Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

4-2021

Breaking neural reasoning architectures with metamorphic
relation-based adversarial examples

Alvin CHAN

Lei MA

Felix JUEFEI-XU
Yew-Soon ONG

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the OS and Networks Commons, and the Software Engineering Commons

Citation

CHAN, Alvin; MA, Lei; JUEFEI-XU, Felix; ONG, Yew-Soon; XIE, Xiaofei; XUE, Minhui; and LIU, Yang. Breaking
neural reasoning architectures with metamorphic relation-based adversarial examples. (2021). IEEE
Transactions on Neural Networks and Learning Systems. 1-7.

Available at: https://ink.library.smu.edu.sg/sis_research/7050

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7050&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7050&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author
Alvin CHAN, Lei MA, Felix JUEFEI-XU, Yew-Soon ONG, Xiaofei XIE, Minhui XUE, and Yang LIU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7050

https://ink.library.smu.edu.sg/sis_research/7050

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Breaking Neural Reasoning Architectures With Metamorphic
Relation-Based Adversarial Examples

Alvin Chan", Graduate Student Member, IEEE, Lei Ma, Felix Juefei-Xu™, Yew-Soon Ong ", Fellow, IEEE,

Xiaofei Xie, Minhui Xue, Member, IEEE, and Yang Liu

Abstract—The ability to read, reason, and infer lies at the heart of
neural reasoning architectures. After all, the ability to perform logical
reasoning over language remains a coveted goal of Artificial Intelligence.
To this end, models such as the Turing-complete differentiable neural
computer (DNC) boast of real logical reasoning capabilities, along with
the ability to reason beyond simple surface-level matching. In this brief,
we propose the first probe into DNC’s logical reasoning capabilities
with a focus on text-based question answering (QA). More concretely,
we propose a conceptually simple but effective adversarial attack based on
metamorphic relations. Our proposed adversarial attack reduces DNCs’
state-of-the-art accuracy from 100% to 1.5% in the worst case, exposing
weaknesses and susceptibilities in modern neural reasoning architectures.
We further empirically explore possibilities to defend against such attacks
and demonstrate the utility of our adversarial framework as a simple
scalable method to improve model adversarial robustness.

Index Terms— Adversarial examples, deep learning,
differentiable neural computer (DNC), supervised learning.

I. INTRODUCTION

Many modern neural readers are imbued with inductive biases
that gear them toward reasoning capabilities. After all, the ability to
perform logical reasoning across entities and facts is one of the many
desirable properties that this class of models should possess. To this
end, a recent line of work has focused on memory augmented neural
architectures [1]-[6]. In particular, differentiable neural computer
(DNC) [3], [7] is proposed to empower a model with complex logical
reasoning capabilities by means of content addressing (i.e., attention)
across an external differentiable memory store.

Leveraging observations that deep neural networks (DNNs) are
vulnerable to adversarial examples [8]-[12], we present a concep-
tually simple but effective adversarial framework with two goals:
1) we show that simple adversarial examples can break the DNC’s
performance, reducing the state-of-the-art results from 100% to
1.5% in the worst case; 2) we empirically investigate two lines of
defenses, showing the utility of our framework as a means to improve
robustness.

Our model-agnostic framework is based on the key idea of “Meta-
morphic Relations” (MRs). By definition, “programs” that have
several different inputs satisfying an MR should result in identical
output. For instance, a simple MR for the mathematical sine function

Manuscript received February 20, 2020; revised June 19, 2020 and
March 7, 2021; accepted March 31, 2021. (Corresponding author:
Alvin Chan.)

Alvin Chan, Yew-Soon Ong, and Yang Liu are with the School of Com-
puter Science and Engineering, Nanyang Technological University, Singapore
639798 (e-mail: guoweial001 @e.ntu.edu.sg).

Lei Ma is with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 2R3, Canada.

Felix Juefei-Xu is with the Alibaba Group, Sunnyvale, CA 94085 USA.

Xiaofei Xie is with the Faculty of Information Science and Electrical
Engineering, Kyushu University, Fukuoka 819-0395, Japan.

Minhui Xue is with School of Computer Science, The University of
Adelaide, Adelaide, SA 5005, Australia.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3072166.

Digital Object Identifier 10.1109/TNNLS.2021.3072166

, Senior Member, IEEE

Control Signal Direct
Effect on Memory

| KL-Divergence

| R R R .

v WV Vv

L 4 v VvV Vv
Em=lE =]
- —
Controller Controller 5 i+1

Module Module

Fig. 1. (Top) Control signals from DNC with benign input can be compared
with (Bottom) control signals from DNC with adversarial input.

is sin(x+7) = sin(x). In our context, this refers to injecting sentences
that do not overwrite information from a passage and preserve the
answer to a corresponding question; this is similar to how it is
common for distractors to appear in a real-world text. For instance,
adding sentences like “Mary journeyed to the hallway.” or “Brian
is a rhino.” into the passage “The office is south of the hallway.
How do you go from the office to the hallway?” should not change
the correct answer “north”. Unfortunately, our study reveals that the
DNC model is susceptible to such simple attacks, possibly indicating
a key weakness in this class of memory augmented models.

The contributions of this brief are as follows.

1) We propose a conceptually simple but effective vulnerability
detection framework Pick-n-Plug—an automated and scalable
method that relies on MRs to generate grammatically correct
adversarial examples in the natural language processing (NLP)
question answering (QA) domain.

2) Analysis of DNC’s control signals, as illustrated in Fig. 1,
which shows that adversarial attacks disrupt the read, write,
and erase functions of the DNC.

3) We perform an empirical analysis of a potential debugging
approach, showing that using Pick-n-Plug in data augmentation
procedure can enhance the model’s generalization.

II. BACKGROUND AND RELATED WORK
A. Adversarial Attack

Adversarial attacks were first studied in computer vision
domains [8]. Carefully perturbed images, with changes imperceptible
to humans, can easily fool DNNs. Since then, we have witnessed
an arms’ race between attackers [13] and defenders [14]. Although
adversarial attack techniques are extensively studied in computer
vision, there is limited work conducted in NLP domain. One chal-
lenge lies in the discrete nature of word inputs in NLP which
makes the implementation of gradient-based perturbation methods

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on August 14,2021 at 09:33:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1041-3891
https://orcid.org/0000-0002-0857-8611
https://orcid.org/0000-0002-4480-169X
https://orcid.org/0000-0001-7300-9215

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

challenging. Different from adversarial attacks for images where
small pixel changes are very unlikely to alter the correct class of an
image, a change of word in a body of text may completely change its
meaning under a particular NLP task or introduce grammatical errors.

For adversarial attacks in NLP [15], Jia [11] proposed to add
distracting sentences to the original text; however, the grammatical
correctness and the preservation of correct answer rely on man-
ual checks, which makes such a method difficult to scale. Word
substitution-based attacks [16]-[19] were also proposed, by changing
words in the original text with synonyms. In [16], a portion of the
substituted text is interpreted by humans to be a different class,
highlighting the challenge of creating adversaries that avoid changing
the meaning of the original text. There are also work [20] that
perturb word embeddings during the training of DNNS to circumvent
changing word inputs directly to improve robustness, but embedding
perturbation is unlikely in a real-world attack since it is not an input
layer. In this brief, we attempt to address these challenges with
adversaries generated based on MRs. Our adversarial methods are
scalable while minimizing the disruption of information from the
original text for QA tasks.

Several defenses against adversarial attacks have emerged recently
[21]-[24], such as those that use a cleansing model to neutralize
adversarial perturbations from input [21]-[23] or, similar to our
defense, augment training data [24], [25]. A related threat class
poisoning attacks were also recently studied in NLP [26]. The main
focus of this brief is to study the threat of MR-based adversarial
attacks and possible defenses against them.

B. Differential Neural Computer (DNC)

A DNC is a DNN augmented with an external memory module
in the form of a matrix M € RN*W [3]. The DNN of DNC acts as
the controller module, whose operations can be learned with gradient
descent, while the external memory matrix serves as a module for
data storage. The DNC’s controller and memory module are like its
CPU and RAM, respectively. The DNC’s memory can be written to
and accessed by the controller. At each input time-step, the DNC
controller takes in an input vector X, € RX, and a set of read vectors
,_; € RP from the previous time-step

(vi. &) = Controller([x,, #,_,1, 6.) (1

0. is the controller’s trainable weight parameters, v, € RC is the
controller output while & is a set of control signals.

The controller uses its write and read heads to manage the memory
matrix. At each time-step, the controller’s set of control signals &,
represents the operations of these heads. These control signals can be
categorized into gates, keys, or vectors. Their values determine how,
where, and what is being read, written, and erased from the memory
matrix. A series of operations in the memory module with the control
signals and its current memory matrix M, erase and write new data
and produce a concatenation of read vectors g, € R”

I, = MemoryModule(§,, M,). (2)

The final output of the DNC is a sum of weighted controller output
and weighted concatenation of read vectors from the memory module

yt = vat + W/l"l‘t + bt (3)

where W, € RY*C, W, € RY*P and b, € RY are trainable weights
of the DNC.

C. bAbI Data Set

The DNC that we are evaluating has shown near-perfect per-
formance on the bAbI data set which makes it a good candidate

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

to evaluate DNC’s vulnerability to attacks. The bAbI data set has
20 question & answer tasks of different themes to evaluate a range
of logical reasoning capabilities [27]. Each task contains stories that
are followed by one or more questions with answers that can be
derived from the story. For example, the story “The office is south
of the hallway.” followed by the question “How do you go from the
office to the hallway?” with an answer “north” requires a model that
learned path finding capability. In another task with example “Mary
Jjourneyed to the hallway. Mary picked up the football. Where is the
football?” with an answer “hallway” demands the model to process
two supporting facts. The performance of bAbI tasks is evaluated by
word error rate (WER) which is the rate of incorrect answers over
the total number of answers.

III. MR-BASED ADVERSARIES

In image classification, an adversarial example is a modified input
x" with an imperceptible perturbation added to the original input x so
that it fools the classifier f to change its originally correct prediction
y = f(x) to an incorrect prediction y' = f(x’), where y’ # y.

A. Metamorphic Transformation

To generate adversarial examples which do not change the original
answers to bAbI QA tasks, we drew inspiration from MRs. An exam-
ple of MRs for sine function is sin(x + 7) = sin(x). MRs have
been used to detect vulnerabilities in traditional software (e.g., C,
C-++ and Java) [28] and supervised classifiers [29]. Here, we define
a metamorphic transformation (MT) 7 as a function that maps an
input x to x” which satisfy a MR with f. More formally

=Tk flx)=f()

where x is the original input and x’ is output of a MT of x.

In the example of sine function where f(x) = sin (x), a valid MT
is T(x) = x 4+ =. Similarly, in the QA tasks, the input x and x’
can be generalized to X and X', i.e., X' = T(X), f(X) = f(X),
where f is an oracle that is always correct, X = [X1,X2, ..., Xp],
X' =[x},x},...,X] and x;, x| € RX are one-hot vectors of words in
the original and transformed adversarial input sequence, respectively.
For any input X’ generated by the MT on X, the answer f(X’) would
remain unchanged from f(X) under the oracle f.

Consider a deep learning model for a QA task as f’ where its
prediction of an input sequence X is f’(X). If an adversarial input
X' = T(X) is generated with a MT T (i.e., f(X) = f(X")) such that
f'(X) # f'(X'), this would be a successful adversarial example.

B. Pick-n-Plug

A MT can be composed of a series of n operator functions
g1, 82, -5 &, such that: T(X) = g,(... g2(g1(X))...). We propose
Pick-n-Plug which relies on MT Tpicx—n—pug to generate adversarial
examples. It consists of a pick operator gk that draws a set of
adversarial sentences, S,4y, from a particular passage in a source task
data (Dsource) and plug operator gy, that injects these sentences into
a passage from another task (target task), Story, without changing
the correct answers to its question, Question. The gy step to draw
sentences can be a random search, as we have explored in our exper-
iments, or other search methods. With a suitable source text data,
Diource» Where sentences do not disrupt the information from the target
task, Pick-n-Plug can generate adversarial examples while ensuring
grammatical correctness. Table I shows a Pick-n-Plug examples
where task #19 is the target task with source task # 3. More formally

Tpick—n—plug(x) = gplug(gpick(X)) = X/s where
gpick(X) = (X, [S1,..., 8]
gplug(Xa [Si,..., Sk]) =X

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on August 14,2021 at 09:33:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

PICK-N-PLUG ADVERSARIAL EXAMPLE GENERATED BY INJECTING TASK #3 SENTENCES (RED) INTO A TASK #19 PASSAGE, AFTER THE STORY
SEGMENT AND RIGHT BEFORE THE QUESTION SENTENCE. IN THE ORIGINAL PASSAGE (BLACK) WITHOUT ADDITIONAL TASK #3 SENTENCES,
THE DNC MODEL PREDICTS THE ANSWER CORRECTLY (NORTH, NORTH)

Target Task: #19 (path finding), Source Task: #3 (three argument relations), Injection Position: before question

kitchen?
Prediction: south, east
Answer: north, north

Passage: The office is south of the hallway. The office is north of the garden. The kitchen is east of the bedroom. The kitchen is north of the hallway. The bathroom is north
of the kitchen. John traveled to the kitchen. Mary journeyed to the hallway. John went back to the bedroom. John went to the garden. How do you go from the office to the

Algorithm 1 Pick-n-Plug (Tyick—n—plug)
Input: Original samples X with story of length [, source
task data Dyuree, Nnumber of adversarial sentences k
Initialize S.q, = {}
for each adversarial sentence do
Sample Si ~ Dsource
L Sadu <~ Sadv U Si
if before_story then
| X' < [Saqv; X]
else if before_question then
| X" < [Xityory Sadvs Xtsrory+1):]

return X’

Si Ui Siq s
where [Si,..., S0 € Su, Si = [x)',x5',...,x;'] is a sequence

of word vectors in an adversarial sentence, k is the number of
adversarial sentences picked from the source task. When k = 0, this
recovers the original passage where no adversarial sentence is used.
X' is an adversarial input as the final output of the Pick-n-Plug MT
Thick—n—plug» as summarized in Algorithm 1.

C. Pick-Permute-Plug

We also propose Pick-Permute-Plug with MT Tjick—permute—plug O
extend the adversarial capability of Pick-n-Plug and further probe
DNC’s control signals in § VI. In Pick-n-Plug, the diversity of
adversarial injected sentences is restricted by the text of the source
task. With an additional gpermue Operator after picking sentences
(gpick) from a source task, words in a particular adversarial sentence
can be permuted with “synonyms” to generate a much wider range of
possible sentences. The Pick-Permute-Plug MT can be summarized
as

Thick—permute—plug (X) = &plug (Zpermute (Epick (X))) = X'
&pick(X) = (X, [S1,..., S])
Gpermue (X, [S1, ..., Sit]) = (X, [S], ..
8plug (X, [Si, A S]/(]) =X

where
)}

s s s .
and §! = [xl',xz',...,xi’] is an adversarial sentence from the

permute step such that S[' # S; if one or more of its words have
been substituted with synonyms.

In the same example above, the word “hallway” in Sentence 2:
“Mary journeyed to the hallway.” can be substituted with “office”
under the gpermue Operator to generate Sentence 3: “Mary journeyed
to the office.”, before injecting into the story. For a story containing
Sentence 1, if the correct answer to the question: “How do you go
[from the office to the hallway?” is “north”, adding Sentence 3 to the
story should also not change the correct answer. Other words can
also be selected to be permuted such as substituting the name word
’Mary’ in Sentence 3 with *John’. The added flexibility allows for
more control of the target DNC’s predictions and behaviors with a

wider range of possible changes in the input sequence. In practice,
the permute step could be executed by greedily permuting synonyms
over the Pick-Permute-Plug process iteratively with respect to the
DNC’s output confidence, to induce prediction of a target output with
high confidence.

IV. PERFORMANCE WITH MR-BASED ADVERSARIES

We investigate how DNC performs while facing adversarial exam-
ples generated with Pick-n-Plug methods under several factors such
as position where sentences are added, source of added sentences,
number of added sentences, and type of targeted task.

A. Experiment Setup

Similar to previous work [3], [7], the DNC was jointly trained on
en-10k data subset of all 20 bADI tasks. During training, the batch
size is 32, the controller is bidirectional and has 172 hidden units
in each direction. The memory unit has a total of 192 rows, each
with a width of 64 and 4 read heads. The DNC trained with an root
mean square prop (RMSprop) optimizer with a fixed learning rate
of 3e-05 and momentum of 0.9.

We evaluate DNC’s performance when faced with test data sets that
are augmented with Pick-n-Plug, in a black-box manner where gp;cx
and gp, are independent of the DNC’s weights and predictions since
adversarial sentences are sampled randomly from their source task.

B. Results and Discussion

The error rate of the DNC increases as more sentences are added
to the original passage. For some cases where the number of added
sentences are small, the disruptive effect of the position before the
story is larger. When more sentences are added, the insertion of
sentences just before questions results in higher error rates than the
insertion at the start of the story (Table II).

Intuitively, the effect of adversarial sentences inserted at the
beginning of the story can be thought as to mislead the DNC in the
wrong direction from the start, focusing on details of the story that
are not relevant in answering the question. In contrast, the adversarial
sentences right before the question might cause the DNC to erase data
in its memory that is important to correctly answer the question at
the end, as a price of storing data from the relatively more recent
adversarial sentences. This implies that, as the length of adversarial
sentences increases, the effect of adversarial sentences in overwriting
relevant data outweighs the effect of misleading the DNC'’s attention
to a less relevant direction.

Adversarial sentences from source task #19 generally degrade the
DNC'’s performance more than adversarial sentences from other 4
source tasks (#3, 15, 16, and 18), as shown in Table II. A possible
reason is that the distracting strength of adversarial sentences lies in
the amount of information they contain. In task #19, directional rela-
tionships between two locations are expressed in each sentence. This
roughly represents a change to two entities’ attribute per sentence.
Furthermore, Pick-n-Plug examples are able to degrade the DNC'’s
performance across all tasks (Tables II and IV).

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on August 14,2021 at 09:33:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE 11
WORD ERROR RATE OR WER (%) OF DNC ON TASK #3, #15, #16, #18,
AND #19 WITH PICK-N-PLUG EXAMPLES ORIGINAL TEST WER FOR
TASK #3, #15, #16, #18, AND #19 ARE 1.6%, 0%, 0%, 0.623%,
AND 0%, RESPECTIVELY

of Adversarial Sentences [Full Block

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III

‘WORD ERROR RATE OR WER (%) OF DNC ON TASK #15 WITH
PICK-N-PLUG AND WORD SUBSTITUTION ATTACK. PICK-N-PLUG
ADVERSARIAL SENTENCES ARE ADDED BEFORE QUESTION.
ORIGINAL TEST WER FOR TASK #15 Is 0%

of Adv Sentences/Substitutions

Attack i 5 3 v
Pick-n-Plug, Source #3 0.7 3.9 8.4 13.9
Pick-n-Plug, Source #19 | 3.3 17.8 375 55

Word Substitution 765 13.1 144 18
TABLE IV

WER (%) oF DNC ON REMAINING 15 BABI TASKS
WITH PICK-N-PLUG EXAMPLES

Target Task
Source 1 2 4 5 6 7 8 9
#15 14 328 03 27 0.8 129 748 05
#16 452 323 0.6 79 147 11.8 154 6.8

clean 02 05 0 08 04 03 009 O

Target Task
Source 10 11 12 13 14 17 20

#15
#16

24 205 31.7 475 27 218 50
10.7 483 47.1 56.8 10.7 559 534

clean 0 0

0 0o 02 07 0

Target Task #3

Target Task #19

Adv #19 before s &
© before_q

G Adv #19 before_q
A~ Clean

14 Adv #3 before_s &
" before_q

1) o i 85 betore g
o~ Clean

Source Position } i 5 3 7 [
Target Task 3
#15 before story 3.6 2.8 33 4.8 21.0
before question 2.7 29 3.6 59 224
#16 before story 4.6 39 4.9 8.1 239
before question 2.5 2.6 4.4 6.3 26
#18 before story 33 43 7 8.7 14.3
before question 4.1 8.7 128 142 28.6
#19 before story 4.5 6.7 8.3 9.5 12.0
before question 6.4 10.5 152 204 26.5
Target Task 15
® before story 0.6 5 9.6 13.6 88.4
before question 0.7 39 8.4 13.9 98.5
#16 before story 1.9 6.6 133 242 56.4
before question 14 54 119 231 60.3
#18 before story 4.6 16.8 275 37.1 51.3
before question 4.5 17.5 31.1 44.1 65.1
#19 before story 4.4 224 409 537 64.2
before question 33 17.8 37.5 55 65.8
Target Task 16
® before story 0.4 0.9 0.7 0.7 24.5
before question 0.1 1.1 13 1.3 94.2
#15 before story 2.8 2 39 7.7 27.4
before question 0.2 1 1.8 2.5 12.9
#18 before story 0.3 0.8 1.1 1.3 1.8
before question 0.2 0.9 1.7 2.7 12
#19 before story 1.3 1.9 2.6 4.3 5.4
before question 0.6 2.5 4.1 6.9 10.8
Target Task 18
“ before story 1.2 2.8 33 4 32.6
before question 1 2.8 34 3.6 279
#15 before story 1.1 3 5.1 7.9 40.4
before question 2 39 7.7 10.8 47.5
416 before story 1.8 4.7 10.4 19.3 54.1
before question 2.4 6.2 164 249 63.7
#19 before story 4.6 5.8 7.1 9.3 10.6
before question 3.7 6.7 10.5 12 135
Target Task 19
s before story 0.2 0.3 0.5 0.85 10.2
- before question 0.3 0.5 1.05 1.75 514
#15 before story 0.55 1.2 4 7.15 28.6
before question 0.9 295 855 14.8 37.0
#16 before story 0.4 24 445 6.75 19.1
before question 0.6 2.85 55 9.1 36.1
#13 before story 005 0.25 0.6 0.95 245
before question 0.45 1.1 2.7 4.85 12.6

C. Comparison With Word Substitution Attack

We also compare with a word substitution-based attacks, similar
to [16], where words in the passage are substituted with synonyms to
fool the DNC model. To adapt this substitution attack to Task #15,
up to 4 unique name words in each test samples can be substituted
with another random name in the word vocabulary. To ensure that
the ground truth labels still hold for these test samples, we maintain
the same name substitution throughout each sample. From Table III,
we can see that the word substitution attacks increase the error rate
of DNC with more word substitutions. At the maximum strength of
4 name substitution, we see error rate of 18% which is still lower
than the strongest Pick-n-Plug scenario (55%), where 4 sentences
are sourced from Task #19. This highlights the importance of
investigating the vulnerability exposed by Pick-n-Plug, a previously
unexplored attack.

V. ROLE OF DNC MEMORY MODULE

The augmented memory module of DNC facilitates storing infor-
mation over long timescales. Since the adversarial sentences may
deleteriously overwrite relevant stored information, a bigger size of

Word Error Rate (%)

10¢ % 10x
Memory Multiplier Memory Multiplier

Fig. 2.
module.

(L) WER (%) of DNC with different sizes of augmented memory

the DNC’s memory module might mitigate this effect by having more
free space to write new information rather than overwriting important
data. We study this approach by expanding the DNC’s memory size.

A. Experiment Setup

We carry out experiments with Pick-n-Plug on DNC of memory
size 0.5x, 0.75%, 1x, 2x, 4%, 8x, 16x, and 32x of the original
192 memory rows. The performance of DNC with these memory
sizes is also evaluated on clean test data set as a baseline.

B. Results and Discussion

Fig. 2 shows that a bigger memory size plays a limited role in
improving DNC’s robustness when presented with examples from
Pick-n-Plug. The error rates of DNC drop to a minimum (9% to
249% relative reduction in WER from the original memory size) in our
experiments when memory size is either 2x or 1.5x of its original.
However, as the memory size increases further, the DNC’s error rates
increase even past its original error rate at 1x memory. The error
rate of the DNC stands at 15.6% at its best performance when task
#3 passages are added with one block of 4 adversarial sentences
before questions.

Its performance on clean test samples is also degraded (Fig. 2).
This occurs earlier than the degradation of performance with adver-
sarial examples in our experiments. A possible explanation to this
might be that the DNC controller was overfitted to the original

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on August 14,2021 at 09:33:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

- free answer
m—Free not

Content.
. Usage

~ sndiskirdipibsidibuimannid]

CEE £ L

QU
-

Unsuccessful
adversarial
example

Clean example

Successful
adversarial
‘example

answer answer

Unsuccessful
adversarial
example

Clean example

Successful
adversarial
example

Fig. 3.
(Middle) a CE, and (Bottom) a successful adversarial input.

memory size and is unable to optimally handle memory modules of
different sizes, even though they are compatible. This degradation due
to the overfitting of DNC’s controller to original memory size may
outweigh the benefit of larger storage space, resulting in a maximum
robust performance point close to the original memory size, 1.5x to
2x in our experiments. This also explains why a smaller memory
that is closer to the original size can outperform a larger memory
that is much further.

VI. ADVERSARIAL EFFECT ON DNC CONTROLLER

We investigate the behaviors of DNC controller under different
inputs, 1) clean input [clean example (CE)], 2) unsuccessful adver-
sarial attack (UAA), and 3) successful adversarial attack (SAA) by
probing its control signals. UAA is sampled from a Pick-n-Plug run
on target task #19 that picks 4 adversarial sentences from source
task #3, and inject them right before every question. To generate
closely related versions of this UAA sample, we conduct a run of
Pick-Permute-Plug where 4 location words in this UAA’s adversarial
sentences are permuted with a set of 8 synonyms in a brute force
manner, while the rest of the adversarial sentences remains the same.
Among these new adversarial examples which successfully caused
the DNC to predict the incorrect answer, a SAA was sampled.
These control signals comprise 3 gates, 2 keys, and 2 vectors. Gate
values are scalar that range from 0 to 1, while keys and vectors are
W-dimensional vectors with real values. For similarity comparison
of 2 sequences of scalar values, like the gate values, we can use
normalized Kullback-Leibler (KL)-divergence. We can use cosine
similarity to compare vector-based control signals like the write/read
keys and write/erase vectors.

Results & Discussion: For all pair-wise comparisons and for all of
DNC’s controller keys and vectors (see Table V), the mean cosine
similarities at the story segment are significantly higher than the mean
cosine similarities at the question segment. This indicates that the
main adversarial effect in disrupting the DNC’s controller keys and
vectors emerge mainly at sections after the adversarial sentences are
injected rather than before that.

When compared with CE, the cosine similarities of controller keys
and vectors from SAA are lower than that from UAA, suggesting
that the keys and vectors from a CE are perturbed more under a
successful attack than an unsuccessful one. When comparing the
DNC'’s controller keys and vectors under UAA and SAA, the cosine
similarities between all of them-the write keys, read keys, write
vectors, and erase vectors-are lowest in the adversarial segment. From
Fig. 4, there are sharp drops in the similarities of the keys and vectors
at the time-step where the input words are different. Their positions
correspond to keywords [“hallway”, “bathroom”, “hallway”, “park”]
in the UAA and [“kitchen”, “hallway”, “bedroom”, “garden”] in
the SAA.

(L-R) Free gate, allocation gate, and write gate values of DNC’s read heads when the input sequence is (Top) an unsuccessful adversarial input,

TABLE V

MEAN COSINE SIMILARITY BETWEEN DNC’s KEYS AND VECTORS
WITH DIFFERENT INPUTS

Story Adversary Question
CE-UAA 0.9969 - 0.9790
Write Keys CE-SAA 0.9962 - 0.9627
UAA-SAA 0.9997 0.8593 0.9689
CE-UAA 0.9981 - 0.9749
Read Keys CE-SAA 0.9980 - 0.9652
UAA-SAA 0.9999 0.8417 0.9737
CE-UAA 0.9988 - 0.9799
Write Vectors CE-SAA 0.9988 - 0.9653
UAA-SAA 0.9999 0.7400 0.9761
CE-UAA 0.9996 - 0.9975
Erase Vectors ~ CE-SAA 0.9995 - 0.9942
UAA-SAA 1.000 0.9660 0.9957
Story Adversarial Portion
B AN A Ay
p| °® AT SR Gire 4%
099 | o7 L b o : 154
sl e X i Xé

0 5 10 15 20 25 30 35 40 [s 10 15 20 2
Input word index Input word index

Question
1o =TT e

09754 8.8

E Y
0950

read keys 1
o read keys 2
0900 & read keys 3

e o read keys 4

09254 4 W °

0875 LYe

0850 B

6
Input word index

Fig. 4. Cosine similarity of DNC’s keys and vectors, between when the DNC
is presented with a UAA and when it is presented with a SAA. (Top Left)
Cosine similarity values at the story. (Top Right) Adversarial portion. (Bottom)
Question of a sample QA from task #19.

While cosine similarities are relatively stable in question segment,
there is a sharp drop at the end where the answer is expected from
the DNC. This suggests that the adversarial sentences have a latent
effect on the keys and vectors which emerges in critical segments
such as when information is retrieved to answer a question. These
observations indicate that disruptions to these keys and vectors, which
are involved in DNC'’s write, read, and erase operations, play a part
of the overall adversarial effect from a successful attack. For gate
values, we find no obvious difference between the patterns of the
gate values when DNC is presented with a CE, UAA, and SAA from
a general view (see Fig. 3).

When the KL-divergence is used to compare the gate values, signif-
icant patterns appear at the different segments of the input sequences.
For all 3 types of gate values at the story segment (see Table VI),
the KL-divergence of all pair-wise comparisons is significantly lower

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on August 14,2021 at 09:33:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE VI

KL-DIVERGENCE OF DNC CONTROLLER’S GATE VALUES
WITH DIFFERENT INPUTS

Story Adversary Question
CE-UAA 3.735E-05 - 0.002472
Free CE-SAA 2.526E-05 - 0.02041
UAA-SAA 2.212E-06 0.005523 0.02470
CE-UAA 0.0003625 - 0.001112
Alloc CE-SAA 0.0003089 - 0.01512
UAA-SAA 3.730E-06 0.2279 0.02437
CE-UAA 0.0003325 - 0.005531
Write CE-SAA 0.0002664 - 0.007648
UAA-SAA 1.369E-05 0.2408 0.001681
o Task 3 °
60 o Task 15
@ Task 16
g Task 18 -
:El 50
£
3 40 o
£
o 30
é 20 . o °
g g
10 P . °
L 0 °
0 o
1 2 3 4 5

Number of adversarial sentences

Fig. 5. Absolute WER reduction (%) of DNC on task #3, 15, 16, and 18 with
Pick-n-Plug examples, showing that augmented training with Pick-n-Plug can
mitigate vulnerabilities and generalize to examples with different numbers of
adversarial sentences.

than the KL-divergence at the question segment, with 2 to 3 order of
magnitude difference. This implies that the main adversarial effect
on DNC’s 3 gate values emerges after the injection of adversarial
sentences, rather than before that. At the question segment, the
KL-divergence of DNC’s gate values from CE under SAA is higher
than that under UAA for all the 3 gate types, indicating that the gate
values are perturbed to a greater extent in a successful attack than an
unsuccessful one.

VII. ROBUSTNESS ENHANCEMENT WITH PICK-N-PLUG

We use Pick-n-Plug to augment the training data set for adversarial
training and found that this can mitigate the vulnerability and
generalize beyond several key aspects.

A. Experiment Setup

We generate adversarial training data by using Pick-n-Plug to pick
3 adversarial sentences at each pick step from the training data set of
task #19 and plugging them into training data sets of task #3, 15, 16,
and 18 before questions. These 4 data sets were then combined with
the original training data sets of 16 other tasks to form the training
data.

B. Results and Discussion

Despite being only trained on adversarial examples that inject 3
adversarial sentences at each plug step, the adversarially trained DNC
can resist adversarial examples with other numbers of adversarial
sentences (Fig. 5), varying from 1 to 5.

Table VII shows that DNC trained on adversarial examples with a
particular injection position can also resist examples with a different
injection position. All our adversarially trained models have lower
error rates than the nonadversarially trained model, regardless of their
training and test injection positions.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VII

MEAN WER (%) OF DNC ON TASK #3, 15, 16, AND 18 WITH
PICK-N-PLUG EXAMPLES, WITH ADVERSARIAL SENTENCES
INJECTED AT 3 DIFFERENT POSITIONS

Adyv. Test Adyv. Training Position w/o Adyv.
Position before_s | random | before_q Training
before_s 0.633 0.725 0.775 14.7
random 0.606 0.612 0.831 2.11
before_q 0.775 1.63 0.8 16.8
clean [0718 [06 | 0.8 [0556
TABLE VIII

WER (%) oF DNC WHEN TESTED WITH PICK-N-PLUG
EXAMPLES ON 14 TASKS

Target Task
DNC Model 1 2 5 6 7 8 9
Adv. Trained 8.4 2.7 1 47 04 0.187 25
Baseline 248 325 52 67 11.1 22 4.7

Target Task
10 11 12 13 14 17 20

Adv. Trained 2.4 5.1 13.1 20.1 2.8 17.5 14.1
Baseline 53 196 422 50.1 184 41.6 489
TABLE IX

WER (%) oF DNC WHEN TESTED WITH ADVERSARIAL EXAMPLES
AUGMENTED WITH SENTENCES FROM SOURCE
TASK #3, 15, 16, AND 18

Target Task

Source DNC Model ‘ “ #15 #16 #13
" Adyv. Trained - 0.5 0.2 1.3
Baseline - 14.2 1.5 4.2
#15 Adv. Trained 4.8 - 2.3 1.2
Baseline 44 - 29 10.6
#16 Adyv. Trained 7.1 6.6 - 15.2
Baseline 8.1 245 - 26.2
#18 Adv. Trained 75 10.9 33 -
Baseline 14.2 44.1 2.7 -

Even for target tasks whose training data were not adversarially
augmented, the adversarially trained DNC model can resist examples
on these tasks more effectively than the baseline model during test
time (Table VIII). Target task #4 is omitted as it is not compatible
with source task #19. No adversarial examples from these 14 tasks
are used in the adversarial training phase, yet there is improved
robustness in these tasks. This generalization to the other text and
tasks which demand different capabilities highlights the practicality
of our adversarial generation methods to improve robustness in other
NLP applications.

For most of the cases after adversarial training, the DNC can resist
adversarial examples more effectively even though these examples
are generated from sources different from the one it was trained
on (Table IX). With the possibility of adaptive adversaries and
diversity of text content in the real world, the generality of robustness
gained from our method accentuates their practical value.

VIII. CONCLUSION

We expose vulnerabilities in modern neural reasoning architectures
with adversarial examples in text-based logical reasoning. Our adver-
sarial examples are based on MRs, inspired by real-world text where
sentences may contain nonoverwriting information. We show that a
training procedure augmented with Pick-n-Plug can be an effective
solution that generalizes beyond the number of additional sentences,
positions, types of tasks, and sentences. We demonstrate that our
method can be a valuable technique in discovering and mitigating
these vulnerabilities.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on August 14,2021 at 09:33:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[1]
[2]
[3]

[4

=

[5

[t}

[6]

[7

—

[8

[t}

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” 2014,
arXiv:1410.5401. [Online]. Available: http://arxiv.org/abs/1410.5401

S. Sukhbaatar et al., “End-to-end memory networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 2440-2448.

A. Graves et al., “Hybrid computing using a neural network with
dynamic external memory,” Nature, vol. 538, no. 7626, p. 471, 2016.
M. Henaff, J. Weston, A. Szlam, A. Bordes, and Y. LeCun, “Tracking
the world state with recurrent entity networks,” 2016, arXiv:1612.03969.
[Online]. Available: http://arxiv.org/abs/1612.03969

E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory
for deep reinforcement learning,” 2017, arXiv:1702.08360. [Online].
Available: http://arxiv.org/abs/1702.08360

S. Back, S. Yu, S. R. Indurthi, J. Kim, and J. Choo, “MemoReader:
Large-scale reading comprehension through neural memory controller,”
in Proc. Conf. Empirical Methods Natural Lang. Process., 2018,
pp- 2131-2140.

J. Franke, J. Niehues, and A. Waibel, “Robust and scalable differentiable
neural computer for question answering,” in Proc. Workshop Mach.
Reading Question Answering, 2018, pp. 47-59.

C. Szegedy et al., “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199. [Online]. Available: http://arxiv.org/abs/1312.6199

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. ICLR, 2015, pp. 1-11.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” 2017,
arXiv:1706.06083. [Online]. Available: http://arxiv.org/abs/1706.06083
R. Jia and P. Liang, “Adversarial examples for evaluating reading
comprehension systems,” 2017, arXiv:1707.07328. [Online]. Available:
https://arxiv.org/abs/1707.07328

Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raffel, “Imper-
ceptible, robust, and targeted adversarial examples for automatic speech
recognition,” in Proc. 36th Int. Conf. Mach. Learn., in Proceedings of
Machine Learning Research, vol. 97, K. Chaudhuri and R. Salakhutdi-
nov, Eds. MLResearchPress, 2019, pp. 5231-5240.

T. Zheng, C. Chen, and K. Ren, “Distributionally adversarial attack,” in
Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 2253-2260. pp. .

H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. El Ghaoui, and M. I. Jordan,
“Theoretically principled trade-off between robustness and accu-
racy,” 2019, arXiv:1901.08573. [Online]. Available: http://arxiv.org/abs/
1901.08573

W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. L. Li, “Adversarial attacks
on deep-learning models in natural language processing: A survey,” ACM
Trans. Intell. Syst. Technol., vol. 11, no. 3, pp. 1-41, 2020.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

M. Alzantot, Y. Sharma, A. Elgohary, B. Ho, M. B. Srivastava, and
K. Chang, “Generating natural language adversarial examples,” 2018,
arXiv:1804.07998. [Online]. Available: https://arxiv.org/abs/1804.07998
N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adver-
sarial input sequences for recurrent neural networks,” in Proc. MILCOM
IEEE Mil. Commun. Conf., Nov. 2016, pp. 49-54.

V. Kuleshov, S. Thakoor, T. Lau, and S. Ermon, “Adversarial exam-
ples for natural language classification problems,” OpenReview, to be
published.

E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh, “Uni-
versal adversarial triggers for attacking and analyzing NLP,” 2019,
arXiv:1908.07125. [Online]. Available: http://arxiv.org/abs/1908.07125
T. Miyato, A. M. Dai, and 1. Goodfellow, “Adversarial training meth-
ods for semi-supervised text classification,” 2016, arXiv:1605.07725.
[Online]. Available: http://arxiv.org/abs/1605.07725

X. Wang, H. Jin, and K. He, “Natural language adversarial attacks and
defenses in word level,” 2019, arXiv:1909.06723. [Online]. Available:
http://arxiv.org/abs/1909.06723

D. Pruthi, B. Dhingra, and Z. C. Lipton, “Combating adversarial
misspellings with robust word recognition,” 2019, arXiv:1905.11268.
[Online]. Available: http://arxiv.org/abs/1905.11268

I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Defense
methods against adversarial examples for recurrent neural networks,”
2019, arXiv:1901.09963. [Online]. Available: http://arxiv.org/abs/
1901.09963

Y. Zhou, X. Zheng, C.-J. Hsieh, K.-w. Chang, and X. Huang, “Defense
against adversarial attacks in NLP via Dirichlet neighborhood ensem-
ble,” 2020, arXiv:2006.11627. [Online]. Available: http://arxiv.org/abs/
2006.11627

M. Sato, J. Suzuki, H. Shindo, and Y. Matsumoto, “Interpretable
adversarial perturbation in input embedding space for text,” 2018,
arXiv:1805.02917. [Online]. Available: https://arxiv.org/abs/1805.02917
A. Chan, Y. Tay, Y.-S. Ong, and A. Zhang, “Poison attacks against text
datasets with conditional adversarially regularized autoencoder,” 2020,
arXiv:2010.02684. [Online]. Available: http://arxiv.org/abs/2010.02684
J. Weston et al., “Towards Al-complete question answering: A set of pre-
requisite toy tasks,” 2015, arXiv:1502.05698. [Online]. Available: http://
arxiv.org/abs/1502.05698

T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A new
approach for generating next test cases,” Dept. Comput. Sci., Hong Kong
Univ. Sci. Technol., Hong Kong, Tech. Rep. HKUST-CS98-01 1998.
X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Testing and validating machine learning classifiers by metamorphic
testing,” J. Syst. Softw., vol. 84, no. 4, pp. 544-558, Apr. 2011.

Authorized licensed use limited to: Zhejiang Tmall Technology Co.Ltd.. Downloaded on August 14,2021 at 09:33:04 UTC from IEEE Xplore. Restrictions apply.

	Breaking neural reasoning architectures with metamorphic relation-based adversarial examples
	Citation
	Author

	Breaking Neural Reasoning Architectures With Metamorphic Relation-Based Adversarial Examples

