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ABSTRACT
Rich multi-modal information - text, code, images, categorical and
numerical data - co-exist in the user interface (UI) design of mo-
bile applications. UI designs are composed of UI entities support-
ing different functions which together enable the application. To
support effective search and recommendation applications over
mobile UIs, we need to be able to learn UI representations that
integrate latent semantics. In this paper, we propose a novel unsu-
pervised model - Multi-modal Attention-based Attributed Network
Embedding (MAAN) model. MAAN is designed to capture both
multi-modal and structural network information. Based on the
encoder-decoder framework, MAAN aims to learn UI representa-
tions that allow UI design reconstruction. The generated embedding
can be applied to a variety of tasks: predicting UI elements asso-
ciated with UI screens, inferring missing UI screen and element
attributes, predicting UI user ratings, and retrieving UIs. Extensive
experiments, including user evaluations, conducted on two datasets
from RICO, a rich real-world mobile UI repository, demonstrates
that MAAN out-performs other state-of-the-art models.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Human-
centered computing→User interfacemanagement systems;
• Information systems → Multimedia and multimodal re-
trieval.

KEYWORDS
Network embedding, mobile application user interface, unsuper-
vised retrieval, multi-modal
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1 INTRODUCTION
The increasing maturity of mobile application design/development
practices means that a mobile UI designer/developer can easily refer
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to existing UI repositories as part of the development process. Such
repositories include multi-modal information - network structures
consisting of UI screens and UI elements of mobile applications
with links between them, visual information from UI screen im-
ages, codes associated with UI elements, textual description of the
associated applications, categorical application genres and appli-
cation ratings. The RICO dataset[2, 19] is one such repository. It
includes data from more than 9,000 Android applications. Such
repositories are extremely valuable when we search relevant UI
objects for design reference or for replacing some existing UI ob-
jects as part of the UI development process. However, manually
sifting through UI objects in large repositories is not feasible. A
naive retrieval system based on keywords or genre would not be
adequate as such features are sparse and do not capture rich seman-
tics in UI interface designs. Latent representations, also known as
embeddings, can be developed to better capture underlying similar-
ities. However, most approaches for generating embeddings only
capture information from a single modality. Existing multimedia
approaches to represent UI screen image also do not capture the
non-Euclidean nature of network structures linking UI interface
components together. Hence, an approach that can generate em-
beddings that capture information from multiple modalities and
structural network information is needed.

State-of-the-art attributed network embedding models gener-
ate embeddings that capture structural network information, but
still do not capture information from multiple modalities and node
types. Figure 1 provides an overview of the UI dataset. The figure
depicts two types of nodes, i.e. UI screen and UI elements. The
multi-modal features of a UI screen include its image, description,
and genre. Similarly, a UI element’s features include its class name,
and component type.

Figure 1 also shows our proposed multi-modal network em-
bedding framework which includes a multi-modal attention-based
attributed network embedding (MAAN) model to be used to learn
the embeddings representations of UI screens and UI elements
which can be used in several downstream tasks, e.g. predicting
links between UI screens and elements for UI design reconstruc-
tion, rating predictions, missing attribute inference and UI screen
retrieval. MAAN aims to incorporate several new requirements:
1) capture correlations between information from different
modalities; 2) ensure no one modality dominates the gener-
ated embedding; and 3) effectively balance between the in-
creased number of training objectives. Capturing correlations,
or affinities, between information from multiple modalities (e.g.
between visual styles and application genres, or visual structure
and code classes) plays a critical role in generating informative
embeddings. The dimensions of modalities could differ significantly
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Figure 1: UI dataset in a network embedding framework

(e.g. number of genres vs. number of words) and simply encod-
ing them together could cause the generated embedding to focus
only on one or two modes. The increased number of modalities also
means additional training objectives, and a need to balance between
these objectives that could diverge. There have been other works
that also take a network-based approach or used latent representa-
tions/embeddings for tasks relating to user interactions[3, 7, 31, 32],
but the use of network embedding models for such mobile UI develop-
ment related tasks has thus far not been explored.

This paper proposes as part of MAAN a novel graph varia-
tional autoencoder (GVAE)-based model to generate multi-
modal embeddings of UI screen and element nodes. Specif-
ically, our GVAE jointly embeds information from multiple
modalities; uses an attention mechanism to discover correla-
tions between different modalities and weight their contri-
bution; and improves existing loss functions used for graph
variational autoencoders to learn more meaningful embeddings.
Our key contributions are as follows:

• To our knowledge, this is the first work to propose a multi-
modal network embedding model that combines attention
mechanismswith the variational autoencoding framework to
generate embeddings for link prediction, attribute inference,
regression and retrieval tasks relating to mobile UIs.

• We propose a two-stage encoding process to ensure no one
modality dominates the generated embedding.

• We use the attention mechanism to capture relationships
between information from different modalities, which is
different from past works[12] that use attribute-to-attribute
matrices.

• The use of the Maximum Mean Discrepancy (MMD)[35]
term to more effectively balance between multiple training
objectives has not featured in existing GVAEs.

• We show that MAAN consistently out-performs other state-
of-the-art models on two datasets across an extensive set of
tasks. User evaluations on retrieval results show that MAAN
out-performs the other models by as much as eight times.

2 RELATEDWORK
Key related works in the areas of UI retrieval and evaluation, and
network embedding models are outlined in this section.

2.1 UI retrieval and evaluation
Swire[11] is a system that retrieves UI screen images based on UI
sketches. Both UI sketches and UI screenshots are represented as
image embeddings for visual similarity comparison. Swire however
only captures information from a single modality. [34] converts UIs
into sequences to support retrieval applications. This approach only
captures structural network information of UI objects. [17] devel-
oped a design assistant that uses measures of visual complexity[24]
to help assess visual complexity of UI screens. This work focuses
on the ranking of UI screens instead of their embedding represen-
tations.

2.2 Network embedding models
As UI screens and elements are inter-connected in a large network,
we thus review network embedding models.

2.2.1 Homogeneous Networks. DeepWalk [23] and Node2Vec [8]
extend the idea of word embeddings to networks by treating paths
as sentences and nodes as words. They however do not utilize the
attributes of nodes when learning network embeddings. Graph
neural networks (GNN) learn node embeddings by propagating
the attributes of nodes repeatedly or over multiple neural network
layers via a message passing framework[6]. Graph Convolutional
Network (GCN)[16] aggregates features of neighboring nodes and
normalizes the aggregated representations by the node degrees.
GraphSAGE[9] further considers mean, LSTM or pooling aggre-
gation methods. While GCN uses the full neighborhood, Graph-
SAGE samples a fixed number of neighbors. In the Graph Attention
Network (GAT)[28], different nodes in the neighborhood are as-
signed different importances during aggregation. Messages passed
between each layer inmost GNNs go through non-linear layers such
as rectified linear activation units (ReLU). [33] finds that similar per-
formance can be achieved evenwithout such layers. The Graph Vari-
ational Autoencoder(GVAE)[15] applies the variational autoencoder
(VAE)[14] framework to learn the node embeddings of homoge-
neous networks. The Co-Embedding Attributed Network(CAN)[21]
uses two VAE channels to jointly encode and decode the adjacency
matrix and a single feature matrix to jointly learn the representa-
tions of both nodes and attributes. Semi-supervised Co-embedding
Attributed Network (SCAN) [22] extends CAN to co-embed both
attributes and nodes of partially labelled networks.
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2.2.2 Heterogeneous Networks. Such models have also been ap-
plied to heterogeneous networks (networks with multiple node
or edge-types). Relational Graph Convolutional Networks[25] and
Graph Convolutional Matrix Completion [26] use multiple GCNs
to encode embeddings of multiple adjacency matrices, one for
each edge type, before aggregating them. Neural Graph Collab-
orative Filtering[29] and LightGCN[10] encode embeddings for
different number of hops before aggregating them. [13] captures
indirect proximity between the same node types in bipartite net-
works. Multinomial VAE[18] is a VAE-based approach that gener-
ates embeddings by using a multinomial distribution instead of the
Bernoulli distribution used in GVAE. Heterogeneous Graph Atten-
tion Network[30] and General Attributed Multiplex Heterogeneous
Network[1] use multiple GNN-based layers to encode networks
formed from different metapaths[4] before using an attention mech-
anism to aggregate the embeddings.

While the related works outlined in this section only use infor-
mation from a single modality, the proposed model in this paper
uses a VAE-based approach to encode information from multiple
modalities. A two step encoding process is used so that no one
modality dominates the generated embedding. Further, we intro-
duce an attention mechanism to capture the correlations between
different modalities and allow the underlying importance of each
modality to be self-discovered. Instead of just applying the gener-
ated embeddings to common link prediction and attribute inference
tasks, we use the generated embeddings to predict continuous la-
bels (application ratings) and for multi-modal retrieval of the UI
screens.

3 MULTI-MODAL ATTENTION-BASED
ATTRIBUTED NETWORK EMBEDDING

To cope with both multi-modal features and the heterogeneity
of structural network information in UI designs, we propose a
new embedding model known as Multi-modal Attention-based
Attributed Network Embedding (MAAN). It assumes that UI
designs can be represented by a bipartite graph G = (V ,E,X ) con-
structed from a UI design dataset (e.g. RICO), where V comprises
two disjoint sets of nodesU andW .U represents UI screen nodes
and W represents UI element nodes. Edges only exist between
different node-types, i.e. E ⊆ U ×W . ei j represents the edge be-
tweenvU ,i andvW , j . X comprises multi-modal features, P of these
attributes are for UI screens and Q of them are for UI elements,
denoted by {XU ,1, ...,XU ,P }, and {XW ,1, ...,XW ,Q } respectively.
MAAN will jointly embed the nodes and their multi-modal features
as low-dimensional vectors by learning the mapping functions
f : V 7→ Z ∈ R |V |×d for the nodes, and д : XV ,r 7→ Zr ∈ RFr×d

for features in each modality where d ≪ |V |.
We first construct a |V | × |V | heterogeneous adjacency matrix A

from the network edges E:

A =
[
0 M

MT 0

]
whereM ∈ [0, 1] |U |× |W | is the UI screen to UI element adjacency
matrix.

We also construct themulti-modal featurematrices {XU ,1, ...,XU ,P },
{XW ,1, ...,XW ,Q }. Each feature matrix XV ,r ∈ R |V |×Fr for modal-
ities r ∈ {p,q} of nodesV ∈ {U ,W } contains attribute information

for all |V | nodes. Where a feature does not apply to the node, e.g.
feature p for a node v inW , the feature matrix XU ,p will have the
row corresponding to node v filled with zeros. MAAN uses one
VAE channel to encode/decode the adjacency matrix; and one VAE
channel to encode/decode every feature matrix. Hence, it requires
P +Q + 1 VAE channels. VAE is chosen because of its expressive-
ness, generative ability and flexibility to be combined with other
deep learning models. Figure 2 depicts the different channels in
the MAAN architecture, which consists of a multi-modal attention-
based GAE and several feature VAEs.

3.1 Multi-modal Attention-based GAE
This module generates the node embeddings. Multiple GATs encode
node features from different modalities, which are then fused with
an attention mechanism. The fused node features are encoded with
GCNs into Gaussian embeddings, and an inner product decoder
used to reconstruct the adjacency matrix by sampling from the
learned Gaussian embeddings. The module first takes as inputs
the adjacency matrix A and the node features {XU ,1, ...,XU ,P },
{XW ,1, ...,XW ,Q }. It uses P +Q GAT modules to separately trans-
form a node’s features of different modalities to hidden representa-
tions. Encoding each modality with separate GAT modules before
combining them avoids any modality dominating the final em-
bedding, and allows the model to accommodate any number of
modalities. For each layer in a GAT module, we first take as in-
put the node feature of node i and apply a linear transformation
s
(l )
i,r = W (l )x

(l )
i,r to each node whereW (l ) is the learnable weight

matrix of the l th layer, and x (l )i,r is either the original feature or the
hidden representation of the node i from an earlier layer. We then
compute the pair-wise un-normalized attention score between node
i and each of its neighbors, say node j. We concatenate the hidden
representations of nodes i and j before taking a dot product of it
with a learnable weight vector a(l )T . A LeakyReLU activation is
then applied - e(l )i j = LeakyReLU (a(l )T (s

(l )
i,r | |s

(l )
j,r )). Softmax is then

used to compute the attention scores to weight the hidden rep-
resentations received by node i from its neighboring nodes N (i)
-

α
(l )
i j =

exp(e
(l )
i j )∑

k ∈N (i) exp(e
(l )
ik )

The final step in each GAT layer aggregates the hidden repre-
sentations received by node i from its neighbors N (i), weighted by
the attention scores.

x
(l+1)
i,r = σ (

∑
j ∈N (i)

α
(l )
i j s

(l )
j,r )

The steps outlined above are repeated for each layer in the GAT
module with node features from each modality, resulting in each
node having P + Q separate sets of intermediate hidden repre-
sentations X ′

V ,1, ..,X
′
V ,R ∈ R |V |×d ′

for modalities R ∈ {P ,Q} of
nodes V ∈ {U ,W }, where d ′ > d . Setting the dimensions of in-
termediate node representations to be higher than the final latent
representation of nodes allows for a more gradual compression of
the embedding space.

Next, we use an attention mechanism to fuse representations
from different modalities into a |V | × d ′′ representation matrix
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Table 1: Summary of Key Notations

Symbol Description
V Nodes in graph G comprising disjoint sets of nodesU andW with P and Q multi-modal features respectively
Fr Feature dimension for the rth modality where r ∈ {p,q}
d,d ′,d ′′ Dimensions of final and intermediate representations of nodes and features
XV ,1, ..,XV ,r ∈ R |V |×Fr Multi-modal features r ∈ {p,q} of nodes V ∈ {U ,W }

X ′
V ,1, ..,X

′
V ,r ∈ R |V |×d ′

Hidden multi-modal representations of nodes after GAT modules
X ′′
V ∈ R |V |×d ′′

Hidden node representations after multi-modal attention fusion
Z ∈ R |V |×d Final latent representation/embedding of nodes
Hr ∈ RFr×d

′

Hidden representation of feature from the rth modality where r ∈ {p,q}

Zr ∈ RFr×d Final latent representation/embedding of feature from the rth modality where r ∈ {p,q}

Figure 2: MAAN Architecture for RICO with P=3 VAE channels for UI screen nodes and Q=2 VAE channels for UI element
nodes

X ′′
V . The use of the attention mechanism here allows the model to

self-discover correlations between different modalities, and weight
contributions accordingly.

We first apply a non-linear transformation to each of these rep-
resentations for each node to obtain a scalar ki,r for each modality,
which represents the importance of each modality.

ki,r =W
(1)
att tanh(W

(0)
attx

′
i,r + b)

where x ′i,r is the intermediate hidden representation of the node

for the r th modality,W (0)
att andW

(1)
att are learnable weight matrices

and b is the bias vector. The parameters are shared across all modal-
ities. We then normalize ki,r with a softmax function to obtain the
weights:

βi,r =
exp(ki,r )∑R
r=1 exp(ki,r )
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where r ∈ {p,q} and R ∈ {P ,Q}.
Finally, we use these weights to fuse the multiple representations

for each node: x ′′i =
∑P
p=1 βi,px

′
i,p +

∑Q
q=1 βi,qx

′
i,q .

At this point, we denote the resultant aggregated hidden rep-
resentations for all nodes as X ′′

V ∈ R |V |×d ′′

where d ′′ ≤ d ′ as we
progressively compress the dimension of the node representations.
Two layers of GCNs are then used to encode the aggregated hid-
den representations X ′′

V into the Gaussian embeddings. The use of
stochastic Gaussian embeddings allows for more expressive embed-
dings to be generated.

X
′′(1)
V = ReLU (ÃX ′′

VW
(0)
V )

[µV ,σ
2
V ] = ÃX

′′(1)
V W

(1)
V

where Ã = D−0.5AD−0.5 is the symmetrically normalized adjacency
matrix with D as the adjacency matrix’s degree matrix, µV and σ 2

V
are the means and variances of the learned Gaussian embeddings
of the nodes, andW (0)

V ,W (1)
V the learnable weight matrices.

The final embedding of each node can then be computed as
Zi = µV ,i + σ

2
V ,i ⊙ ϵ where ϵ is a random variable sampled from a

standard normal distribution. To reconstruct the adjacency matrix,
we first apply an inner product between the embeddings of node i
and node j to obtain:

[µEi, j ,σ
2
Ei, j ] = siдmoid(ZTi Z j )

As the edges are binary, the edge between nodes i and j can be
reconstructed with:

pθ (Ai j |Zi ,Z j ) = Ber (µEi, j )

where Ber (µEi, j ) is the Bernoulli distribution parameterized by
µEi, j .

3.2 Feature VAE
In MAAN, we use feature VAEs to encode node features of each
modality. The feature VAE adopts stochastic Gaussian embeddings
to allow for more expressive embeddings. Two linear layers with a
tanh activation are first used to infer the Gaussian embeddings:

Hr = tanh(XT
V ,rW

(0)
r + b(0))

[µr ,σ
2
r ] = HrW

(1)
r + b(1)

where µr and σ 2
r are the means and variances of the learned Gauss-

ian embeddings of the features, andW (0)
r andW (1)

r are learnable
weight matrices. The embedding of each feature can then be com-
puted as Zr,a = µr,a + σ

2
r,a ⊙ ϵ where a is the index of the feature,

e.g. index of Social genre for UI screen genre modality, and ϵ is
a random variable sampled from a standard normal distribution.
We then reconstruct the feature matrix by first applying an inner
product between the embedding of the nodes and features

[µEr ,i,a ,σ
2
Er ,i,a ] = siдmoid(ZTi Zr,a )

The node to feature edges for feature matrices with continuous
values can be reconstructed with:

pθ (Xr,i,a |Zi ,Zr,a ) = N(µEr ,i,a ,σ
2
Er ,i,a I )

where N(µEr ,i,a ,σ
2
Er ,i,a

I ) is the Gaussian distribution parameter-
ized by µEr ,i,a and σ 2

Er ,i,a
. The node to feature edges for feature

matrices with binary values are reconstructed with:

pθ (Xr,i,a |Zi ,Zr,a ) = Ber (µEr ,i,a )

where Ber (µEr ,i,a ) is the Bernoulli distribution parameterized by
µEr ,i,a .

3.3 Objective Functions
Under the VAE framework, we want qϕ (z) for the encoders in the
MAANmodel to match the prior distribution pθ (z) for the decoders
in theMAANmodel and the evidence lower bound objective (ELBO)
is - LELBO (x) = Eqϕ(z |x ) [loдpθ (x |z)] −KL(qϕ (z |x)| |p(z)). The first
term measures the reconstruction loss while the second term is the
Kullback-Leibler (KL) divergence. During training, the reparame-
terization trick is used to rewrite the expectation with respect to
qϕ (z |x) such that the Monte Carlo estimate of the expectation is
differentiable with respect to ϕ[14]. This VAE set-up is known to
suffer from over-fitting when the KL divergence term is not strong
enough or to generate uninformative embeddings when the KL di-
vergence term is too restrictive. We use the MMD term[35] instead
of the KL divergence term for the feature VAEs. We do not use α /λ
hyper-parameters to balance between the KL divergence and MMD
terms as proposed in [35] as tuning these hyper-parameters did
not improve performance significantly. The use of the MMD term
improves training stability and enhances the model’s ability to learn
meaningful embeddings from multiple modalities. The resulting
objective function which we use in our model for the multi-modal
attention-based GAE is:

LELBO (x) = Lr econstruction + LKL

= Eqϕ(z |x ) [loдpθ (x |z)] − KL(qϕ (z |x)| |p(z))

The resulting objective function which we use in our model for the
feature VAEs is:

LELBO (x) = Lr econstruction + LMMD

= Eqϕ(z |x ) [loдpθ (x |z)] +MMD(qϕ (z)| |p(z))

We use the binary cross-entropy loss for Lr econstruction in the
multi-modal attention-based GAE. For the feature VAEs, we use
the binary cross-entropy loss when reconstructing a feature matrix
of binary values, and mean square error loss when reconstructing
a feature matrix of continuous values.

4 EXPERIMENTS
In this section, we conduct several experiments to evaluate MAAN
against other baselines to determine the importance of represen-
tation learning using multi-modal information. The evaluation is
conducted using a range of prediction and retrieval tasks. We finally
examine the use of attention mechanism to explain the focus of the
generated embeddings.

4.1 Datasets
The two datasets used in the experiments are extracted from RICO,
a repository covering the mobile UIs of 9,384 Android applications.
We scraped updated metadata of these applications from Google
Play Store and filtered out applications and UI screens still available
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for download in Feb 2020. This leaves us 6,583 applications, released
from Jan 10 to Apr 17. The repository includes UI screenshots and
their UI elements. To ensure that the experiment findings are valid
for UI datasets with different characteristics, we extract two datasets
from the RICO repository, namely: (i) RICO-N, comprising the most
recently released 1000 applications (Oct 15 to Apr 17); and (ii) RICO-
O, comprising the earliest released 1000 applications (Jan 10 to Aug
11). The differences between the two datasets are significant, as
shown in Table 2. RICO-O is about twice the size of RICO-N by
number of UI screens, UI elements and edges. The UI elements of
both datasets have different dimensions for multi-hot class name
vectors. The distributions of the genres in the two datasets are also
different. The most popular genre in RICO-N is Social, whereas
News and Magazines genre is most popular in RICO-O. RICO-O
and RICO-N share 33 common genres between their UI screens, and
RICO-N has three additional genres. We next extract UI elements
occurring within each UI screen from the view hierarchies. A high
number of occurrences of a UI element in a UI screen suggests that
the UI element is important to the UI screen. On the other hand,
we observe that a low number of occurrences are often boilerplate
elements used to initialize the UI structure. Hence, we include an
edge between a pair of UI screen and UI element only if the UI
element occurs more than five times in the UI screen. Instead of this
empirical approach, we can consider a heuristic or model-based
approach that can discriminate between the informativeness of
different UI elements but would include this as part of future work.

Visual information is then encoded with a separate autoencoder.
Textual information is encoded with pre-trained Glove embeddings.
We pre-process the class names of the UI elements by breaking
them up by their periods, special characters and camel casing. For
example, com.android. internal.policy.PhoneWindow$DecorView is
tokenized as android, internal, policy, phone, window, decor, view.
Thereafter, we generate the class name features by: 1) using a pre-
trained Char-NGram (CHAR) embedding; 2) using bag-of-words
(BOW) representation. UI screen ratings are based on the ratings of
the applications that they are associated with. Edge-lists are then
divided into training, validation and testing datasets in the ratios
85%/5%/10% for the link prediction task. Under the co-embedding
framework, we use the same generated embedding to evaluate both
link prediction and attribute inference tasks. Hence, nodes that are
part of the edges in the validation and testing edge-lists are used as
validation/testing datasets for the attribute inference task, and their
attribute values set to zero in the training dataset. For the rating
prediction task, UI screen ratings are divided into training and
testing datasets in the ratio 80%/20%. We do not utilize validation
data for the rating prediction task as we simply use a simple series
of dense layers for regression with the generated embeddings and
do not tune any hyper-parameters.

4.2 Experiment Setup
We compare the performance of MAAN with other state-of-the-art
models on tasks that could facilitate themobile UI design/development
process. Each task is evaluated with separate evaluation metrics:

• Link prediction - This refers to the prediction of UI screens
to be associated to each UI element via unobserved links.
Each model returns the top ranked (or similar) UI screens

for each UI element using the embeddings of the UI screens.
To train and evaluate a prediction model with both positive
and negative links, we randomly generate 10 pairs of nodes
not in E for each positive link (v1i ,v2j ) as negative links.
For each model, we use the inner product of embeddings
to predict the probability of a link forming between a pair
of UI screen and UI element nodes. The model then ranks
the candidate links in the test data by the inner product
score. Area under the receiver operating characteristic curve
(AUC) and average precision (AP) are used as the evaluation
metrics.

• Prediction of UI screen ratings - We predict UI screen
ratings for the RICO dataset by using generated node em-
beddings as inputs to a regression model implemented with
a series of dense layers. This task is useful for predicting the
success of new applications. We use root mean square error
(RMSE) as the evaluation metric.

• Attribute inference - We infer missing binary and contin-
uous valued attributes of UI screens and elements based on
affinities between nodes and attributes. For binary valued
attributes, we treat this as predicting links between nodes
and attributes, and hence also sample 10 negative instances
for each positive instance as per the link prediction task.
We compare MAAN with CAN as GAT is not designed for
attribute inference. The inner-product of generated node
embeddings and attribute/feature embeddings is used to in-
fer missing attributes. For binary attribute inference which
involves UI screen genre, UI element class name BOW, and
UI element component type, we measure the performance
by AUC and AP. For UI element class name inference, we
also split the class name into name tokens and compute the
multi-label weighted F1 score to assess the performance of
the model in inferring the class name-level attribute (and
not just token-level attributes). The multi-label weighted F1
score returns the average score of all tokens in the class name
weighted by support (number of true instances for each to-
ken). For continuous attribute inference which involves UI
screen image, UI screen description, and UI element class
name CHAR, RMSE is used.

• Retrieval - This facilitates the retrieval of UI screens for an
input UI screen query. The relevant results should be visually
similar UI screens considering their multiple modalities. In
this task, we use human judgement to determine the the rele-
vant UI screen results. We use Average Precision@5 (AP@5)
and Normalized Discounted Cumulative Gain (NDCG) to
evaluate the retrieval accuracy. More details on the compu-
tation of these metrics are provided in Section 4.6

Baselines and Settings. Co-embedding Attributed Network
model (CAN) [21] and Graph Attention Network (GAT) [28] are
chosen as baselines as they represent VAE and GNN-based state-of-
the-art models respectively. We add a linear feature auto-encoder
channel to GAT for it to co-embed representations of both attributes
and nodes. For MAAN, we use four single-headed layers for each
GAT module, and two layers for the GCN module. Feature VAEs
use dense layers as encoders. We use the radial basis function as
the kernel for MMD loss. Based on experiments with the validation
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Table 2: Dataset Statistics

RICO-N RICO-O
UI Screens/Elements 5879/1563 9108/2920
Number of Edges 10762 19418

Number of UI elements for each UI screen (Number of UI screens for each UI element)
Average 1.9 (17.6) 1.9 (16.7)
Maximum 6.0 (1004.0) 7.0 (1711.0)
Minimum 1.0 (1.0) 1.0 (1.0)

Attribute Types and Dimensions
Visual - Latent vectors of UI screen images (Continuous) 64 64
Textual - Glove vectors of app. descriptions for UI screen (Continuous) 50 50
Categorical - Multi-hot vectors of app. genre for UI screen (Binary) 36 33
Textual - Multi-hot/CharNGram vectors of class name of UI element (Binary/Continuous) 1548/100 2161/100
Categorical - Multi-hot vectors of UI element component type (Binary) 25 25

dataset, the dimensions of the hidden node and feature represen-
tations d ′ and d ′′ are fixed at 64, and the dimension of the final
node and feature embeddings d is fixed at 32. Training is run for
1000 epochs to generate the embeddings. The regression model
for prediction of UI screen ratings is trained for 5000 epochs. For
all models, an Adam optimizer with a learning rate of 0.02 with
a cosine annealing scheduler is used and dropout is set to 0.1. All
models are implemented with Pytorch.

4.3 Link Prediction Results
Table 3 shows the results of the experiments relating to link predic-
tion. MAAN effectively utilizes multi-modal attributes to generate
embeddings that consistently outperform baseline models on the
link prediction task. CAN and GAT have greater difficulty utilizing
continuous valued attributes to generate embeddings that perform
well on the link prediction task, compared to when binary valued
attributes are used. Differences in GAT performance when using
UI element class names as attributes across the two datasets are
likely due to differences in such attributes across the two datasets,
e.g. differences in dimensions. VAE-based MAAN and CAN are less
affected by such differences.

4.4 UI Screen Rating Prediction Results
Table 3 also sets out the results of regression experiments. Here,
one of the MAAN models returns the best results for both datasets.
The differences in performance across all models for the UI screen
rating prediction task is more narrow compared with other tasks. A
potential reason for this could be that there are very little differences
in the strength of the relationships between the different attributes
and UI screen ratings.

4.5 Attribute Inference Results
Table 4 sets out the results of the experiments relating to attribute
inference. The embeddings generated by MAAN consistently out-
performs embeddings generated by the baseline models across all
modalities on this task. The differences in performance between
MAAN and CAN using continuous valued attributes and binary
valued attributes are even more stark here compared with the link
prediction task. In some cases (e.g. screen description), the RMSE
for the CAN model is around five times worse than the MAAN
model.

4.6 Retrieval Evaluation Results
4.7 Qualitative Analysis
We used an AMT platform to recruit participants for evaluating the
relevance of retrieval results. In this task, we use RICO-N dataset
only and compare with five baseline models. The first four baseline
models are the CAN and GAT models that utilize UI screen image
and element component type attributes as they are likely to return
better retrieval results. The fifth baseline model is a state-of-the-art
metric learning-based multimedia retrieval model - VSE++ [5]. We
choose VSE++ as it is also an unsupervised model, and allows us
to compare MAAN with a model that is able to utilize information
from two modalities. Figure 3 provides an overview of the user
evaluation process. To generate the user evaluation surveys, we use
20 UI screen images as queries to retrieve the top five results (based
on nearest neighbors) from MAAN and the five chosen baseline
models described above. For each query UI screen, we construct five
survey tasks. Each survey task shows the same query UI screen and
6 result UI screens, one result UI screen from MAAN and each of
the five baseline models. For quality assurance, we also add either
the query UI screen or a non-existent UI screen to each survey task.
Each survey is then assigned to three AMT workers. Workers are
asked to compare the query with randomly ordered results from
MAAN and the baseline models and select UI screens that are most
similar. If a worker fails to select the ground truth duplicate query
UI screen image or selects the non-existent UI screen, the worker’s
responses for the entire surveywill be discarded. The survey process
is repeated until we obtain three good quality responses for each
survey. Two metrics are used to measure retrieval performance. For
precision@5, a result is deemed relevant if two or more workers
select it as relevant. As workers can select multiple UI screens
for each query UI screen image, a visual check is also conducted
to assess the reasonableness of their responses, and we compute
the NDCG metric with the actual number of workers selecting
the result as relevant. Table 5 sets out the retrieval results. MAAN
outperforms all baseline models by a significant margin. CAN using
the binary valued UI element component type attribute performs
better than the other baseline models, in line with what we had
observed for other tasks. VSE++, even though it uses twomodalities,
is the worst performer. This could be due to VSE++ not capturing
network structural information. This highlights the importance of
capturing network structural information.
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Table 3: Link Prediction and Regression Results. Best and second best performing models per metric marked in boldface and
underlined, where applicable, for this and subsequent tables on experimental results. For regression - RICO UI screen rating
ranges from 1 to 5; RMSE using mean of training dataset is 0.583 and 0.554 for RICO-N and RICO-O respectively. For all tables:
Comp. refers to component, Desc. refers to description.Higher (lower) values indicate better performance forAUC/AP (RMSE).

Link Prediction Regression
RICO-N RICO-O RICO-N RICO-O

Model AUC AP AUC AP RMSE RMSE
GAT(UI Screen Image) 0.686 0.122 0.761 0.156 0.562 0.517
GAT(UI Screen Desc.) 0.680 0.122 0.729 0.141 0.552 0.522
GAT(UI Screen Genre) 0.939 0.843 0.928 0.658 0.682 0.536
GAT(UI Element Class Name CHAR) 0.379 0.068 0.861 0.716 0.555 0.520
GAT(UI Element Class Name BOW) 0.335 0.065 0.958 0.798 0.579 0.541
GAT(UI Element Comp. Type) 0.934 0.730 0.973 0.829 0.604 0.536
CAN(UI Screen Image) 0.972 0.881 0.960 0.828 0.617 0.534
CAN(UI Screen Desc.) 0.545 0.206 0.903 0.807 0.654 0.522
CAN(UI Screen Genre) 0.967 0.912 0.902 0.799 0.636 0.555
CAN(UI Element Class Name CHAR) 0.502 0.093 0.486 0.086 0.682 0.531
CAN(UI Element Class Name BOW) 0.965 0.856 0.960 0.842 0.593 0.542
CAN(UI Element Comp. Type) 0.963 0.829 0.938 0.866 0.638 0.533
MAAN(All Features Class Name CHAR) 0.981 0.913 0.994 0.957 0.550 0.511
MAAN(All Features Class Name BOW) 0.977 0.905 0.981 0.917 0.585 0.531

Table 4: Attribute Inference. Weighted multi-label F1 score for UI Element Class Name in brackets. Higher (lower) values
indicate better performance for AUC/AP/F1 score (RMSE).

AUC/AP for binary valued attributes RMSE for continuous valued attributes
Model Screen Genre Element Class Name BOW Element Comp. Type Screen Image Screen Desc. Element Class Name CHAR

RICO-N
CAN 0.501/0.091 0.817/0.571 (0.170) 0.733/0.198 1.451 8.958 5.685
MAAN 0.776/0.223 0.922/0.663 (0.170) 0.928/0.541 0.994 1.675 1.107

RICO-O
CAN 0.665/0.148 0.929/0.720 (0.196) 0.500/0.090 2.454 12.032 5.806
MAAN 0.800/0.231 0.959/0.784 (0.196) 0.958/0.636 1.097 2.285 1.427

Figure 3: Retrieval evaluation and sample of retrieval results shown to AMT workers. Results are randomly ordered. Result 6
is a dummy non-existent UI screen. Result 7 is result retrieved by MAAN and is not identical to query as they are menus for
different bible versions.

4.7.1 Ablation Studies. Tables 6 and 7 set out the results of the
ablation studies for different model configurations of MAAN using
the RICO-N dataset. The choices made in the proposed MAAN
lead to better link prediction and regression performance. For at-
tribute inference, multi-head can improve performance for some

attributes. [27] found that multi-head attention allows information
from different representation sub-spaces at different positions to be
attended to. Here, multi-head allows the model to jointly attend to
information from different nodes. Tables 8 and 9 set out the results
of ablation studies for different number of modalities. MAAN-2
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Table 5: Retrieval Evaluation - RICO-N. 42.0% of all results selected as relevant by 2 or more AMT workers. Higher values
indicate better performance.

Model Precision @5 NDCG
GAT(UI Screen Image) 25.0% 58.0%
GAT(UI Element Comp. Type) 25.0% 58.0%
CAN(UI Screen Image) 19.0% 60.4%
CAN(UI Element Comp. Type) 52.0% 82.2%
VSE++(UI Screen Image and UI Element Comp. Type) 11.0% 55.2%
MAAN 85.0% 93.7%

Table 6: Model Ablation - Link Prediction/Regression. Higher (lower) values indicate better performance for AUC/AP (RMSE).

Link Prediction Regression
Modification AUC AP RMSE
Replace GAT layers with GCN 0.966 0.896 0.594
Use multi-heads (4 heads) for each GAT layer 0.970 0.888 0.636
Replace attention fusion with addition 0.689 0.129 2.570e5
Proposed MAAN 0.981 0.913 0.550

Table 7: Model Ablation - Attribute Inference. Higher (lower) values indicate better performance for AUC/AP (RMSE).

AUC/AP for binary valued attributes RMSE for continuous valued attributes
Modification UI Screen Genre UI Element Comp. Type UI Screen Image UI Screen Desc. UI Element

Class Name
CHAR

Replace GAT layers with GCN 0.609/0.138 0.761/0.266 0.819 2.186 3.835
Use multi-heads (4 heads) for each GAT layer 0.771/0.201 0.955/0.680 1.122 1.589 1.037
Replace attention fusion with addition 0.519/0.098 0.686/0.140 2.487 1.059 1.611
Proposed MAAN 0.776/0.223 0.928/0.541 0.994 1.675 1.107

Figure 4: (a) Attention weight visualization: Modality 1 corresponds to UI screen image; 2 to UI element class name; 3 to UI
screen description; 4 toUI screen genre; 5 toUI element component type. Darker shade of bluemeans higherweights. The areas
with higher weights for UI screen and element nodes are boxed in blue and red respectively. (b) Visualization of embedding
spaces.

Table 8: Modality Ablation - Link Prediction/Regression.
Higher (lower) values indicate better performance for
AUC/AP (RMSE).

Link Prediction Regression
Modification AUC AP RMSE
MAAN-2 0.977 0.907 0.564
MAAN-3 0.716 0.617 0.555
MAAN-4 0.907 0.828 0.600
MAAN All 0.981 0.913 0.550

refers to MAAN with UI screen images and element class-names
(CHAR) attributes. We further add the UI screen description for

MAAN-3, and add the UI screen genre for MAAN-4. For link predic-
tion and regression, using more modalities improves performance.
For attribute inference, using all features (i.e. MAAN All) does not
necessarily lead to better performance. Different combinations of
features, i.e. feature selection, can further improve the performance
of MAAN.

Attentionweights learnt by theMAANmodel for theRICO-
Ndataset - βi,r - are plotted as a heatmap in Figure 4(a).We observe
that the generated embeddings for the UI screen nodes (node 0 to
5878) generally have higher attention weights for the screen image
modality. The difference between the weights for different modali-
ties for the UI element nodes is less obvious. The slightly higher
weights for screen description and genre modalities for UI element
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Table 9: Modality Ablation - Attribute Inference. Higher (lower) values indicate better performance for AUC/AP (RMSE).

Modification UI Screen Image (RMSE) UI Element Class Name CHAR (RMSE) UI Screen Desc. (RMSE) UI Screen Genre (AUC/AP)
MAAN-2 1.353 0.712 - -
MAAN-3 0.729 0.536 0.699 -
MAAN-4 0.659 1.152 1.312 0.746/0.193
MAAN All 0.994 1.107 1.675 0.776/0.223

nodes (node 5879 to 7441) could be due to the UI elements being
themselves part of the UI screen image. We also use t-Distributed
Stochastic Neighbor Embedding[20] to project the generated em-
beddings to two dimensions to visualize the embedding spaces.
Figure 4(b) visualizes the embedding spaces generated for the RICO-
N dataset. The presence of more clusters seems correlated with
better task performance. The embedding generated by the MAAN
model has more obvious node clusters than those from CAN. For
CAN, the embeddings for modalities where performance is poorer
do not have clear node clusters forming.

5 CONCLUSION AND FUTUREWORK
Based on the results of our experiments, we see that the MAAN
model, due to its use of 1) information from multiple modalities, 2)
attention mechanism, and 3) the MMD loss term performs more
consistently than the baseline models whose performance varies
based on the nature of the information. We also see that the use
of node-wise attention in GAT layers together with modality-wise
attention fusion leads to better performance. The learned attention
weights also help us understand the importance of information from
eachmodality. The experiment results also demonstrate that MAAN
is able to generate UI screen and element embeddings that can be
used in a range of downstream tasks, e.g. predicting links between
UI screens and elements for UI design reconstruction, UI rating
predictions, missing UI attribute inference and UI screen retrieval.
Given MAAN’s performance on the two distinct datasets that were
used for experiments, the model is likely to be equally applicable
to iOS applications even if characteristics of the information differ.
Directions for future work include:

• Multiple edge-types: The currentMAANmodel utilizes struc-
tural network information for a single edge-type. Capturing
other edge-types could improve performance.

• Positional information:We did not capture the order of the at-
tributes - e.g. order of UI elements in the view hierarchy. Such
positional information could improve task performance.

• End-to-end model: Information from some modalities - e.g.
images, descriptions - are encoded separately. Integrating the
encoders within MAAN could lead to better performance.
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