (2019) TensorFlow Lite. [Online]. Available: https:
//www.tensorflow.org/mobile/tflite

[29] ——. (2019) TensorFlow.js. [Online]. Available: https://
www.tensorflow.org/js

[30] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[31] M. Gupta, L. Jin, and N. Homma, Static and dynamic neural networks:
from fundamentals to advanced theory. John Wiley & Sons, 2004.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] D. Jurafsky and J. H. Martin, Speech and language processing. Pearson
London, 2014, vol. 3.

[34] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97–117.

[35] Y. Kochura, S. Stirenko, O. Alienin, M. Novotarskiy, and Y. Gordienko,
“Comparative analysis of open source frameworks for machine learning
with use case in single-threaded and multi-threaded modes,” in Computer
Sciences and Information Technologies (CSIT), 2017 12th International
Scientific and Technical Conference on, vol. 1. IEEE, 2017, pp. 373–
376.

[36] N. Krizhevsky, H. Vinod, C. Geoffrey, M. Papadakis, and A. Ventresque,
“CIFAR-10 dataset,” http://www.cs.toronto.edu/kriz/cifar.html, 2014.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[38] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
1998.

[39] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus,”
in Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications
(SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE Interna-
tional Conferences on. IEEE, 2016, pp. 477–484.

[40] L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, and Q. Zhang, “Benchmarking
deep learning frameworks: Design considerations, metrics and beyond,”
in IEEE 38th International Conference on Distributed Computing Sys-
tems (ICDCS). IEEE, 2018, pp. 1258–1269.

[41] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 614–618.

[42] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 120–131.

[43] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep learning
systems,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[44] Y. Ma, D. Xiang, S. Zheng, D. Tian, and X. Liu, “Moving deep
learning into web browser: How far can we go?” arXiv preprint
arXiv:1901.09388, 2019.

[45] Microsoft. (2019) MMdnn. [Online]. Available: https://github.com/
Microsoft/MMdnn

[46] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “TensorFuzz:
Debugging neural networks with coverage-guided fuzzing,” in Pro-
ceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA: PMLR,
09–15 Jun 2019, pp. 4901–4911.

[47] K. Ota, M. S. Dao, V. Mezaris, and F. G. De Natale, “Deep learning
for mobile multimedia: A survey,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 13, no. 3s,
p. 34, 2017.

[48] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against deep learning systems
using adversarial examples,” arXiv preprint, 2016.

821

[49] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” openreview, 2017.

[50] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 1–18.

[51] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: Cross-backend
validation to detect and localize bugs in deep learning libraries.”

[52] Qualcomm. (2019) Snapdragon. [Online]. Available: https:
//www.qualcomm.com/snapdragon

[53] A. C. M. Quantization. (2019) Core ML Quantization.
[Online]. Available: https://apple.github.io/coremltools/generated/
coremltools.models.neural network.quantization utils.html

[54] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python
toolbox to benchmark the robustness of machine learning models,”
arXiv preprint arXiv:1707.04131, 2017. [Online]. Available: http:
//arxiv.org/abs/1707.04131

[55] A. B. Saleema Amershi, H. G. Christian Bird, Rob DeLine, B. N.
Ece Kamar, Nachiappan Nagappan, and T. Zimmermann, “Software
engineering for machine learning: A case study,” in Proceedings of the
41th International Conference on Software Engineering. ACM, 2019.

[56] Samsung. (2019) Samsung Exynos 9. [Online].
Available: https://www.samsung.com/semiconductor/minisite/exynos/
products/mobileprocessor/exynos-9-series-9820

[57] F. Seide and A. Agarwal, “CNTK: Microsoft’s open-source deep-
learning toolkit,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2016, pp. 2135–2135.

[58] S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep
learning frameworks over different HPC architectures,” in Distributed
Computing Systems (ICDCS), 2017 IEEE 37th International Conference
on. IEEE, 2017, pp. 1389–1396.

[59] A. Shatnawi, G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, “A com-
parative study of open source deep learning frameworks,” in 2018 9th
International Conference on Information and Communication Systems
(ICICS). IEEE, 2018, pp. 72–77.

[60] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep

learning software tools,” in Cloud Computing and Big Data (CCBD),
2016 7th International Conference on. IEEE, 2016, pp. 99–104.

[61] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[62] TensorFlow. (2019) Post-training Quantization. [Online]. Available:
https://www.tensorflow.org/lite/performance/post training quantization

[63] ——. (2019) Quantization-aware Training. [Online]. Avail-
able: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
contrib/quantize/README.md

[64] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering. ACM, 2018,
pp. 303–314.

[65] J. Wang, B. Cao, P. Yu, L. Sun, W. Bao, and X. Zhu, “Deep learning
towards mobile applications,” in 2018 IEEE 38th International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2018, pp.
1385–1393.

[66] Wiki. (2019) Kirin 970. [Online]. Available: https://en.wikichip.org/
wiki/hisilicon/kirin/970

[67] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2019, pp. 146–157.

[68] X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser:
Detecting disagreements for deep neural networks,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 5772–5778. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/800

[69] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at deep
learning apps on smartphones,” arXiv preprint arXiv:1812.05448v2,
2018.

[70] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on TensorFlow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2018, pp. 129–140.

822

	An empirical study towards characterizing deep learning development and deployment across different frameworks and platforms
	Citation
	Author

	An Empirical Study Towards Characterizing Deep Learning Development and Deployment Across Different Frameworks and Platforms

