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ABSTRACT
Graph-level anomaly detection (GAD) describes the problem of

detecting graphs that are abnormal in their structure and/or the

features of their nodes, as compared to other graphs. One of the

challenges in GAD is to devise graph representations that enable

the detection of both locally- and globally-anomalous graphs, i.e.,
graphs that are abnormal in their fine-grained (node-level) or holis-

tic (graph-level) properties, respectively. To tackle this challenge

we introduce a novel deep anomaly detection approach for GAD

that learns rich global and local normal pattern information by joint
random distillation of graph and node representations. The random

distillation is achieved by training one GNN to predict another GNN

with randomly initialized network weights. Extensive experiments

on 16 real-world graph datasets from diverse domains show that

our model significantly outperforms seven state-of-the-art models.

Code and datasets are available at https://git.io/GLocalKD.

CCS CONCEPTS
•Computingmethodologies→ Semi-supervised learning set-
tings; Neural networks; Anomaly detection.

KEYWORDS
Graph-level anomaly detection, Graph neural networks, Knowledge

distillation, Deep learning

ACM Reference Format:
Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. 2022.

Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation. In

Proceedings of the Fifteenth ACM International Conference on Web Search and

∗
Corresponding author: Guansong Pang, Ling Chen.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498473

Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3488560.3498473

1 INTRODUCTION
Graph-level anomaly detection (GAD) aims to identify graphs that

are significantly different from themajority of graphs in a collection.

The ability to record complex relationships between diverse entities

renders graphs an essential and widely used representation in real-

world applications. As a result, anomaly detection in graphs has

broad applications in, e.g., recognizing drugswith severe side-effects
[18], identifying toxic molecules from chemical compound graphs

[1], and breaking drug-smuggling networks [39].

Despite the prevalence of graph data and the importance of

anomaly detection therein, GAD has received little attention com-

pared to anomaly detection in other types of data [2, 28]. One

primary challenge in GAD is to learn expressive graph represen-

tations that capture local and global normal patterns in the graph

structure and attributes (e.g., descriptive features of nodes). This
is essential for the detection of both locally-anomalous graph –

relating to individual nodes and their local neighborhood (𝐺5 in

Figure 1) – and globally-anomalous graph – relating to holistic

graph characteristics (𝐺6 in Figure 1).

A related research line is to explore the identification of unusual

changes in graph structure from a time-evolving sequence of a

single graph, in which most nodes and structure at different time

steps do not change [9, 21, 37, 46, 47, 52]. GAD, in contrast, requires

identifying graph anomalies among a set of graphs that lack the

cohesion of a time-ordered progression and have diverse structure

and node features, and it is significantly less explored.

Deep learning has shown tremendous success in diverse rep-

resentation learning tasks, including the recently emerged graph

neural networks (GNN)-based methods [43]. Also, deep anomaly de-

tection models, such as autoencoder (AE)-based methods [7, 11, 54],

generative adversarial network (GAN)-based methods [24, 34] and

one-class classifiers [31, 32, 53], have shown promising performance

on different types of data (e.g., tabular data, image data, and video

data) [28]. There is limited work exploiting GNNs for the GAD task,

however. A number of GNN-based models have been introduced for
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Figure 1: A set of graphs with two anomalous graphs indi-
cated. The squares above/below the nodes represent node
features.𝐺5 is a locally-anomalous graph due to the unusual
local properties (e.g., structure) of the orange node, while𝐺6

is a globally-anomalous graph because it does not conform
to 𝐺1 to 𝐺4 in holistic graph properties.

anomaly detection in graph data [8, 13, 16, 41, 51], but they focus

on anomalous node/edge detection in a single large graph.

One challenge in adapting AE- and GAN-based detection meth-

ods to GAD is their dependence on reconstruction-error-based

anomaly measures. This is because it is still challenging to faith-

fully reconstruct (or generate) graphs from a latent vector repre-

sentation [43]. As shown by a comparative study in [50], the one-

class model based on deep support vector data description (Deep

SVDD) [32] may be adapted for GAD by directly optimizing the

SVDD objective on top of GNN-based graph representations, but it

focuses on detecting globally-anomalous graphs only. Further, its

performance is largely restricted by the one-class hypersphere as-

sumption of SVDD since there are often more complex distributions

in the normal class in real-world datasets.

In this paper, we introduce a novel deep anomaly detection ap-

proach for GAD that learns both global and local normal patterns

by joint random distillation of graph and node representations

– global and local (i.e., glocal) graph representation distillation. The

random representation distillation is done by training one GNN

to predict a random GNN that has its neural network weights

fixed to random initialization, i.e., the predictor network learns to

produce the same representations as that in the random network,

as shown in Figure 2(a) and (b). To accurately predict these fixed

randomly-projected representations, the predictor network is en-

forced to learn all major patterns in the training data. By applying

such a random distillation on both graph and node representations,

our model learns glocal graph patterns across the given training

graphs. When the training data consists of exclusively (or mostly)

normal graphs, the learned patterns are a summarization of multi-

scale graph regularity/normality information. As a result, given a

graph that shows node/graph-level irregularity/abnormality w.r.t.

these learned patterns, the model cannot accurately predict its rep-

resentations, leading to a much larger prediction error than that of

normal graphs, as shown in Figure 2(c). Thus, this prediction error

can be defined as anomaly score to detect the aforementioned two

types of graph anomalies.
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Figure 2: Demonstration of GLocalKD working on a popu-
lar dataset – AIDS. (a) Representations of training graphs
output by the random target network. (b) Representations
of training graphs learned by the predictor network. (c) Pre-
diction errors (anomaly scores) of GLocalKD on test graphs.
Visualization in (a) and (b) is based on t-SNE.

Accordingly, this paper makes the following major contributions:

• We formulate the GAD problem as the task of detecting

locally- or globally-anomalous graphs (Sec. 3.1), and em-

pirically verify the presence of these two types of graph

anomalies in real-world datasets (Sec. 5.8).

• We introduce a novel deep anomaly detection framework

that models glocal graph regularity and learns graph anomaly

scores in an end-to-end fashion (Sec. 3.2). This results in the

first approach specifically designed to effectively detect both

types of anomalous graphs.

• A new GAD model, namely Global and Local Knowledge

Distillation (GLocalKD), is further instantiated from the

framework. GLocalKD implements the joint random dis-

tillation of graph and node representations by minimizing

the graph- and node-level prediction errors of approximat-

ing a random graph convolutional neural network (Sec. 4).

GLocalKD is easy-to-implement without requiring the chal-

lenging graph generation, and it can effectively learn di-

verse glocal normal patterns with small training data. It also

shows remarkable robustness to anomaly contamination,

indicating its applicability in both unsupervised (anomaly-

contaminated unlabeled training data) and semi-supervised

(exclusively normal training data) settings.

Extensive empirical results on 16 real-world datasets from chem-

istry, medicine, and social network domains show that (i) GLocalKD

significantly outperforms seven state-of-the-art competing meth-

ods (Sec. 5.4); (ii) GLocalKD is substantially more sample-efficient

than other deep detectors (Sec. 5.5), e.g., it can use 95% less training

samples to achieve the accuracy that still outperforms the com-

peting methods by a large margin; and (iii) GLocalKD, using a

single default GNN architecture, performs very stably w.r.t. differ-

ent anomaly contamination rates (Sec. 5.6) and the dimensionality

of the representations (Sec. 5.7).

2 RELATEDWORK
2.1 Graph-level Anomaly Detection
Graph-based anomaly detection has drawn great attention in recent

years [2], especially the recently emerged GNN-based approaches

[8, 13, 16, 41, 51], but most of the studies focus on anomaly (e.g.,
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anomalous nodes or edges) detection in a single large graph. Below

we review related work on GAD.

Time-evolving Graphs. Most existing GAD studies are to identify

anomalous graph changes in a sequence of time-evolving graphs [9,

17, 21, 37, 46, 47, 52]. However, these methods are designed to

handle time-dependent graphs with very similar structure and

difficult to generalize to graphs with large variations in the structure

and/or descriptive features.

Static Graphs. Significantly less work has been done on anoma-

lous graph detection in a set of static graphs. One research direction

is to utilize powerful graph representation methods or graph ker-

nels for GAD. A number of recent studies [25, 50] show promising

GAD performance by applying off-the-shelf anomaly measures,

such as isolation forest (iForest) [20], local outlier factor (LOF) [4],

one-class support vector machine (OCSVM) [35], on top of vec-

torized graph representations learned by advanced graph kernels

(such as Weisfeiler-Leman kernel (WL) [36] and propagation ker-

nel (PK) [23]) or graph representation learning methods (such as

Graph2Vec [22] and InfoGraph [38]). The key issue with these meth-

ods is that the graph representations are learned independently

from the anomaly detectors, leading to suboptimal representations.

Alternatively, there are studies on extracting graph-level patterns

for GAD [25]. However, the performance of these methods is lim-

ited because graph-level patterns may differ significantly in graphs

from different domains or application scenarios.

Deep Learning-based Methods. Despite great success of deep

anomaly detection in different types of data [28], there is limited

work done on GAD in this line. Deep graph learning techniques,

such as graph convolutional network (GCN) [15] and graph isomor-

phism network (GIN) [45], have been powerful graph representa-

tion learning tools that empower diverse downstream tasks [43, 49].

Most of existing deep anomaly detection methods [7, 11, 27, 29, 31,

32, 34, 53, 54] depend heavily on data reconstruction/generative

models. Consequently, the difficulty of reconstructing/generating

graphs largely hinders the development of those deep methods for

GAD. Zhao et al. [50] performs a large evaluation study on GAD,

which shows that the Deep SVDD objective [32] can be applied on

top of GNN-based graph representations for enabling GAD. Nev-

ertheless, it is focused on high-level graph anomalies only and its

performance is also restricted by the SVDD measure.

2.2 Knowledge Distillation
Knowledge Distillation (KD), where the initial goal is to train a

simple model that distills the knowledge of a large model while

maintaining similar accuracy as the large model, is first introduced

in [12] and then extended to anomaly detection in a number of stud-

ies [3, 10, 19, 33, 44]. All of thesemethods train a simpler student net-

work to distill the knowledge of a pretrained teacher network
on large-scale data, such as ResNet/VGG networks pretrained on

ImageNet [3, 33]. However, for learning tasks on graph-level data,

no such general-purpose pretrained teacher networks are available;

further, graph databases from different domains differ significantly

from each other, which also prevents the application of this type

of approach to the GAD task. Random knowledge distillation is

originally introduced in [5] to address sparse reward problems in

deep reinforcement learning (DRL). It uses the random distillation

errors to measure the novelty of states as some additional reward

signals to encourage DRL agents’ exploration in sparse-reward

contexts. This idea is also used in [40] to regularize unsupervised

representation learning, enabling better anomaly detection on tabu-

lar data. Inspired by this, we devise the GLocalKD model to jointly

learn globally- and locally-sensitive graph normality. To the best of

our knowledge, this is the first approach designed specifically for

deep graph-level anomaly detection and for detecting both types

of graph anomalies.

3 FRAMEWORK
3.1 Problem Statement
This work tackles the problem of end-to-end graph-level anom-

aly detection. Specifically, given a set of 𝑀 normal graphs G =

{𝐺1, ...,𝐺𝑀 }, we aim at learning an anomaly scoring function 𝑓 :

G → R, parameterized by Θ, such that 𝑓 (𝐺𝑖 ;Θ) > 𝑓 (𝐺 𝑗 ;Θ) if
𝐺 𝑗 conforms to G better than 𝐺𝑖 . In G, each graph is denoted by

𝐺 = (V𝐺 , E𝐺 ) with a vertex/node setV𝐺 and an edge set E𝐺 . The
graph structure for each 𝐺 can be denoted by an adjacency matrix

A ∈ R𝑁×𝑁 where 𝑁 is the number of nodes in 𝐺 , i.e., A(𝑖, 𝑗) = 1

if there exists an edge between nodes 𝑣𝑖 and 𝑣 𝑗 (∃ (𝑣𝑖 , 𝑣 𝑗 ) ∈ E𝐺 );
and A(𝑖, 𝑗) = 0 otherwise. Each node of 𝐺 , 𝑣𝑖 ∈ V𝐺 , is further
associated with a feature vector x𝑖 ∈ R𝑛 if 𝐺 is an attributed graph.
𝐺 is otherwise a plain graph. As shown in our experiments, our

approach is flexible to handle both types of graph data (see Ta-

ble 1), and it also performs well in unsupervised settings where G
is anomaly-contaminated and contains some unknown abnormal

graphs (Sec. 5.6).

Anomalous graphs in a graph set can be classified into two

categories, i.e., locally-anomalous graphs and globally-anomalous

graphs, which are respectively defined as follows.

Definition 1 (Locally-anomalous Graph). Given a graph data
set G = {𝐺𝑖 }𝑀𝑖 , with each graph 𝐺 ∈ G denoted by 𝐺 = (V𝐺 , E𝐺 ),
graph 𝐺 is a locally-anomalous graph if 𝐺 does not conform to the
graphs in G due to the presence of some anomalous nodes 𝑣 , ∀𝑣 ∈ V

𝐺̂
,

that significantly deviate from similar nodes in the graphs in G.

Definition 2 (Globally-anomalous Graph). Given a graph
data set G = {𝐺𝑖 }𝑀𝑖 , graph 𝐺 is a globally-anomalous graph if the
holistic graph properties of 𝐺 do not conform to that of the graphs in
G.

We aim to train a detection model that can detect these two types

of abnormal graphs. Note that the detection of locally-anomalous

graphs is different from anomalous node detection in [8, 13, 16, 41]

because the former is to detect graphs by evaluating the nodes/edges

across a set of independent and separate graphs while the latter is

to detect nodes/edges given a set of dependent nodes and edges

from a single graph.

3.2 The Proposed Framework
To solve the above problem, we propose an end-to-end scoring

framework that synthesizes two graph neural networks and joint

random knowledge distillation of graph and node representations to

train a deep anomaly detector. The resulting model can effectively

detect both types of anomalous graphs.
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3.2.1 Overview of the Framework. Our framework jointly distills

graph-level and node-level representations of each graph, to learn

both global and local graph normality information. It consists of

two graph neural networks – a fixed randomly initialized target

network and a predictor network – with exactly the same architec-

ture and two distillation losses. It learns the holistic (fine-grained)

graph normality by training the predictor network to predict the

graph (node) level representations produced by the random target

network. Let h𝐺 and
ˆh𝐺 respectively be the graph representation

of 𝐺 yielded by the predictor and target networks, and h𝑖 and ˆh𝑖
be the respective node representation for a node 𝑣𝑖 in 𝐺 produced

by the two networks, the overall objective of our approach can be

given as:

𝐿 = 𝐿graph + 𝜆𝐿node, (1)

where 𝜆 is a hyperparameter that balances the importance of the

two loss functions, 𝐿graph and 𝐿node are respective graph-level and

node-level distillation loss functions:

𝐿graph =
1

|G|
∑
𝐺 ∈G

KD
(
h𝐺 , ˆh𝐺

)
, (2)

𝐿node =
1

|G|
∑
𝐺 ∈G

©­« 1

|𝐺 |
∑
𝑣𝑖 ∈V𝐺

KD
(
h𝑖 , ˆh𝑖

)ª®¬ , (3)

where KD(·, ·) is a distillation function that measures the difference

between two feature representations and |G| is the number of

graphs in G.
The overall procedure of the training stage of our framework is

shown in Figure 3, which works as follows:

(1) We first randomly initialize a graph network
ˆ𝜙 as the target

network and fix its weight parameters Θ̂. For every given

graph 𝐺 , it will yield a graph-level representation
ˆh𝐺 and

node-level representation
ˆh𝑖 for each node 𝑣𝑖 in 𝐺 .

(2) A predictor network 𝜙 , with the same architecture as
ˆ𝜙 , is

parameterized byΘ and trained to predict the representation

outputs of the target network
ˆ𝜙 . That is, for every given

graph 𝐺 , it produces the graph-level representation h𝐺 and

the node-level representation h𝑖 , ∀𝑣𝑖 ∈ V𝐺 .
(3) Lastly, for graph 𝐺 , ˆh𝐺 , h𝐺 , ˆh𝑖 , and h𝑖 are integrated into a

loss function 𝐿, which is minimized to train the predictor

network 𝜙 .

At the evaluation stage, the anomaly score for a given graph 𝐺

is defined as

𝑓 (𝐺 ; Θ̂,Θ∗) = KD
(
h𝐺 , ˆh𝐺

)
+ 𝜆 1

|𝐺 |
∑
𝑣𝑖 ∈V𝐺

KD
(
h𝑖 , ˆh𝑖

)
, (4)

where Θ∗ are the learned parameters of the predictor network.

3.2.2 Key Intuition. The graph-level and node-level representa-

tions of graphs are learned by GNNs, whose powerful capabilities

of capturing graph structure and semantic information have been

proved in various learning tasks and applications. The joint random

distillation in our framework forces both graph representations and

node representations of the predictor network to be as close as

possible to the corresponding outputs of the fixed random target

network on normal graph data. This resembles the extraction of

different patterns (either frequently or infrequently) presented in

Graph Set 𝓖

Random  
Target Network

Predictor Network

Node Representation 𝐡� 𝒊

Graph Representation 𝐡� 𝑮

Node Representation 𝐡𝒊

Graph Representation 𝐡𝑮

𝑳𝒏𝒐𝒅𝒆

𝑳𝒈𝒓𝒂𝒑𝒉

𝑳

GNN

GNN

𝑮𝟏

…
𝑮𝟐

𝑮𝑴

Figure 3: The proposed framework

the random representations of graphs and nodes, respectively. If

a pattern frequently occurs in the random representation space,

the pattern would be distilled better, i.e., the prediction error in Eq.

2 or 3 is small due to a large sample size of the pattern; and the

prediction error is large otherwise. As a result, our joint random

distillation learns such regularity information from both graph and

node representations. For a given test graph 𝐺 , its anomaly score

𝑓 (𝐺 ; Θ̂,Θ∗) would be large if it does not conform to the regularity

information embedded in the training graph set G at either the

graph or the node level, e.g.,𝐺5 and𝐺6 in Figure 1; and 𝑓 (𝐺 ; Θ̂,Θ∗)
would be small otherwise, e.g., 𝐺1 − 𝐺4 in Figure 1.

4 JOINT RANDOM DISTILLATION OF GRAPH
AND NODE REPRESENTATIONS

The proposed framework is instantiated into a method called Global

and Local Knowledge Distillation (GLocalKD), in which we use

widely-used graph convolutional network (GCN) to learn node and

graph representations and the joint distillation is driven by two

mean square error-based loss functions.

4.1 Graph Neural Network Architecture
4.1.1 Random Target Network. We first establish a target network

with randomly initialized weights to obtain graph- and node-level

representations in the random space. Different graph representation

approaches may be used to generate the required representations

as the prediction targets of the predictor network. Theoretically,

various deep graph networks, such as GCN, GAT and GIN, can

be employed as the graph representation learning module. In our

work, a standard GCN is used, because GCN and its variants have

proved their power to learn expressive features of graphs and good

computational efficiency [43, 49].

Specifically,
ˆ𝜙 (·, Θ̂) : 𝐺 = (V𝐺 , E𝐺 ) → R𝑁×𝑘 is a GCN with

fixed randomly initialized weights Θ̂ (i.e., the GCN is frozen after

random weight initialization), where 𝑁 is the number of nodes in

𝐺 and 𝑘 is a predefined dimensionality size of node representations.

For each graph 𝐺 = (V𝐺 , E𝐺 ) in G, ˆ𝜙 (·) takes adjacency matrix A
and feature matrix X as input, and maps each node 𝑣𝑖 ∈ V𝐺 to the

representation space using Θ̂. Let ˆh𝑙
𝑖
be the hidden representation
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of node 𝑣𝑖 in the 𝑙𝑡ℎ layer, which is formally computed as follows:

ˆh𝑙𝑖 = 𝜌
©­­«

∑
𝑗 ∈Ñ (𝑖)

1√
D̃(𝑖, 𝑖)D̃( 𝑗, 𝑗)

ˆh𝑙−1𝑗 Θ̂𝑙−1
ª®®¬ (5)

where
ˆh𝑙−1
𝑗

represents the hidden representation of node 𝑣 𝑗 in the

(𝑙 − 1)𝑡ℎ layer, 𝜌 (𝑎) = 𝑚𝑎𝑥 (0, 𝑎) is the ReLU activation function,

N(𝑖) denotes the 1st-order neighbors of 𝑣𝑖 and Ñ (𝑖) = N(𝑖) ∪ {𝑣𝑖 },
D is a diagonal degree matrix with D(𝑖, 𝑖) = ∑

𝑗 A(𝑖, 𝑗), D̃ = D + I (I
is an identity matrix), and the input representation of 𝑣𝑖 in the 0

𝑡ℎ

layer,
ˆh0
𝑖
, is initialized by its feature vector in X, i.e., ˆh0

𝑖
= X(𝑖, :).

Thus, the output random node representation
ˆh𝑖 for node 𝑣𝑖 can be

written as:

ˆh𝑖 = 𝜌
©­­«

∑
𝑗 ∈Ñ (𝑖)

1√
D̃(𝑖, 𝑖)D̃( 𝑗, 𝑗)

ˆh𝐾−1𝑗 Θ̂𝐾−1
ª®®¬ (6)

where 𝐾 is the number of layers of
ˆ𝜙 (·). The feature matrix X

is composed of node attributes for attributed graphs. For plain

graphs, following [48], we use the node degree as the node feature

to construct a simple X, since the degree of nodes is one of the key

information for the discriminability of nodes and graphs.

Next, a READOUT operation is applied to the node representa-

tions to obtain the graph-level representation for 𝐺 . There have

been a number of READOUT operations introduced, e.g., maxing,

averaging, summation and concatenation [43, 49]. Considering that

our goal is to detect anomalies, we need to aggregate extreme fea-

tures across the node representations. Thus, the max-pooling is

employed in the READOUT operation:

ĥ𝐺 = max { ˆh𝑖 ,∀𝑣𝑖 ∈ V𝐺 }. (7)

4.1.2 Predictor Network. The predictor network is a graph network
used to predict the output representations of the target network,

ˆh𝑖 and ĥ𝐺 . We employ a GCN with the exactly same structure as

the target network as the predictor network, which is denoted as

𝜙 (·,Θ) : 𝐺 = (V𝐺 , E𝐺 ) → R𝑁×𝑘 with the weight parameters Θ to

be learned. Then, similar to
ˆ𝜙 ,𝜙 (·,Θ) yields the node representation

h𝑖 for node 𝑣𝑖 by the following formulation:

h𝑖 = 𝜌
©­­«

∑
𝑗 ∈Ñ (𝑖)

1√
D̃(𝑖, 𝑖)D̃( 𝑗, 𝑗)

h𝐾−1𝑗 Θ𝐾−1
ª®®¬ (8)

After the same READOUT operation as in
ˆ𝜙 , the graph representa-

tion h𝐺 is computed as follows:

h𝐺 = max {h𝑖 ,∀𝑣𝑖 ∈ V𝐺 }. (9)

Thus, the only difference between the random target network

ˆ𝜙 (·, Θ̂) and the predictor network 𝜙 (·,Θ) is that Θ̂ is fixed after

random initialization while Θ needs to be learned through the

following glocal knowledge distillation.

4.2 Glocal Regularity Distillation
We further perform glocal regularity distillation by minimizing the

distance between the (graph- and node-level) representations pro-

duced by the predictor network and the target network. Specifically,

the graph-level and node-level distillation loss are defined as:

𝐿graph =
1

|G|
∑
𝐺 ∈G

∥h𝐺 − ˆh𝐺 ∥2, (10)

𝐿node =
1

|G|
∑
𝐺 ∈G

©­« 1

|𝐺 |
∑
𝑣𝑖 ∈V𝐺

∥h𝑖 − ˆh𝑖 ∥2
ª®¬ . (11)

To learn the global and local graph regularity information simul-

taneously, our model is optimized by jointly minimizing the above

two losses:

𝐿 = 𝐿graph + 𝐿node . (12)

That is, 𝜆 in Eq. 1 is set to one in Eq. 12 since it is believed that it

is equivalently important to detect both of locally- and globally-

anomalous graphs. We will discuss in Sec. 4.4 in more details about

why our model can learn the global and local graph regularity.

4.3 Anomaly Detection of Using GLocalKD
By joint global and local random distillation, the learned represen-

tations in our predictor network capture the regularity information

at both the graph and node levels. Specifically, given a test graph

sample𝐺 , its anomaly score is defined by the prediction errors in

both graph and node-level representations:

𝑓 (𝐺 ; Θ̂,Θ∗) =



h𝐺 − ˆh𝐺




2 + 1

|𝐺 |
∑
𝑣𝑖 ∈V𝐺

∥h𝑖 − ˆh𝑖 ∥2 . (13)

This indicates that the locally- and globally-anomalous graph

anomalies are treated equally important in our anomaly scoring,

sharing the same spirit as the overall objective in Eq. 12.

4.4 Theoretical Analysis of GLocalKD
We show below that GLocalKD can normally produce a larger

anomaly score for an abnormal graph than that for a normal one.

Specifically, consider a regression problem with data distribution

ˆG = {𝐺𝑖 , 𝑦𝑖 }𝑖 (𝑦𝑖 is the regression target) and a Bayesian setting

in which a prior 𝑝 (Θ★) over the parameters of a GCN 𝜙 (·,Θ★) is
considered. The aim is to calculate the posterior after iteratively

updating on the data. According to [5], our task can then be formu-

lated as the optimization problem below:

min

Θ
E(𝐺𝑖 ,𝑦𝑖 )∼ ˆG ∥𝜙 (𝐺𝑖 ,Θ) + 𝜙 (𝐺𝑖 ,Θ

★) − 𝑦𝑖 ∥2 + R(Θ), (14)

where R(Θ) is a regularization term from the prior [26]. Let F be

the distribution over functions 𝑓Θ = 𝜙 (·,Θ) + 𝜙 (·,Θ★), where Θ
is the solution of Eq. 14 and Θ★

is drawn from 𝑝 (Θ★), then the

ensemble F can bee seen as an approximation of the posterior [26].

When we select the graphs from the same distribution and set

the label 𝑦𝑖 to zero, the optimization problem

argmin

Θ
E(𝐺𝑖 ,𝑦𝑖 )∼ ˆG ∥𝜙 (𝐺𝑖 ,Θ) + 𝜙 (𝐺𝑖 ,Θ

★)∥2 (15)

is equivalent to distilling a randomly drawn function from the prior.

From this perspective, each entry of the representation outputs

of the target and the predictor networks would correspond to a

part of an ensemble and the prediction error would be an estimate

of the predictive variance of the ensemble when the ensemble is

assumed to be unbiased, as discussed in [5]. If we consider 𝜙 (·,Θ★)
as the target network with randomly initialized Θ★

and regard

𝜙 (·,Θ) as the predictor network, the prediction errors of the node
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Table 1: AUC results (mean±std) on 16 real-world graph datasets. # Graphs: the number of graphs, # Nodes and # Edges: the
average number of nodes and edges in each graph. The best performance is boldfaced.

Dataset # Graphs # Nodes # Edges InfoGraph WL PK OCGCN GLocalKDiForest LESINN iForest LESINN iForest LESINN
PROTEINS_full 1,113 39.06 72.82 0.464±0.019 0.336±0.047 0.639±0.018 0.712±0.053 0.627±0.009 0.572±0.031 0.718±0.036 0.785±0.034
ENZYMES 600 32.63 62.14 0.483±0.027 0.528±0.046 0.498±0.029 0.624±0.050 0.493±0.013 0.608±0.033 0.613±0.087 0.636±0.061
AIDS 2,000 15.69 16.2 0.703±0.036 0.955±0.023 0.632±0.050 0.584±0.016 0.476±0.014 0.421±0.010 0.664±0.080 0.992±0.004
DHFR 467 42.43 44.54 0.489±0.015 0.625±0.028 0.466±0.013 0.596±0.056 0.467±0.013 0.568±0.054 0.495±0.080 0.558±0.030
BZR 405 35.75 38.36 0.528±0.060 0.731±0.071 0.533±0.032 0.720±0.032 0.525±0.052 0.775±0.063 0.658±0.071 0.679±0.065
COX2 467 41.22 43.45 0.580±0.052 0.670±0.079 0.532±0.027 0.590±0.056 0.515±0.036 0.671±0.039 0.628±0.072 0.589±0.045
DD 1,178 284.32 715.66 0.475±0.012 0.310±0.034 0.699±0.006 0.638±0.045 0.706±0.010 0.833±0.023 0.605±0.086 0.805±0.017
NCI1 4,110 29.87 32.3 0.494±0.009 0.598±0.035 0.545±0.008 0.743±0.015 0.532±0.006 0.670±0.012 0.627±0.015 0.683±0.015
IMDB 1,000 19.77 96.53 0.520±0.028 0.565±0.017 0.442±0.032 0.612±0.046 0.442±0.035 0.585±0.047 0.536±0.148 0.514±0.039
REDDIT 2,000 429.63 497.75 0.457±0.003 0.262±0.027 0.450±0.013 0.239±0.028 0.450±0.012 0.487±0.013 0.759±0.056 0.782±0.016
HSE 8,417 16.89 17.23 0.484±0.026 0.657±0.051 0.477±0.000 0.528±0.000 0.489±0.003 0.469±0.016 0.388±0.041 0.591±0.001
MMP 7,558 17.62 17.98 0.539±0.022 0.571±0.037 0.475±0.000 0.307±0.000 0.488±0.002 0.322±0.008 0.457±0.038 0.676±0.001
p53 8,903 17.92 18.34 0.511±0.014 0.520±0.025 0.473±0.000 0.390±0.000 0.486±0.004 0.329±0.001 0.483±0.017 0.639±0.002
PPAR-gamma 8,451 17.38 17.72 0.521±0.023 0.541±0.036 0.510±0.000 0.461±0.000 0.499±0.017 0.388±0.015 0.431±0.043 0.644±0.001
COLLAB 5,000 74.49 2,457.78 0.453±0.003 0.319±0.033 0.506±0.020 0.536±0.014 0.529±0.023 0.550±0.043 0.401±0.183 0.525±0.014
hERG 655 26.48 28.79 0.607±0.033 0.701±0.048 0.665±0.042 0.802±0.047 0.679±0.034 0.798±0.052 0.569±0.049 0.704±0.049

p-value 0.0005 0.0262 0.0004 0.1089 0.0005 0.1337 0.0018 −

representations as well as graph representations in the predictor

network would be an estimate of the predictive variance of the

results of two networks. In other words, our training process aims

to train a predictor network so that the node representations and

graph representations of the two networks on each training sample

are as close as possible. Then, for the graph with patterns similar to

many other training graphs, the prediction errors in Eqs. 10 and 11

are small, i.e., small predictive variance in Eq. 14, because there are

sufficient such samples to train the prediction model; the abnormal

graphs, by contrast, are drawn from different distributions from the

training graphs and dissimilar to most of the training data, leading

to large predictive variance in Eq. 14. Thus, the prediction errors

in our joint random distillation can distinguish both locally- and

globally-anomalous graphs from normal graphs.

5 EXPERIMENTS AND RESULTS
5.1 Datasets
As shown in Table 1, we employ sixteen publicly available real-

world datasets
1
, which are collected from various critical domains [14].

The first six datasets in Table 1 are attributed graphs, i.e., each node

has some descriptive features; the others are plain graphs. HSE,

MMP, p53 and PPAR-gamma are datasets with real anomalies. The

other 12 datasets are taken from graph classification benchmarks

and converted for anomaly detection tasks by treating the minority

class as anomalies, following [6, 20, 29]. These datasets are selected

mainly because the graph samples in the chosen anomaly class

meet some key semantics of anomalies, e.g., graphs are scatteredly
or sparsely distributed in the representation space.

5.2 Competing Methods
Seven competing methods from two types of approach are used.

1
All of the datasets were accessed via http://graphkernels.cs.tu-dortmund.de, except

hERG that was from https://tdcommons.ai/.

Two-stepMethods. This approach first uses state-of-the-art graph
representation-based methods to obtain vectorized graph represen-

tations, and then applies advanced off-the-shelf shallow anomaly

detectors on top of the representations to calculate anomaly scores.

InfoGraph [38], WL [36] and PK graph kernels [23] are used in our

experiments. Anomaly detectors, including iForest [20] and 𝑘NN

ensemble (LESINN) [30], are utilized. The combination of these

embedding methods and detectors leads to six two-step methods.

End-to-end Methods. We also compare with the one-class GCN-

based method, namely OCGCN [50], which can be trained in an

end-to-end manner as GLocalKD. OCGCN is optimized using a

SVDD objective on top of GCN-based representation learning.

5.3 Implementation and Evaluation
The target network and the predictor network in GLocalKD share

the same network architecture – a network with three GCN layers.

The dimension of the hidden layer is 512 and the output layer

has 256 neural units. The learning rate is selected through the

grid search, varying from 10
−1

to 10
−5
. The batch size is 300 for

all data sets except the four largest datasets HSE, MMP, p53 and

PPAR-gamma, for which the batch size is 2000. For the competing

methods, the network architecture and the optimization of OCGCN

is the same as our model. The other methods are taken from their

authors. We probed a wide range of hyperparameter settings in

both iForest and LESINN. We found that the performance of iForest

does not change much with varying hyperparameter settings, while

LESINN can obtain large improvement of using one subsampling

size setting over the others (see Table 4 in Appendix E). Due to

these observations, iForest with subsampling size and the number

of trees respectively set to 256 and 100 is used by default, while

LESINN with the subsampling size setting that performs best on

most of the datasets is used. More implementation details can be

found in Appendix B.
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In terms of evaluation, we use the popular anomaly detection

evaluation metric – Area Under Receiver Operating Characteris-

tic Curve (AUC). Higher AUC indicates better performance. We

report the mean AUC and standard deviation based on 5-fold cross-

validation for all datasets, except HSE, MMP, p53 and PPAR-gamma

that havewidely-used training and test splits. For these four datasets,

the results are based on five runs with different random seeds.

5.4 Comparison to State-of-the-art Methods
The AUC results of GLocalKD and its seven competing methods are

reported in Table 1. Our GLocalKD model is the best performer on 7

datasets, achieving improvement ranging from 1% to 12% on many

of these datasets compared to the best contenders per dataset, e.g.,
AIDS (3.7%), PROTEINS_full (6.7%), PPAR-gamma (10.3%), MMP

(10.5%), p53 (11.9%); and its performance is very close to the best

contenders on some other datasets, such as DD and COLLAB. The

consistent superiority of GLocalKD is mainly due to its capability

in learning both global and local graph regularity. Its performance

may drop significantly, e.g., decrease to performance equivalent to a

random detector, if only one of these patterns is captured (see Table

2). The seven competing methods fail to work in many datasets

mainly because their graph representations capture only partial

local/global pattern information.

We also perform a paired Wilcoxon signed rank test [42] to ex-

amine the significance of GLocalKD against each of the competing

methods across the 16 datasets. As shown by the p-values in Table

1, GLocalKD significantly outperforms the iForest-based methods

and OCGCN at the 99% confidence level. The confidence level of

the superiority of GLocalKD over LESINN-based methods ranges

from 85% and 95%. However, note that LESINN heavily relies on its

subsample size (see Table 4 for the full results of InfoGraph-LESINN,

WL-LESINN and PK-LESINN in Appendix E). GLocalKD works less

effectively on COLLAB than some contenders, which may be due

to the inseparability of anomalies from the normal graphs as the

contenders also do not perform well on it.

In terms of computational efficiency, as shown by the results

in Table 3 in Appendix C, GLocalKD and OCGCN have a similar

time complexity and run much faster than the other methods in

online detection, since iForest/LESINN methods require extra steps

on top of the graph representations to compute the anomaly scores.

On the other hand, GLocalKD and OCGCN are generally more

computationally costly than the WL and PK based methods be-

cause GLocalKD and OCGCN typically require multiple iterations

to perform well.

5.5 Sample Efficiency
5.5.1 Experiment Settings. This section examines the performance

of ourmodel w.r.t. the amount of training data, i.e., sample efficiency,

using the deep competing method OCGCN as baseline. We use

respective 5%, 25%, 50%, 75% and 100% of original training samples

to train the models, and evaluate the performance on the same test

data set. We report the results on the attributed graph datasets only.

Similar results can be found on the other datasets.

5.5.2 Findings. The AUC results are shown in Figure 4. It is very

impressive that even when 95% less training data are used, GLo-

calKD can retain similarly good performance across nearly all the
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Figure 4: AUC performance of GLocalKD and OCGCN using
different amount of training data.

six datasets. By contrast, the performance of OCGCN can drop

significantly on some datasets, such as ENZYMES and AIDS, if the

same amount of training data is reduced. As a result, GLocalKD can

outperform OCGCN by large margins even it uses 95% less training

data than OCGCN on such datasets.

5.6 Robustness w.r.t. Anomaly Contamination
5.6.1 Experiment Settings. Recall that we tackle the semi-supervised

anomaly detection setting with exclusively normal training samples.

However, the data collected in real applications may be contami-

nated by some anomalies or data noises. This section investigates

the robustness of GLocalKD w.r.t. different anomaly contamination

levels in the training data. We vary the contamination rates from 0%

up to 16%. Again, we report the results on the six attributed graph

datasets only due to page limitation; OCGCN is used as baseline.

5.6.2 Findings. AUC results of GLocalKD and OCGCN with differ-

ent anomaly contamination rates are shown in Figure 5. GLocalKD

is barely affected by the contamination and performs very stably

on all the datasets, contrasting to OCGCN whose performance de-

creases largely with increasing contamination rate on ENZYMES

and AIDS. This is mainly because GLocalKD essentially learns all

types of patterns in the training data by the random distillation, by

which it is able to detect the anomalies as long as those anomalous

patterns are not as frequent as the normal patterns in the train-

ing data; whereas OCGCN is sensitive since its anomaly measure,

SVDD, is sensitive to the anomaly contamination.
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Figure 5: AUC performance of GLocalKD and OCGCN w.r.t.
different anomaly contamination rates.

5.7 Sensitivity Test
5.7.1 Experiment Settings. This section tests the sensitivity of GLo-

calKD to the representation dimension and the GCN depth. For the

first test, we vary the output dimension of GCN in {32, 64, 128, 256, 512};
for the GCN depth, we evaluate the performance of GLocalKD us-

ing 𝑘 GCN layers, with 𝑘 ∈ {1, 2, 3, 5}. The results are illustrated in

Figures 6 and 7 in Appendix D.

5.7.2 Sensitivity. As can be seen from the results, GLocalKD per-

forms stably using different representation dimensionality sizes

on most datasets. The dimensionality size – 256 – is generally rec-

ommended as this setting enables GLocalKD to perform well on

diverse datasets.

Besides, GLocalKD achieves better performance with increasing

depth on nearly all the datasets, but the performance is flatten when

increasing the depth from three to five. A network depth of three is

generally recommended, since deeper GCN does not help achieve

better performance but is more computationally costly.

5.8 Ablation Study
5.8.1 Experiment Settings. In this section, we examine the impor-

tance of the two components, 𝐿graph and 𝐿node , in our model. To

do that, we derive two variants of GLocalKD, including GLocalKD

w/o 𝐿node that denotes the use of random distillation on the graph

representations only, and GLocalKD w/o 𝐿graph that represents the

use of random distillation on the node representations only.

5.8.2 Findings. The results of GLocalKD and its two variants are

shown in Table 2. It is clear that using 𝐿graph (or 𝐿node) only can

obtain better performance on some datasets, while it may perform

worse on the other datasets, compared with GLocalKD. Joint ran-

dom distillation by using both of 𝐿graph and 𝐿node can achieve a

good trade-off and perform generally good across all the datasets.

It is interesting that GLocalKD w/o 𝐿graph significantly outper-

forms GLocalKD w/o 𝐿node in a number of datasets, e.g., AIDS,
DHFR, DD, MMP, p53, PPAR-gamma and hERG, indicating the

dominant presence of locally-anomalous graphs in those data; on

the other hand, the inverse cases occur on ENZYMES, IMDB and

HSE, indicating the dominance of globally-anomalous graphs in

these three datasets. These results show that modeling fine-grained

graph regularity is as important as, if not more important than,

the holistic graph regularity for the GAD task, since both types of

graph anomalies can present in the graph datasets.

Table 2: Detection of locally/globally-anomalous graphs.

Dataset GLocalKD w/o 𝐿node w/o 𝐿graph
PROTEINS_full 0.785±0.034 0.686±0.045 0.757±0.040
ENZYMES 0.636±0.061 0.642±0.096 0.505±0.036
AIDS 0.992±0.004 0.963±0.014 0.997±0.006
DHFR 0.558±0.030 0.459±0.036 0.596±0.030
BZR 0.679±0.065 0.623±0.079 0.671±0.049
COX2 0.589±0.045 0.585±0.051 0.557±0.055
DD 0.805±0.017 0.528±0.093 0.805±0.017
NCI1 0.683±0.015 0.458±0.058 0.682±0.015
IMDB 0.514±0.039 0.610±0.103 0.490±0.044
REDDIT 0.782±0.016 0.574±0.085 0.781±0.016
HSE 0.591±0.001 0.655±0.007 0.589±0.000
MMP 0.676±0.001 0.543±0.016 0.680±0.000
p53 0.639±0.002 0.495±0.016 0.641±0.000
PPAR-gamma 0.644±0.001 0.600±0.044 0.644±0.000
COLLAB 0.525±0.014 0.501±0.055 0.526±0.012
hERG 0.704±0.049 0.566±0.043 0.703±0.057

6 CONCLUSION
This paper proposes a novel framework and its instantiation GLo-

calKD to detect abnormal graphs in a set of graphs. As shown in our

experimental results, graph datasets can contain different types of

anomalies – locally- and globally-anomalous graphs. To the best of

our knowledge, GLocalKD is the first model designed to detect both

types of graph anomalies. Extensive experiments demonstrate that

GLocalKD performs significantly better in AUC and can be trained

much more sample-efficiently when compared with its advanced

counterparts. We also show that GLocalKD achieves promising

AUC performance even when there is large anomaly contamination

in the training data, indicating that GLocalKD can be applied in not

only semi-supervised settings (exclusively normal training data)

but also unsupervised settings (anomaly-contaminated unlabeled

training data).
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APPENDIX
In the appendix, we provide more detailed information about the

implementation details of our model GLocalKD and its competing

methods, as well as some extra empirical results. The algorithmic

procedure of GLocalKD is presented in Appendix A, while the

GNN architecture, hyperparameter settings and optimization are

presented in Appendix B. Appendix C presents the training and

test time of GLocalKD and its competitors on three representa-

tive datasets. Appendix D shows the sensitivity test results. Lastly,

Appendix E presents the influence of subsample size on the perfor-

mance of LESINN.

A THE ALGORITHM OF GLOCALKD
Algorithm 1 presents the procedure of training GLocalKD. After

random weight initialization of Θ̂ and Θ in Step 1, GLocalKD per-

forms stochastic gradient descent-based optimization to learn Θ
of the predictor network in Steps 2-11, while the parameters in

Θ̂ are fixed. Particularly, Step 4 samples a mini-batch B with size

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 . We obtain node representations and graph representa-

tions from both of
ˆ𝜙 (·, Θ̂) and 𝜙 (·,Θ) in Steps 6-7, respectively. Step

9 then performs gradient descent steps on our loss Eq. 12 w.r.t. the

parameters in Θ. We finally obtain the predictor network 𝜙 (·,Θ∗)
with the learned Θ∗ and the random target network

ˆ𝜙 (·, Θ̂).

Algorithm 1 Training GLocalKD

Input: Normal training graph set G = {𝐺𝑖 }𝑖
Output: Target network –

ˆ𝜙 (·, Θ̂), predictor network – 𝜙 (·,Θ∗)
1: Randomly initialize Θ̂ and Θ, with Θ̂ fixed

2: for 𝑖 = 1 to 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 do
3: for 𝑗 = 1 to 𝑛_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do
4: B ←Randomly sample 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 graphs from G
5: for 𝐺 in B do
6: Compute node representations

ˆh𝑖 and h𝑖 , ∀𝑣𝑖 ∈ V𝐺
7: Compute graph representations

ˆh𝐺 and h𝐺
8: end for
9: Perform a gradient descent step on Eq. 12 w.r.t. the param-

eters in Θ
10: end for
11: end for
12: return ˆ𝜙 (·, Θ̂), 𝜙 (·,Θ∗)

B IMPLEMENTATION DETAILS
All experiments are carried out on NVIDIA Quadro RTX 6000 GPU

with Intel Xeon E-2288G 3.7GHz CPU, and all models are imple-

mented with Python 3.6
2
.

The target network and the predictor network in GLocalKD share

the same network architecture – a network with three GCN layers.

The dimension of the hidden layer is 512 and the output layer has

256 neural units. As indicated in Eq. 9, max pooling is used to obtain

the graph representations. The GCN weight parameters are initial-

ized using the Kaiming uniform method, with the bias parameters

initialized to be zeros. For attributed graph datasets, the feature

2
https://www.python.org/

matrix X is directly built upon their node features; for datasets with

plain graphs, the degree of each node is used as the node features.

The learning rate is set to 10
−4

by default except on the ENZYMES,

AIDS, DHFR, HSE, p53, MMP and PPAR-gamma datasets where

the learning rate is set to 10
−5
. Nevertheless, the performance of

GLocalKD has small variations on these datasets either using 10
−4

or 10
−5

as the learning rate. On the dataset PROTEINS_full, the

learning rate is set to 10
−2

to obtain good performance. The batch

size is 300 for all data sets except the four largest datasets HSE,

MMP, p53 and PPAR-gamma, for which the batch size is 2000. The

number of epochs is 150 for all data sets.

Table 3: Training and test time on three datasets: REDDIT,
p53 and COLLAB.

Dataset InfoGraph WL PK OCGCN GLocalKDiForest LESINN iForest LESINN iForest LESINN

Training Time

REDDIT 3536.36 3536.36 8.01 8.01 127.09 127.09 1397.40 1395

p53 60.61 60.61 9.42 9.42 821.29 821.29 297.37 337.80

COLLAB 2059.66 2059.66 63.24 63.24 416.95 416.95 2421.83 2510.52

Test Time

REDDIT 5.79 15.19 3.72 29.37 84.46 112.20 4.65 4.97

p53 19.67 24.54 225.44 207.95 301.89 250.79 0.66 0.97

COLLAB 12.41 34.44 39.50 313.65 273.82 573.90 9.28 8.88

The architecture of GCN used in OCGCN is exactly the same as

our model. The learning rate is also searched from 10
−1

to 10
−5
.

We use the same method in Deep SVDD [32] to generate the one-

class center. Both of GLocalKD and OCGCN are implemented using

Pytorch 1.9
3
. Similarly, InfoGraph is taken from its official imple-

mentation
4
, which uses a three-layer GIN architecture, with the

learning rate set to 10
−3
. Adam is the default optimizer used in the

above three methods. Both WL and PK are directly taken from the

GraKeL library 0.1.8
5
. ForWL, we perform three iterations to obtain

the graph representations, which utilize the same neighborhood

information as a three-layer GCN as in our model and OCGCN. PK

is used with the recommended setting in GraKeL. For iForest
6
in

each method, we adjust its parameters, including the number of

trees, subsample size and contamination rate. We finally use the

recommended settings as in [20], i.e.100 for the number of trees,

256 for subsampling size and 0.1 for contamination rate, since the

results of iForest do not change much with varying hyperparameter

settings. Two parameters in LESINN
7
, i.e., ensemble size and sub-

sample size, are chosen from {2, 4, 8, 16, 32, 64, 128, 256}. In Table

1, we report the results of LESINN by setting both of these two

parameters to 256, as this setting enables the most effective results

across all datasets (see Table 4).

C TRAINING AND TEST TIME
Table 3 is the training and test time of each method on 3 datasets:

REDDIT, p53 and COLLAB. REDDIT and COLLAB are the datasets

with the largest average number of nodes and edges in all 16

datasets, respectively. The dataset p53 contains the largest number

of graphs. The training time of the two-stage methods considers

only the graph representations/embeddings learning time.

3
https://pytorch.org/

4
https://github.com/fanyun-sun/InfoGraph

5
https://github.com/ysig/GraKeL

6
https://github.com/scikit-learn/

7
https://github.com/GuansongPang/deep-outlier-detection/
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Table 4: Results of LESINN using different subsampling sizes.

Dataset Method subsample size=2 subsample size=4 subsample size=8 subsample size=16 subsample size=32 subsample size=64 subsample size=128 subsample size=256

PROTEINS_full

Info-LESINN 0.399±0.048 0.398±0.049 0.390±0.049 0.380±0.049 0.367±0.047 0.357±0.047 0.345±0.048 0.336±0.047
WL-LESINN 0.769±0.017 0.779±0.014 0.780±0.014 0.779±0.016 0.777±0.021 0.769±0.029 0.742±0.047 0.712±0.053
PK-LESINN 0.759±0.023 0.766±0.024 0.769±0.020 0.769±0.018 0.765±0.019 0.702±0.068 0.633±0.057 0.572±0.031

ENZYMES

Info-LESINN 0.465±0.078 0.465±0.072 0.462±0.059 0.465±0.051 0.466±0.042 0.477±0.041 0.496±0.044 0.528±0.046
WL-LESINN 0.519±0.066 0.488±0.069 0.485±0.065 0.498±0.050 0.518±0.040 0.538±0.037 0.577±0.044 0.624±0.050
PK-LESINN 0.562±0.053 0.553±0.041 0.564±0.030 0.579±0.025 0.590±0.034 0.596±0.043 0.594±0.038 0.608±0.033

AIDS

Info-LESINN 0.883±0.041 0.889±0.039 0.900±0.038 0.912±0.035 0.924±0.033 0.935±0.030 0.944±0.027 0.955±0.023
WL-LESINN 0.651±0.016 0.526±0.021 0.437±0.019 0.424±0.012 0.447±0.016 0.483±0.013 0.528±0.014 0.584±0.016
PK-LESINN 0.578±0.026 0.468±0.037 0.385±0.021 0.352±0.017 0.358±0.010 0.374±0.009 0.393±0.010 0.421±0.010

DHFR

Info-LESINN 0.460±0.042 0.473±0.046 0.486±0.040 0.509±0.042 0.541±0.039 0.575±0.035 0.608±0.034 0.625±0.028
WL-LESINN 0.365±0.038 0.401±0.047 0.457±0.049 0.480±0.048 0.509±0.052 0.538±0.055 0.573±0.059 0.596±0.056
PK-LESINN 0.368±0.032 0.400±0.027 0.431±0.021 0.453±0.027 0.474±0.040 0.503±0.051 0.541±0.056 0.568±0.054

BZR

Info-LESINN 0.557±0.043 0.568±0.037 0.600±0.039 0.632±0.039 0.658±0.040 0.690±0.050 0.721±0.068 0.737±0.071
WL-LESINN 0.540±0.054 0.549±0.050 0.576±0.061 0.620±0.055 0.679±0.053 0.700±0.050 0.717±0.043 0.720±0.032
PK-LESINN 0.528±0.070 0.542±0.067 0.578±0.075 0.631±0.073 0.693±0.072 0.739±0.068 0.764±0.066 0.775±0.063

COX2

Info-LESINN 0.588±0.064 0.611±0.050 0.616±0.052 0.628±0.058 0.639±0.066 0.661±0.069 0.673±0.066 0.670±0.079
WL-LESINN 0.444±0.101 0.487±0.089 0.512±0.074 0.557±0.075 0.583±0.073 0.599±0.074 0.605±0.067 0.590±0.056
PK-LESINN 0.443±0.093 0.465±0.085 0.472±0.080 0.523±0.073 0.568±0.067 0.608±0.061 0.648±0.046 0.671±0.039

DD

Info-LESINN 0.320±0.038 0.318±0.033 0.315±0.032 0.313±0.031 0.310±0.032 0.308±0.032 0.307±0.032 0.310±0.034
WL-LESINN 0.543±0.052 0.540±0.048 0.535±0.050 0.547±0.055 0.560±0.054 0.578±0.055 0.605±0.051 0.638±0.045
PK-LESINN 0.800±0.023 0.811±0.028 0.816±0.028 0.819±0.027 0.822±0.026 0.827±0.027 0.831±0.025 0.833±0.023

NCI1

Info-LESINN 0.479±0.016 0.482±0.018 0.487±0.019 0.495±0.023 0.508±0.027 0.532±0.031 0.561±0.034 0.598±0.035
WL-LESINN 0.533±0.029 0.566±0.029 0.590±0.024 0.621±0.019 0.650±0.015 0.676±0.014 0.710±0.014 0.743±0.015
PK-LESINN 0.525±0.021 0.542±0.024 0.558±0.019 0.586±0.019 0.607±0.017 0.624±0.015 0.646±0.013 0.670±0.012

IMDB

Info-LESINN 0.431±0.033 0.438±0.033 0.441±0.029 0.467±0.045 0.482±0.043 0.505±0.037 0.541±0.023 0.565±0.017
WL-LESINN 0.398±0.040 0.397±0.028 0.404±0.028 0.437±0.027 0.504±0.055 0.586±0.058 0.605±0.057 0.612±0.046
PK-LESINN 0.392±0.045 0.384±0.037 0.385±0.033 0.406±0.023 0.462±0.045 0.552±0.057 0.582±0.050 0.585±0.047

REDDIT

Info-LESINN 0.449±0.023 0.461±0.030 0.418±0.038 0.346±0.048 0.290±0.032 0.276±0.028 0.268±0.027 0.262±0.027
WL-LESINN 0.231±0.026 0.234±0.026 0.237±0.027 0.239±0.027 0.239±0.027 0.239±0.028 0.239±0.028 0.239±0.028
PK-LESINN 0.224±0.024 0.295±0.035 0.422±0.017 0.440±0.013 0.448±0.013 0.457±0.010 0.471±0.010 0.487±0.013

HSE

Info-LESINN 0.586±0.116 0.589±0.107 0.596±0.100 0.606±0.092 0.617±0.083 0.629±0.071 0.644±0.060 0.657±0.051
WL-LESINN 0.341±0.000 0.421±0.000 0.468±0.000 0.482±0.000 0.495±0.000 0.507±0.000 0.518±0.000 0.528±0.000
PK-LESINN 0.361±0.005 0.393±0.011 0.407±0.011 0.419±0.006 0.435±0.004 0.446±0.008 0.462±0.013 0.469±0.016

MMP

Info-LESINN 0.626±0.051 0.612±0.051 0.600±0.048 0.587±0.043 0.579±0.039 0.574±0.038 0.571±0.038 0.571±0.037
WL-LESINN 0.422±0.000 0.363±0.000 0.344±0.000 0.333±0.000 0.330±0.000 0.320±0.000 0.313±0.000 0.307±0.000
PK-LESINN 0.400±0.010 0.362±0.002 0.354±0.004 0.348±0.004 0.341±0.006 0.332±0.005 0.326±0.007 0.322±0.008

p53

Info-LESINN 0.573±0.046 0.567±0.045 0.551±0.041 0.537±0.037 0.532±0.033 0.525±0.030 0.520±0.028 0.520±0.025
WL-LESINN 0.435±0.000 0.429±0.000 0.413±0.000 0.413±0.000 0.409±0.000 0.403±0.000 0.396±0.000 0.390±0.000
PK-LESINN 0.341±0.007 0.342±0.005 0.340±0.004 0.339±0.003 0.339±0.004 0.336±0.003 0.332±0.001 0.329±0.001

PPAR-gamma

Info-LESINN 0.629±0.026 0.625±0.038 0.616±0.042 0.605±0.044 0.594±0.049 0.574±0.049 0.553±0.043 0.541±0.036
WL-LESINN 0.379±0.000 0.409±0.000 0.428±0.000 0.444±0.000 0.460±0.000 0.461±0.000 0.458±0.000 0.461±0.000
PK-LESINN 0.408±0.005 0.405±0.006 0.404±0.007 0.400±0.012 0.400±0.014 0.397±0.016 0.388±0.015 0.388±0.015

COLLAB

Info-LESINN 0.286±0.048 0.272±0.038 0.264±0.032 0.260±0.026 0.255±0.023 0.255±0.024 0.275±0.029 0.319±0.033
WL-LESINN 0.603±0.029 0.587±0.026 0.535±0.029 0.450±0.030 0.373±0.025 0.365±0.019 0.445±0.018 0.536±0.014
PK-LESINN 0.621±0.037 0.606±0.031 0.558±0.046 0.474±0.057 0.394±0.054 0.382±0.051 0.472±0.051 0.550±0.043

hERG

Info-LESINN 0.574±0.044 0.601±0.046 0.610±0.050 0.628±0.053 0.641±0.052 0.659±0.051 0.685±0.049 0.701±0.048
WL-LESINN 0.742±0.035 0.753±0.026 0.764±0.027 0.772±0.031 0.782±0.035 0.795±0.043 0.802±0.048 0.802±0.047
PK-LESINN 0.762±0.036 0.769±0.037 0.775±0.039 0.779±0.042 0.791±0.043 0.798±0.049 0.800±0.054 0.798±0.052
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Figure 6: AUC results w.r.t. representation dimensionality.

D SENSITIVITY TEST
Figure 6 and Figure 7 show the performance of GLocalKD w.r.t. the

GCN’s output dimensionality and depth, respectively.

E DETAILED RESULTS OF LESINN
Table 4 shows the effect of subsample size on the performance of

LESINN. We fix the ensemble size to 256 and vary the subsampling

size in {2, 4, 8, 16, 32, 64, 128, 256} to obtain the results.
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Figure 7: AUC of GLocalKD with different GCN depths.
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