
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-2021

DeepRepair: Style-guided repairing for deep neural networks in the DeepRepair: Style-guided repairing for deep neural networks in the

real-world operational environment real-world operational environment

Bing YU

Hua QI

Guo QING

Felix JUEFEI-XU

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the OS and Networks Commons, and the Software Engineering Commons

Citation Citation
YU, Bing; QI, Hua; QING, Guo; JUEFEI-XU, Felix; XIE, Xiaofei; MA, Lei; and ZHAO, Jianjun. DeepRepair: Style-
guided repairing for deep neural networks in the real-world operational environment. (2021). IEEE
Transactions on Reliability. 1-16.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7051

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7051&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7051&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7051&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Bing YU, Hua QI, Guo QING, Felix JUEFEI-XU, Xiaofei XIE, Lei MA, and Jianjun ZHAO

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7051

https://ink.library.smu.edu.sg/sis_research/7051

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353747759

DeepRepair: Style-Guided Repairing for Deep Neural Networks in the Real-

World Operational Environment

Article in IEEE Transactions on Reliability · August 2021

DOI: 10.1109/TR.2021.3096332

CITATIONS

0
READS

69

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Active Vision: Theory & Applications View project

Object detection & tracking View project

Qing Guo

Nanyang Technological University

82 PUBLICATIONS 1,652 CITATIONS

SEE PROFILE

Felix Juefei-Xu

Carnegie Mellon University

107 PUBLICATIONS 2,459 CITATIONS

SEE PROFILE

Jianjun Zhao

Kyushu University

163 PUBLICATIONS 3,651 CITATIONS

SEE PROFILE

All content following this page was uploaded by Qing Guo on 31 August 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353747759_DeepRepair_Style-Guided_Repairing_for_Deep_Neural_Networks_in_the_Real-World_Operational_Environment?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353747759_DeepRepair_Style-Guided_Repairing_for_Deep_Neural_Networks_in_the_Real-World_Operational_Environment?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Active-Vision-Theory-Applications?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Object-detection-tracking?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Guo-17?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Guo-17?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Guo-17?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Juefei-Xu?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Juefei-Xu?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Carnegie-Mellon-University?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Felix-Juefei-Xu?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jianjun-Zhao-3?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jianjun-Zhao-3?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kyushu_University?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jianjun-Zhao-3?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qing-Guo-17?enrichId=rgreq-b6ac893725458fd64ed871dfd2535e2e-XXX&enrichSource=Y292ZXJQYWdlOzM1Mzc0Nzc1OTtBUzoxMDYyNzM5Nzg3MTM3MDI0QDE2MzAzODgzMTg4ODg%3D&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON RELIABILITY, 2021 1

DeepRepair: Style-Guided Repairing for DNNs in
the Real-world Operational Environment

Bing Yu, Hua Qi , Qing Guo† , Felix Juefei-Xu , Xiaofei Xie , Lei Ma , and Jianjun Zhao

Abstract—Deep neural networks (DNNs) are continuously
expanding their application to various domains due to their high
performance. Nevertheless, a well-trained DNN after deployment
could oftentimes raise errors during practical use in the opera-
tional environment due to the mismatching between distributions
of the training dataset and the potential unknown noise factors in
the operational environment, e.g., weather, blur, noise, etc. Hence,
it poses a rather important problem for the DNNs’ real-world
applications: how to repair the deployed DNNs for correcting
the failure samples under the deployed operational environment
while not harming their capability of handling normal or clean
data with limited failure samples we can collect.

In this paper, we propose a style-guided data augmentation
for repairing DNN in the operational environment, which learns
and introduces the unknown failure patterns within the failure
samples into the training data via the style transfer. Moreover, we
further propose the clustering-based failure data generation for
much more effective style-guided data augmentation. We conduct
a large-scale evaluation with fifteen degradation factors that may
happen in the real world and compare with four state-of-the-art
data augmentation methods and two DNN repairing methods.
Our technique successfully repairs three CNNs and two RNNs
with averaging 62.88% and 39.02% accuracy enhancements
on the fifteen failure patterns, respectively, achieving higher
repairing performance than state-of-the-art repairing methods
on the most failure patterns with even better accuracy on clean
datasets.

Index Terms—Deep neural network, DNN repairing, opera-
tional environment, data augmentation.

I. INTRODUCTION

Over the past few years, deep neural networks (DNNs)
achieved human-competitive performance and have been
widely deployed in many real-world application domains.
Multifarious applications with DNNs spring up like mush-
rooms, ranging from visual perception [1], [2], [3], such as
autonomous driving [4], [5], [6], [7], face recognition [8],
[9], [10], [11] and generation [12], [13], object detection [14],
[15] and segmentation [16], [17], tracking [18], [19], medical
imaging analysis [20], [21], and so on. Besides, DNNs are
widely used to solve various low-level vision problems such as
super-resolution [22], [23], [24], denoising [25], [26], illumi-
nation correction [27], [28], [29], image inpainting [30], [31],
deraining [32], [33], dehazing [34], [35], etc. In addition, more
and more automatic speech recognition and natural language
processing [36], [37] applications start using DNNs such as

Bing Yu, Hua Qi, Xiaofei Xie, and Jianjun Zhao are with Kyushu Univer-
sity, Japan.

Qing Guo is with Nanyang Technological University, Singapore.
Felix Juefei-Xu is with Alibaba Group, USA.
Lei Ma is with University of Alberta, Canada and Kyushu University, Japan.
†Qing Guo and Lei Ma are the corresponding authors (tsingqguo@ieee.org).

machine translation [38], [39], [40], hate speech detection
[41], [42], sentiment analysis [43], [44], speech generation
and voice assistant [45], [46], etc. More recent, researchers
are active in applying DNNs on intelligent agents for games
[47], [48], [49] and decision making for robotics applications
[50], etc.

Compared to traditional software, a prominent advantage
of DNN software is that DNN software can capitalize on
the abundant real-world training data and high-capacity neural
networks to learn the desired prediction or generative models,
oftentimes surpassing human-level performance. One of the
milestone examples is what we have witnessed in the game of
Go where AlphaGo [51] and subsequent AlphaGo Zero [52]
as well as AlphaZero [53] dominate the complicated game.
Another example is in the realm of partial information game
such as the Libratus [54], [55], which out-bluffed best human
players in the poker game of no-limit Texas Hold’Em.

Despite the high performance and many successes among
the aforementioned DNN-based applications, DNN software
still suffers from reliability issues, i.e., oftentimes the well-
trained DNNs that are deployed in the real world operational
environment can behave erroneously and deviate from what
they are designed for. This can be primarily caused by the
gap between the real-world test data distribution Dte in the
operational environment and the distribution of the previously
collected training data corpus Dtr. We say a DNN has a
high level of generalizability when the DNN that is trained
on data that follow Dtr can perform well on test data that
follow Dte. In other words, DNN software works better as the
real-world test data distribution (Dtr) approaches the collected
training data corpus (Dte). There are several aspects worth
discussing as to why such a gap between Dtr and Dte exists.
First of all, the amount of labeled training data for a supervised
learning scenario is usually limited, either due to the cost of
data collection and/or the cost of providing manual ground-
truth labels. Second, even the DNNs are trained with very
abundant training data, the training corpus can never cover all
the real-world (potential noise) variations and perturbations.
There can always be some corner cases that are never seen by
the DNNs during the training process, and sometimes, these
corner cases can be the culprit for causing erroneous behavior
of the deployed DNNs. Third, the trade-off between the DNN
performance on the training set and the DNN generalizability
on the unseen testing set is usually not well defined in a clear
cut because, at training time, we usually do not observe the
real-world testing data. Performing too well on the training
data will even lead to overfitting and poor generalizability
over testing data. It usually takes a separate validation set

https://orcid.org/0000-0002-4302-1915
https://orcid.org/0000-0003-0974-9299
https://orcid.org/0000-0002-0857-8611
https://orcid.org/0000-0002-1288-6502
https://orcid.org/0000-0002-8621-2420
mailto:tsingqguo@ieee.org

IEEE TRANSACTIONS ON RELIABILITY, 2021 2

mimicking the real-world testing data as well as heuristics to
determine the best trade-off strategy. However, issues remain
because the validation set often does not represent the entirety
of the real-world testing data of the upcoming deployed
operational environment.

There have been some recent attempts to measure the
quality and robustness of the deployed DNN software by
discovering failure cases that cannot be predicted correctly,
such as adversarial attack techniques [56], [57], [58] and
the deep learning (DL) testing techniques [59], [60], [61],
[62], etc. Under the real-world setting, the already-deployed
DNNs could oftentimes raise errors during practical usage
due to the mismatch between distributions of training dataset
and real-world collected data that may cause failures by
unknown real-world factors, e.g., weather, blur, noise etc.
Hence, it poses a rather important problem for the DNNs’
real-world applications: how to repair the deployed DNNs for
the unknown failure data while not harming their capability
of handling normal or clean data. Recently, automatic repair
[63], [64] has achieved promising progress in the traditional
software, where faults in a program can be caused by specific
lines of code. Thus, the repair can be performed to localize
and repair the fault-triggering source code. Differently, DNN
follows a data-driven programming paradigm and has no such
explicit structure, which makes the repair of DNN still an open
challenging research problem.

One of the most commonly used methods for DNN repair
is to retrain the DNN with the failure samples. By discovering
the failure samples (e.g., adversarial examples) and adding
them to the training data, so that the failure samples could be
repaired. Another technique is to directly modify the (hyper-
)parameters of the model or the structure [65], [66] based
on the guidance of the failure methods. Some techniques
[67], [68], [69] are proposed to identify the buggy units
of the DNN (e.g., the neurons) and then fix these errors
by generating samples for retraining. The key challenge is
that we usually can only collect a small number of failure
cases, which represent limited failure patterns in the real-world
environment. Thus, repair with direct retraining or evolving
parameters may have low generalizability, i.e., they can only
work well on the collected failure cases but may fail on
other unseen failures. Although sometimes we can generate
a large number of failure cases, it is still unknown whether
these failure cases could represent diverse failure patterns. It
is inefficient if many failures may be redundant, i.e., they share
the same failure pattern. Another challenge is that the repair
must retain the performance and capability of the DNNs when
handling data that can be predicted correctly before. How to
achieve both goals simultaneously is a challenge itself.

Towards tackling the challenge, in this paper, we propose a
novel method to repair the DNN on image classification task.
Our assumption is that we could only collect a small number
of failure data, based on which the DNN needs to be repaired.
Specifically, we propose the style-guided data augmentation
for DNN repairing where a style transfer-based method [70],
[71], [72], [73] is proposed to introduce the unknown failure
patterns (e.g., potential noise and combinations) within the
failure data into the training data via data augmentation.

Moreover, we propose the clustering-based failure data gen-
eration for more effective style-guided data augmentation. By
generating diverse augmented data, we retrain the model such
that the collected failure data and other similar failure data
can be fixed.

We conduct a large-scale evaluation with fifteen possible
degradation factors that may happen in the real world and com-
pare with four state-of-the-art data augmentation methods and
two DNN repairing methods. The DNN models repaired with
our technique perform as well as the original one, sometimes
even better on clear data. Specifically, our method successfully
repairs three CNNs and two RNNs with averaging 62.88% and
39.02% accuracy enhancements on the fifteen failure patterns,
respectively, achieving stronger repairing capability than state-
of-the-art repairing methods on the most failure patterns.

Overall, the contribution of this paper is summarized as
follows:
• We formulate the problem of DNN repairing based on

a small limited number of failure cases and analyze the
challenges.

• We originally propose a novel repair technique by style
transfer-based data augmentation for the DNNs in the
real-world operational environment.

• We perform a large-scale evaluation of our proposed
technique under fifteen potential degradation factors,
comparing with six state-of-the-art methods as baselines.

The repair of DNNs, in general, can be rather challenging
and sometimes even impossible without any assumption, this
paper takes a special focus on repairing the potential issues
that are caused by the noise patterns (that introduce data
corruptions) from the operational environments, which we
believe could be an important direction and repairing scenario
towards practical DNN application with high quality.

The rest of the paper is organized as the following: in
Sec. II, we introduce the background with respect to DNN
software repairing. In Sec. III, we formally introduce our main
technical contributions where we first formulate the problem
of DNN repairing for some specified failure patterns. Then, we
present the data augmentation-based solution for this problem
and reveal the associated challenges, which are further ad-
dressed by the proposed style-guided data augmentation for
DNN repairing. In Sec. IV, we describe our evaluation design
and configurations. In Sec. V, we discuss the evaluation results
and findings of our study. Finally, we conclude our work in
Sec. VI.

II. RELATED WORK

In this section, we first briefly discuss the recent progress
on DNN testing, where many research efforts have been spent
on. Then, we focus more on the connections and differences
between DNN software repair and traditional software repair,
diving into several recent work on DNN repair, with detailed
discussion on their method formulation, advantages as well as
limitations.

A. DNN Software Testing
To enable the quality assessment and defect detection of

DNNs, various deep learning (DL) testing techniques have

IEEE TRANSACTIONS ON RELIABILITY, 2021 3

been recently proposed. Consider the fundamental difference
between traditional software and DNN, some research focuses
on the testing criteria design [59], [61], [74], [75]. DeepXplore
[59] originally proposes the neuron coverage towards measur-
ing the adequacy of the test cases. A neuron is activated if
its value is larger than a threshold. Neuron coverage measures
the percentage of neurons that are activated. However, neuron
coverage can be coarse and only a few test inputs can already
achieve very high neuron coverage [76], [77]. DeepGauge [61]
proposes a set of multi-granularity testing criteria based on
neuron-based behaviors. For example, :-Multisection Neuron
Coverage (KMNC) extends the neuron coverage that, it first
profiles the training data and obtains the activation status
of each neuron by all training data. For each neuron, the
range of its activation status is partitioned into : bucket.
Then, KMNC measures the ratio of all covered buckets of
all neurons of a DNN by a set of test cases. Furthermore, the
authors propose DeepCT [74] that considers the interactions
of different neurons in a layer based on the combinatorial
testing methods. Kim et al. [75] later propose the coverage
criteria that measure the surprise of the inputs, i.e., the distance
between the inputs and the training data. The assumption is
that surprising inputs introduce more diverse data such that
more abnormal behaviors could be triggered.

Based on the proposed testing criteria, a number of test
generation techniques [59], [60], [62], [78], [79], [80] are
proposed for detecting defects in DNNs. Specifically, Deep-
Xplore [59] and DeepTest [60] generate test cases based on
the guidance of neuron coverage. In particular, DeepXplore
adopts a differential testing method that determines whether
an input is erroneous based on the cross-validation between
multiple DNNs. TensorFuzz [79] and DeepHunter [62] pro-
pose the coverage-guided fuzzing techniques to test DNNs.
DeepHunter integrates the coverage criteria from DeepGauge
while TensorFuzz adopts the distance-based coverage criteria.
While the aforementioned techniques mainly focus on feed-
forward neural network, DeepStellar [78] proposes the cov-
erage criteria and fuzzing technique for the recurrent neural
network. The basic idea is to extract an abstract model from
the given RNN. A set of coverage criteria then can be defined
based on the abstract model.

While the existing fuzzing techniques mainly discover de-
fects in the model, our method can be treated as a mitigation
technique for repairing such potential defects. MODE [67]
proposes a DNN debugging technique on feedforward neural
networks (FNN). Given an FNN, a feature map is constructed
in each layer. By selecting one layer, MODE detects the
buggy weights for the given failed inputs and fixes these
bugs by generating new training samples. Different from our
method, MODE mainly focuses on fixing the under-fitting or
overfitting problems while our method focuses on the more
general problem, i.e., the distribution shift between training
samples and the real-world test samples. More comprehensive
discussion on the deep learning testing can be referred to the
recent survey [81].

Overall, existing DNN software testing mainly focuses on
detecting the defects in models. In contrast, our method aims
to repair the DNNs and enhance their capability under the

guidance of limited failure examples available, which can be
regarded as the next step of DNN software testing.

B. DNN Software Repairing

In software engineering literature [63], there are two well-
studied approaches for tackling program failures, i.e., software
healing and software repairing. Software healing detects soft-
ware failures in-the-field and makes amends by responding
to the failures and restoring normal operations. The key is
that the amendments are not deployed at the source code
level, but instead deployed at runtime in order to mitigate
runtime failures on the deployed applications. On the other
hand, in software repairing, the amendments operations are
mainly performed on the program source code level to remove
fault that causes a failure. In this work, our fixing of the DNN
software conceptually falls under the second category, software
repair, where fixes are deployed on the source code level at
testing and design time, as opposed to at runtime.

One of the recent attempts for DNN software repair is
Apricot [66] that aims at fixing DL model iteratively through
a weight-adaptation method. This method is based on two
observations: ¶ It will be increasingly more difficult for the
DL model to retain a large proportion of its weights to capture
all essential features as the number of inputs in the dataset)0
grows. · Considering a pair of DNNs denoted as �0 and
�sub, where their training processes are identical except that
model �0 is trained on the entirety of the dataset)0, while
model �sub is trained on a subset (0 of)0, and model �sub
is referred to as the reduced deep learning model (rDLM).
Following this, the second observation is that each individual
rDLM may not fully capture the essential features needed to
classify one particular test case correctly, and if there is a set
of rDLMs such that, on average, each one is more likely to
classify the test case correctly, then the combined tendency
of this set of rDLMs is more likely to classify this test case
correctly. Apricot can adjust the weight F of �: accordingly
and it continues to train the adjusted �: with)0 to produce the
next input model �:+1 for the (: + 1)-th iteration step. After
all the iterations are carried out, the output of the procedure
is a deep learning model with repaired weights.

Another recent work SENSEI [82] has proposed to improve
the robust generalization of DNNs using guided test generation
techniques to address the data augmentation problem for the
DNNs under natural environmental variations. The proposed
data augmentation problem is cast as an optimization problem.
In order to identify the worst natural environmental variant
for the augmentation, each training input data goes through
a space search based on the genetic algorithm (GA). The
algorithm is carried out as the following: ¶ At each iteration
of the DNN training, for each training input data, the genetic
algorithm explores a small set of variants of the input and
selects the locally worst one for augmentation; · It then
uses it as the GA seed for the search in the next epoch for
gradually reaching the globally worst variant without needing
to explicitly evaluate all the possible variants; ¸ A further
heuristic-based data selection technique named selective aug-
mentation is used to substantially reduce the DNN training

IEEE TRANSACTIONS ON RELIABILITY, 2021 4

time under augmentation by allowing complete skipping of
a training data at certain DNN training epochs based on
the DNN’s current robustness around that data point. The
proposed method has shown effectiveness on various image
classification datasets for improving DNN robustness through
GA-guided data augmentation.

Sohn et al. have proposed a search-based automated pro-
gram repair technique for DNNs called Arachne [83], where it
directly manipulates the neural network weights and searches
the space of possible DNNs instead of retraining the DNNs.
The search is guided by a specifically designed fitness function
following Generate and Validate automatic program repair
(APR) techniques. The Arachne follows traditional code-based
automatic program repairs techniques with the following steps:
¶ Arachne first adopts a fault localization technique by
utilizing both positive and negative input data to retain correct
behavior and to generate a patch. The representation of the
patch is a set of real-numbered neural network weights; ·
Arachne then uses particle swarm optimization (PSO) as its
search algorithm to update the selected neural network weights
with values from the PSO candidate solution, and further cal-
culates the fitness value based on the outcomes. The Arachne
approach is evaluated on three image classification tasks using
under-trained DNNs to induce unexpected behavior. The repair
produced by Arachne is focused more on targeted misbehavior
with minimal perturbation on other behaviors. This is opposed
to retraining-based DNN repairs that can alter the behavior
significantly.

On a separate thrust, Islam et al. [84] have conducted a
comprehensive study of bug repair patterns for five DNN
libraries Caffe, Keras, Tensorflow, Theano, and Torch by using
the DNN bugs dataset that consists of 415 bugs from Stack
Overflow and 555 bugs from GitHub. The study has analyzed
the following aspects of the fix patterns: ¶ common bug fix
patterns, · fix patterns across bug types, ¸ fix patterns across
libraries, ¹ risk in fix, and º challenges in fixing DNN bugs.

Existing works mainly aim to enhance the pre-trained DNNs
via the pre-defined training datasets while ignoring that the
real-world examples may not be within the domain of training
examples. Different from these DNN repairing works, e.g.,
SENSEI [82], our work takes a special focus on DNN re-
pairing for the incorrect behaviors introduced by the noise
patterns (that can be known or unknown) during the real-
world operational environment. We take a novel style-transfer
based approach to guide the data augmentation process during
training. Specifically, with the limited number of collected
DNN failure examples from the operational environment, we
perform style transfer to guide the data augmentation so that
similar failure noise patterns in the operational environment
would not cause the incorrect decision of the repaired DNN.

More recently, a novel augmentation-based repairing
method was proposed, called few-shot guided mix (simplified
as Few-shot) [85]. Unlike other repairing methods we men-
tioned before, few-shot method first collects failure examples
and uses them to estimate the noise distribution by Gaussian
mixture model (GMM). Then, it randomly samples weights
according to the GMM distribution to mix the augmented
examples. This process actually uses the collected failure

examples to guide the data augmentation process. However,
the estimated GMM is often hard to cover the main failure
patterns in the collected examples, leading to some limitation
of repairing performance. In contrast, our method proposes
to guide the data augmentation via the style transfer method
that is able to explicitly capture the main patterns in failure
examples. Moreover, we identify a clustering-based strategy
for style-transfer-based data augmentation, preserving the key
information in a wide range of failure examples.

C. Data Augmentation for DNN Enhancement

Data augmentation is used to increase the size of training
data and enables a DNN to see more examples, potentially
enhancing the generalization of DNNs. Recent augmentation
methods [86], [87], [88], [89], [90] mainly rely on common
operations, e.g., flipping, rotation, scaling, cropping, trans-
lation, etc., to transform the input training examples. For
example, CutOut [86] randomly cuts a square area from
the training image. MixUp [87] proposes to randomly mix
two training examples and their labels together. CutMix [88]
combines CutOut and MixUp together, cutting a square area
from an image and filling with the same area cutting from
another image. Mosaic [89] is similar to CutMix but adapts
to YOLOv4, mixing four images together to produce a sin-
gle image. GridMask [90] divides an image into grid and
removes disconnected regions. More recently, a novel data
augmentation method was proposed, i.e., AugMix [91]. It
utilizes diverse augmentations, i.e., autocontrast, equalize,
posterize, etc., and mixes multiple augmented examples into
a single image. Moreover, it uses Jensen-Shannon Divergence
consistency loss for training. Xie et al. [92] proposed a model-
based repairing technique specially designed for recurrent
neural network (RNN). In particular, an abstract model is first
extracted from a target RNN. To repair the incorrect behavior
of the RNN on a given input, some relevant samples are then
generated with the guidance of an abstract model for repairing.

Nevertheless, existing data augmentation methods mainly
focus on the general robustness of deep models, ignoring
the failure patterns that are not within the training dataset
or covered by the augmentation operations in the real-world
operational environment. On the contrary, DeepRepair aims
to repair a DNN to make it robust to collected (known and
unknown) failure patterns while not harming the robustness
to other failure patterns.

III. METHODOLOGY

In this section, we first formulate the problem of DNN
repairing for some specified failure patterns (i.e., Sec. III),
which frequently happened and is of great importance for
real-world applications in the operational environment. Then,
we present the data augmentation-based method to counteract
such a problem and reveal the challenges in Sec. III-B.
To address the challenges, we propose a style-guided data
augmentation method for DNN repairing in Sec. III-C and

IEEE TRANSACTIONS ON RELIABILITY, 2021 5

DeepRepair

Pre-trained Model

Clean Data

Repaired Model

Transferred Data
Real-world Data

Training Data

Augmentation

Autocontrast

Equalize

Rotate
Posterize

Shear

Style Transfer

Input Output

Guide

Failure Data Fine-Tuning

Fig. 1: The overall workflow of DeepRepair. Collected failure examples are used to learn the unknown noise patterns by the
style-transfer method. Further combining known noise patterns that could be obtained by domain experts, these noise patterns
are leveraged for data augmentation for effective repairing, so that a DNN could be more robust to handle inputs involved
with both known and unknown noises in the new environment, while maintaining the prediction performance in the original
environments.

introduce the detailed algorithm of our method in Sec. III-D.
The overall workflow and major components of our proposed
method DeepRepair is shown in Fig. 1.

A. Problem Formulation of DNN Repairing

Following the general DNN training process, we can train
a DNN q\ (·) on a large-scale training dataset Dt where \

represents the network’s parameters. We then deploy it for the
real-world applications with the assumption that the unseen
data captured in the real world, whose distribution is denoted
as Dr, has a similar distribution as the training data.

Nevertheless, in practice, it is rather difficult to construct
such a perfect training dataset and a well-trained DNN might
still raise errors when the input data is corrupted by some
(known or unknown) noise patterns in the real-world opera-
tional environment, e.g., weather, blur, and other various kinds
of noise, etc., which are dependent on the task and operational
environments where the DNN is deployed.

Currently, even with the state-of-the-art deep learning tech-
niques for both data and network architectures, it is still diffi-
cult to train such a DNN that can address all real-world situa-
tions under various environments with high performance (e.g.,
high accuracy for image recognition task). Hence, it poses
a pressing problem for the DNN’s real-world applications:
when a well-trained DNN (in the training environment) makes
incorrect predictions on some data that may have specific
failure patterns (e.g., noise) in the operational environment,
how could we repair them without harming its performance
on other normal data? For example, given a DNN q\ (·) offline
trained on Dt and evaluated on a testing dataset Dv for
the image classification task, we deploy it in the real-world
operational environment.

After deployment, we can find that it usually misclassifies
images corrupted by noises with some kind of patterns (we
may not know what the concrete noise pattern is), but we can
collect some failure examples Dc. Then, the problem can be
formulated as: with the Dc and Dt, how should we improve
the accuracy of q\ (·) on the data having the similar failure
patterns with Dc while not reducing the accuracy on Dv?
Specifically, we can represent it as follows:

arg min
\

E(X,H)=T({Dt ,Dc }) �
(
q\ (X), H

)
, (1)

where � (·) denotes the task-related loss function and we use
cross-entropy function for the image classification task. (X, H)
denotes an example and corresponding label from datasets.
T ({Dt,Dc}) defines the way of using the two datasets. For
example, when we have {(X, H) = T (Dc) | (X, H) ∈ Dc}, it
means that we only use the collected dataset Dc to fine-tune
the DNN q\ (·). Obviously, since Dc is often a small-scale
dataset with limited failure patterns, above-mentioned way
(i.e., only utilizing Dc) would lead to an over-fit DNN that
has poor performance on testing dataset Dv.

The repairing context of our formulated problem generally
applies to a wide range of scenarios in practice where there
exists data distribution gap between training environment and
operational environment for deployment. For example, given
a well-trained DNN in environment A, when we try to deploy
it to environment B that is similar but a little different from
A, with a small number of collected DNN error examples in
environment B, how could be repair the DNN so that it could
perform better in the new environment B.

B. Data Augmentation-based DNN Repairing

To avoid the over-fitting issue, a simple solution is to
employ data augmentation operations to extend the training
dataset Dt and fine-tune the DNN. The intuition behind

IEEE TRANSACTIONS ON RELIABILITY, 2021 6

Operators Meaning

Autocontrast Normalizing image contrast
Equalize Equalizing the image histogram
Posterize Reducing color channels’ bit number
Rotate Rotating the image with specified angle
Solarize Inverting all pixel values above a threshold
Shearx Shearing the image on X-axis
Sheary Shearing the image on Y-axis
Translatex Translating the image on X-axis
Translatey Translating the image on Y-axis
StyleTransfer Transferring images w.r.t. a reference image

TABLE I: All operators in the operation set O.

this solution is that the diverse augmentation operations (or
transformations that simulate the real-world noise patterns in
the operational environment) could cover the unknown failure
patterns. For example, we follow the state-of-the-art AugMix
method [93] that can be represented as

arg min
\

E(X,Xaug1 ,Xaug2 ,H)
=T(Dt ,O)

�

(
q\ (X), H

)
+ (2)

_JS
(
(q\ (X), q\ (Xaug1), q\ (Xaug2)

)
,

where T (Dt,O) is to perform transformations on each sample
X ∈ Dt and return two augmented versions, i.e., Xaug1
and Xaug2, with a series of operations sampled from the
operation set O (Table I). In the AugMix method, O contains
some widely known noise patterns of image domain, such as
rotation, equalization, translation, sharpness [93]. The three
examples, i.e., X, Xaug1, and Xaug2, share the same label H.
JS(·) denotes the Jensen-Shannon diverse loss function that
enforces the DNN predicting consistent results for original
and augmented examples.

Although in some particular domains, some common noise
patterns could be manually obtained by domain experts, the
more general and diverse noise patterns are often unknown
and could hardly be obtained even by human experts. This
brings limitations on the diversity of the augmented data
with many unknown critical noise patterns missed, poten-
tially limiting the effectiveness of data augmentation-based
repairing. As a result, the fine-tuned DNNs are not repaired
for handling the failures properly. To address this challenge,
we originally propose the style-guided data augmentation
where the unknown failure patterns are learnt by design, and
further employed to guide the data augmentation, for repairing
DNNs more effectively in a broader context. In particular, we
leverage the style-transfer-based method to learn the unknown
noise patterns in a new environment from the limited size of
collected failure examples. In addition, we could still leverage
human summarized known noise patterns. In fact, DeepRepair
is designed to take advantage of both known and unknown
noise patterns for the repairing process. In the following
subsection, we continue to introduce how the unknown noise
patterns could be learnt by style-transfer methods.

C. Style-Guided Data Augmentation for DNN Repairing

Following the objective function in Sec. III-B, we focus on
automatically learning novel data augmentation operations to

Algorithm 1: Style-Guided DNN Repairing

Input: Training dataset Dt, collected failure images
Dc, pre-trained DNN q\ (·), style transfer
method,i.e., ST(·), augmentation operation set
O, and the pre-defined clustering number # .

Output: Repaired DNN q \̄ (·).
1 # Style-guided data augmentation
2 Function StyleAug(X,O):
3 Initialize Xaug with zeros and sample mixing

weights (F1, . . . , F") ∼ Dirichlet(U, . . . , U);
4 for < = 1, . . . , " do
5 Sample the first operation by O1 ∼ O;
6 Sample the 2nd and 3rd operations by

{O2,O3} ∼ O�Oc;
7 Construct sequential operations: op1 = O1,

op12 = [O1,O2], and op123 = [O1,O2,O3];
8 Sample one operation, i.e., op, from

{op1, op12, op123};
9 Conduct augmentation via op and add it to

Xaug with Xaug+ = F<op(X);
10 Sample blending weight F0 by F0 ∼ Beta(U, U);
11 Blend with X by Xmix = F0 · Xaug + (1 − F0) · X;
12 return Xmix;

13 # Augmentation operation extension via the style transfer
14 Perform K-means clustering on Dc with number # ;
15 Construct the sampling strategy Pc via Eq. 4 ;
16 Identify # operations Oc = {Oc

8 } via Eq. (5) ;
17 Update the operation set O by adding Oc to O ;
18 # Data augmentation for DNN repairing
19 for 9 = 1 to |Dt | do
20 Loading the 9 th image X from Dt ;
21 Calculating two augmented images: Xaug1 =

StyleAug(X,O) , and Xaug2 = StyleAug(X,O) ;
22 Calculating the loss function:

�

(
q\ (X), H

)
+ _JS

(
(q\ (X), q\ (Xaug1), q\ (Xaug2)

)
;

Updating the parameters \ of q\ (·) ;

O for DNN repairing with the guidance of collected failure
examples, i.e., corrupted data Dc. To this end, we propose
the very first style transfer-based data augmentation operations
for repairing. Style transfer is to map an image to a new one
having similar style with a given reference image. As shown
in Fig. 2 (a), source images can be transferred to very similar
styles with the given style images while the original details
are all preserved. Intuitively, we could employ style transfer as
novel data augmentation operations by regarding the corrupted
data as reference images. Specifically, we represent the new
operations as

Oc
8 (X) = ST(X,X8), with X8 = Sample(Dc,P), (3)

where X is the example that needs to be augmented, the image
X8 is one of the collected failure images, and the ST(·) denotes
the style transfer method. Here, we adopt the style transfer
method ,�)2 [70]. The Sample(Dc,P) denotes the sampling

IEEE TRANSACTIONS ON RELIABILITY, 2021 7

Source Images
ReferenceImages
OutputImages

Original Training Image
Corrupted Images

Augmented Images(a) Style Transfer (b) Style-Guided Data Augmentation
Fig. 2: Two examples (i.e., (a)) of style transfer [70] and three examples (i.e., (b)) of our style-guided data augmentation for DNN Repairing.

strategy based on P. The notation P = {%8} defines the
sampling probability of all samples {X8} and we preliminarily
use the uniform sampling strategy with {%8 = 1

|Dc | }. As shown
in Fig 2 (b), the example with a dog is augmented according to
three reference images that are predicted erroneously by over
brightness, low contrast, and fog, and these failure patterns
are successfully included into the augmented images. We then
add all style transfer-based operations, i.e., Oc = {Oc

8 |8 =

[1, . . . , |Dc |]}, to the operation set O and conduct the DNN
repairing by fine-tuning DNNs via Eq. (2). However, there is
still another challenge for DNN repairing. In particular, the
failure images in Dc are diverse. Thus, for an image X, it is
time-consuming to select all failure images as the reference.
Thus, it is difficult to select which images in Dc should be
the references.

To alleviate this issue, we further implement the clustering-
based reference image generation, where the sampling prob-
ability of each sample is determined by their distance to
the clustering center. In particular, we first perform k-means
clustering on the Dc with the number of clusters # and get
subsets denoted as {Dc8 |8 = [1, #]} with their clustering
centers being Cc = {X8

cls |8 = [1, #]}. Then, for the 8th
clustering set (i.e., Dc8), we calculate !2 distance between
samples in Dc8 and the clustering center X8

cls, which is
represented as {38

9
= ‖X8

9
− X8

cls‖2 |X
8
9
∈ Dc8 } and we define

the sampling probability of X8
9

as

%8
9 =

1
#
(1 −

38
9∑ |Dc8 |

:=1 38
:

), (4)

where |Dc8 | is the size of Dc8 and %8
9

is the probability of
X8

9
to be sampled for guiding data augmentation. Intuitively,

the sample near to clustering center has higher probability to
be selected. We define P2 = {%8

9
} as the clustering-guided

sampling strategy and reformulate Eq. (3) as

Oc
8 (X) = ST(X,X8), with X8 = Sample(Dc,Pc). (5)

D. The DNN Repairing Algorithm

Algorithm 1 gives the details of DeepRepair, which corre-
sponds to Fig. 1. According to the algorithm, the workflow of
DeepRepair could be roughly decomposed into two key stages:
¶ extending the augmentation operation set O via the style
transfer based on collected failure cases (Line 2-12); · con-
ducting the data-augmentation for DNN repairing through the
style-guided data augmentation (Line 14-22). We first intro-
duce the style-guided data augmentation, i.e., StyleAug(·)
in Algorithm 1. Intuitively, given an input image X, we obtain
" augmentations via the sequential operations sampled from
the set O and then mix them up together with weights from
Dirichlet and Beta distributions. We use these two distributions
since their capability for data augmentation has been validated
in AugMix [91] and MixUp [87].

The style-guided augmentation is based on the framework
AugMix [91]. More specifically, we obtain " weights via
Dirichlet distribution with U as the parameter (i.e., the 4th line
in Algorithm 1), and then perform " augmentations (i.e., line
5 to line 10 in Algorithm 1). For each augmentation, we first
sample the first operation (i.e., O1) from O, which might be
the style transfer-based operations in Oc or other general oper-
ations in O�Oc (e.g., rotation, translation). Then, we sample
the second and third operations from O�Oc and get {O2,O3}.
All sampled operations are sequentially composed, resulting in
three sequential operations, one of which is selected for the
final augmentation. The above process is shown from line 6
to 10 in the Algorithm 1 with the following principles: ¶
the first operation could be based on style transfer, using to
embed the failure pattern in collected failure examples (i.e.,
Dc) into the example X. Note that, we also allow the first
operation to be other general operations to avoid the risk
of overfitting on the specific pattern in Dc. · the second
and third operations are limited to be general operations (i.e.,
O�Oc), simulating the transformations on the style transferred
example, i.e., by translation, rotation, equalization, sharpness,

IEEE TRANSACTIONS ON RELIABILITY, 2021 8

etc. Besides, since style transfer [70] can be much slower than
the general operations, thus O2 and O3 also avoid great time
cost with only style-based augmentation.

During training (Line 19-22), we firstly collect all trans-
formation set including the style-based transformation and the
general transformation (Line 17). For each training data X, we
calculate two augmented images X0D61 and X0D62, the model
should have similar predictions on X, X0D61 and X0D62 (Line
22).

IV. EXPERIMENTAL DESIGN AND SETTINGS

In this section, we first perform a preliminary study (i.e.,
RQ1) to confirm that whether different failure patterns have
different effects on the accuracy of pre-trained deep mod-
els. Then, we conduct large-scale experiments to validate
the proposed methods and investigate the following research
questions:
• RQ2. Does DeepRepair outperform state-of-the-art (SOTA)

data-driven repairing methods on the examples with specific
failure patterns?

• RQ3. Does DeepRepair harm the robustness to other failure
patterns and clean data?

• RQ4. Do our proposed components of DeepRepair all
contribute the final repairing performance (i.e., accuracy on
different failure patterns)?

In particular, RQ2 intends to evaluate the behavior of Deep-
Repair by comparing with baseline repairing methods and
data augmentation approaches. RQ3 is to explore whether
the DeepRepair method under the guidance of one failure
pattern could harm DNNs’ capability of handling other failure
patterns. RQ4 is to analyze the contributions of different
components of DeepRepair. We present all raw data in the
following figures in [94].

A. Experimental Setups

To answer the above four research questions, we consider
the following setups on dataset, DNN architectures, related
hyper-parameters, etc.

Datasets. Following the formulations in Sec. III, we employ
the training dataset CIFAR-10 as the Dt in Sec. III and
extend its testing dataset, i.e., Dv, via various failure types to
validate our method. Specifically, we first train a DNN (i.e.,
q\) on the CIFAR-10’s training dataset and select 15 failure
types (i.e., 15 different failure patterns) [95]. These 15 failure
types come from CIFAR-10-C, a public dataset containing
different corrupted images. These corruptions can generally be
divided into four types, i.e., noise, blur, weather, and digital
corruption, all of which commonly exist in the real world.
These corrupted data are the superb substitute of real-world
data as it is often hard and expensive to collect them that could
reduce the accuracy of DNN significantly. Note that each of
the 15 failure datasets contains five different severity levels of
corrupted images. Then, following the setting in Hendrycks’s
paper [95], we apply the 15 the potential failure patterns to
Dv, respectively, and generate 15 new testing datasets that
are denoted as {Dv: |: ∈ [1, . . . , 15]}, each of which is
five time larger than Dv: and has 50, 000 images since we

Subject DNN #Neuron #Layer #Parameter

C
N

N AllConvNet [96] 1,516,426 19 1,409,674
DenseNet [97] 5,518,858 79 1,059,298

WideResNet [98] 1,409,034 76 2,243,546

R
N

N LSTM [99] 4,234 3 397,706
ReNet [100] 245,800 6 67,153,930

TABLE II: Summary of 3 CNN-based and 2 RNN-based
subject deep neural networks.

consider five different severity levels for each pattern. Note
that, some of the 50, 000 images may not be failures on the
DNN. Thus, for the :th failure pattern, we evaluate the pre-
trained DNN on all generated images Dv: and identify the
failure cases. From the failure cases, we randomly select 1,000
failure cases as the dataset Dc: while the residual failure cases
form the dataset De: (i.e., unknown failure cases). Table I
shows the detailed number of each failure type for different
models, where Column Dc: + De: represents the number of
all failure cases. Note that, the number of Dc: is always
1,000 no matter in which degradation, and the number of De:

is greater than that of Dc: . Intuitively, in terms of the :th
failure type, our method is to repair the DNN q\ (·) to make
it achieve high accuracy on the corresponding failure dataset
De: with the guidance of Dc: while not harming the accuracy
on other failure and the original testing datasets. Hence, we
use the accuracy of repaired DNN on {De: |: ∈ [1, . . . , :]}
to evaluate the performance of DNN repairing methods.

DNN architectures. We select three different state-of-the-
art CNN-based architectures (i.e., all convolution network
(AllConvNet) [96], DenseNet [97], and Wide Residual Net
(WideResNet)) [98] as the DNNs to be repaired. Besides, we
also test our method on two RNN-based architectures, LSTM
[99] and ReNet [100]. For each architecture, we first pre-train
them with original CIFAR-10’s training set (i.e., Dt), and the
model with the highest accuracy in testing set (i.e., Dv) will
be saved. For the AllConvNet [96], we employ the same
architecture as the authors provided in their paper. In terms of
DenseNet [97], we use its standard configurations for CIFAR-
10, setting its depth as 40 and growth rate as 12. We also
implement the standard WideResNet [98] whose width factor
is set to 1 and the number of blocks is 1. For LSTM [99] ,
we adopt the simplest architecture, which only contains one
LSTM layer and two fully-connected layers. In terms of the
ReNet [100], we use its standard architecture for CIFAR-10,
as introduced in the original paper. The details about these five
architectures can be found in Table II.

Hyper-parameters In terms of the training setup, we em-
ploy stochastic gradient descent (SGD) optimizer with a batch
size of 128, the learning rate of 0.1 and decay of 0.0005.
Jensen-Shannon divergence will be used as the loss function.
The max epoch number is 500, and the training will stop
if validation loss does not decrease in 10 epochs. As for
AugMix, mixture width is set as 3, and mixture depth is
randomly changed between 1 to 3. We set 9 base operations
(i.e.,autocontrast, equalize, posterize, rotate, solarize, shear-
x, shear-y, translate-x and translate-y) to the operation set

IEEE TRANSACTIONS ON RELIABILITY, 2021 9

CNN

0.40.50.60.70.80.91.0

DenseNet

0.40.50.60.70.80.91.0

WideResNet

0.40.50.60.70.80.91.0

Results on Original CIFAR10 Results on 15 Corrupted CIFAR10s

GNSNIN
DB

GB
MB ZM BS

CT
ET

PIXJPEG

SW FT FG

GNSNIN
DB

GB
MB ZM BS

CT
ET

PIXJPEG

SW FT FG

GNSNIN
DB

GB
MB ZM BS

CT
ET

PIXJPEG

SW FT FG

Fig. 3: Accuracy of the original DNNs on CIFAR-10’s testing
dataset (i.e., Dv) and on 15 corrupted testing datasets (i.e.,
{Dv: |: = 1, . . . , 15}).

O in the algorithm 1 with additional operations proposed in
Sec. III-D. We set the number of clusters, i.e., # , in Sec. III-C
as 5.

Other configurations. We implement DeepRepair in
Python based on PyTorch framework. All the experiments
were performed on a server with the Ubuntu 16.04 system
with a 12-core 3.6GHz Xeon CPU, 126GB RAM and two
NVIDIA GeForce RTX 2080 Ti 12G GPUs.

Baselines. To demonstrate the advantage and usefulness of
DeepRepair, we consider two kinds of baselines for com-
parative studies. The first set of baselines is the general
state-of-the-art data augmentation methods, i.e., AugMix [91],
CutMix [88], CutOut [86], and MixUp [87]. The second set of
baselines is recently proposed state-of-the-art DNN repairing
methods, i.e., SENSEI [101] and Few-Shot [85]. In particular,
for the first four data augmentation methods, we perform
DNN repairing by using them to fine-tune the DNNs with the
original training dataset (i.e., Dt) and 1,000 collected failure
cases (i.e., Dc:). For the SENSEI and Few-Shot methods,
we also employ the failure cases during repairing for a fair
comparison.

V. EXPERIMENTAL RESULTS

A. RQ1. What are the effects of different failure (noise)
patterns (i.e., failure types) on DNN operational inference?

In this part, we train five DNNs, among which three
are CNN-based models, i.e., AllConvNet, DenseNet, and
WideResNet, and two are RNN-based models, i.e., LSTM
and ReNet, on the CIFAR-10’s training dataset (i.e., Dt) and
evaluate them on both original testing dataset (i.e., Dv) and the
15 extended testing datasets (i.e., {Dv: |: = 1, . . . , 15}). The
evaluation results of two CNN-based models are summarized
in Fig. 3. Overall, we have the following observations: ¶
Different failure types pose different degradation effects on the
DNNs pre-trained on the original training dataset, i.e., Dt. For
example, the accuracy of AllConvNet on the original testing
dataset is around 93.0% while the JPEG and GN reduce the
results to around 80.0% and 43.0%, respectively, indicating
that we should repair DNNs by considering the difference
across different failure types. A simple way is to use collected
failure cases that may be degraded by an unknown failure
type as the guidance for repairing. However, in real-world
applications, it is hard to collect a large number of failure
cases under similar unknown failures. Hence, it is significantly

important but difficult to explore an effective method that is
able to repair the DNNs against an unknown failure type
(pattern) according to a few collected failure cases. In this
paper, we propose a novel DNN repairing method to address
this problem and validate the effectiveness in the following
experiments. · The accuracy reductions on the same DNN
have large diversity under different failures. For example, with
the Gaussian noise, the accuracy reduction is around 50%
while the value remains almost unchanged with the Brightness
failure, indicating that the DNN may have very different results
on different failures. Thus, the DNN repairing guided by a kind
of failure should not affect the performance on other failure
types and the original clean inputs.

B. RQ2. Does the proposed method outperform state-of-the-
art (SOTA) data-driven repairing methods on the examples
with specific failure patterns?

For the :th failure type, we repair three CNN-based models,
i.e., AllConvNet, DenseNet, and WideResNet, and two RNN-
based models, i.e., LSTM and ReNet, trained in Sec. V-A
via the six baseline methods and the proposed method. Then,
we evaluate their performance by calculating the accuracy
of repaired DNNs on the failure cases, i.e., De: and show
the results on 15 failure types in Table IV. In general, our
method (i.e., DeepRepair) exhibits significant advantages over
all baseline methods on the three CNN-based and two RNN-
based architectures under 15 failure types, demonstrating the
effectiveness and generalization of the proposed method.

In particular, comparing with the state-of-the-art DNN re-
pairing methods (i.e., Few-shot and SENSEI), DeepRepair
achieves much higher accuracy on all three DNNs under 15
failures. In particular, on the glass blur (GB), motion blur
(MB), and zoom (ZM), DeepRepair has achieved over 500%
relative improvements on SENSEI, demonstrating the effec-
tiveness and advantages of our method. In terms of other data
augmentation-based methods, the results on the AllConvNet
present that DeepRepair has much higher accuracy than all
other augmentation methods under all 15 failure types. Even
the state-of-the-art AugMix method still has huge accuracy
gaps compared to our method. Nevertheless, as the DNN
becomes more powerful (i.e., from AllConvNet to WideRes-
Net), the capability of AugMix on repairing is significantly
enhanced and its accuracy under several failure types (e.g.,
pixelate, snow, impulse noise, defocus blur, motion blur, zoom,
etc.) can be slightly larger than our method, indicating that
AugMix is more suitable for repairing elaborately designed
DNN architectures while our method obtains consistent effec-
tiveness on the three kinds of DNNs.

Moreover, to counteract the randomness impacts of data
augmentation to the evaluation results, we use two repairing
methods (i.e., Few-shot and SENSEI), the best augmentation-
based method (i.e., AugMix), and the proposed method to
repair three CNN-based DNNs (i.e., AllConvNet, DenseNet,
and WideResNet) for five times independently. Then, we
present the averaged accuracy and the corresponding variances
after repairing of the 15 failure patterns in Fig. 4. In summary,
we have the following observations: ¶ According to the

IEEE TRANSACTIONS ON RELIABILITY, 2021 10

GN SN IN DB GB MB ZB
SN
W FR

O
FO
G BR CT

R ET PI
X

JP
EG

0

15

30

45

60

75

90

GN SN IN DB GB MB ZB
SN
W FR

O
FO
G BR CT

R ET PI
X

JP
EG

0

15

30

45

60

75

90

GN SN IN DB GB MB ZB
SN
W FR

O
FO
G BR CT

R ET PI
X

JP
EG

0

15

30

45

60

75

90

AllConvNet DenseNet WideResNet

DeepRepairSENSEI AugMixFew-Shot

Fig. 4: We train 3 CNN-based DNNs using 3 baselines, i.e., Few-shout, SENSEI, AugMix, and proposed method, DeepRepair. We repeat
repairing period in 5 times and record the accuracy on 15 degradation sets. In the chart, the line means average accuracy on specific
degradation set in 5 times, the band area shows the highest and the lowest accuracy in 5 times.

average accuracy, DeepRepair outperforms the two repairing
baselines (i.e., Few-Shot and SENSEI) on all three CNN
models and 15 failure patterns. DeepRepair also achieves
higher average accuracy than AugMix on the AllConvNet and
DenseNet for most of the failure patterns. · In terms of the
variance results, DeepRepair and AugMix obtain much smaller
variance than the SENSEI and Few-Shot methods, indicating
that DeepRepair and AugMix are mush stable than the two
repairing baseline methods.

C. RQ3. Does DeepRepair harm the robustness to other
failure patterns and the accuracy on clean images?

A well repaired DNN should achieve much higher accuracy
on the target failure patterns while not harming the accuracy
on the original clean images and the robustness to other kinds
of failure (noise) patterns.

To validate the first capability of our method, we evaluate
the repaired DNN under the :th failure pattern on the original
testing dataset (i.e., Dv) and compare with the original DNN.
We present the results in Fig. 5. Specifically, for the :th
axes, we show the evaluation results of the original and
the repaired DNN on the Dv and the accuracy of repaired
DNN on the Dv: . We have the following observations: ¶
Comparing the accuracy difference of DNNs on the original
testing dataset (i.e., green line for the repaired DNN and
yellow line for the original DNN) and the unknown failure
datasets (i.e., red line for the repaired DNN and black line for
the original DNN), we observe that the accuracy difference has
significantly decreased after repairing, demonstrating that the
proposed method could effectively repair the original DNN. ·
Comparing the results on the original testing dataset Dv (i.e.,
the yellow line and the green line), we see that all repaired
DNNs do not harm the accuracy of the original DNN on the
clean images and even achieve much higher accuracy when
we repair the DenseNet and WideResNet.

To validate the second capability of our method, we take
the AllConvNet as an example and evaluate the accuracy
of the repaired DNN based on one failure pattern on other
failure datasets to show whether the repaired model could have
higher robustness on other failure patterns or not. As shown in

GNSNIN
DB

GB
MB ZM BS

CT
ET

PIXJPEG

SW FT FG

GNSNIN
DB

GB
MB ZM BS

CT
ET

PIXJPEG

SW FT FGAllConvNet DenseNet WideResNet

GNSNIN
DB

GB
MB ZM BS

CT
ET

PIXJPEG

SW FT FG
Original DNN on the Original CIFAR10 Repaired DNN on the Original CIFAR10 Repaired DNN on the 15 Corrupted CIFAR10s

Fig. 5: Accuracy of original and repaired DNNs on the original
CIFAR-10’s testing dataset (i.e., Dv) and 15 extended testing
datasets (i.e., Dv:), respectively.

Fig. 6, DeepRepair makes the repaired DNN under one failure
pattern achieve similar significant accuracy enhancement on
other failure datasets, outperforming all baseline methods.
Overall, the two experiments in Fig. 5 and 6 demonstrate that
DeepRepair can effectively repair the DNN while not harming
the accuracy on the clean dataset as well as the robustness on
other failure pattern-based datasets.

D. RQ4. Do the proposed components of DeepRepair all
contribute the final accuracy?

To demonstrate the effectiveness of our clustering-based
style-guided data augmentation for DNN repairing, we conduct
an ablation study by repairing pre-trained AllConv, Dense,
and WideResNet models with two variants of our method.
The first one performs the style transfer on randomly selected
failure cases to guide the repairing process without using the
clustering method and we denote this variant as ‘no-cluster’ in
Table V and Fig. 7. The second one is our final version while
the clustering is first done on the collected failure cases and we
call this variant as ‘cluster’ in Table V and Fig. 7. Specifically,
given a pre-trained deep model q\ (·) and the collected failure
examples Dc: that are corrupted by the :th failure pattern,
we use the above two variants to repair q\ (·) and evaluate on
the testing dataset Dv: . Then, we report the repaired accuracy
in Table V (i.e., the :th column in the table). As a result,
for the three pre-trained models, fifteen failure patterns, and
two repairing methods, we achieve 3×2×15 accuracy results.

IEEE TRANSACTIONS ON RELIABILITY, 2021 11

Dataset WideResNet DenseNet AllConvNet LSTM ReNet
Dc: + De: Dc: + De: Dc: + De: Dc: + De: Dc: + De:

C
IF

A
R

-1
0-

C

Gaussian noise (GN) 24,026 24,458 28,218 20,713 16,266
Shot noise (SN) 19,701 19,727 22,561 20,484 16,282
Impulse noise (IN) 19,591 20,189 22,074 21,438 17,122
Defocus blur (DB) 10,398 11,465 11,497 20,365 17,461
Glass blur (GB) 28,162 27,844 25,588 21,176 17,535
Motion blur (MB) 14,055 13,937 14,058 20,970 19,163
Zoom (ZM) 14,625 14,895 14,247 21,178 17,705
Snow (SW) 12,907 13,613 12,359 24,086 19,691
Frost (FT) 14,840 15,082 14,856 25,800 23,717
Fog (FG) 8,222 8,812 9,207 30,740 27,349
Brightness (BS) 5,515 5,735 4,614 22,416 19,551
Contrast (CT) 13,466 13,067 17,320 31,380 31,659
Elastic Transform (ET) 11,490 11,569 9,359 22,083 18,488
Pixelate (PIX) 15,241 17,865 13,901 20,293 16,468
JPEG Compression (JPEG) 12,864 12,451 10,377 20,456 16,269

TABLE III: The number of all failure cases (i.e., Dc: +De:), which is the sum of collected failure cases for repairing guidance
(i.e., Dc: , which is always be 1000), and residual cases for repairing evaluation (i.e., De:) of five pre-trained DNNs, three
are CNN-based DNNs, i.e., AllConvNet, DenseNet, and WideResNet, and two are RNN-based DNNs, i.e., LSTM and ReNet.

Repair Method GN SN IN DB GB MB ZM SW FT FG BS CT ET PIX JPEG

A
llC

on
vN

et

Cutout 6.50 5.99 17.95 16.19 10.01 9.85 7.13 17.31 10.25 14.79 25.71 10.40 19.97 13.49 16.98
Mixup 1.26 17.51 3.15 10.41 7.42 8.75 8.47 9.68 14.08 12.97 15.66 9.35 8.12 9.44 9.24
CutMix 12.80 5.90 12.86 12.46 8.70 8.75 8.94 15.69 12.46 11.41 15.91 7.29 8.24 14.71 20.40
AugMix 36.19 32.40 41.23 47.91 40.74 39.55 48.13 38.51 41.84 29.86 33.26 29.88 34.80 44.56 40.36

Few-shot 15.65 19.41 13.48 11.00 9.84 11.42 8.90 17.73 16.68 17.39 15.19 12.08 13.31 16.56 16.10
SENSEI 18.85 25.13 14.27 11.67 7.29 9.02 8.41 15.21 13.18 15.72 20.78 9.55 13.72 16.05 16.18

DeepRepair 55.19 61.32 50.98 68.98 56.91 61.97 67.34 59.70 63.89 49.08 44.74 34.90 51.03 55.69 46.14

D
en

se
N

et

Cutout 11.58 12.73 23.25 13.25 8.42 13.57 10.14 25.71 16.45 16.54 39.92 13.72 27.16 17.13 24.85
Mixup 14.72 17.13 3.97 8.17 3.48 7.19 6.04 6.90 12.14 9.63 5.53 6.31 11.30 12.60 11.18
CutMix 15.08 18.12 17.86 8.65 11.31 10.55 6.05 14.98 10.96 13.24 17.99 7.95 11.83 6.56 16.75
AugMix 48.18 53.62 57.66 64.63 52.94 60.61 63.92 57.23 62.11 48.37 50.90 58.36 55.29 65.08 54.71

Few-shot 13.34 12.94 11.65 12.18 10.24 9.75 11.98 14.58 13.01 15.63 16.94 10.09 12.20 14.72 15.26
SENSEI 21.24 16.54 17.28 15.50 11.94 7.39 10.31 16.11 16.08 14.34 17.17 7.52 14.33 17.39 18.78

DeepRepair 61.51 64.16 57.93 71.97 61.40 65.01 73.14 67.73 64.00 57.81 56.94 67.00 62.56 60.32 63.41

W
id

eR
es

N
et

Cutout 13.06 13.17 25.02 14.95 10.28 12.48 12.87 26.45 15.25 22.53 39.23 16.13 21.23 20.70 29.00
Mixup 11.57 13.66 11.21 7.44 3.50 5.71 16.12 6.21 7.88 7.48 13.11 4.68 6.04 5.65 8.64
CutMix 11.43 10.62 19.20 10.70 6.71 6.56 5.84 14.50 10.10 11.55 19.07 14.19 10.30 13.10 12.98
AugMix 65.59 69.73 71.57 79.36 65.95 77.72 81.17 68.77 69.99 62.09 65.65 69.70 68.97 63.44 65.64

Few-shot 12.52 15.13 11.10 10.85 13.28 10.32 12.54 10.28 12.73 12.36 14.04 6.20 12.83 12.21 12.62
SENSEI 10.60 5.21 4.75 14.49 8.27 10.38 12.40 9.47 7.33 10.00 10.74 10.68 17.27 13.96 18.96

DeepRepair 67.80 69.44 71.10 74.99 66.41 77.33 80.42 71.26 74.13 67.09 62.37 64.54 67.10 67.73 65.03

L
ST

M

Cutout 28.05 28.09 23.90 24.33 24.88 24.38 23.69 30.03 25.44 14.94 29.35 10.77 22.97 25.37 30.47
Mixup 22.83 20.45 8.22 18.00 22.11 17.89 8.41 22.29 18.98 12.51 23.55 8.45 17.91 20.22 21.05
CutMix 26.96 29.55 27.59 23.84 22.80 22.77 21.44 27.59 22.33 13.32 25.46 10.68 22.40 26.11 26.66
AugMix 41.77 42.63 41.02 43.21 41.48 41.87 42.67 40.13 38.34 34.86 42.45 30.53 42.23 43.65 43.31

Few-shot 14.75 14.41 14.21 14.28 13.76 13.88 13.60 13.38 13.34 10.06 14.11 11.51 13.34 14.39 14.49
SENSEI 10.08 10.22 9.88 11.20 11.09 11.06 11.95 13.55 13.83 12.06 13.37 11.90 12.65 10.95 10.35

DeepRepair 46.16 46.80 43.99 47.62 40.77 44.27 47.84 41.19 42.66 43.11 42.82 48.91 45.54 48.01 39.20

R
eN

et

Cutout 23.42 23.49 22.95 21.04 20.79 21.03 23.08 18.08 14.29 15.53 19.65 11.24 21.65 24.52 23.40
Mixup 18.05 17.87 17.93 19.59 18.22 17.13 17.17 17.62 19.03 13.16 18.02 10.57 17.47 18.38 19.27
CutMix 21.20 19.91 19.19 17.62 19.72 20.01 20.69 18.08 14.40 13.34 16.34 10.32 17.28 19.80 18.30
AugMix 35.99 37.22 34.53 31.77 31.61 31.44 32.71 27.52 24.87 25.64 28.17 26.02 30.08 31.45 30.39

Few-shot 19.34 19.83 20.21 20.07 19.64 18.69 20.32 18.48 14.08 17.60 17.77 16.08 19.19 20.26 19.63
SENSEI 17.17 17.10 17.16 16.48 16.64 16.28 16.14 14.75 12.47 13.41 14.32 13.22 16.40 16.94 16.94

DeepRepair 33.20 32.23 30.86 34.20 34.12 35.61 36.46 31.12 34.85 32.58 32.57 35.45 32.78 34.45 31.11

TABLE IV: Accuracy of repaired DNN architectures on 15 failure datasets, i.e., {De: |: = [1, 15]}. We choose CutMix,
Mixup, Cutout, Few-Shot, SENSEI, AugMix as baseline methods, and fine-tune them with DeepRepair under 15 failure
patterns, respectively. We highlight the best results with red.

IEEE TRANSACTIONS ON RELIABILITY, 2021 12

������ ����� ������ �������� ����� ������
���	����� � � � � � � � � � �

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� �
 �� � � � � � � � � � �

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � � � � �� � � � � � � �� � � � � � � � � � � � � � � �

� � � � � � � � �� � � � � � � � � �� � � � � �� � � � � � �� � � � � � � � � � � � �� � � � � � � � � �� � � �

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

� � � �
� �

� �

� �

� �

� �

� �

 �

� � �

� �

BS

�

�

� � 	

Fig. 6: Comparing the repairing methods on AllConvNet by evaluating the accuracy of repaired DNN under one failure pattern
(i.e., the name at the bottom of each sub-figure) on other failure datasets, i.e., {De: |: = [1, 15]}. Please find raw data in [94].

Repair Method GN SN IN DB GB MB ZM SW FT FG BS CT ET PIX JPEG

A
llC

. no-cluster 58.13 61.27 48.47 69.59 57.35 54.95 59.17 59.28 63.78 49.91 44.85 33.82 47.57 52.57 45.73
cluster 55.19 61.32 50.98 68.98 56.91 61.97 67.34 59.70 63.89 49.08 44.74 34.90 51.03 55.69 46.14

D
en

. no-cluster 43.93 61.10 58.66 72.96 60.54 62.05 74.49 67.34 61.59 55.97 55.78 63.64 61.42 65.87 63.18
cluster 61.51 64.16 57.93 71.97 61.40 65.01 73.14 67.73 64.00 57.81 56.94 67.00 62.56 60.32 63.41

W
.R

es no-cluster 62.72 50.80 65.61 76.13 64.53 75.46 79.16 69.47 70.18 64.83 61.37 66.45 66.88 61.23 65.21
cluster 67.80 69.44 71.10 74.99 66.41 77.33 80.42 71.26 74.13 67.09 62.37 64.54 67.10 67.73 65.03

TABLE V: Ablation study of DeepRepair. We consider two variants. The first uses uniform sampling to select reference images
for style-guided data augmentation (i.e., Eq. 3) and we denote it as ‘no-cluster’. The second one uses Eq. 5 for clustering-guided
sampling and we denote it as ‘cluster’. We compare the two methods via the accuracy of repaired DNNs on {De: |: = [1, 15]}.
We highlight the best result with red.

Moreover, to test whether the repairing methods would harm
the robustness of deep models to other failure patterns, we
evaluate the model repaired with the :th failure pattern on
the testing datasets {Dv 9 | 9 ∈ [1, 15]} containing other failure
patterns. As a result, given a deep model repaired with the
:th failure pattern (e.g., Gassussian noise), we can get fifteen
accuracy values by evaluating it on {Dv 9 | 9 ∈ [1, 15]}, which
constitute a curve in the first subfigure named as ‘Gassuaian
Noise’ in Fig. 7. Then, we can get fifteen subfigures for the
fifteen failure patterns and each subfigure contains six curves
for six repairing methods indicated at the bottom of Fig. 7.

According to the reported results, we have the following
observations: ¶ As shown in Table V, both variants enhance
the accuracy on all failure patterns significantly, demonstrating
that the proposed style-guided data augmentation indeed can
repair the DNN under some specific patterns effectively. ·
Comparing the accuracy of repaired DNNs based on ‘no-
cluster’ and ‘cluster’, our final version with the clustering
method outperforms the ‘no-cluster’ one under most of the
failure patterns on all three DNNs, demonstrating that the pro-
posed clustering-based style-guided data augmentation does
help enhance the robustness against various failure patterns. ¸

IEEE TRANSACTIONS ON RELIABILITY, 2021 13

���������� ����������������������� �������� ����������������������� ��������� ����������������������

� �� � � � � � � � � � � � � � � �
 � � 	 �� � � � � � � � � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

� � � � � � �� � � � � � � �� � � � � � � � � � � � � � � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

	 � � � � � � � �� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � � �� � � � 	 � � � � �� � � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

 � � 	
	 �

� �

� �

� �

	 �

� �

� �

� � � �

� 	

BS

� �

� �

� � �

Fig. 7: Comparing the two variants of our methods on three DNNs by evaluating the accuracy of repaired DNN under one
failure pattern (i.e., the name at the bottom of each sub-figure) on other failure datasets, i.e., {De: |: = [1, 15]}. Please find
raw data in [94].

In Fig. 7, the repaired DNNs under one failure pattern based
on clustering-based variant also achieve significant accuracy
on other patterns and usually show better accuracy than the
repaired DNNs based on ‘no-cluster’ variant, demonstrating
that the clustering is able to enhance the accuracy of repaired
DNNs on other failure patterns further.

E. Threat to Validity

The subject DNN architecture and noise pattern selection
could always be a threat. To counteract such threats, we eval-
uated our proposed method on DNN with diverse architectures
(i.e., with both feed-forward neural network and recurrent
neural network). We also adopt as many as 15 diverse cor-
ruption patterns that could commonly occur in an operational
environment, which is also widely used in previous work, e.g.,
CIFAR-10-C. Even though, this does not guarantee our method
can generalize well to new types of corruption patterns, and
we would evaluate our method on more cases when new cor-
ruption patterns become available. Another threat could be the
randomness of each compared method during our evaluation,
including state-of-the-art techniques and our technique. To

counteract such randomness issues, we repeat the evaluation
of each configuration 5 times, and take their averaged results
for comparison. To further confirm the potential advantage and
usefulness of our method, we also select the state-of-the-art as
baselines for comparison, which include both types of general-
purpose data-augmentation based method (e.g., AugMix), and
recently proposed DNN repairing methods (e.g., SENSEI,
Few-Shot) The evaluation results confirm that our method
indeed outperforms the state-of-the-art methods in the studied
operational environment cases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we tackle the imminent DNN repairing
problem towards the real-world operational environment. To
address the issue that there exists a mismatch between the dis-
tributions of the training dataset and the real-world testing data
that may be corrupted by unknown factors in the operational
environment (e.g., weather elements, blur, noise, etc.), we re-
sort to a style-guided data augmentation paradigm that not only
bridges the aforementioned distributional gap, but also can
retain high DNN performance while handling normal or clean
data. In particular, we first identify that the data augmentation-

IEEE TRANSACTIONS ON RELIABILITY, 2021 14

based DNN repairing solution can help to address the problem
and avoid the over-fitting risk, which, however, raises a new
challenge, i.e., how to introduce the failure (noise) patterns into
the data augmentation process with a limited small number of
collected failure example data available. To further address this
challenge, we then propose the style-guided data augmentation
for DNN repairing where a style transfer is used to learn and
introduce the unknown failure patterns within the failure data
into the training data via data augmentation. Moreover, we
propose the clustering-based corrupted data generation for
much more effective style-guided data augmentation. We have
performed comprehensive evaluation with fifteen degradation
factors that may occur in the real world and compare with
four state-of-the-art data augmentation methods and two DNN
repairing methods, demonstrating that our method is able to
significantly enhance the deployed DNNs on the failure data
with even better accuracy on clean datasets.

In the future, we will extend DeepRepair to handle per-
turbations that are not just naturally occurred in physical
environment, but might adversarially or maliciously generated
by adversarial attacks under the security context. These adver-
sarially crafted perturbations, ranging from the most common
additive noise-based ones [102], [103], [104], to non-additive
noise-based ones such as motion blur [19], denoising [105],
geometric morphing [106], camera exposure [21], [20], [107],
[108], rain and haze effect [109], [33], [110], etc., are usually
very stealthy and imperceptible, thus posing another challenge
for DNN-based software repairing.

ACKNOWLEDGMENTS

This work is supported in part by JSPS KAKENHI Grant
No.JP20H04168, JP19K24348, JP19H04086, JP21H04877,
JST-Mirai Program Grant No.JPMJMI20B8, Japan. Lei Ma
is also supported by Canada CIFAR AI Program and Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” arXiv preprint arXiv:1905.11946, 2019.

[3] Anonymous, “Lambdanetworks: Modeling long-range interactions
without attention,” in Submitted to International Conference on
Learning Representations, 2021, under review. [Online]. Available:
https://openreview.net/forum?id=xTJEN-ggl1b

[4] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 2636–2645.

[5] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–
3361.

[6] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
2722–2730.

[7] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 621–11 631.

[8] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[9] R. Wang, F. Juefei-Xu, L. Ma, X. Xie, Y. Huang, J. Wang, and
Y. Liu, “FakeSpotter: A Simple yet Robust Baseline for Spotting AI-
Synthesized Fake Faces,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2020.

[10] F. Juefei-Xu, K. Luu, and M. Savvides, “Spartans: Single-sample
periocular-based alignment-robust recognition technique applied to
non-frontal scenarios,” IEEE Transactions on Image Processing,
vol. 24, no. 12, pp. 4780–4795, 2015.

[11] F. Juefei-Xu and M. Savvides, “Multi-class Fukunaga Koontz Discrim-
inant Analysis for Enhanced Face Recognition,” Pattern Recognition,
vol. 52, pp. 186–205, Apr 2016.

[12] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 8110–8119.

[13] F. Juefei-Xu, R. Dey, V. N. Boddeti, and M. Savvides, “Rankgan: a
maximum margin ranking gan for generating faces,” in Asian Confer-
ence on Computer Vision. Springer, 2018, pp. 3–18.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[15] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[16] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[17] S. Qiao, L.-C. Chen, and A. Yuille, “Detectors: Detecting objects with
recursive feature pyramid and switchable atrous convolution,” arXiv
preprint arXiv:2006.02334, 2020.

[18] Y. Xu, A. Osep, Y. Ban, R. Horaud, L. Leal-Taixé, and X. Alameda-
Pineda, “How to train your deep multi-object tracker,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2020, pp. 6787–6796.

[19] Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, J. Wang, B. Yu, W. Feng, and
Y. Liu, “Watch out! Motion is Blurring the Vision of Your Deep Neural
Networks,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[20] B. Tian, Q. Guo, F. Juefei-Xu, W. L. Chan, Y. Cheng, X. Li, X. Xie,
and S. Qin, “Bias field poses a threat to dnn-based x-ray recognition,”
IEEE International Conference on Multimedia and Expo (ICME), 2021.

[21] Y. Cheng, F. Juefei-Xu, Q. Guo, H. Fu, X. Xie, S.-W. Lin, W. Lin, and
Y. Liu, “Adversarial exposure attack on diabetic retinopathy imagery,”
arXiv preprint arXiv:2009.09231, 2020.

[22] S. Maeda, “Unpaired image super-resolution using pseudo-
supervision,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 291–300.

[23] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[24] R. Abiantun, F. Juefei-Xu, U. Prabhu, and M. Savvides, “Ssr2: Sparse
signal recovery for single-image super-resolution on faces with extreme
low resolutions,” Pattern Recognition, vol. 90, pp. 308–324, 2019.

[25] N. Moran, D. Schmidt, Y. Zhong, and P. Coady, “Noisier2noise:
Learning to denoise from unpaired noisy data,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 12 064–12 072.

[26] B. Mildenhall, J. T. Barron, J. Chen, D. Sharlet, R. Ng, and R. Carroll,
“Burst denoising with kernel prediction networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2502–2510.

[27] C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong,
“Zero-reference deep curve estimation for low-light image enhance-
ment,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 1780–1789.

[28] F. Juefei-Xu and M. Savvides, “Encoding and decoding local binary
patterns for harsh face illumination normalization,” in 2015 IEEE
International Conference on Image Processing (ICIP). IEEE, 2015,
pp. 3220–3224.

[29] ——, “Pokerface: partial order keeping and energy repressing method
for extreme face illumination normalization,” in 2015 IEEE 7th Inter-
national Conference on Biometrics Theory, Applications and Systems
(BTAS). IEEE, 2015, pp. 1–8.

https://openreview.net/forum?id=xTJEN-ggl1b

IEEE TRANSACTIONS ON RELIABILITY, 2021 15

[30] C. Zheng, T.-J. Cham, and J. Cai, “Pluralistic image completion,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 1438–1447.

[31] F. Juefei-Xu and M. Savvides, “Fastfood dictionary learning for
periocular-based full face hallucination,” in 2016 IEEE 8th Interna-
tional Conference on Biometrics Theory, Applications and Systems
(BTAS). IEEE, 2016, pp. 1–8.

[32] D. Ren, W. Zuo, Q. Hu, P. Zhu, and D. Meng, “Progressive image
deraining networks: A better and simpler baseline,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2019,
pp. 3937–3946.

[33] Q. Guo, J. Sun, F. Juefei-Xu, L. Ma, X. Xie, W. Feng, and Y. Liu, “Ef-
ficientderain: Learning pixel-wise dilation filtering for high-efficiency
single-image deraining,” arXiv preprint arXiv:2009.09238, 2020.

[34] A. Mehta, H. Sinha, P. Narang, and M. Mandal, “Hidegan: A
hyperspectral-guided image dehazing gan,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020, pp. 212–213.

[35] C. O. Ancuti, C. Ancuti, F.-A. Vasluianu, and R. Timofte, “Ntire
2020 challenge on nonhomogeneous dehazing,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020, pp. 490–491.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[37] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020.

[38] A. Fan, S. Bhosale, H. Schwenk, Z. Ma, A. El-Kishky, S. Goyal,
M. Baines, O. Celebi, G. Wenzek, V. Chaudhary, N. Goyal, T. Birch,
V. Liptchinsky, S. Edunov, E. Grave, M. Auli, and A. Joulin, “Beyond
english-centric multilingual machine translation,” arXiv preprint, 2020.

[39] H. Schwenk, G. Wenzek, S. Edunov, E. Grave, and A. Joulin, “Cc-
matrix: Mining billions of high-quality parallel sentences on the web,”
arXiv preprint arXiv:1911.04944, 2019.

[40] A. El-Kishky, V. Chaudhary, F. Guzman, and P. Koehn, “A mas-
sive collection of cross-lingual web-document pairs,” arXiv preprint
arXiv:1911.06154, 2019.

[41] I. Mollas, Z. Chrysopoulou, S. Karlos, and G. Tsoumakas, “Ethos: an
online hate speech detection dataset,” arXiv preprint arXiv:2006.08328,
2020.

[42] J. A. Leite, D. F. Silva, K. Bontcheva, and C. Scarton, “Toxic language
detection in social media for brazilian portuguese: New dataset and
multilingual analysis,” arXiv preprint arXiv:2010.04543, 2020.

[43] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. J. Passonneau,
“Sentiment analysis of twitter data,” in Proceedings of the workshop
on language in social media (LSM 2011), 2011, pp. 30–38.

[44] R. K. Bakshi, N. Kaur, R. Kaur, and G. Kaur, “Opinion mining
and sentiment analysis,” in 2016 3rd International Conference on
Computing for Sustainable Global Development (INDIACom). IEEE,
2016, pp. 452–455.

[45] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv preprint arXiv:1609.03499,
2016.

[46] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4779–4783.

[47] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al.,
“Grandmaster level in starcraft ii using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[48] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019.

[49] Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick, “Elf: An exten-
sive, lightweight and flexible research platform for real-time strategy
games,” in Advances in Neural Information Processing Systems, 2017,
pp. 2659–2669.

[50] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[51] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,

M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[52] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” nature, vol. 550, no. 7676, pp.
354–359, 2017.

[53] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[54] N. Brown and T. Sandholm, “Superhuman ai for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418–424, 2018.

[55] N. Brown, T. Sandholm, and S. Machine, “Libratus: The superhuman
ai for no-limit poker.” in Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 2017, pp. 5226–5228.

[56] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” arXiv:1607.02533, 2017.

[57] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 39–57.

[58] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[59] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Sympo-
sium on Operating Systems Principles, 2017, pp. 1–18.

[60] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303–
314.

[61] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018,
pp. 120–131.

[62] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146–157.

[63] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair:
A survey,” IEEE Transactions on Software Engineering, vol. 45, no. 1,
pp. 34–67, 2017.

[64] M. Monperrus, “Automatic software repair: a bibliography,” ACM
Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[65] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyper-
parameter optimization through reversible learning,” in International
Conference on Machine Learning, 2015, pp. 2113–2122.

[66] H. Zhang and W. Chan, “Apricot: a weight-adaptation approach to
fixing deep learning models,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 376–387.

[67] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: automated
neural network model debugging via state differential analysis and
input selection,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 175–186.

[68] H. F. Eniser, S. Gerasimou, and A. Sen, “Deepfault: Fault localization
for deep neural networks,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2019, pp. 171–191.

[69] T. S. Borkar and L. J. Karam, “Deepcorrect: Correcting dnn models
against image distortions,” IEEE Transactions on Image Processing,
vol. 28, no. 12, pp. 6022–6034, 2019.

[70] J. Yoo, Y. Uh, S. Chun, B. Kang, and J.-W. Ha, “Photorealistic Style
Transfer via Wavelet Transforms,” in 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 9035–9044.

[71] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2414–2423.

[72] F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep photo style
transfer,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 4990–4998.

[73] Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, and J. Kautz, “A closed-form
solution to photorealistic image stylization,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 453–
468.

IEEE TRANSACTIONS ON RELIABILITY, 2021 16

[74] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 614–618.

[75] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE, 2019, pp. 1039–1049.

[76] J. Sekhon and C. Fleming, “Towards improved testing for deep learn-
ing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE,
2019, pp. 85–88.

[77] F. Harel-Canada, L. Wang, M. A. Gulzar, Q. Gu, and M. Kim,
“Is neuron coverage a meaningful measure for testing deep neural
networks?” in Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering. ACM, 2020.

[78] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
Model-based quantitative analysis of stateful deep learning systems,”
in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 477–487. [Online].
Available: https://doi.org/10.1145/3338906.3338954

[79] A. Odena and I. Goodfellow, “Tensorfuzz: Debugging neural networks
with coverage-guided fuzzing,” in Proceedings of the Thirty-sixth
International Conference on Machine Learning, 2019.

[80] X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun,
“Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty,” in IEEE/ACM 42nd International Con-
ference on Software Engineering (ICSE). IEEE, 2020, pp. 739–751.

[81] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[82] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep neu-
ral networks,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 1147–1158.

[83] J. Sohn, S. Kang, and S. Yoo, “Search based repair of deep neural
networks,” arXiv preprint arXiv:1912.12463, 2019.

[84] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing
deep neural networks: Fix patterns and challenges,” arXiv preprint
arXiv:2005.00972, 2020.

[85] X. Ren, B. Yu, H. Qi, F. Juefei-Xu, Z. Li, W. Xue, L. Ma, and J. Zhao,
“Few-shot guided mix for dnn repairing,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020,
pp. 717–721.

[86] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” 2017.

[87] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=r1Ddp1-Rb

[88] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Reg-
ularization strategy to train strong classifiers with localizable features,”
in International Conference on Computer Vision (ICCV), 2019.

[89] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

[90] P. Chen, S. Liu, H. Zhao, and J. Jia, “Gridmask data augmentation,”
2020.

[91] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and
B. Lakshminarayanan, “AugMix: A simple data processing method to
improve robustness and uncertainty,” Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

[92] X. Xie, W. Guo, L. Ma, W. Le, J. Wang, L. Zhou, X. Xing, and
Y. Liu, “Rnnrepair: Automatic rnn repair via model-based analysis,”

in Proceedings of Thirty-eighth International Conference on Machine
Learning (ICML), 2021.

[93] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and
B. Lakshminarayanan, “AugMix: A simple data processing method to
improve robustness and uncertainty,” Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

[94] B. Yu, H. Qi, Q. Guo, F. Juefei-Xu, X. Xie, L. Ma, and J. Zhao,
“Raw experimental data of ‘deeprepair: Style-guided repairing for
dnns inthe real-world operational environment’,” https://sites.google.
com/view/deeprepair-style-guided-repair.

[95] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” Proceedings of
the International Conference on Learning Representations, 2019.

[96] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” in ICLR (workshop
track), 2015. [Online]. Available: http://lmb.informatik.uni-freiburg.
de/Publications/2015/DB15a

[97] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–
2269.

[98] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in
Proceedings of the British Machine Vision Conference (BMVC),
E. R. H. Richard C. Wilson and W. A. P. Smith, Eds.
BMVA Press, September 2016, pp. 87.1–87.12. [Online]. Available:
https://dx.doi.org/10.5244/C.30.87

[99] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[100] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and
Y. Bengio, “Renet: A recurrent neural network based alternative to
convolutional networks,” arXiv Prepr. arXiv, vol. 1505, 05 2015.

[101] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep neural
networks,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1147–1158.
[Online]. Available: https://doi.org/10.1145/3377811.3380415

[102] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[103] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[104] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[105] Y. Cheng, Q. Guo, F. Juefei-Xu, X. Xie, S.-W. Lin, W. Lin, W. Feng,
and Y. Liu, “Pasadena: Perceptually Aware and Stealthy Adversarial
Denoise Attack,” arXiv preprint arXiv:2007.07097, 2020.

[106] R. Wang, F. Juefei-Xu, Q. Guo, Y. Huang, X. Xie, L. Ma, and Y. Liu,
“Amora: Black-box Adversarial Morphing Attack,” in Proceedings of
the ACM International Conference on Multimedia (ACM MM), 2020.

[107] B. Tian, F. Juefei-Xu, Q. Guo, X. Xie, X. Li, and Y. Liu, “Ava: Ad-
versarial vignetting attack against visual recognition,” in Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI),
2021.

[108] L. Fu, C. Zhou, Q. Guo, F. Juefei-Xu, H. Yu, W. Feng, Y. Liu, and
S. Wang, “Auto-exposure fusion for single-image shadow removal,”
arXiv preprint arXiv:2103.01255, 2021.

[109] L. Zhai, F. Juefei-Xu, Q. Guo, X. Xie, L. Ma, W. Feng, S. Qin,
and Y. Liu, “It’s raining cats or dogs? adversarial rain attack on dnn
perception,” arXiv preprint arXiv:2009.09205, 2020.

[110] R. Gao, Q. Guo, F. Juefei-Xu, H. Yu, and W. Feng, “Advhaze:
Adversarial haze attack,” arXiv preprint arXiv:2104.13673, 2021.

https://doi.org/10.1145/3338906.3338954
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://sites.google.com/view/deeprepair-style-guided-repair
https://sites.google.com/view/deeprepair-style-guided-repair
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
https://dx.doi.org/10.5244/C.30.87
https://doi.org/10.1145/3377811.3380415

IEEE TRANSACTIONS ON RELIABILITY, 2021 17

Bing Yu is currently pursing her Ph.D. in Kyusyu
University, Japan and focusing on software quality
assurance of both traditional software and intelli-
gent software, e.g. software testing, analysis and
repair. She previously received the M.E. degree from
Global Information and Telecommunication Studies
of Waseda University and the B.E. Degree from
Faculty of Social System Science, Chiba Institute
Technology, Japan.

Hua Qi received the M.E. degree in advanced
information technology from the Graduate School
of Information Science and Electrical Engineering,
Kyushu University, Japan in 2021, and the B.E. de-
gree in Software Engineering from Dalian University
of Technology, China in 2017. He is pursuing his
Ph.D. in Kyushu University, Japan, and focusing on
developing DeepFake detection in security context as
well as recent emerging direction of DNN repairing.
He is generally interested in deep learning, computer
vision, fake image detection, data augmentation, etc.

Qing Guo received his B.S. degree in Electronic
and Information Engineering from the North China
Institute of Aerospace Engineering in 2011, M.E.
degree in computer application technology from the
College of Computer and Information Technology,
China Three Gorges University in 2014, and the
Ph.D. degree in computer application technology
from the School of Computer Science and Technol-
ogy, Tianjin University, China. He was a research
fellow with the Nanyang Technological University,
Singapore, from Dec. 2019 to Sep. 2020. He is cur-

rently a Wallenberg-NTU Presidential Postdoctoral Fellow with the Nanyang
Technological University, Singapore. His research interests include computer
vision, AI security, and image processing. He is a member of IEEE.

Felix Juefei-Xu received the Ph.D. degree in Electri-
cal and Computer Engineering from Carnegie Mel-
lon University (CMU), Pittsburgh, PA, USA. Prior
to that, he received the M.S. degree in Electrical
and Computer Engineering and the M.S degree in
Machine Learning from CMU, and the B.S. degree
in Electronic Engineering from Shanghai Jiao Tong
University (SJTU), Shanghai, China. Currently, he
is a Research Scientist with Alibaba Group, Sun-
nyvale, CA, USA, with research focus on a fuller
understanding of deep learning where he is actively

exploring new methods in deep learning that are statistically efficient and
adversarially robust. He also has broader interests in pattern recognition, com-
puter vision, machine learning, optimization, statistics, compressive sensing,
and image processing. He is the recipient of multiple best/distinguished paper
awards, including IJCB’11, BTAS’15-16, ASE’18, and ACCV’18.

Xiaofei Xie received his Ph.D, M.E. and B.E.
from Tianjin University. He is currently an assis-
tant professor in Kyushu University, Japan. His re-
search mainly focus on program analysis, traditional
software testing and quality assurance analysis of
artificial intelligence. He has published some top
tier conference/journal papers relevant to software
analysis in ICSE, ISSTA, FSE, TSE, IJCAI, ICML
and CCS. In particular, he won two ACM SIGSOFT
Distinguished Paper Awards in FSE’16 and ASE’19.

Lei Ma is currently an associate professor and
Canada CIFAR AI chair at the University of Alberta,
Canada. He also holds a research fellow position,
co-leading Intelligent Software Engineering Lab of
Kyushu University Japan and honorably affiliated
with Alberta Machine Intelligence Institute. He re-
ceived his Ph.D. and M.E. from The University of
Tokyo, and B.E. from Shanghai Jiao Tong Univer-
sity. His recent research centers around the interdis-
ciplinary fields of Software Engineering (SE) and
Trustworthy AI with a special focus on the quality

and reliability assurance of machine learning and AI Systems. Many of his
work were published in top-tier software engineering and AI venues (e.g.,
TSE, ICSE, FSE, ASE, ISSTA, ICML, NeurIPS, ACM MM, AAAI, IJCAI,
ECCV, CAV). He is a recipient of more than 10 prestigious academic awards,
including 3 ACM SIGSOFT Distinguished Paper Awards.

Jianjun Zhao received his B.S. degree in computer
science from Tsinghua University, China, in 1987
and his Ph.D. degree in computer science from
Kyushu University, Japan, in 1997. He then joined
the Department of Computer Science and Engineer-
ing, Fukuoka Institute of Technology, Japan, as an
assistant professor and was promoted to associate
professor in 2000. Since November 2005, he was
a professor in the School of Software and then the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China. Since April

2016, he has joined the School of Information Science and Electrical En-
gineering, Kyushu University, as a professor. His main research interests
include program analysis and verification, AI quality assurance, automatic
programming, software testing, and programming language design.

View publication statsView publication stats

https://www.researchgate.net/publication/353747759

	DeepRepair: Style-guided repairing for deep neural networks in the real-world operational environment
	Citation
	Author

	Introduction
	Related Work
	DNN Software Testing
	DNN Software Repairing
	Data Augmentation for DNN Enhancement

	Methodology
	Problem Formulation of DNN Repairing
	Data Augmentation-based DNN Repairing
	Style-Guided Data Augmentation for DNN Repairing
	The DNN Repairing Algorithm

	EXPERIMENTAL DESIGN AND SETTINGS
	Experimental Setups

	EXPERIMENTAL RESULTS
	RQ1. What are the effects of different failure (noise) patterns (i.e@let@token ., failure types) on DNN operational inference?
	RQ2. Does the proposed method outperform state-of-the-art (SOTA) data-driven repairing methods on the examples with specific failure patterns?
	RQ3. Does DeepRepair harm the robustness to other failure patterns and the accuracy on clean images?
	RQ4. Do the proposed components of DeepRepair all contribute the final accuracy?
	Threat to Validity

	Conclusion and Future work
	References
	Biographies
	Bing Yu
	Hua Qi
	Qing Guo
	Felix Juefei-Xu
	Xiaofei Xie
	Lei Ma
	Jianjun Zhao

