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Coverage-guided Fuzzing for Feedforward
Neural Networks

Xiaofei Xie1 Hongxu Chen1 Yi Li1 Lei Ma2 Yang Liu1 Jianjun Zhao2

1 Nanyang Technological University, Singapore 2 Kyushu University, Japan

Abstract—Deep neural network (DNN) has been widely ap-
plied to safety-critical scenarios such as autonomous vehicle,
security surveillance, and cyber-physical control systems. Yet,
the incorrect behaviors of DNNs can lead to severe accidents
and tremendous losses due to hidden defects. In this paper,
we present DeepHunter, a general-purpose fuzzing framework
for detecting defects of DNNs. DeepHunter is inspired by tra-
ditional grey-box fuzzing and aims to increase the overall test
coverage by applying adaptive heuristics according to runtime
feedback. Specifically, DeepHunter provides a series of seed
selection strategies, metamorphic mutation strategies, and testing
criteria customized to DNN testing; all these components support
multiple built-in configurations which are easy to extend. We
evaluated DeepHunter on two popular datasets and the results
demonstrate the effectiveness of DeepHunter in achieving cover-
age increase and detecting real defects. A video demonstration
which showcases the main features of DeepHunter can be found
at https://youtu.be/s5DfLErcgrc.

I. INTRODUCTION

The past decade has witnessed the success of deep learn-

ing (DL) in many cutting-edge applications such as image

processing, speech recognition, and gaming (e.g., Go and

Dota2). Similar to traditional software, software systems

powered by deep neural networks (DNNs) (whereby referred

to as DL software) also suffer from defects that can cause

severe accidents and tremendous losses as happened in the

Tesla/Uber crash and the malicious attacks against intelligent

audiobots (e.g., Siri and Alexa) through hidden commands.

These incidents highlight the necessity of quality and security

assurance for DL software, which should be ensured with

systematic testing efforts before the software being deployed

in production. Yet, testing techniques for traditional software

cannot be directly applied for DL software due to two major

challenges.

The first challenge lies in the absence of test oracle for

DL software. Traditional fuzzing techniques usually rely on

abnormal runtime behaviors, such as program crashes and

system signals, to identify potential software defects. However,

defects in DL software do not typically manifest themselves in

any perceivable manner and only silently lead to incorrect

decision results. Therefore, current testing efforts for DL

software have to rely on pre-labeled test cases where the correct

decision results are provided by a human. Such test cases are

often expensive to obtain and too limited for defect detection.

The second challenge is rooted in the lack of effective testing
criteria. The testing criterion is often used to measure the

adequacy of testing efforts, which is a fundamental component

in the coverage-guided test generation techniques [1]. The

testing criteria for traditional software, such as line and branch

coverage, are defined in terms of the program structure, however

cannot be easily applied for DL software.

In this paper, we present a general-purpose coverage-guided

fuzzing framework for DNNs, DeepHunter, to address these

challenges and perform effective testing of DL software. The

inputs of DeepHunter include a set of initial seeds and a

target DNN. DeepHunter generates multiple passed tests which

have high coverage and the failed ones which trigger erro-

neous behaviors of the DNN. DeepHunter consists of several

highly configurable components, including the seed selection,

metamorphic mutation, and test coverage criteria, which

can be customized for specific application domains. To this

end, DeepHunter has integrated four seed selection strategies

and five recently proposed testing criteria, including Neuron

Coverage (NC) [2], k-multisection Neuron Coverage (KMNC)

and Neuron Boundary Coverage (NBC) [3]. DeepHunter can

be easily extended to include new mutation operators, coverage

criteria, as well as seed selection strategies.

We see applications of DeepHunter in several scenarios.

1) Error Detection. Given initial seed inputs that are correctly

predicted by the DNN, DeepHunter generates tests which

are slightly changed from the initial seeds but predicted

incorrectly. These tests reveal the weaknesses of the DNN,

which can help AI developers identify the problems and

enhance the robustness of the model.

2) Regression Testing. Apart from failure-inducing tests,

DeepHunter can also be used to generate tests that are

correctly predicted and achieve high coverage in terms of a

specific testing criterion. Such tests with high coverage are

expected to capture more diverse behaviors of the DNN.

When the model is updated, the passed tests can be used

to detect errors introduced from regression.

3) Differential Testing. During platform migration (e.g., mi-

grating a server-side DNN to mobile devices), certain

optimizations or quantizations [4] are usually performed for

DL software. In such a scenario, it is necessary to detect

the potential disagreements between two different models.

With the fine-grained coverage guidance, DeepHunter can

generate tests which manifest minor differences.

II. THE DEEPHUNTER TOOL

Fig. 1 shows the overall workflow of DeepHunter. It feeds

the target DL software with some initial seeds, and outputs

two groups of tests, namely the failing tests that are failed by

the test oracles and other passing ones stored in the seed queue.
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Fig. 1. The overall workflow of DeepHunter

The core of DeepHunter is a fuzzing loop which can be broken

down into the seed selection, metamorphic mutation, DNN

runtime prediction, and testing criteria stages. The behaviors

of neurons of a given DNN model are first analyzed at the

profiling stage based on the training data [3]. The results

of this analysis are used to compute the coverage metrics

subsequently. Seed selection (§II-A) determines the seed to

be picked for mutation in the next iteration based on some

predefined strategies. Metamorphic mutation (§II-B) allows

different categories of mutation operators to be applied on the

selected seeds. DNN prediction (§II-D) evaluates whether a

newly generated seed fails the test oracles. If so, the failing

seed is output as a failed test. Otherwise, the passing seed

is further processed. The testing criteria component (§II-C)

determine whether the passing seed contributes to a coverage

increase, and then either appended it to the seed queue or

discard it. Now we describe each stage in details.

A. Seed Selection

Seed selection preferentially picks the seeds that have high

chances to be mutated to induce new coverage. DeepHunter

provides three alternative built-in seed selection strategies:

(1) recency-aware strategy which is also used by traditional

coverage-guided fuzzers where seeds in the queue that induce

new coverage are selected, mostly because a seed mutant

is more likely to cover sibling branches of the seed which

it originates from. DeepHunter integrates two recency-aware

strategies from DeepTest and TensorFuzz. (2) uniform strategy
which randomly selects a seed from the queue based on

a uniform distribution. (3) frequency-aware strategy, which

probabilistically selects a seed based on the number of times

it has been fuzzed. The last strategy takes into account the

diversity of mutants: if a seed has already been picked many

times, it has a lower probability of being selected.

B. Metamorphic Mutation

The seed mutation component generates new seeds from

the chosen seeds. Traditional fuzzers such as AFL [1] typi-

cally mutate seeds with several “primitive mutators” such as

bitwise/bytewise flips, block replacement, and the crossover

between input files, etc. The purpose is to increase the diversity

of the generated seeds in the hope to cover more explicit

program structures. However, these mutation operators are not

effective for DNN testing, since they do not consider semantics

of the input domains. For example, images generated by random

mutations are often not recognizable by human beings.

Targeting at the image domain, DeepHunter implements a set

of mutators which slightly change the seeds such that there are

no observable semantic differences between the original seed

x and its mutant x′. In other words, a metamorphic mutation
M creates an oracle O which satisfies O(x′) = O(x), for

x′ ∈ M(x). Given a DNN F , x′ exhibits an erroneous behavior
(or error for short) when F (x) = O(x) while F (x′) �= F (x).

Specific to DNN used for image processing, we have built-in

support for eight image transformations under two categories.

• Pixel value transformation: image contrast, brightness, blur,

and noise;

• Affine transformation: image translation, scaling, shearing,

and rotation.

Intuitively, the former mutates pixel values, while the latter

applies linear transformations on images. To constrain the

difference between a seed and its mutant, DeepHunter uses a

conservative strategy that selects affine transformation at most

once while pixel value transformations are allowed multiple

times. This is based on our experience that multiple iterations

of affine transformations are prone to generate invalid images.

DeepHunter allows integration of other mutators; therefore,

developers can easily add more mutators for image processing,

or the counterparts in other DL software for speech recognition,

natural language processing, etc.

C. Testing Criteria

At this stage, different criteria are computed to determine

whether the seed mutant brings new coverage. DeepHunter has

integrated five neuron-based testing criteria [2], [3]: Neuron

Coverage (NC), k-multisection Neuron Coverage (KMNC),

Neuron Boundary Coverage (NBC), Strong Neuron Activation

Coverage (SNAC) and Top-k Neuron Coverage (TKNC).

The criteria are based on the behaviors of neurons and are

defined at different granularity. For example, NC measures the

neurons that are activated within a predefined threshold. KMNC

generalizes NC and splits the neuron output to k intervals.

Different from KMNC and NC which consider the major

functional range of neuron, NBC and SNAC measure how the

corner-case regions can be covered. TKNC considers the neuron

output from the perspective of the layer. The diverse testing

criteria facilitate the test generation towards covering diversified

behaviors of DNN. In the future, we plan to add more testing

criteria to allow for more effective coverage guidance.

D. DNN Prediction

At this stage, it determines whether the newly generated

seeds fail the test oracle given a specific DNN model. Dee-
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Fig. 2. Coverage increasing on LeNet-4 and ResNet-20 with KMNC guidance

Fig. 3. Number of errors detected with different guidance on LeNet-4

pHunter compares the prediction of the original seed and its

mutant: the mutant is considered to trigger an error if the two

prediction results are different.

To compute the coverage of a mutant, DeepHunter maintains

an array to record the covered sections for each testing criterion.

For example, for NC, the size of the array is equal to the

number of neurons in the DNN. The value at an index is

either 0 or 1, representing whether a neuron is activated or

not. For KMNC, the size of the array is K ×#N , where K
is the predefined number of sections and #N represents the

number of neurons. The value at an index represents whether

the section of a neuron is covered. Compared with the existing

seeds in the seed queue, if some new sections are covered,

then the coverage is increased. Currently, DeepHunter mainly

supports feed-forward neural networks (FNNs). In FNNs, the

values of the coverage array are either 0 or 1, because each

neuron only produces one output during the prediction. For

recurrent neural networks (RNNs), each neuron may produce

multiple outputs because RNN has feedback loops.

E. Command Line Usage

For a target DNN, it should be profiled before any of the

testing criteria from DeepGuage [3] is selected (i.e., KMNC,

NBC, SNAC or TKNC). DeepHunter provides a separate

profiling procedure. Given a model, the following command

generates a profiling file from the training data:

python profile.py -model model -train train_data
-o profile_file

where -model specifies the path of the target model (i.e.,

model), -train specifies the path of the training data (i.e.,

train data), and -o specifies the profiling output.

After the profiling stage, users can run with the following

command to proceed with the fuzzing process:

Fig. 4. Number of errors detected with different selection strategies

python image_fuzzer.py -i seed_dir -o outdir
-model model -profile profile_file
-criteria criteria_name
-random israndom -select strategy_name
-max_iteration iterations

where -i specifies the initial seed directory (i.e., seed dir),

-o configures the path of the output directory (i.e., outdir),

-model sets up the DNN model to be tested (i.e.,

model), -profile specifies the profiling file for the model,

-criteria configures which testing criterion to be selected

for coverage guidance (i.e., criteria name), -random config-

ures whether coverage guidance is used (i.e., israndom can

be 1 or 0), -select specifies the seed selection strategy, and

-max_iteration limits the maximum iterations DeepHunter

executes. Note that inside the output directory, there are two

subdirectories: outdir/queue contains tests in the seed queue

and output/crashes contains the failed tests which do not pass

the test oracle. In addition, if israndom is 1, then DeepHunter

runs in a non-coverage guidance mode.

III. EXPERIMENTS

We have implemented DeepHunter1 as a self-contained fuzz

testing framework in Python.

We demonstrate DeepHunter on two DNN models (i.e.,

LeNet-4 and ResNet-20), which were trained from the

MNIST [5] and CIFAR-10 [6] datasets, respectively. More

evaluation results could be found in [7] MNIST and CIFAR-10

contain 60,000/50,000 training data and 10,000/10,000 test data.

For each dataset, we randomly selected 500 test data, which

can be correctly predicted by the model, as the initial seeds.

We ran DeepHunter with different configurations, i.e., random

testing without coverage guidance, four selection strategies

(i.e., one frequency-aware strategy, one uniform strategy, two

recency-aware strategies from DeepTest [8] and TensorFuzz [9])

and five testing criteria to test the models. Each model was

tested 2,000 iterations. The experiments were conducted on a

server running Ubuntu 16.04 with 28-core 2.0GHz Xeon CPU

and 94 GB RAM.

Due to the space limit, we only show parts of the results.

Fig. 2 shows the KMNC coverage increases with different seed

selection strategies on the two models. The vertical and hori-

zontal axes represent the coverage and the iterations finished,

respectively. Compared with other seed selection strategies in

1The source code of DeepHunter is available at https://bitbucket.org/
xiaofeixie/deephunter.
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TensorFuzz [9] and DeepTest [8], our proposed frequency-aware
and uniform strategy perform much better. Surprisingly, random
selection also outperforms both TensorFuzz and DeepTest with

the KMNC criterion. The results indicate that DeepHunter is

effective in achieving improved coverage.

Fig. 3 shows the number of errors generated by DeepHunter

with the frequency-aware strategy and different coverage
guidance strategies on LeNet-4. The fuzzer runs for 2,000

iterations and the average time taken of each iteration is about

0.24s. The results show that: 1) DeepHunter is effective in

generating error-inducing tests with different coverage guidance

strategies; 2) coverage-guided testing for DL software is

generally more effective than random testing (without coverage

guidance); 3) Neuron Coverage (NC) tends to perform better

than the others in detecting errors.

Fig. 4 depicts the number of errors detected by DeepHunter

with different seed selection strategies and neuron coverage
guidance. TensorFuzz and DeepTest adopt the recency-aware
selection (i.e. selecting the newly generated seeds). The results

show that the frequency-aware selection strategy (i.e. DH+Prob)

and the uniform selection strategy (i.e. DH+Uniform) are more

effective than both DeepTest and TensorFuzz in capturing

erroneous behaviors of the DNN models.

IV. RELATED WORK

Many issues during DL development and deployment are

studied in [10]. DL software testing has recently been an active

area of research covering testing criteria [2], [3], [11], [12]

and automated test generation [2], [13], [8], [14], [9].

DeepXplore [2] first introduced Neuron Coverage (NC)

which measures the parentage of activated neurons. Deep-
Gauge [3] proposed a set of improved neuron-based metrics

with different granularity. DeepMutation [11] is a mutation

testing technique which evaluates the quality of the test data,

based on source-level and model-level mutation operators. Kim

et al. [12] proposed a set of surprise adequacy criteria based

on the behaviors of DNN with respect to the training data.

Surprise adequacy criteria measure how surprising an input is

against a set of provided data. DeepStellar [15] proposed a

set of metrics for recurrent neuron networks (RNNs). We also

plan to integrate these criteria in the future.

Based on Neuron Coverage, DeepXplore [2] detects the dis-

agreements between various DNNs with a white-box differential

testing technique. DiffChaser [13] adopted a black-box solution

which uses the genetic algorithm to search for disagreements

among multiple DNNs. DeepTest introduced a set of mutation

operators which are used to generate tests for testing DNNs

with guidance from Neuron Coverage. DeepConclic [14]

implemented a concolic testing technique for DNNs and it

generates tests with the help from constraint solving. Similar to

DeepHunter, TensorFuzz is a coverage-guided fuzzing technique

that uses the approximate nearest neighbor to guide the test

generation. Compared with TensorFuzz, DeepHunter provides

mutation operators, fine-grained neuron-based testing criteria

and the frequency-aware seed selection strategy.

V. CONCLUSION

In this paper, we described the architecture of DeepHunter

including its metamorphic mutation, coverage guidance, and

seed selection strategies. We demonstrated the effectiveness of

our tool in testing DL software with two DNN models from

two public datasets. DeepHunter is highly extensible to process

different types of models, handle diverse application domains,

select and mutate seeds with various strategies.
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