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DeepRepair: Style-Guided Repairing for DNNs in
the Real-world Operational Environment

Bing Yu, Hua Qi @, Qing Guo’

Abstract—Deep neural networks (DNNs) are continuously
expanding their application to various domains due to their high
performance. Nevertheless, a well-trained DNN after deployment
could oftentimes raise errors during practical use in the opera-
tional environment due to the mismatching between distributions
of the training dataset and the potential unknown noise factors in
the operational environment, e.g., weather, blur, noise, efc. Hence,
it poses a rather important problem for the DNNs’ real-world
applications: how to repair the deployed DNNs for correcting
the failure samples under the deployed operational environment
while not harming their capability of handling normal or clean
data with limited failure samples we can collect.

In this paper, we propose a style-guided data augmentation
Jor repairing DNN in the operational environment, which learns
and introduces the unknown failure patterns within the failure
samples into the training data via the style transfer. Moreover, we
further propose the clustering-based failure data generation for
much more effective style-guided data augmentation. We conduct
a large-scale evaluation with fifteen degradation factors that may
happen in the real world and compare with four state-of-the-art
data augmentation methods and two DNN repairing methods.
Our technique successfully repairs three CNNs and two RNNs
with averaging 62.88% and 39.02% accuracy enhancements
on the fifteen failure patterns, respectively, achieving higher
repairing performance than state-of-the-art repairing methods
on the most failure patterns with even better accuracy on clean
datasets.

Index Terms—Deep neural network, DNN repairing, opera-
tional environment, data augmentation.

I. INTRODUCTION

Over the past few years, deep neural networks (DNNs)
achieved human-competitive performance and have been
widely deployed in many real-world application domains.
Multifarious applications with DNNs spring up like mush-
rooms, ranging from visual perception [1], [2], [3], such as
autonomous driving [4], [5], [6], [7], face recognition [8],
[9], [10], [11] and generation [12], [13], object detection [14],
[15] and segmentation [16], [17], tracking [18], [19], medical
imaging analysis [20], [21], and so on. Besides, DNNs are
widely used to solve various low-level vision problems such as
super-resolution [22], [23], [24], denoising [25], [26], illumi-
nation correction [27], [28], [29], image inpainting [30], [31],
deraining [32], [33], dehazing [34], [35], efc. In addition, more
and more automatic speech recognition and natural language
processing [36], [37] applications start using DNNs such as
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machine translation [38], [39], [40], hate speech detection
[41], [42], sentiment analysis [43], [44], speech generation
and voice assistant [45], [46], efc. More recent, researchers
are active in applying DNNs on intelligent agents for games
[47], [48], [49] and decision making for robotics applications
[50], etc.

Compared to traditional software, a prominent advantage
of DNN software is that DNN software can capitalize on
the abundant real-world training data and high-capacity neural
networks to learn the desired prediction or generative models,
oftentimes surpassing human-level performance. One of the
milestone examples is what we have witnessed in the game of
Go where AlphaGo [51] and subsequent AlphaGo Zero [52]
as well as AlphaZero [53] dominate the complicated game.
Another example is in the realm of partial information game
such as the Libratus [54], [55], which out-bluffed best human
players in the poker game of no-limit Texas Hold’Em.

Despite the high performance and many successes among
the aforementioned DNN-based applications, DNN software
still suffers from reliability issues, i.e., oftentimes the well-
trained DNNs that are deployed in the real world operational
environment can behave erroneously and deviate from what
they are designed for. This can be primarily caused by the
gap between the real-world test data distribution Dy in the
operational environment and the distribution of the previously
collected training data corpus D;. We say a DNN has a
high level of generalizability when the DNN that is trained
on data that follow Dy can perform well on test data that
follow Dy. In other words, DNN software works better as the
real-world test data distribution (D) approaches the collected
training data corpus (D). There are several aspects worth
discussing as to why such a gap between Dy, and Dy, exists.
First of all, the amount of labeled training data for a supervised
learning scenario is usually limited, either due to the cost of
data collection and/or the cost of providing manual ground-
truth labels. Second, even the DNNs are trained with very
abundant training data, the training corpus can never cover all
the real-world (potential noise) variations and perturbations.
There can always be some corner cases that are never seen by
the DNNs during the training process, and sometimes, these
corner cases can be the culprit for causing erroneous behavior
of the deployed DNNs. Third, the trade-off between the DNN
performance on the training set and the DNN generalizability
on the unseen testing set is usually not well defined in a clear
cut because, at training time, we usually do not observe the
real-world testing data. Performing too well on the training
data will even lead to overfitting and poor generalizability
over testing data. It usually takes a separate validation set
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mimicking the real-world testing data as well as heuristics to
determine the best trade-off strategy. However, issues remain
because the validation set often does not represent the entirety
of the real-world testing data of the upcoming deployed
operational environment.

There have been some recent attempts to measure the
quality and robustness of the deployed DNN software by
discovering failure cases that cannot be predicted correctly,
such as adversarial attack techniques [56], [57], [58] and
the deep learning (DL) testing techniques [59], [60], [61],
[62], etc. Under the real-world setting, the already-deployed
DNNs could oftentimes raise errors during practical usage
due to the mismatch between distributions of training dataset
and real-world collected data that may cause failures by
unknown real-world factors, e.g., weather, blur, noise etc.
Hence, it poses a rather important problem for the DNNs’
real-world applications: how to repair the deployed DNNs for
the unknown failure data while not harming their capability
of handling normal or clean data. Recently, automatic repair
[63], [64] has achieved promising progress in the traditional
software, where faults in a program can be caused by specific
lines of code. Thus, the repair can be performed to localize
and repair the fault-triggering source code. Differently, DNN
follows a data-driven programming paradigm and has no such
explicit structure, which makes the repair of DNN still an open
challenging research problem.

One of the most commonly used methods for DNN repair
is to retrain the DNN with the failure samples. By discovering
the failure samples (e.g., adversarial examples) and adding
them to the training data, so that the failure samples could be
repaired. Another technique is to directly modify the (hyper-
)parameters of the model or the structure [65], [66] based
on the guidance of the failure methods. Some techniques
[67], [68], [69] are proposed to identify the buggy units
of the DNN (e.g., the neurons) and then fix these errors
by generating samples for retraining. The key challenge is
that we usually can only collect a small number of failure
cases, which represent limited failure patterns in the real-world
environment. Thus, repair with direct retraining or evolving
parameters may have low generalizability, i.e., they can only
work well on the collected failure cases but may fail on
other unseen failures. Although sometimes we can generate
a large number of failure cases, it is still unknown whether
these failure cases could represent diverse failure patterns. It
is inefficient if many failures may be redundant, i.e., they share
the same failure pattern. Another challenge is that the repair
must retain the performance and capability of the DNNs when
handling data that can be predicted correctly before. How to
achieve both goals simultaneously is a challenge itself.

Towards tackling the challenge, in this paper, we propose a
novel method to repair the DNN on image classification task.
Our assumption is that we could only collect a small number
of failure data, based on which the DNN needs to be repaired.
Specifically, we propose the style-guided data augmentation
for DNN repairing where a style transfer-based method [70],
[71], [72], [73] is proposed to introduce the unknown failure
patterns (e.g., potential noise and combinations) within the
failure data into the training data via data augmentation.

Moreover, we propose the clustering-based failure data gen-
eration for more effective style-guided data augmentation. By
generating diverse augmented data, we retrain the model such
that the collected failure data and other similar failure data
can be fixed.

We conduct a large-scale evaluation with fifteen possible
degradation factors that may happen in the real world and com-
pare with four state-of-the-art data augmentation methods and
two DNN repairing methods. The DNN models repaired with
our technique perform as well as the original one, sometimes
even better on clear data. Specifically, our method successfully
repairs three CNNs and two RNNs with averaging 62.88% and
39.02% accuracy enhancements on the fifteen failure patterns,
respectively, achieving stronger repairing capability than state-
of-the-art repairing methods on the most failure patterns.

Overall, the contribution of this paper is summarized as
follows:

o We formulate the problem of DNN repairing based on

a small limited number of failure cases and analyze the
challenges.

o We originally propose a novel repair technique by style
transfer-based data augmentation for the DNNs in the
real-world operational environment.

o We perform a large-scale evaluation of our proposed
technique under fifteen potential degradation factors,
comparing with six state-of-the-art methods as baselines.

The repair of DNNSs, in general, can be rather challenging
and sometimes even impossible without any assumption, this
paper takes a special focus on repairing the potential issues
that are caused by the noise patterns (that introduce data
corruptions) from the operational environments, which we
believe could be an important direction and repairing scenario
towards practical DNN application with high quality.

The rest of the paper is organized as the following: in
Sec. II, we introduce the background with respect to DNN
software repairing. In Sec. I1I, we formally introduce our main
technical contributions where we first formulate the problem
of DNN repairing for some specified failure patterns. Then, we
present the data augmentation-based solution for this problem
and reveal the associated challenges, which are further ad-
dressed by the proposed style-guided data augmentation for
DNN repairing. In Sec. IV, we describe our evaluation design
and configurations. In Sec. V, we discuss the evaluation results
and findings of our study. Finally, we conclude our work in
Sec. VL.

II. RELATED WORK

In this section, we first briefly discuss the recent progress
on DNN testing, where many research efforts have been spent
on. Then, we focus more on the connections and differences
between DNN software repair and traditional software repair,
diving into several recent work on DNN repair, with detailed
discussion on their method formulation, advantages as well as
limitations.

A. DNN Software Testing

To enable the quality assessment and defect detection of
DNNs, various deep learning (DL) testing techniques have



IEEE TRANSACTIONS ON RELIABILITY, 2021

been recently proposed. Consider the fundamental difference
between traditional software and DNN, some research focuses
on the testing criteria design [59], [61], [74], [75]. DeepXplore
[59] originally proposes the neuron coverage towards measur-
ing the adequacy of the test cases. A neuron is activated if
its value is larger than a threshold. Neuron coverage measures
the percentage of neurons that are activated. However, neuron
coverage can be coarse and only a few test inputs can already
achieve very high neuron coverage [76], [77]. DeepGauge [61]
proposes a set of multi-granularity testing criteria based on
neuron-based behaviors. For example, k-Multisection Neuron
Coverage (KMNC) extends the neuron coverage that, it first
profiles the training data and obtains the activation status
of each neuron by all training data. For each neuron, the
range of its activation status is partitioned into k bucket.
Then, KMNC measures the ratio of all covered buckets of
all neurons of a DNN by a set of test cases. Furthermore, the
authors propose DeepCT [74] that considers the interactions
of different neurons in a layer based on the combinatorial
testing methods. Kim et al. [75] later propose the coverage
criteria that measure the surprise of the inputs, i.e., the distance
between the inputs and the training data. The assumption is
that surprising inputs introduce more diverse data such that
more abnormal behaviors could be triggered.

Based on the proposed testing criteria, a number of test
generation techniques [59], [60], [62], [78], [79], [80] are
proposed for detecting defects in DNNs. Specifically, Deep-
Xplore [59] and DeepTest [60] generate test cases based on
the guidance of neuron coverage. In particular, DeepXplore
adopts a differential testing method that determines whether
an input is erroneous based on the cross-validation between
multiple DNNs. TensorFuzz [79] and DeepHunter [62] pro-
pose the coverage-guided fuzzing techniques to test DNNGs.
DeepHunter integrates the coverage criteria from DeepGauge
while TensorFuzz adopts the distance-based coverage criteria.
While the aforementioned techniques mainly focus on feed-
forward neural network, DeepStellar [78] proposes the cov-
erage criteria and fuzzing technique for the recurrent neural
network. The basic idea is to extract an abstract model from
the given RNN. A set of coverage criteria then can be defined
based on the abstract model.

While the existing fuzzing techniques mainly discover de-
fects in the model, our method can be treated as a mitigation
technique for repairing such potential defects. MODE [67]
proposes a DNN debugging technique on feedforward neural
networks (FNN). Given an FNN, a feature map is constructed
in each layer. By selecting one layer, MODE detects the
buggy weights for the given failed inputs and fixes these
bugs by generating new training samples. Different from our
method, MODE mainly focuses on fixing the under-fitting or
overfitting problems while our method focuses on the more
general problem, i.e., the distribution shift between training
samples and the real-world test samples. More comprehensive
discussion on the deep learning testing can be referred to the
recent survey [81].

Overall, existing DNN software testing mainly focuses on
detecting the defects in models. In contrast, our method aims
to repair the DNNs and enhance their capability under the

guidance of limited failure examples available, which can be
regarded as the next step of DNN software testing.

B. DNN Software Repairing

In software engineering literature [63], there are two well-
studied approaches for tackling program failures, i.e., software
healing and software repairing. Software healing detects soft-
ware failures in-the-field and makes amends by responding
to the failures and restoring normal operations. The key is
that the amendments are not deployed at the source code
level, but instead deployed at runtime in order to mitigate
runtime failures on the deployed applications. On the other
hand, in software repairing, the amendments operations are
mainly performed on the program source code level to remove
fault that causes a failure. In this work, our fixing of the DNN
software conceptually falls under the second category, software
repair, where fixes are deployed on the source code level at
testing and design time, as opposed to at runtime.

One of the recent attempts for DNN software repair is
Apricot [66] that aims at fixing DL model iteratively through
a weight-adaptation method. This method is based on two
observations: @ It will be increasingly more difficult for the
DL model to retain a large proportion of its weights to capture
all essential features as the number of inputs in the dataset Ty
grows. ® Considering a pair of DNNs denoted as D( and
Dy, where their training processes are identical except that
model Dy is trained on the entirety of the dataset 7y, while
model Dy, is trained on a subset Sy of Ty, and model Dy
is referred to as the reduced deep learning model (rDLM).
Following this, the second observation is that each individual
rDLM may not fully capture the essential features needed to
classify one particular test case correctly, and if there is a set
of rDLMs such that, on average, each one is more likely to
classify the test case correctly, then the combined tendency
of this set of rtDLMs is more likely to classify this test case
correctly. Apricot can adjust the weight w of Dy accordingly
and it continues to train the adjusted Dy with Ty to produce the
next input model Dy, for the (k + 1)-th iteration step. After
all the iterations are carried out, the output of the procedure
is a deep learning model with repaired weights.

Another recent work SENSEI [82] has proposed to improve
the robust generalization of DNNs using guided test generation
techniques to address the data augmentation problem for the
DNNs under natural environmental variations. The proposed
data augmentation problem is cast as an optimization problem.
In order to identify the worst natural environmental variant
for the augmentation, each training input data goes through
a space search based on the genetic algorithm (GA). The
algorithm is carried out as the following: @ At each iteration
of the DNN training, for each training input data, the genetic
algorithm explores a small set of variants of the input and
selects the locally worst one for augmentation; @ It then
uses it as the GA seed for the search in the next epoch for
gradually reaching the globally worst variant without needing
to explicitly evaluate all the possible variants; ® A further
heuristic-based data selection technique named selective aug-
mentation is used to substantially reduce the DNN training
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time under augmentation by allowing complete skipping of
a training data at certain DNN training epochs based on
the DNN’s current robustness around that data point. The
proposed method has shown effectiveness on various image
classification datasets for improving DNN robustness through
GA-guided data augmentation.

Sohn et al. have proposed a search-based automated pro-
gram repair technique for DNNs called Arachne [83], where it
directly manipulates the neural network weights and searches
the space of possible DNNs instead of retraining the DNNss.
The search is guided by a specifically designed fitness function
following Generate and Validate automatic program repair
(APR) techniques. The Arachne follows traditional code-based
automatic program repairs techniques with the following steps:
@® Arachne first adopts a fault localization technique by
utilizing both positive and negative input data to retain correct
behavior and to generate a patch. The representation of the
patch is a set of real-numbered neural network weights; @
Arachne then uses particle swarm optimization (PSO) as its
search algorithm to update the selected neural network weights
with values from the PSO candidate solution, and further cal-
culates the fitness value based on the outcomes. The Arachne
approach is evaluated on three image classification tasks using
under-trained DNNs to induce unexpected behavior. The repair
produced by Arachne is focused more on targeted misbehavior
with minimal perturbation on other behaviors. This is opposed
to retraining-based DNN repairs that can alter the behavior
significantly.

On a separate thrust, Islam et al. [84] have conducted a
comprehensive study of bug repair patterns for five DNN
libraries Caffe, Keras, Tensorflow, Theano, and Torch by using
the DNN bugs dataset that consists of 415 bugs from Stack
Overflow and 555 bugs from GitHub. The study has analyzed
the following aspects of the fix patterns: @ common bug fix
patterns, @ fix patterns across bug types, ® fix patterns across
libraries, @ risk in fix, and ® challenges in fixing DNN bugs.

Existing works mainly aim to enhance the pre-trained DNNs
via the pre-defined training datasets while ignoring that the
real-world examples may not be within the domain of training
examples. Different from these DNN repairing works, e.g.,
SENSEI [82], our work takes a special focus on DNN re-
pairing for the incorrect behaviors introduced by the noise
patterns (that can be known or unknown) during the real-
world operational environment. We take a novel style-transfer
based approach to guide the data augmentation process during
training. Specifically, with the limited number of collected
DNN failure examples from the operational environment, we
perform style transfer to guide the data augmentation so that
similar failure noise patterns in the operational environment
would not cause the incorrect decision of the repaired DNN.

More recently, a novel augmentation-based repairing
method was proposed, called few-shot guided mix (simplified
as Few-shot) [85]. Unlike other repairing methods we men-
tioned before, few-shot method first collects failure examples
and uses them to estimate the noise distribution by Gaussian
mixture model (GMM). Then, it randomly samples weights
according to the GMM distribution to mix the augmented
examples. This process actually uses the collected failure

examples to guide the data augmentation process. However,
the estimated GMM is often hard to cover the main failure
patterns in the collected examples, leading to some limitation
of repairing performance. In contrast, our method proposes
to guide the data augmentation via the style transfer method
that is able to explicitly capture the main patterns in failure
examples. Moreover, we identify a clustering-based strategy
for style-transfer-based data augmentation, preserving the key
information in a wide range of failure examples.

C. Data Augmentation for DNN Enhancement

Data augmentation is used to increase the size of training
data and enables a DNN to see more examples, potentially
enhancing the generalization of DNNs. Recent augmentation
methods [86], [87], [88], [89], [90] mainly rely on common
operations, e.g., flipping, rotation, scaling, cropping, trans-
lation, efc., to transform the input training examples. For
example, CutOut [86] randomly cuts a square area from
the training image. MixUp [87] proposes to randomly mix
two training examples and their labels together. CutMix [88]
combines CutOut and MixUp together, cutting a square area
from an image and filling with the same area cutting from
another image. Mosaic [89] is similar to CutMix but adapts
to YOLOv4, mixing four images together to produce a sin-
gle image. GridMask [90] divides an image into grid and
removes disconnected regions. More recently, a novel data
augmentation method was proposed, i.e., AugMix [91]. It
utilizes diverse augmentations, i.e., autocontrast, equalize,
posterize, etc., and mixes multiple augmented examples into
a single image. Moreover, it uses Jensen-Shannon Divergence
consistency loss for training. Xie et al. [92] proposed a model-
based repairing technique specially designed for recurrent
neural network (RNN). In particular, an abstract model is first
extracted from a target RNN. To repair the incorrect behavior
of the RNN on a given input, some relevant samples are then
generated with the guidance of an abstract model for repairing.

Nevertheless, existing data augmentation methods mainly
focus on the general robustness of deep models, ignoring
the failure patterns that are not within the training dataset
or covered by the augmentation operations in the real-world
operational environment. On the contrary, DeepRepair aims
to repair a DNN to make it robust to collected (known and
unknown) failure patterns while not harming the robustness
to other failure patterns.

III. METHODOLOGY

In this section, we first formulate the problem of DNN
repairing for some specified failure patterns (i.e., Sec. III),
which frequently happened and is of great importance for
real-world applications in the operational environment. Then,
we present the data augmentation-based method to counteract
such a problem and reveal the challenges in Sec. III-B.
To address the challenges, we propose a style-guided data
augmentation method for DNN repairing in Sec. III-C and
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Fig. 1: The overall workflow of DeepRepair. Collected failure examples are used to learn the unknown noise patterns by the
style-transfer method. Further combining known noise patterns that could be obtained by domain experts, these noise patterns
are leveraged for data augmentation for effective repairing, so that a DNN could be more robust to handle inputs involved
with both known and unknown noises in the new environment, while maintaining the prediction performance in the original

environments.

introduce the detailed algorithm of our method in Sec. III-D.
The overall workflow and major components of our proposed
method DeepRepair is shown in Fig. 1.

A. Problem Formulation of DNN Repairing

Following the general DNN training process, we can train
a DNN ¢4(-) on a large-scale training dataset D' where 6
represents the network’s parameters. We then deploy it for the
real-world applications with the assumption that the unseen
data captured in the real world, whose distribution is denoted
as D", has a similar distribution as the training data.

Nevertheless, in practice, it is rather difficult to construct
such a perfect training dataset and a well-trained DNN might
still raise errors when the input data is corrupted by some
(known or unknown) noise patterns in the real-world opera-
tional environment, e.g., weather, blur, and other various kinds
of noise, etc., which are dependent on the task and operational
environments where the DNN is deployed.

Currently, even with the state-of-the-art deep learning tech-
niques for both data and network architectures, it is still diffi-
cult to train such a DNN that can address all real-world situa-
tions under various environments with high performance (e.g.,
high accuracy for image recognition task). Hence, it poses
a pressing problem for the DNN’s real-world applications:
when a well-trained DNN (in the training environment) makes
incorrect predictions on some data that may have specific
failure patterns (e.g., noise) in the operational environment,
how could we repair them without harming its performance
on other normal data? For example, given a DNN ¢y (-) offline
trained on D' and evaluated on a testing dataset DV for
the image classification task, we deploy it in the real-world
operational environment.

After deployment, we can find that it usually misclassifies
images corrupted by noises with some kind of patterns (we
may not know what the concrete noise pattern is), but we can
collect some failure examples D°. Then, the problem can be
formulated as: with the D¢ and D', how should we improve
the accuracy of ¢g(-) on the data having the similar failure
patterns with D¢ while not reducing the accuracy on DV?
Specifically, we can represent it as follows:

arg;ninE(X,y):T({Z)‘,Dc}) J(¢0(X),y), )]

where J(-) denotes the task-related loss function and we use
cross-entropy function for the image classification task. (X, y)
denotes an example and corresponding label from datasets.
T ({D', D°}) defines the way of using the two datasets. For
example, when we have {(X,y) = 7(D9)|(X,y) € D}, it
means that we only use the collected dataset D€ to fine-tune
the DNN ¢¢(-). Obviously, since D¢ is often a small-scale
dataset with limited failure patterns, above-mentioned way
(i.e., only utilizing D) would lead to an over-fit DNN that
has poor performance on testing dataset D".

The repairing context of our formulated problem generally
applies to a wide range of scenarios in practice where there
exists data distribution gap between training environment and
operational environment for deployment. For example, given
a well-trained DNN in environment A, when we try to deploy
it to environment B that is similar but a little different from
A, with a small number of collected DNN error examples in
environment B, how could be repair the DNN so that it could
perform better in the new environment B.

B. Data Augmentation-based DNN Repairing

To avoid the over-fitting issue, a simple solution is to
employ data augmentation operations to extend the training
dataset D' and fine-tune the DNN. The intuition behind
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Operators | Meaning

Autocontrast | Normalizing image contrast

Equalize Equalizing the image histogram

Posterize Reducing color channels’ bit number
Rotate Rotating the image with specified angle
Solarize Inverting all pixel values above a threshold
Sheary Shearing the image on X-axis

Sheary Shearing the image on Y-axis

Translatey Translating the image on X-axis

Translatey Translating the image on Y-axis
StyleTransfer | Transferring images w.r.t. a reference image

TABLE I: All operators in the operation set O.

this solution is that the diverse augmentation operations (or
transformations that simulate the real-world noise patterns in
the operational environment) could cover the unknown failure
patterns. For example, we follow the state-of-the-art AugMix
method [93] that can be represented as

K N (X X0 Xper) I (B0(X0), ¥)+ @)
4

=7(D',0)
/US((¢H (X), ¢6(Xaugl)7 ¢9(Xaug2))a

where 7 (D', O) is to perform transformations on each sample
X € D' and return two augmented versions, ie., Xaygl
and X,,z, with a series of operations sampled from the
operation set O (Table I). In the AugMix method, O contains
some widely known noise patterns of image domain, such as
rotation, equalization, translation, sharpness [93]. The three
examples, i.e., X, Xaye1, and Xuue, share the same label y.
JS(-) denotes the Jensen-Shannon diverse loss function that
enforces the DNN predicting consistent results for original
and augmented examples.

Although in some particular domains, some common noise
patterns could be manually obtained by domain experts, the
more general and diverse noise patterns are often unknown
and could hardly be obtained even by human experts. This
brings limitations on the diversity of the augmented data
with many unknown critical noise patterns missed, poten-
tially limiting the effectiveness of data augmentation-based
repairing. As a result, the fine-tuned DNNs are not repaired
for handling the failures properly. To address this challenge,
we originally propose the style-guided data augmentation
where the unknown failure patterns are learnt by design, and
further employed to guide the data augmentation, for repairing
DNNs more effectively in a broader context. In particular, we
leverage the style-transfer-based method to learn the unknown
noise patterns in a new environment from the limited size of
collected failure examples. In addition, we could still leverage
human summarized known noise patterns. In fact, DeepRepair
is designed to take advantage of both known and unknown
noise patterns for the repairing process. In the following
subsection, we continue to introduce how the unknown noise
patterns could be learnt by style-transfer methods.

C. Style-Guided Data Augmentation for DNN Repairing

Following the objective function in Sec. III-B, we focus on
automatically learning novel data augmentation operations to

Algorithm 1: Style-Guided DNN Repairing

Input: Training dataset D', collected failure images
D¢, pre-trained DNN ¢ (+), style transfer
method,i.e., ST(-), augmentation operation set
O, and the pre-defined clustering number N.

Output: Repaired DNN ¢,;(-).

# Style-guided data augmentation

Function StyleaAug (X,0):

Initialize X,y With zeros and sample mixing

weights (wy,...,wy) ~ Dirichlet(a,...,a);

4 form=1,...,M do

Sample the first operation by O; ~ O;

Sample the 2nd and 3rd operations by

{0,,03} ~ O\O%

-

w N

7 Construct sequential operations: op; = Oy,
op; = [01,0;], and op,3 = [O1, 02, O3];
8 Sample one operation, i.e., op, from
{op;. 0P, 0P123 5
9 Conduct augmentation via op and add it to

Xaug With X+ = wy,0p(X);

10 Sample blending weight wg by wg ~ Beta(a, @);
1 Blend with X by Xyix = wo - Xayg + (1 —wo) - X
12 return X,ix;

13 # Augmentation operation extension via the style transfer
14 Perform K-means clustering on D¢ with number N ;

15 Construct the sampling strategy P°¢ via Eq. 4 ;

16 Identify N operations O°¢ = {O7} via Eq. (5) ;

17 Update the operation set O by adding O° to O ;

18 # Data augmentation for DNN repairing

19 for j =1 to |D’| do

20 Loading the jth image X from D' ;

21 Calculating two augmented images: Xayg1 =
StyleAug(X,0) , and X, = StyleAug(X,0) ;
22 Calculating the loss function:

7(¢0(X).y) +S((#0(X), b0 (Xaug1), #0 KXaug2) )
Updating the parameters 6 of ¢g(-) ;

O for DNN repairing with the guidance of collected failure
examples, i.e., corrupted data D¢. To this end, we propose
the very first style transfer-based data augmentation operations
for repairing. Style transfer is to map an image to a new one
having similar style with a given reference image. As shown
in Fig. 2 (a), source images can be transferred to very similar
styles with the given style images while the original details
are all preserved. Intuitively, we could employ style transfer as
novel data augmentation operations by regarding the corrupted
data as reference images. Specifically, we represent the new
operations as

0¢(X) = ST(X,X'), with X = Sample(D°,P), (3)

where X is the example that needs to be augmented, the image
X; is one of the collected failure images, and the ST(-) denotes
the style transfer method. Here, we adopt the style transfer
method WCT? [70]. The Sample(D¢, P) denotes the sampling
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(a) Style Transfer

(b) Style-Guided Data Augmentation

Fig. 2: Two examples (i.e., (a)) of style transfer [70] and three examples (i.e., (b)) of our style-guided data augmentation for DNN Repairing.

strategy based on #. The notation P = {P'} defines the
sampling probability of all samples {X’} and we preliminarily
use the uniform sampling strategy with {P? = |D° } As shown
in Fig 2 (b), the example with a dog is augmented according to
three reference images that are predicted erroneously by over
brightness, low contrast, and fog, and these failure patterns
are successfully included into the augmented images. We then
add all style transfer-based operations, i.e., O° = {Of|i =
[1,...,]D°]}, to the operation set O and conduct the DNN
repairing by fine-tuning DNNs via Eq. (2). However, there is
still another challenge for DNN repairing. In particular, the
failure images in D¢ are diverse. Thus, for an image X, it is
time-consuming to select all failure images as the reference.
Thus, it is difficult to select which images in D¢ should be
the references.

To alleviate this issue, we further implement the clustering-
based reference image generation, where the sampling prob-
ability of each sample is determined by their distance to
the clustering center. In particular, we first perform k-means
clustering on the D¢ with the number of clusters N and get
N subsets denoted as {D|i = [1,N]} with their clustering
centers being C¢ = {Xcls [1,N]}. Then, for the ith
clustering set (i.e., Z)C') we calculate L, distance between
samples in D% and the clustering center X‘ ,» Which is
represented as {d; = ||X; Clsllle’ Dei} and we define
the sampling probability of X‘ as

i =

. 1 dt
Pl- — _(1 |Dc]‘
i 4y

/N
where |D| is the size of D and P‘ is the probability of
X’ to be sampled for guiding data augmentatlon Intuitively,
the sample near to clustering center has higher probability to
be selected. We define P¢ = {Pj.} as the clustering-guided
sampling strategy and reformulate Eq. (3) as

0¢(X) = ST(X,X'), with X' = Sample(D®,P¢).  (5)

), “4)

D. The DNN Repairing Algorithm

Algorithm 1 gives the details of DeepRepair, which corre-
sponds to Fig. 1. According to the algorithm, the workflow of
DeepRepair could be roughly decomposed into two key stages:
@ cxtending the augmentation operation set O via the style
transfer based on collected failure cases (Line 2-12); & con-
ducting the data-augmentation for DNN repairing through the
style-guided data augmentation (Line 14-22). We first intro-
duce the style-guided data augmentation, i.e., StyleAug(-)
in Algorithm 1. Intuitively, given an input image X, we obtain
M augmentations via the sequential operations sampled from
the set O and then mix them up together with weights from
Dirichlet and Beta distributions. We use these two distributions
since their capability for data augmentation has been validated
in AugMix [91] and MixUp [87].

The style-guided augmentation is based on the framework
AugMix [91]. More specifically, we obtain M weights via
Dirichlet distribution with @ as the parameter (i.e., the 4th line
in Algorithm 1), and then perform M augmentations (i.e., line
5 to line 10 in Algorithm 1). For each augmentation, we first
sample the first operation (i.e., O;) from O, which might be
the style transfer-based operations in O° or other general oper-
ations in ON\O¢ (e.g., rotation, translation). Then, we sample
the second and third operations from O\ O° and get {O,, O3}.
All sampled operations are sequentially composed, resulting in
three sequential operations, one of which is selected for the
final augmentation. The above process is shown from line 6
to 10 in the Algorithm 1 with the following principles: @
the first operation could be based on style transfer, using to
embed the failure pattern in collected failure examples (i.e.,
P°) into the example X. Note that, we also allow the first
operation to be other general operations to avoid the risk
of overfitting on the specific pattern in D¢. @ the second
and third operations are limited to be general operations (i.e.,
O\ 0°), simulating the transformations on the style transferred
example, i.e., by translation, rotation, equalization, sharpness,
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etc. Besides, since style transfer [70] can be much slower than
the general operations, thus O, and O3 also avoid great time
cost with only style-based augmentation.

During training (Line 19-22), we firstly collect all trans-
formation set including the style-based transformation and the
general transformation (Line 17). For each training data X, we
calculate two augmented images Xg,g1 and Xg,¢2, the model
should have similar predictions on X, X,¢1 and X, (Line
22).

IV. EXPERIMENTAL DESIGN AND SETTINGS

In this section, we first perform a preliminary study (i.e.,
RQ1) to confirm that whether different failure patterns have
different effects on the accuracy of pre-trained deep mod-
els. Then, we conduct large-scale experiments to validate
the proposed methods and investigate the following research
questions:

« RQ2. Does DeepRepair outperform state-of-the-art (SOTA)
data-driven repairing methods on the examples with specific
failure patterns?

« RQ3. Does DeepRepair harm the robustness to other failure
patterns and clean data?

« RQ4. Do our proposed components of DeepRepair all
contribute the final repairing performance (i.e., accuracy on
different failure patterns)?

In particular, RQ2 intends to evaluate the behavior of Deep-
Repair by comparing with baseline repairing methods and
data augmentation approaches. RQ3 is to explore whether
the DeepRepair method under the guidance of one failure
pattern could harm DNNs’ capability of handling other failure
patterns. RQ4 is to analyze the contributions of different
components of DeepRepair. We present all raw data in the
following figures in [94].

A. Experimental Setups

To answer the above four research questions, we consider
the following setups on dataset, DNN architectures, related
hyper-parameters, efc.

Datasets. Following the formulations in Sec. III, we employ
the training dataset CIFAR-10 as the D' in Sec. Il and
extend its testing dataset, i.e., DV, via various failure types to
validate our method. Specifically, we first train a DNN (i.e.,
¢g) on the CIFAR-10’s training dataset and select 15 failure
types (i.e., 15 different failure patterns) [95]. These 15 failure
types come from CIFAR-10-C, a public dataset containing
different corrupted images. These corruptions can generally be
divided into four types, i.e., noise, blur, weather, and digital
corruption, all of which commonly exist in the real world.
These corrupted data are the superb substitute of real-world
data as it is often hard and expensive to collect them that could
reduce the accuracy of DNN significantly. Note that each of
the 15 failure datasets contains five different severity levels of
corrupted images. Then, following the setting in Hendrycks’s
paper [95], we apply the 15 the potential failure patterns to
DY, respectively, and generate 15 new testing datasets that
are denoted as {D'*|k € [1,...,15]}, each of which is
five time larger than DY* and has 50,000 images since we

Subject DNN #Neuron #Layer #Parameter
z | AllConvNet [96] 1,516,426 19 1,409,674
% DenseNet [97] 5,518,858 79 1,059,298

WideResNet [98] 1,409,034 76 2,243,546
% LSTM [99] 4,234 3 397,706
& ReNet [100] 245,800 6 67,153,930

TABLE II: Summary of 3 CNN-based and 2 RNN-based
subject deep neural networks.

consider five different severity levels for each pattern. Note
that, some of the 50,000 images may not be failures on the
DNN. Thus, for the kth failure pattern, we evaluate the pre-
trained DNN on all generated images D"* and identify the
failure cases. From the failure cases, we randomly select 1,000
failure cases as the dataset D while the residual failure cases
form the dataset D% (i.e., unknown failure cases). Table I
shows the detailed number of each failure type for different
models, where Column D% + D represents the number of
all failure cases. Note that, the number of D is always
1,000 no matter in which degradation, and the number of D
is greater than that of O°. Intuitively, in terms of the kth
failure type, our method is to repair the DNN ¢4(-) to make
it achieve high accuracy on the corresponding failure dataset
D with the guidance of D while not harming the accuracy
on other failure and the original testing datasets. Hence, we
use the accuracy of repaired DNN on {D%|k € [1,...,k]}
to evaluate the performance of DNN repairing methods.

DNN architectures. We select three different state-of-the-
art CNN-based architectures (i.e., all convolution network
(AllConvNet) [96], DenseNet [97], and Wide Residual Net
(WideResNet)) [98] as the DNNs to be repaired. Besides, we
also test our method on two RNN-based architectures, LSTM
[99] and ReNet [100]. For each architecture, we first pre-train
them with original CIFAR-10’s training set (i.e., D'), and the
model with the highest accuracy in testing set (i.e., D) will
be saved. For the AllConvNet [96], we employ the same
architecture as the authors provided in their paper. In terms of
DenseNet [97], we use its standard configurations for CIFAR-
10, setting its depth as 40 and growth rate as 12. We also
implement the standard WideResNet [98] whose width factor
is set to 1 and the number of blocks is 1. For LSTM [99] ,
we adopt the simplest architecture, which only contains one
LSTM layer and two fully-connected layers. In terms of the
ReNet [100], we use its standard architecture for CIFAR-10,
as introduced in the original paper. The details about these five
architectures can be found in Table II.

Hyper-parameters In terms of the training setup, we em-
ploy stochastic gradient descent (SGD) optimizer with a batch
size of 128, the learning rate of 0.1 and decay of 0.0005.
Jensen-Shannon divergence will be used as the loss function.
The max epoch number is 500, and the training will stop
if validation loss does not decrease in 10 epochs. As for
AugMix, mixture width is set as 3, and mixture depth is
randomly changed between 1 to 3. We set 9 base operations
(i.e.,autocontrast, equalize, posterize, rotate, solarize, shear-
X, shear-y, translate-x and translate-y) to the operation set
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Fig. 3: Accuracy of the original DNNs on CIFAR-10’s testing
dataset (i.e., D) and on 15 corrupted testing datasets (i.e.,
{D¥|k =1,...,15}).

O in the algorithm 1 with additional operations proposed in
Sec. III-D. We set the number of clusters, i.e., N, in Sec. I[II-C
as 5.

Other configurations. We implement DeepRepair in
Python based on PyTorch framework. All the experiments
were performed on a server with the Ubuntu 16.04 system
with a 12-core 3.6GHz Xeon CPU, 126GB RAM and two
NVIDIA GeForce RTX 2080 Ti 12G GPUs.

Baselines. To demonstrate the advantage and usefulness of
DeepRepair, we consider two kinds of baselines for com-
parative studies. The first set of baselines is the general
state-of-the-art data augmentation methods, i.e., AugMix [91],
CutMix [88], CutOut [86], and MixUp [87]. The second set of
baselines is recently proposed state-of-the-art DNN repairing
methods, i.e., SENSEI [101] and Few-Shot [85]. In particular,
for the first four data augmentation methods, we perform
DNN repairing by using them to fine-tune the DNNs with the
original training dataset (i.e., ") and 1,000 collected failure
cases (i.e., D). For the SENSEI and Few-Shot methods,
we also employ the failure cases during repairing for a fair
comparison.

V. EXPERIMENTAL RESULTS

A. RQI. What are the effects of different failure (noise)
patterns (i.e., failure types) on DNN operational inference?

In this part, we train five DNNs, among which three
are CNN-based models, i.e., AllConvNet, DenseNet, and
WideResNet, and two are RNN-based models, i.e., LSTM
and ReNet, on the CIFAR-10’s training dataset (i.e., D") and
evaluate them on both original testing dataset (i.e., D") and the
15 extended testing datasets (i.e., {D'%|k = 1,...,15}). The
evaluation results of two CNN-based models are summarized
in Fig. 3. Overall, we have the following observations: @
Different failure types pose different degradation effects on the
DNN s pre-trained on the original training dataset, i.e., D". For
example, the accuracy of AllConvNet on the original testing
dataset is around 93.0% while the JPEG and GN reduce the
results to around 80.0% and 43.0%, respectively, indicating
that we should repair DNNs by considering the difference
across different failure types. A simple way is to use collected
failure cases that may be degraded by an unknown failure
type as the guidance for repairing. However, in real-world
applications, it is hard to collect a large number of failure
cases under similar unknown failures. Hence, it is significantly

important but difficult to explore an effective method that is
able to repair the DNNs against an unknown failure type
(pattern) according to a few collected failure cases. In this
paper, we propose a novel DNN repairing method to address
this problem and validate the effectiveness in the following
experiments. @ The accuracy reductions on the same DNN
have large diversity under different failures. For example, with
the Gaussian noise, the accuracy reduction is around 50%
while the value remains almost unchanged with the Brightness
failure, indicating that the DNN may have very different results
on different failures. Thus, the DNN repairing guided by a kind
of failure should not affect the performance on other failure
types and the original clean inputs.

B. RQ2. Does the proposed method outperform state-of-the-
art (SOTA) data-driven repairing methods on the examples
with specific failure patterns?

For the kth failure type, we repair three CNN-based models,
i.e., AllConvNet, DenseNet, and WideResNet, and two RNN-
based models, i.e., LSTM and ReNet, trained in Sec. V-A
via the six baseline methods and the proposed method. Then,
we evaluate their performance by calculating the accuracy
of repaired DNNs on the failure cases, i.e., D% and show
the results on 15 failure types in Table IV. In general, our
method (i.e., DeepRepair) exhibits significant advantages over
all baseline methods on the three CNN-based and two RNN-
based architectures under 15 failure types, demonstrating the
effectiveness and generalization of the proposed method.

In particular, comparing with the state-of-the-art DNN re-
pairing methods (i.e., Few-shot and SENSEI), DeepRepair
achieves much higher accuracy on all three DNNs under 15
failures. In particular, on the glass blur (GB), motion blur
(MB), and zoom (ZM), DeepRepair has achieved over 500%
relative improvements on SENSEI, demonstrating the effec-
tiveness and advantages of our method. In terms of other data
augmentation-based methods, the results on the AllConvNet
present that DeepRepair has much higher accuracy than all
other augmentation methods under all 15 failure types. Even
the state-of-the-art AugMix method still has huge accuracy
gaps compared to our method. Nevertheless, as the DNN
becomes more powerful (i.e., from AllConvNet to WideRes-
Net), the capability of AugMix on repairing is significantly
enhanced and its accuracy under several failure types (e.g.,
pixelate, snow, impulse noise, defocus blur, motion blur, zoom,
etc.) can be slightly larger than our method, indicating that
AugMix is more suitable for repairing elaborately designed
DNN architectures while our method obtains consistent effec-
tiveness on the three kinds of DNNs.

Moreover, to counteract the randomness impacts of data
augmentation to the evaluation results, we use two repairing
methods (i.e., Few-shot and SENSEI), the best augmentation-
based method (i.e., AugMix), and the proposed method to
repair three CNN-based DNNs (i.e., AllConvNet, DenseNet,
and WideResNet) for five times independently. Then, we
present the averaged accuracy and the corresponding variances
after repairing of the 15 failure patterns in Fig. 4. In summary,
we have the following observations: @ According to the
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Fig. 4: We train 3 CNN-based DNNs using 3 baselines, i.e., Few-shout, SENSEI, AugMix, and proposed method, DeepRepair. We repeat
repairing period in 5 times and record the accuracy on 15 degradation sets. In the chart, the line means average accuracy on specific
degradation set in 5 times, the band area shows the highest and the lowest accuracy in 5 times.

average accuracy, DeepRepair outperforms the two repairing
baselines (i.e., Few-Shot and SENSEI) on all three CNN
models and 15 failure patterns. DeepRepair also achieves
higher average accuracy than AugMix on the AllConvNet and
DenseNet for most of the failure patterns. ® In terms of the
variance results, DeepRepair and AugMix obtain much smaller
variance than the SENSEI and Few-Shot methods, indicating
that DeepRepair and AugMix are mush stable than the two
repairing baseline methods.

C. RQ3. Does DeepRepair harm the robustness to other
failure patterns and the accuracy on clean images?

A well repaired DNN should achieve much higher accuracy
on the target failure patterns while not harming the accuracy
on the original clean images and the robustness to other kinds
of failure (noise) patterns.

To validate the first capability of our method, we evaluate
the repaired DNN under the kth failure pattern on the original
testing dataset (i.e., D) and compare with the original DNN.
We present the results in Fig. 5. Specifically, for the kth
axes, we show the evaluation results of the original and
the repaired DNN on the D"V and the accuracy of repaired
DNN on the D'k. We have the following observations: @
Comparing the accuracy difference of DNNs on the original
testing dataset (i.e., green line for the repaired DNN and
yellow line for the original DNN) and the unknown failure
datasets (i.e., red line for the repaired DNN and black line for
the original DNN), we observe that the accuracy difference has
significantly decreased after repairing, demonstrating that the
proposed method could effectively repair the original DNN. @
Comparing the results on the original testing dataset DV (i.e.,
the yellow line and the green line), we see that all repaired
DNNs do not harm the accuracy of the original DNN on the
clean images and even achieve much higher accuracy when
we repair the DenseNet and WideResNet.

To validate the second capability of our method, we take
the AllConvNet as an example and evaluate the accuracy
of the repaired DNN based on one failure pattern on other
failure datasets to show whether the repaired model could have
higher robustness on other failure patterns or not. As shown in

AlliConvNet
Original DNN on the Original CIFAR-10  ~—— Repaired DNN on the Original CIFAR-10 — Repaired DNN on the 15 Corrupted CIFAR-10s

DenseNet WideResNet

Fig. 5: Accuracy of original and repaired DNNs on the original
CIFAR-10’s testing dataset (i.e., D") and 15 extended testing
datasets (i.e., DVk), respectively.

Fig. 6, DeepRepair makes the repaired DNN under one failure
pattern achieve similar significant accuracy enhancement on
other failure datasets, outperforming all baseline methods.
Overall, the two experiments in Fig. 5 and 6 demonstrate that
DeepRepair can effectively repair the DNN while not harming
the accuracy on the clean dataset as well as the robustness on
other failure pattern-based datasets.

D. RQ4. Do the proposed components of DeepRepair all
contribute the final accuracy?

To demonstrate the effectiveness of our clustering-based
style-guided data augmentation for DNN repairing, we conduct
an ablation study by repairing pre-trained AllConv, Dense,
and WideResNet models with two variants of our method.
The first one performs the style transfer on randomly selected
failure cases to guide the repairing process without using the
clustering method and we denote this variant as ‘no-cluster’ in
Table V and Fig. 7. The second one is our final version while
the clustering is first done on the collected failure cases and we
call this variant as ‘cluster’ in Table V and Fig. 7. Specifically,
given a pre-trained deep model ¢4 (-) and the collected failure
examples D that are corrupted by the kth failure pattern,
we use the above two variants to repair ¢4 (-) and evaluate on
the testing dataset D"*. Then, we report the repaired accuracy
in Table V (i.e., the kth column in the table). As a result,
for the three pre-trained models, fifteen failure patterns, and
two repairing methods, we achieve 3 X2 X 15 accuracy results.
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Dataset V\éideResNet DenseNet AllConvNet LST™M ReNet
D + D% D% + D% Dk + D% D% + D% Dk + D%

Gaussian noise (GN) 24,026 24,458 28,218 20,713 16,266

Shot noise (SN) 19,701 19,727 22,561 20,484 16,282
Impulse noise (IN) 19,591 20,189 22,074 21,438 17,122
Defocus blur (DB) 10,398 11,465 11,497 20,365 17,461

Glass blur (GB) 28,162 27,844 25,588 21,176 17,535

@ Motion blur (MB) 14,055 13,937 14,058 20,970 19,163
= Zoom (ZM) 14,625 14,895 14,247 21,178 17,705
% Snow (SW) 12,907 13,613 12,359 24,086 19,691
= Frost (FT) 14,840 15,082 14,856 25,800 23,717
O Fog (FG) 8,222 8,812 9,207 30,740 27,349
Brightness (BS) 5,515 5,735 4,614 22,416 19,551
Contrast (CT) 13,466 13,067 17,320 31,380 31,659

Elastic Transform (ET) 11,490 11,569 9,359 22,083 18,488
Pixelate (PIX) 15,241 17,865 13,901 20,293 16,468

JPEG Compression (JPEG) 12,864 12,451 10,377 20,456 16,269

TABLE III: The number of all failure cases (i.e., D% + D), which is the sum of collected failure cases for repairing guidance
(i.e., D%, which is always be 1000), and residual cases for repairing evaluation (i.e., D) of five pre-trained DNNs, three
are CNN-based DNN:s, i.e., AllConvNet, DenseNet, and WideResNet, and two are RNN-based DNNs, i.e., LSTM and ReNet.

Repair Method | GN SN IN DB GB MB ZM SwW FT FG BS CT ET PIX  JPEG
Cutout 6.50 599 1795 16.19 10.01 9.85 7.13  17.31 1025 1479 2571 1040 1997 1349 1698
o} Mixup 126 1751  3.15 1041 742 8.75 8.47 9.68 14.08 1297 1566 935 8.12 9.44 9.24
% CutMix 1280 590 12.86 1246 8.70 8.75 894 1569 1246 1141 1591 729 824 1471 20.40
5 AugMix 36.19 3240 4123 4791 4074 3955 48.13 3851 41.84 29.86 3326 29.88 34.80 44.56 40.36
<:C Few-shot 1565 1941 1348 11.00 9.84 1142 890 17.73 16.68 17.39 1519 12.08 1331 16.56 16.10
SENSEI 18.85 25.13 1427 11.67 729 9.02 8.41 1521 13.18 1572 20.78 9.55 13.72 16.05 16.18
DeepRepair | 55.19 61.32 5098 6898 5691 6197 6734 59.70 63.89 49.08 4474 3490 51.03 55.69 46.14
Cutout 11.58 1273 2325 1325 842 1357 10.14 2571 1645 1654 3992 1372 27.16 17.13 24.85
- Mixup 1472 17.13 397 8.17 3.48 7.19 6.04 690 12.14  9.63 5.53 631 11.30 1260 11.18
Z CutMix 15.08 1812 1786 865 11.31 1055 6.05 1498 1096 1324 1799 795 1183 656 16.75
Qé AugMix 48.18 53.62 57.66 64.63 5294 60.61 6392 5723 62.11 4837 5090 5836 5529 | 65.08 54.71
o)
A Few-shot 1334 1294 11.65 1218 1024 975 1198 1458 13.01 15.63 1694 10.09 1220 1472 15.26
SENSEI 21.24 1654 17.28 1550 1194 739 1031 16.11 16.08 1434 17.17 7.52 1433 17.39 18.78
DeepRepair | 61.51 64.16 5793 7197 6140 65.01 73.14 67.73 6400 5781 5694 67.00 6256 60.32 6341
Cutout 13.06 13.17 25.02 1495 1028 1248 12.87 2645 1525 2253 39.23 16.13 21.23 20.70 29.00
o} Mixup 11.57 13.66 1121 7.44 3.50 571  16.12  6.21 7.88 748 13.11  4.68 6.04 5.65 8.64
% CutMix 1143 1062 1920 10.70 6.71 6.56 584 1450 10.10 11.55 19.07 14.19 1030 13.10 12.98
& AugMix 65.59 | 69.73 7157 7936 6595 | 7772 81.17 68.77 6999 62.09 | 65.65 69.70 6897 63.44 | 65.64
§ Few-shot 1252 1513 11.10 10.85 1328 1032 12,54 1028 1273 1236 14.04 620 1283 1221 12.62
SENSEI 10.60 521 475 1449 827 1038 1240 947 7.33  10.00 10.74 10.68 17.27 13.96 18.96
DeepRepair | 67.80 69.44 71.10 7499 | 6641 7733 8042 | 7126 74.13 67.09 6237 6454 67.10 @ 67.73 65.03
Cutout 28.05 28.09 2390 2433 2488 2438 23.69 30.03 2544 1494 2935 1077 2297 2537 3047
Mixup 2283 2045 822 18.00 2211 1789 841 2229 1898 12,51 2355 845 1791 20.22 21.05
s CutMix 2696 29.55 27.59 2384 2280 2277 2144 2759 2233 1332 2546 10.68 2240 26.11 26.66
& AugMix 41.77 4263 41.02 4321 | 4148  41.87 42.67 40.13 3834 3486 4245 30.53 4223 43.65 4331
—
Few-shot 1475 1441 1421 1428 1376 13.88 13.60 1338 1334 10.06 14.11 11.51 1334 1439 1449
SENSEI 10.08 1022 988 11.20 11.09 11.06 11.95 1355 13.83 12.06 1337 1190 12.65 10.95 10.35
DeepRepair | 46.16 46.80 43.99 47.62 40.77 | 4427 4784 41.19 4266 43.11 4282 4891 4554 48.01 39.20
Cutout 2342 2349 2295 21.04 2079 21.03 23.08 18.08 1429 1553 19.65 11.24 21.65 2452 2340
Mixup 18.05 1787 1793 19.59 1822 17.13 17.17 17.62 19.03 13.16 18.02 10.57 17.47 1838 19.27
] CutMix 21.20 1991 19.19 17.62 19.72 20.01 20.69 18.08 14.40 1334 1634 1032 1728 19.80 18.30
z AugMix 3599 3722 3453 31.77 31.61 31.44 3271 2752 2487 2564 2817 2602 30.08 3145 30.39
&~
Few-shot 1934 19.83 2021 20.07 19.64 18.69 2032 1848 14.08 17.60 17.77 16.08 19.19 20.26 19.63
SENSEI 17.17  17.10 17.16 1648 16.64 1628 16.14 1475 1247 1341 1432 1322 1640 1694 1694
DeepRepair | 33.20 3223 30.86 | 3420 34.12 3561 36.46 31.12 3485 3258 3257 3545 3278 3445 3l1.11

TABLE IV: Accuracy of repaired DNN architectures on 15 failure datasets, i.e., {D%|k = [1,15]}. We choose CutMix,
Mixup, Cutout, Few-Shot, SENSEI, AugMix as baseline methods, and fine-tune them with DeepRepair under 15 failure
patterns, respectively. We highlight the best results with red.
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Fig. 6: Comparing the repairing methods on AllConvNet by evaluating the accuracy of repaired DNN under one failure pattern
(i.e., the name at the bottom of each sub-figure) on other failure datasets, i.e., {D |k = [1, 15]}. Please find raw data in [94].

Repair Method | GN SN IN DB GB MB ZM SW FT FG BS CT ET PIX JPEG
U | no-cluster | 58.13 | 61.27 4847 [69.59 57.35 | 5495 59.17 59.28 63.78 [ 4991 44.85 3382 47.57 52.57 4573
= cluster 55.19 [ 61.32 50.98 6898 5691 | 61.97 67.34 59.70 63.89 49.08 4474 | 3490 51.03 55.69 46.14
g | no-cluster | 43.93 61.10 | 58.66 72.96 60.54 62.05 | 7449 | 6734 61.59 5597 5578 63.64 6142 [ 6587 63.18
A cluster 61.51 64.16 5793 7197 6140 65.01 73.14 6773 6400 57.81 5694 67.00 6256 60.32 @ 63.41
3 | no-cluster | 62.72 50.80 65.61 | 76.13 64.53 7546 79.16 6947 70.18 6483 61.37 | 6645 66.88 61.23 | 65.21
; cluster 67.80 6944 71.10 7499 6641 7733 8042 7126 7413 67.09 6237 6454 67.10 67.73 65.03

TABLE V: Ablation study of DeepRepair. We consider two variants. The first uses uniform sampling to select reference images
for style-guided data augmentation (i.e., Eq. 3) and we denote it as ‘no-cluster’. The second one uses Eq. 5 for clustering-guided
sampling and we denote it as ‘cluster’. We compare the two methods via the accuracy of repaired DNNs on {D°® |k = [1, 15]}.

We highlight the best result with red.

Moreover, to test whether the repairing methods would harm
the robustness of deep models to other failure patterns, we
evaluate the model repaired with the kth failure pattern on
the testing datasets {D"7|j € [1, 15]} containing other failure
patterns. As a result, given a deep model repaired with the
kth failure pattern (e.g., Gassussian noise), we can get fifteen
accuracy values by evaluating it on {D"/|j € [1, 15]}, which
constitute a curve in the first subfigure named as ‘Gassuaian
Noise’ in Fig. 7. Then, we can get fifteen subfigures for the
fifteen failure patterns and each subfigure contains six curves
for six repairing methods indicated at the bottom of Fig. 7.

According to the reported results, we have the following
observations: @ As shown in Table V, both variants enhance
the accuracy on all failure patterns significantly, demonstrating
that the proposed style-guided data augmentation indeed can
repair the DNN under some specific patterns effectively. @
Comparing the accuracy of repaired DNNs based on ‘no-
cluster’ and ‘cluster’, our final version with the clustering
method outperforms the ‘no-cluster’ one under most of the
failure patterns on all three DNNs, demonstrating that the pro-
posed clustering-based style-guided data augmentation does
help enhance the robustness against various failure patterns. &
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Fig. 7: Comparing the two variants of our methods on three DNNs by evaluating the accuracy of repaired DNN under one
failure pattern (i.e., the name at the bottom of each sub-figure) on other failure datasets, i.e., {D% |k = [1, 15]}. Please find

raw data in [94].

In Fig. 7, the repaired DNNs under one failure pattern based
on clustering-based variant also achieve significant accuracy
on other patterns and usually show better accuracy than the
repaired DNNs based on ‘no-cluster’ variant, demonstrating
that the clustering is able to enhance the accuracy of repaired
DNNSs on other failure patterns further.

E. Threat to Validity

The subject DNN architecture and noise pattern selection
could always be a threat. To counteract such threats, we eval-
uated our proposed method on DNN with diverse architectures
(i.e., with both feed-forward neural network and recurrent
neural network). We also adopt as many as 15 diverse cor-
ruption patterns that could commonly occur in an operational
environment, which is also widely used in previous work, e.g.,
CIFAR-10-C. Even though, this does not guarantee our method
can generalize well to new types of corruption patterns, and
we would evaluate our method on more cases when new cor-
ruption patterns become available. Another threat could be the
randomness of each compared method during our evaluation,
including state-of-the-art techniques and our technique. To

counteract such randomness issues, we repeat the evaluation
of each configuration 5 times, and take their averaged results
for comparison. To further confirm the potential advantage and
usefulness of our method, we also select the state-of-the-art as
baselines for comparison, which include both types of general-
purpose data-augmentation based method (e.g., AugMix), and
recently proposed DNN repairing methods (e.g., SENSEI,
Few-Shot) The evaluation results confirm that our method
indeed outperforms the state-of-the-art methods in the studied
operational environment cases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we tackle the imminent DNN repairing
problem towards the real-world operational environment. To
address the issue that there exists a mismatch between the dis-
tributions of the training dataset and the real-world testing data
that may be corrupted by unknown factors in the operational
environment (e.g., weather elements, blur, noise, etc.), we re-
sort to a style-guided data augmentation paradigm that not only
bridges the aforementioned distributional gap, but also can
retain high DNN performance while handling normal or clean
data. In particular, we first identify that the data augmentation-
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based DNN repairing solution can help to address the problem
and avoid the over-fitting risk, which, however, raises a new
challenge, i.e., how to introduce the failure (noise) patterns into
the data augmentation process with a limited small number of
collected failure example data available. To further address this
challenge, we then propose the style-guided data augmentation
for DNN repairing where a style transfer is used to learn and
introduce the unknown failure patterns within the failure data
into the training data via data augmentation. Moreover, we
propose the clustering-based corrupted data generation for
much more effective style-guided data augmentation. We have
performed comprehensive evaluation with fifteen degradation
factors that may occur in the real world and compare with
four state-of-the-art data augmentation methods and two DNN
repairing methods, demonstrating that our method is able to
significantly enhance the deployed DNNs on the failure data
with even better accuracy on clean datasets.

In the future, we will extend DeepRepair to handle per-
turbations that are not just naturally occurred in physical
environment, but might adversarially or maliciously generated
by adversarial attacks under the security context. These adver-
sarially crafted perturbations, ranging from the most common
additive noise-based ones [102], [103], [104], to non-additive
noise-based ones such as motion blur [19], denoising [105],
geometric morphing [106], camera exposure [21], [20], [107],
[108], rain and haze effect [109], [33], [110], efc., are usually
very stealthy and imperceptible, thus posing another challenge
for DNN-based software repairing.
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