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Estimating the Dynamics of Mutual Fund
Alphas and Betas

Harry Mamaysky
Old Lane LP

Matthew Spiegel
Yale School of Management

Hong Zhang
INSEAD, Singapore

This article develops a Kalman filter model to track dynamic mutual fund factor
loadings. It then uses the estimates to analyze whether managers with market-timing
ability can be identified ex ante. The primary findings are as follows: (i) Ordinary
least squares (OLS) timing models produce false positives (nonzero alphas) at too
high a rate with either daily or monthly data. In contrast, the Kalman filter model
produces them at approximately the correct rate with monthly data; (ii) In monthly
data, though the OLS models fail to detect any timing among fund managers, the
Kalman filter does; (iii) The alpha and beta forecasts from the Kalman model are more
accurate than those from the OLS timing models; (iv) The Kalman filter model tracks
most fund alphas and betas better than OLS models that employ macroeconomic
variables in addition to fund returns. (JEL G12, G14, G23, C01, C12, C13, C52, C53)

A great deal of attention has gone into understanding mutual fund
returns and trading strategies.1 What most studies have in common is the
maintained hypothesis that their returns can be represented by a static
ordinary least squares (OLS) model.2 Although this may be a reasonable
conjecture for some funds, it seems unlikely to be true for many others.

The authors thank Robert Engle, Wayne Ferson, Will Goetzmann, and Geert Rouwenhorst for their
comments. We would like to thank participants at the Rutgers Conference honoring David Whitcomb,
the 2004 Meetings of the American Finance Association, and seminar participants at Boston College and
the University of Wisconsin-Madison. Hong Zhang thanks the INSEAD Alumni Fund (IAF) for financial
support. We also thank two anonymous referees and the editor Cam Harvey for their comments that led to
the article’s investigation of market-timing measures. Address correspondence to Matthew Spiegel, Yale
School of Management, P.O. Box 208200, New Haven, CT 06520, or e-mail: matthew.spiegel@yale.edu.

1 Examples of the former include Lehmann and Modest (1987), Grinblatt and Titman (1992), Hendricks,
Patel, and Zeckhauser (1993), Brown and Goetzmann (1995), Carhart (1997), Daniel et al. (1997), Wermers
(2000), Pástor and Stambaugh (2002), and Teo and Woo (2001). Examples of the latter include Ferson
and Schadt (1996), Brown and Goetzmann (1997), and Ferson and Khang (2002).

2 One exception is Grinblatt and Titman (1994). The methodology they use avoids a direct comparison
against a specific portfolio, and instead uses an ‘‘endogenous’’ benchmark. However, their technique
requires knowledge of the fund’s actual composition, which may not always be available. Ferson and
Khang (2002) extend the technique to condition the portfolio betas on exogenous variables such as
macroeconomic data.
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Investors presumably employ portfolio managers to move assets into and
out of various sectors and securities as part of a dynamic strategy. This is
especially true if they hope to employ managers with market-timing skills.
If so, detecting managerial timing ability with a static statistical model may
lead to false positives at an unexpectedly high rate. The analysis presented
here confirms that this is indeed a problem and shows how a dynamic
Kalman filter model can be employed to ameliorate it successfully and find
mangers who appear to have a genuine ability to time the market.

This article extends the mutual fund performance literature along the
lines of Ferson and Schadt (1996) (hereafter FS). The FS technique
is designed to estimate the manager’s implicit strategy with respect to
macro variables and then allow for the resulting correlations when judging
performance.3 However, in contrast to FS, our goal is to allow for
portfolio shifts due to factors unobservable by the econometrician. This
is accomplished by assuming that assets are reallocated on the basis of
some unobserved factor, and then estimating the system of equations via a
Kalman filter. Of course, one can also include the macroeconomic factors
FS use, thereby allowing for both observable and unobservable factors in
the specification.

This article demonstrates the Kalman filter model’s ability to handle
dynamic factor loadings by estimating it on U.S. mutual fund data. The
resulting alpha and beta time series show that many funds do indeed
follow highly dynamic strategies. Using the monthly data, a subset of them
(perhaps as high as 20%) is also shown to possess market-timing ability.
This contrasts with Bollen and Busse (2001) (hereafter BB) who, using the
OLS models proposed by Treynor and Mazuy (1966) and Henriksson and
Merton (1981), do not find such ability with monthly data. The difference
lies in the Kalman filter model’s ability to adapt to a fund’s current loading
on market risk in a way that a rolling OLS model cannot.

The results presented here also question the usefulness of using daily
data for analyzing mutual fund performance. As BB note, the daily data
do potentially offer researchers additional power.4 But, this potential also
comes with a number of microstructure problems like stale pricing and
bid–ask bounce. Tests presented here indicate that such problems may
indeed impact market-timing estimates.

On average, as a fund’s estimated market-timing skill increases
with regard to current period returns, the analogous skill estimates

3 Several recent articles have adopted this technique for performance evaluation. For example, see
Christopherson, Ferson, and Glassman (1998), and Blake, Lehmann, and Timmermann (2002).

4 BB create passive characteristic matched control portfolios for the managed funds in their dataset. They
then find that with daily data the managed funds produce larger market-timing parameters than the
control funds. In contrast, using monthly data they fail to detect any statistical difference between the
control portfolios and the managed funds. From this the paper concludes that with daily data one can find
evidence of market-timing ability among fund managers. The monthly data, in their view, do not generate
the same result owing to a lack of power generated by the infrequent sampling interval.
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using lagged returns decrease. In the absence of microstructure problems,
the lagged returns should produce uncorrelated parameter estimates
because lagged returns should be uncorrelated with current returns.
However, if microstructure issues have generated a false-positive market-
timing ability parameter, the lagged return coefficients then act to offset it.
The results presented here are consistent with this hypothesis: a nonzero
current-period market-timing parameter is associated with lagged timing
parameters of about equal size and opposite sign.

As noted by Jagannathan and Korajczyk (1986) an examination of the
Treynor and Mazuy (1966) (hereafter TM) and Henriksson and Merton
(1981) (hereafter HM) parameter estimates shows that they tend to trade
off errors in the market-timing parameter with errors in the estimated fund
alphas.5 In this case, high market-timing estimates are highly correlated
with low estimated alphas. This implies that testing a model’s factor
forecasts one factor at a time may miss problems in other factors.
Conversely, it is also possible for a model’s overall forecasting power
to be good even if the underlying factor estimates appear questionable. To
check for these possibilities this article uses a test suggested by Bollen and
Busse (2005) and an omnibus test developed here that controls for all of a
model’s factors at once.

The omnibus test, rather than conducting the usual sorts, creates fund-
by-fund zero-alpha zero-beta portfolios by going long the fund and short
the factors based on each model’s forecasts. An ideal model should produce
out-of-sample factor loadings centered on zero for these portfolios. The
TM, HM, and four-factor Kalman models fail this test. One might
conjecture that the OLS-based HM and TM models would do well if
estimated only on funds with low turnover rates. They do not. In contrast,
though, the out-of-sample portfolio statistics produced by the one-factor
Kalman model cover zero within the 95% bootstrapped confidence interval
for the sample as a whole and each turnover tercile. This implies that the
one-factor Kalman filter model does not create spurious parameters but
instead provides a useful signal regarding a fund’s timing ability and its
future factor loadings.

The final test in the article looks at the degree to which using
conditioning information, as in FS, adds to the model’s ability to fit
the data within sample. Overall, the conditioning information does not
improve the model’s fit (as measured by the R2 statistic). But this is not
true of every fund. The number of funds with significant parameter values
somewhat exceeds the number that would be produced by chance. From
an economic point of view, these findings indicate that even though some

5 The HM model adds γ rmtI {rmt > 0} to the standard factor model as a means of detecting market-timing
ability. Here, rmt is the market return net of the risk-free rate, and I {rmt > 0}is an indicator function that
equals 1 when rmt > 0 and zero otherwise. The TM model replaces γ rmtI {rmt > 0} with γ r2

mt.
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funds condition on the type of macro information tested here, many do
not. For those that do not, the Kalman filter picks up the time variation
in their betas and alphas via estimates of the unobserved factor’s value.
The tests in this article suggest that up to 20% of all mutual funds (using a
5% critical value) exhibit investment strategies with some dependence on
the lagged treasury-bill rate, and on the market dividend yield. Of course,
the other funds may be conditioning on macro information not included
in this article’s tests, a possibility that offers intriguing avenues for future
research.

The remainder of the article proceeds as follows. Section 1 describes
the data used to estimate the model. Section 2 derives the Kalman filter
model that this article proposes and an alternative empirical specification
for tracking dynamic alphas and betas. Section 3 conducts a series of out-
of-sample tests to check for the reliability of the estimates generated by the
models examined here. Section 4 develops and provides an omnibus test
of each model’s overall ability to provide accurate forecasts. Section
5 examines the reasonableness of the estimated parameter dynamics
produced with the Kalman filter model. Section 6 explores the impact
of adding macroeconomic factors like those used in FS to the model.
Section 7 concludes.

1. Data Description and Model Estimation

Monthly mutual fund data from 1970 to 2002 come from Center for
Research in Security Prices (CRSP). A fund is included only if it has
more than 48 months of return data. Daily mutual fund data come from
a now-defunct firm called Wall Street Web (WSW).6 The data begin on
July 25, 1962 and end on October 5, 2004. Once multiple-share class funds
are consolidated, up to 1998, the overlap between the CRSP and WSW
data averages just over 90%. After that the overlap declines, but only
because the WSW database ceases to include new funds. Examining the
total returns for funds that are in both the CRSP daily database and the
WSW database shows that they are identical up to some small rounding
errors. Finally, a comparison of the equally weighted monthly fund returns
from both files yields a correlation coefficient of 0.9977 before 1999.

Other data include the market, Treasury bill, Fama-French factors,
momentum (MOM) factor, and CRSP stock decile returns. The empirical
section comparing the Kalman filter to the FS conditional model also
uses the lagged dividend yield on the market. The monthly dividend yield
equals the CRSP value-weighted index total return with dividends, minus
the return without dividends. The lagged dividend yield is then calculated
as the average of these monthly values in the previous calendar year.

6 The database is currently housed at the Yale School of Management’s International Center for Finance.
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Estimating the Dynamics of Mutual Fund Alphas and Betas

Although many studies such as Grinblatt and Titman (1993), Daniel
et al. (1997), and Cohen, Coval, and Pastor (2005) have used the mutual
fund holdings data with great success, this database is not used here.
The reason for this disparity is that papers based on the holdings data
seek to detect, prior to fees and other expenses, whether managers have
the ability to select stocks that will produce above-market, risk-adjusted
returns. Here, however, the focus is on whether managers have market-
timing ability and if this ability can be reliably detected. Unfortunately,
the relative infrequency with which fund holdings are sampled makes their
use in this article’s context difficult. Nevertheless, tests were conducted to
see if these data could be used to detect market-timing ability among fund
mangers. Because all the results were negative, they are not reported here.

2. Derivation of the Kalman Filter Model

Every statistical model generates false positives. In fact, the statement that
a coefficient is ‘‘significant at the X% level’’ recognizes that X% of the
time the statistical model will yield a false-positive result. However, while
one must accept that any model will yield false positives, the model should
not do so more frequently than one expects, given a particular critical
value. Studies including those by Jagannathan and Korajczyk (1986) and
Bollen and Busse (2001) show that with real data the HM and TM models
generate false positives on the model’s timing coefficient (labeled γ in this
study) at a rate that is far too high.7 Thus, the question is whether it
is possible to produce an alternative model capable of detecting market
timing that does not suffer from this problem.

A generic problem with the OLS model is that the constant factor-
loading assumption is likely to be violated for managed portfolios,
especially if managers are attempting to time the market. This means
that such models are inherently misspecified and are thus likely to produce
unexpected results—a tendency to produce false positives, for example.
One potential solution is to derive a dynamic model and use it to test for
managerial market-timing ability.

If fund managers are to outperform the market on a risk-adjusted
basis, they must receive some sort of private signal that forecasts returns.
To accommodate this, one needs to start with a general equilibrium
model of asset returns with asymmetric information such as Admati
(1985). Extending the basic setting to a multiple-period framework, from a
particular fund manager’s perspective the return on asset i can be described
by a linear factor model with constant factor loadings:

rit − rf = αit + β ′
i (rmt − rf ) + εit. (1)

7 In addition to the standard factors, the HM and TM models produce a market-timing coefficient. Those
interested in further details should consult the original articles.
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The risk-adjusted abnormal return αit depends upon the current value of
the manager’s signal. Technically, therefore, it should include a parameter
indicating the signal upon which it is based. However, for the sake of
notational simplicity it is not displayed here. Under the null hypothesis
(which will be formally developed later on) the manager’s signal does not
forecast stock returns, and the α-terms are zero. Throughout this article it
is assumed that the errors are normally distributed and independent over
time. Note that although returns change over time, their loadings on the
economywide risk-factor returns (here, the rm’s) remain constant.8 If the
rm’s are known, estimates of a security’s loadings on the economy’s risk
factors can be obtained by regressing security returns on factor returns.

Even when Equation (1) describes each individual stock’s return
accurately, it may not extend to a portfolio of such stocks. Consider
a fund that holds securities A and B. At any time t the portfolio’s return
(rPt) equals

rPt = wA,t−1rA + wB,t−1rB (2)

where the w terms equal the fraction of the portfolio invested in each asset.
Using this and Equation (1), it is straightforward to see that portfolio
returns are also linear in the factor returns rmt’s. However, unless the
returns on A and B at time t happen to be the same, the portfolio weights
for securities A and B will be different at time t + 1 than they were at time
t . Thus, while time t + 1 portfolio returns remain linear in the rm,t+1’s, the
weights attached to each factor’s return will have changed from the time
t weights. Clearly, even in this simple example without any active trading
by the fund manager, security returns and a portfolio’s returns may not
be described well by the same model, especially a linear factor model with
constant coefficients.

Now suppose one wishes to estimate the alphas and betas of the above
portfolio, rather than the alphas and betas of its constituent securities.
In this case, an OLS estimate of the portfolio’s loadings on the rmt’s can
produce answers that are quite far from the portfolio’s true loadings on
the factor returns in question. How far off they will be depends upon
the covariance of factor loadings with each other and market returns, as
well as the degree to which they vary over time. Expressions for the exact
magnitude of the error can be found in both Grinblatt and Titman (1989)
or FS.

To address the above problem, a statistical model needs to allow
explicitly for variation in the fund’s portfolio weights over time. A

8 Many studies like those of Ferson and Harvey (1991, 1993) and Ferson and Korajczyk (1995) question
whether individual security loadings are constant. However, this does not qualitatively alter this article’s
conclusion that fund loadings change over time. If anything, such intertemporal variation in the underlying
securities will only add to the importance of allowing for time variation in the mutual funds themselves.
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portfolio’s time t return equals the weighted average of the returns from
the underlying I assets:

rPt − rft = w′
t−1(αt + β ′(rmt − rft) + εt ) − kt (3)

= αPt + β ′
Pt(rmt − rft) + εPt,

where the variables αPt, βPt, and εPt are defined by

αPt ≡ w′
t−1αt − kt , (4)

βPt ≡ βwt−1,

εPt ≡ w′
t−1εt ,

with w, α, and ε, the I by 1 vectors containing their corresponding firm-
specific elements wi , αi , and εi . The β-term represents a matrix with I

columns containing the vectors βi . Finally, k equals the transactions costs
incurred by the portfolio, which for mathematical tractability are assumed
to be proportional to the funds under management. In Equation (3), if the
Capital Asset Pricing Model (CAPM) or Arbitrage Pricing Theory (APT)
holds period by period, then αPt equals a vector of zeros for all t and all
managers. If a model such as Admati (1985) holds, individual managers
may use their information to produce nonzero alphas. Again, one should
keep in mind that the α-terms are manager and signal dependent.

Note that the α in Equation (3) can derive from a manager’s ability to
forecast either cross-sectional stock returns or intertemporally time the
market. In the former case the portfolio betas may or may not be time
dependent and may or may not be correlated with alpha. In the latter case
they must be. As will be seen, the Kalman filter model developed below
can handle either case, although the market-timing application is the one
pursued here.

Equation (3) is the main focus of the econometric analysis in this article,
and so merits some discussion. So far two important assumptions have
been employed:

1. The evolution of portfolio wealth must satisfy an intertemporal
budget constraint;

2. All stocks have constant betas.

These two assumptions together imply that portfolio returns will
satisfy a linear factor model, but with time-varying coefficients, and
with a heteroskedastic innovation term. This suggests that linear-factor,
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constant-coefficient models for portfolio returns, a common paradigm for
empirical work in asset pricing, are misspecified.9

Without information about a fund’s holdings, and the alphas and
betas of the underlying assets, the empirical system in Equations (3) and
(4) cannot be estimated. However, these problems can be overcome by
adding some assumptions. With the proper specification of the dynamics
governing a fund’s portfolio weights, it is not necessary to know the
individual weights, alphas, and betas.

Let Ft represent some signal (normalized to have an unconditional
mean of zero) that the fund uses to trade. Once again, for notational
simplicity, the subscript identifying the signal’s recipient is suppressed.
Assume that it follows the AR(1) process through time (although more
general specifications are possible):

Ft = υFt−1 + ηt . (5)

The υ ∈ [0,1) coefficient measures the degree to which the signal’s value
persists over time, and ηt represents an independently and identically
distributed (i.i.d.) innovation.

If the signal F has value, then one expects it to influence both the fund’s
present holdings and future expected stock returns. Statistically, these dual
impacts can be represented by assuming that the portfolio weights follow

wit = wi + liFt , (6)

and that stock alphas equal

αit = αiFt−1. (7)

Here wi represents the steady-state fraction of the strategy invested in a
given security. Alternatively, wi can depend upon any set of observable
variables, in which case it may be time dependent. The variable li is stock
i’s loading on a common unobservable factor Ft which shifts the portfolio
weights from their steady-state values. This formulation holds exactly
under Admati’s (1985) model and is generally consistent with Blake,
Lehmann, and Timmermann’s (1999) empirical finding of mean reversion
in fund weightings across securities among U.K. pension funds. Finally, αi

represents the degree to which a stock’s expected return is predictable by the
signal F . If the signal has no value, then all the αi terms equal zero. Also, the
present specification ensures that the steady-state alpha values equal zero.

Now use Equations (4) and (7) in the above formulation. Define w, l,
and α as the I by 1 vectors with elements wi, li , and αi respectively, and

9 It is possible that the stocks have time-varying betas and that fund managers maintain constant portfolio
loadings by trading appropriately. Although this is technically possible, the article will provide empirical
evidence that high-turnover funds also have greater intertemporal variation in their betas.
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one finds that

αPt = w′αFt−1 + l′αF 2
t−1 − kt (8)

= αP Ft−1 + bP F 2
t−1 − kt ,

for the appropriately defined αP and bP . Similarly, one has

βPt = βw + βlFt−1 (9)

= βP + cP Ft−1,

for the appropriately defined βP and cP .
The model’s derivation has assumed that managers vary their portfolio’s

market sensitivity in response to their signals, while the underlying
securities have time-invariant betas. Alternatively, one might think that
the opposite case holds and that fund managers react to changing factor
loadings in their portfolio by rebalancing toward their preferred risk
profile. In this case the cP in (9) will be equal to zero, and if a manager is
talented he should generate positive parameter estimates for αP and bP .
Thus, empirically, the model can accommodate funds that select stocks in
an attempt to both generate excess returns and maintain a constant factor
loading.

The αi, αP , and bP each play a unique economic role in the analysis.
In Equation (7), αi �= 0 implies that a given fund’s signal has a systematic
relationship with the instantaneous excess returns of individual stocks in
an economy. Therefore, one can add an indicator variable to the αi that
indicates that the coefficient is both stock and fund dependent. However,
the point of having nonzero αi ’s is to allow the fund’s αP to depend
systematically on the fund’s trading strategy F . This dependence comes
about through a linear term, αP , and a quadratic term, bP . There is no
constant alpha term in αP because in the long run all alphas are assumed
to be zero (their unconditional value). The linear term αP simply measures
the degree to which a given fund’s strategy is actually related to the
instantaneous alphas of individual stocks. Because F can be positive or
negative, a nonzero αp does not indicate either under- or overperformance.
The quadratic term bP , in contrast, indicates exactly this—it measures the
degree to which a fund is able to go systematically long (short) in response
to discovering a set of positive (negative) alpha stocks.10 Note that this is
a sufficient, though not necessary, condition for a given fund to exhibit

10 Intuitively, bP can be thought of as the covariance between a fund’s security weights (wt ) and the
underlying security alphas.
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occasional (as opposed to systematic) risk-adjusted outperformance. A
weaker and necessary condition is that a fund’s αP is persistent and
occasionally positive (which is obtained when αP �= 0 and when υ > 0).

The empirical model derived above is very flexible. For example, if one
assumes that ηt has a variance of zero, or that υ equals zero, the FS
specification can be reproduced. What is important, however, is that the
model can still be estimated without these assumptions. Also note that
nowhere does the econometrician need data on the actual portfolio weights
used to produce the observed returns.11

Equations (3), (5), (8), and (9) can be estimated via extended Kalman
filtering. To obtain the observation equation, use Equations (8) and (9)
in (3) to eliminate αPt and βPt and produce:

rPt − rft = bP F 2
t−1 − kt + βP (rmt − rft) (10)

+ [
αP + cP (rmt − rft)

]
Ft−1 + εPt

after some minor algebra. Owing to the F 2
t−1 term, standard Kalman

filtering techniques will fail, as the conditional variance of rPt − rft will
no longer be independent of the estimated values of Ft−1. The standard
solution is to use a first-order Taylor expansion around the conditional
expectation of Ft−1, or

F 2
t−1 ≈ 2E[Ft−1|rP,t−1 − rf,t−1, Ft−2]Ft−1 (11)

− E[Ft−1|rP,t−1 − rf,t−1, Ft−2]2

to replace the F 2
t−1 term in Equation (10), where E is the expectations

operator in (11).12 Equation (5) then forms the state equation. Note that
the vector cP has n elements (one for each risk factor) but only n − 1
degrees of freedom. Thus, in the scalar case (as in the CAPM) it can
be normalized to one when estimating the model. In the case where n is
greater than 1, at least one element’s value must be fixed or some other
normalization must be applied. The other fact needed for estimation is
that the variance of εPt, conditional on time t − 1 information, is given by

vart−1(εPt) =
I∑

i=1

w2
i,t−1vart−1(εit). (12)

11 Of course, other modeling choices are possible, and this is an interesting area for future research. For
example, some portfolio strategies lead to known security weightings. Examples include the Fama-French-
Carhart momentum-, growth-, and size-based portfolios. In such cases the portfolio alpha and beta in
Equation (4) may be calculated directly, as long as alphas and betas of individual stocks are known.

12 For details about extended Kalman filtering, see Harvey (1989).
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Estimating the Dynamics of Mutual Fund Alphas and Betas

This follows from the last equation in (4), and from the fact that all εit’s are
independent. Estimation is conducted by maximizing the log likelihood
function and so one needs some way to define when the algorithm has or
has not converged. This article defines convergence as having occurred if
the R2 measure increases by at least 0.01, and if the parameters αp and bP

do not hit a boundary of 10.
The system specified in Equations (5) and (11) embeds an important

timing convention. The alphas and betas that determine time t returns are
known at time t − 1 (assuming that kt is deterministic). Therefore, any
covariance between a portfolio’s time t alphas and time t market returns
indicates that at time t − 1 the portfolio manager makes investment deci-
sions that successfully anticipate market returns at time t . The same is true
for time t betas and time t market returns. Whether a portfolio manager
has this ability or not will affect the interpretation of our results later on.

2.1 False rejections and the Kalman filter model
Unlike an OLS model, the Kalman filter model generates a dynamic
estimate of a fund’s beta. By correlating the fund’s time-varying market
beta with the market return, one has a natural measure of a fund’s
market-timing ability. Using this measure, Table 1 presents the results
from estimating a one- and four-factor Kalman filter model on the daily
CRSP size deciles. Table 2 repeats the exercise with monthly data.

The CRSP size deciles clearly have no market-timing ability, and thus a
properly specified model should yield false positives at the corresponding
critical rate. Using daily data and a 5% critical value the Kalman filter
model yields false positives at a rate of 58% for the one-factor model and
30% for the four-factor model. These numbers, while bad, are roughly
comparable to the rates produced by the TM and HM models (tables
available from the authors). However, with monthly data the Kalman
filter’s performance improves dramatically. In Table 2 the one-factor
model produces false positives at a rate of 3%, and the four-factor model
at a rate of 6%. Both of these figures are in line with the rate one expects
from a properly specified statistical model. In comparison, the rates for
the TM and HM models are 17% and 14%, respectively.

The difference in the rate of false positives generated by the Kalman filter
model in the monthly and daily data may come from microstructure issues.
When using daily data, the Kalman filter may be detecting pseudo market
timing generated by things such as bid–ask bounce, stale pricing, and other
factors known to generate serial correlation in the data.13 In contrast, these

13 For example, suppose a price drop in a stock reduces its subsequent trading volume and an increase raises
its subsequent trading volume. In this case, stale pricing will be a bigger problem after a price drop and a
smaller problem after an increase. As a result, the stock will (on average) appear to be less correlated with
the overall market when overall returns are down and more correlated when returns are up. The HM,
TM, and Kalman models will then interpret this pattern as evidence of market-timing ability.
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Table 1
Daily Market-Timing Ability of CRSP Size Deciles: Kalman Filter Estimates

Periods 1-Dec 2-Dec 3-Dec 4-Dec 5-Dec 6-Dec 7-Dec 8-Dec 9-Dec 10-Dec

A1. Kalman 1-factor market-timing parameters of the 10 VW size portfolios.
1970 0.0387 0.0464 0.0415 0.0288 0.0267 −0.0054 −0.0153 0.0136 −0.0440 0.0609
1975 −0.1588 −0.1668 −0.2056 −0.2226 −0.2477 −0.2586 −0.2632 −0.1987 −0.1317 0.2628
1980 −0.1377 −0.1717 −0.1568 −0.1645 −0.1676 −0.1593 −0.1613 −0.1225 −0.0637 0.1919
1985 −0.0840 −0.0555 −0.0369 −0.0540 −0.0542 −0.0384 −0.0557 −0.0645 −0.0419 0.0716
1990 0.0383 −0.1501 −0.1335 −0.1559 −0.1032 −0.1143 −0.1398 −0.0136 −0.0337 0.0417
1995 −0.1468 −0.1753 −0.1362 −0.1515 −0.1405 −0.1053 −0.0801 −0.0619 −0.0347 0.0492
2000 −0.0712 −0.1296 −0.1274 0.0253 0.0309 0.0324 0.0352 0.0363 0.0328 0.0182
1970 (1.36) (1.64) (1.47) (1.02) (0.95) (0.19) (0.53) (0.48) (1.54) (2.11)

1975 (3.17) (2.93) (2.82) (2.85) (2.82) (2.98) (2.93) (3.09) (2.89) (2.91)

1980 (2.87) (2.96) (3.21) (3.30) (2.98) (2.90) (3.05) (3.18) (2.29) (3.09)

1985 (2.99) (1.93) (1.31) (1.87) (1.94) (1.36) (1.94) (2.25) (1.47) (2.47)

1990 (1.37) (2.83) (2.85) (2.94) (3.02) (2.95) (2.89) (0.48) (1.20) (1.47)

1995 (2.92) (3.02) (2.91) (3.20) (3.15) (3.29) (3.63) (2.12) (1.22) (1.74)

2000 (2.49) (2.85) (3.41) (0.89) (1.10) (1.15) (1.25) (1.27) (1.15) (0.64)

B1. Kalman 4-factor timing parameters of the 10 VW size portfolios.

1970 0.0168 0.0625 0.0544 0.0093 −0.0491 0.0543 −0.1155 −0.0057 −0.0943 0.0778
1975 0.0364 0.0093 −0.0091 0.0236 −0.0546 0.0949 −0.0123 0.0352 0.0664 0.0833
1980 0.0172 −0.0275 −0.0563 −0.0564 −0.0482 0.0504 −0.0042 0.1063 0.0861 0.0088
1985 −0.0634 −0.0859 −0.0414 −0.0215 −0.0095 0.0624 −0.0116 0.0073 0.0327 −0.0318
1990 −0.0436 0.0259 −0.1374 −0.0433 −0.0248 −0.0239 0.0107 0.0627 −0.0070 −0.0119
1995 −0.0648 −0.0943 −0.0811 −0.0341 0.0103 −0.0009 −0.0117 −0.0023 −0.0061 −0.0057
2000 −0.0545 −0.1574 −0.1329 −0.0849 −0.0168 −0.0118 −0.0328 −0.0490 −0.0207 −0.0292
1970 (0.59) (2.14) (1.95) (0.33) (1.75) (1.95) (2.89) (0.20) (2.82) (2.44)

1975 (1.28) (0.33) (0.31) (0.83) (1.92) (2.98) (0.44) (1.25) (2.26) (2.91)

1980 (0.61) (0.97) (1.95) (2.05) (1.68) (1.79) (0.15) (3.18) (3.07) (0.30)

1985 (2.28) (2.89) (1.47) (0.77) (0.33) (2.14) (0.41) (0.25) (1.17) (1.12)

1990 (1.55) (0.91) (2.85) (1.54) (0.87) (0.84) (0.38) (2.17) (0.25) (0.42)

1995 (2.27) (3.02) (2.91) (1.20) (0.36) (0.04) (0.41) (0.07) (0.21) (0.20)

2000 (1.94) (2.85) (3.41) (3.05) (0.59) (0.41) (1.14) (1.72) (0.74) (1.03)

Within each 5-year window, Panel A applies the one-factor and four-factor Kalman models (the
four-factors are MKT, SMB, HML, and MOM) to estimate a beta time series based on the excess
daily returns from the 10 CRSP size-sorted deciles using NYSE-AMEX-NASDAQ stocks. A
market-timing parameter is estimated as the correlation between the estimated beta time series and
the market return. T -Statistics are in parentheses. About 58% of all portfolios under the one-factor
Kalman model and 30% under the four-factor Kalman model have significant timing coefficients
at the 5% level.

data problems are likely to have little impact on the monthly data. This
in turn allows the Kalman filter model to avoid detecting market-timing
ability when none obviously exists. To examine this possibility, regressions
of the form

rit − rft = α0 + α1SMBt + α2HMLt + α3MOMt (13)

+
19∑

j=0

(βupj MKTt−j DUPt−j + βdnj MKTt−j DDNt−j )

were run. In this equation rit equals the return on asset i in period t ,
and rft is the corresponding risk-free rate. The α-terms are estimated
parameters for the Fama-French-Carhart factors small-minus-big (SMB),
high-minus-low (HML), and momentum (MOM). The βup and βdn terms
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Table 2
Monthly Market-timing Ability of the CRSP Size Deciles: Kalman Filter Estimates

Decile
Periods 1 2 3 4 5 6 7 8 9 10

A1. Kalman 1-factor timing parameters of the 10 VW size portfolios (from CRSP).
1970 0.1827 0.1466 0.1640 0.1488 0.1969 0.1980 0.0860 0.2082 0.1747 −0.2013
1975 0.0638 0.0296 −0.0293 −0.0179 −0.0918 −0.1854 −0.1460 −0.0008 0.1382 0.2151
1980 −0.1707 −0.1715 −0.2215 −0.0513 −0.2204 −0.1349 −0.0202 0.0384 0.0413 0.0009
1985 0.0351 −0.1730 −0.1365 −0.0866 −0.3424 0.0288 −0.0922 0.1304 0.0726 0.1751
1990 −0.0195 −0.2426 −0.0441 −0.1475 −0.2981 −0.1583 −0.1080 −0.0367 0.0340 0.0255
1995 0.0326 −0.1200 −0.2312 −0.1579 −0.1677 0.0211 −0.1384 −0.2444 −0.1892 −0.0838
2000 −0.0103 −0.0862 −0.0606 0.0126 −0.0804 0.0777 0.0313 0.0535 0.0926 0.1701
1970 (1.42) (1.14) (1.27) (1.14) (1.54) (1.54) (0.66) (1.62) (1.36) (1.58)

1975 (0.48) (0.23) (0.23) (0.14) (0.69) (1.42) (1.11) (0.00) (1.07) (1.67)

1980 (1.33) (1.33) (1.72) (0.39) (1.72) (1.05) (0.15) (0.29) (0.32) (0.01)

1985 (0.27) (1.33) (1.05) (0.66) (2.66) (0.22) (0.71) (1.00) (0.56) (1.36)

1990 (0.15) (1.92) (0.33) (1.14) (2.39) (1.21) (0.83) (0.28) (0.25) (0.19)

1995 (0.25) (0.92) (1.78) (1.21) (1.30) (0.16) (1.07) (1.92) (1.46) (0.65)

2000 (0.08) (0.66) (0.46) (0.10) (0.62) (0.59) (0.24) (0.41) (0.71) (1.33)

B1. Kalman 4-factor timing parameters of the 10 VW size portfolios (from CRSP).

1970 0.1177 0.2409 0.0617 −0.0994 0.1085 0.1838 −0.0554 0.0900 0.0882 −0.1171
1975 0.1900 0.0615 0.0741 0.1161 0.1047 0.1689 0.1659 0.1130 −0.0759 0.0439
1980 0.1185 −0.1256 0.1729 0.0406 0.3125 0.1488 −0.0231 0.0652 −0.1788 0.0957
1985 −0.0214 0.1116 −0.0796 −0.0910 −0.1342 0.0789 0.0766 −0.1399 0.1204 −0.2970
1990 0.2092 −0.0358 0.0766 0.1049 0.1076 0.0941 0.0422 −0.0510 0.2160 −0.1427
1995 −0.2253 −0.1917 −0.1361 0.0214 −0.2345 0.0026 −0.1406 0.0147 −0.0016 −0.0232
2000 −0.0822 −0.2651 −0.1996 −0.2069 −0.2618 0.1519 −0.0319 −0.1547 −0.0657 0.2350
1970 (0.90) (1.92) (0.47) (0.76) (0.83) (1.42) (0.43) (0.69) (0.68) (0.90)

1975 (1.46) (0.47) (0.57) (0.88) (0.79) (1.30) (1.27) (0.87) (0.59) (0.33)

1980 (0.90) (0.96) (1.33) (0.31) (2.39) (1.14) (0.18) (0.50) (1.39) (0.73)

1985 (0.16) (0.85) (0.60) (0.69) (1.02) (0.60) (0.59) (1.07) (0.92) (2.39)

1990 (1.62) (0.27) (0.59) (0.81) (0.83) (0.73) (0.32) (0.39) (1.67) (1.09)

1995 (1.78) (1.50) (1.05) (0.16) (1.85) (0.03) (1.09) (0.11) (0.01) (0.18)

2000 (0.63) (2.10) (1.54) (1.62) (2.10) (1.16) (0.24) (1.19) (0.50) (1.85)

Within each 5-year window, Panel A applies the one-factor and four-factor Kalman models (the
four-factors are MKT, SMB, HML, and MOM) to estimate a beta time series based on the excess
monthly returns from the 10 CRSP size-sorted deciles using NYSE-AMEX-NASDAQ stocks. The
market-timing parameter is estimated as the correlation between estimated beta time series and the
market return. The t -statistics are in parentheses. About 3% of all portfolios under the one-factor
Kalman model and 6% under the four-factor Kalman model have significant timing coefficients at
the 5% level.

represent estimated up- and down-market betas. They multiply the market
excess return (MKT) and dummies. The DUP dummy equals 1 if the
MKT is positive and zero otherwise, and the DDN dummy equals 1 if the
MKT is negative and zero otherwise. If betas are really the same in up and

down markets, then tests of the hypothesis that
k∑

i=0
βupi =

k∑
i=0

βdni should

produce insignificant results. Note that the HM market-timing parameter
can be recovered from Equation (13) by subtracting βdn0 from βup0.

One can use Equation (13) to test for microstructure issues in the
data by looking at the sign βup0 minus βdn0 (�β0) and then comparing
this value to the sum of the βupj minus βdnj for the subsequent j ’s
(�β1– 19 = ∑19

j=1 βupj − βdnj ). If there are no microstructure problems,
then the �β1– 19 should be independent of �β0. Conversely, if there are
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Table 3
Impact of Microstructure Issues on Mutual Fund Daily Timing

One-factor model Four-factor model

A. The relationship between current and lagged beta differences (5-year non-overlapping windows)

Decile �β0 �β1–19 TNW TOLS �β0 �β1–19 TNW TOLS
1 −0.31 0.22 (9.34) (9.95) −0.16 0.10 (4.37) (4.67)

2 −0.16 0.15 (9.95) (10.86) −0.05 0.05 (5.89) (6.19)

3 −0.11 0.06 (6.56) (6.59) −0.02 0.02 (4.62) (3.45)

4 −0.06 0.06 (7.50) (7.13) 0.00 0.01 (0.87) (0.84)

5 −0.03 0.02 (2.36) (2.80) 0.01 0.00 (0.55) (0.50)

6 0.00 −0.02 (2.41) (2.44) 0.03 −0.01 (1.93) (2.05)

7 0.02 −0.03 (6.44) (6.08) 0.04 −0.03 (6.40) (4.87)

8 0.04 −0.05 (8.03) (7.81) 0.06 −0.05 (6.47) (6.45)

9 0.06 −0.05 (7.89) (8.67) 0.09 −0.05 (5.44) (5.97)

10 0.11 −0.11 (8.58) (10.97) 0.14 −0.12 (9.63) (11.91)

Corr −0.99 [0.00] −0.98 [0.00]

B. The relationship between current and lagged beta differences (1-year non-overlapping windows)

Decile �β0 �β1–19 TNW TOLS �β0 �β1–19 TNW TOLS
1 −0.42 0.18 (8.10) (8.29) −0.26 0.15 (9.06) (9.00)

2 −0.20 0.04 (3.59) (3.61) −0.10 0.06 (8.07) (8.29)

3 −0.12 0.03 (3.41) (3.34) −0.05 0.03 (3.89) (3.75)

4 −0.07 0.02 (2.56) (2.69) −0.02 0.00 (0.36) (0.37)

5 −0.03 0.01 (1.61) (1.58) 0.00 0.02 (2.46) (2.54)

6 0.00 0.00 (0.59) (0.57) 0.03 0.00 (0.17) (0.16)

7 0.03 −0.02 (2.78) (2.67) 0.05 −0.02 (2.49) (2.49)

8 0.07 −0.02 (2.43) (2.43) 0.08 −0.03 (3.40) (3.60)

9 0.12 −0.02 (2.23) (2.36) 0.12 −0.04 (4.82) (4.64)

10 0.28 −0.13 (6.80) (9.62) 0.27 −0.16 (8.72) (10.83)

Corr −0.97 [0.00] −0.99 [0.00]

Within each 5-year nonoverlapping window the following one- and four-factor regres-
sions are applied to the daily data: rit − rft = α0 + α1SMBt + α2HMLt + α3MOMt +∑19

j=0 (βupj MKTt−j DUPt−j + βdnj MKTt−j DDNt−j ). For each fund the summation of lagged

beta difference �β1–19 is defined as
∑19

j=1 βupj − βdnj . Similarly, �β0 is defined as βup0 − βdn0 when
regressions without lagged market returns are applied to each fund in the 5-year in-sample period (the
results are the same if βup0 − βdn0 is calculated from the regression with all 19 lags). The table sorts
funds into deciles by �β0, and reports the average value of �β1–19 in Panel A. The TNW are the
Newey-West t-statistics for each �β1–19 with 11 lags. The TOLS column reports t-statistics as the OLS
t-statistic. The Corr row reports the Spearman rank correlation coefficient across deciles. The p-value
for the rank correlation is in square brackets. Panel B repeats the same process with sample periods of
one year. All domestic equity mutual funds (ICDI-OBJ: AG, BL, GI, IN, LG, PM, SF, and UT) are
included in the dataset.

microstructure problems, then �β1– 19 should substantially offset �β0 as
the problems work their way through the data.

Table 3 estimates Equation (13) using daily mutual fund returns. As one
can see, the estimated �β0 values are strongly negatively correlated with
the estimated �β1– 19 values whether one uses a one- or five-year rolling
window or a one- or four-factor model to create the timing estimates.14 It
is particularly worth noting how close the magnitudes are for the estimated
�β0 and �β1– 19 parameters for the top decile HM gamma funds. In Panel

14 Shorter windows were also used and produced similar results. The data using windows of one year are
reported here to avoid raising questions about the reliability of the results, given the large number of
parameters being estimated.
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A, using five-year windows and the one-factor model, other than the sign
the figures are identical (0.11). Using the four-factor model they are close:
0.14 for �β0 and −0.12 for �β1– 19. Using one-year windows the problem
is somewhat ameliorated but not entirely eliminated. For the highest decile
groups �β1– 19 offsets about half of �β0’s value. Thus, the data seem
to indicate that in the absence of microstructure issues one would need
to believe that a fund’s current market-timing ability is generally offset
largely by its past systematic mistiming.15 Because this seems unlikely, to
avoid microstructure issues the remainder of the article works primarily
with the monthly data.

3. Out-of-Sample Tests

Although both Jagannathan and Korajczyk (1986) and Bollen and Busse
(2001) show that neither the TM nor the HM models can apparently
be used to determine reliably if funds exhibit in-sample timing ability,
the same may not be true out-of-sample.16 Similarly, though the Kalman
model does not yield in-sample false positives at an unexpectedly high rate
(with monthly data), it may still yield unreliable out-of-sample forecasts.
Essentially the argument is that if a model produces false rejections at too
high a rate, its parameter estimates may still contain some informational
value. If so, this should show up in out-of-sample tests. Managers with
larger parameter values should be more likely to exhibit out-of-sample
timing ability if, in fact, the parameter values themselves contain some
information.

Table 4 examines the degree to which the HM model’s in-sample timing
parameter corresponds to a set of out-of-sample statistics. Panel A ranks
funds by their HM in-sample market-timing parameter using a one-factor
model, and Panel B does the same using a four-factor model. On the basis
of these ranks, decile portfolios are constructed and the four-factor HM
and TM models, along with the lagged factors (as in (13)), are then run
on the out-of-sample data. The results indicate that there is essentially
no out-of-sample predictability. Consider the most encouraging statistic
in the table, the Spearman rank correlation coefficient across deciles for
the one-factor model with the out-of-sample HM timing parameter. It

15 Ang, Chen, and Xing (2002) have shown that many individual stocks have different up- and down-market
betas. However, if funds are generating significant ‘‘market-timing’’ parameters with these stocks, then
the model is still producing false positives. The γ -parameter does not come from the manager’s ability to
rebalance the portfolio in anticipation of the market’s next move but rather from the stock’s inherent risk
characteristics. More important, though, for this article, if the Ang et al. result is primarily responsible
for the HM and TM false positives, then the lagged returns in Equation (13) should not yield significant
market-timing parameters, the sum of which is of opposite sign and magnitude near that of the current
period’s parameter.

16 Again, with the caveat, Bollen and Busse (2001) find that some managers produce higher timing estimates
than one might expect relative to a bootstrapped control portfolio.
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Table 4
Four-Factor Adjusted Return and Market-timing Coefficients for Mutual Fund Deciles Across
Estimated HM Market-Timing Skill (1970–2002) with Monthly Data

γ sorted deciles α (bp) β γ HM γ TM Tα Tβ Tγ HM Tγ TM

A. Deciles sorted by 1-factor HM market-timing ability.
Decile 1 −12.37 0.97 −0.0370 −0.0628 (1.34) (48.01) (0.64) (0.31)

Decile 2 −2.10 0.94 0.0205 0.1014 (0.30) (60.11) (0.46) (0.64)

Decile 3 −0.16 0.93 −0.0212 −0.1005 (0.03) (75.28) (0.60) (0.80)

Decile 4 −3.35 0.92 0.0058 0.0111 (0.67) (84.40) (0.19) (0.10)

Decile 5 −2.41 0.92 0.0271 0.0733 (0.58) (100.90) (1.04) (0.80)

Decile 6 −1.74 0.90 0.0196 0.0289 (0.44) (103.71) (0.80) (0.33)

Decile 7 −7.25 0.90 0.0209 −0.0979 (1.93) (109.06) (0.89) (1.17)

Decile 8 −4.92 0.89 0.0268 0.0138 (1.17) (96.51) (1.02) (0.15)

Decile 9 −2.05 0.88 0.0822 0.3018 (0.44) (86.92) (2.86) (2.96)

Decile 10 11.24 0.74 −0.0367 −0.4710 (1.20) (35.16) (0.60) (2.11)

D10–D1 17.36 −0.10 0.0110 −0.1603 (1.29) (3.47) (0.13) (0.54)

Rank correlation 0.55 −0.82 0.37 −0.19 [0.10] [0.00] [0.30] [0.59]

B. Deciles sorted by 4-factor HM market-timing ability.

Decile 1 −9.44 0.92 0.0040 0.0386 (1.49) (66.23) (0.10) (0.27)

Decile 2 −7.63 0.93 −0.0192 −0.0530 (1.63) (90.42) (0.66) (0.51)

Decile 3 −5.46 0.91 −0.0120 −0.0939 (1.34) (101.99) (0.47) (1.04)

Decile 4 −4.39 0.92 0.0545 0.1495 (1.29) (122.81) (2.57) (1.99)

Decile 5 1.81 0.90 0.0110 −0.0477 (0.49) (111.60) (0.48) (0.59)

Decile 6 −4.02 0.91 0.0279 0.0839 (0.95) (97.61) (1.05) (0.89)

Decile 7 −3.71 0.91 0.0434 0.1108 (1.00) (111.62) (1.88) (1.35)

Decile 8 −1.39 0.90 0.0497 0.2127 (0.32) (93.41) (1.81) (2.20)

Decile 9 −2.24 0.91 0.0063 −0.1144 (0.45) (83.32) (0.20) (1.03)

Decile 10 8.66 0.78 −0.0524 −0.5142 (0.90) (36.01) (0.84) (2.25)

D10–D1 10.60 0.00 −0.0450 −0.2820 (1.28) (0.27) (0.87) (1.54)

Rank correlation 0.78 −0.63 −0.02 −0.35 [0.01] [0.05] [0.96] [0.33]

Each January a market-timing ability measure (γ ) is estimated using the previous 60 months
of return data. Gammas are estimated with the HM model using the market return and its
lagged value or the four Carhart (1997) factors and their lagged values plus the appropriate
timing variable. On the basis of these gammas, funds are sorted into decile portfolios. The out-
of-sample returns are then regressed on the four-factors and their lagged values using the HM
or TM model to generate out-of-sample gamma values. These are reported in the γ HMand
γ TMcolumns, respectively. Next the same out-of-sample return series is regressed on the four
Carhart factors and their lagged values, but not the market-timing variable, to generate the
out-of-sample α and market β values reported in their respective columns. Corresponding t

-statistics are reported in the last 4 columns. Line ‘‘D10–D1’’ reports the same parameters for
the difference between decile 10 and decile 1 funds. The last line reports the Spearman rank
correlation for parameters across the 10 deciles, as well as the corresponding p -values. The
data uses all domestic equity mutual funds (ICDI-OBJ: AG, BL, GI, IN, LG, PM, SF, and
UT).

equals 0.37 but is not significant at the 10% level. The other market-timing
rank correlation statistics are not even that strong. In fact, the other three
are actually negative. This implies, first of all, that the in-sample HM
timing statistic is negatively correlated with a fund’s out-of-sample TM
timing statistic. Second, it also implies that the in-sample, four-factor
HM timing statistic is negatively correlated with its own out-of-sample
counterpart.17

17 Similar results were found when portfolios were created with the TM market-timing parameter and are
not reported here for the sake of brevity.

16
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Table 5
Four-Factor Adjusted Return and Market-timing Coefficients for Mutual Fund Deciles Across Estimated
Kalman Market-timing Skill (1970–2002) with Monthly Data

Mkt.-timing
sorted deciles α (bp) β γ HM γ TM Tα Tβ Tγ HM Tγ TM

A. Deciles sorted by 1-factor Kalman market-timing ability.

Decile 1 −8.13 0.93 −0.0543 −0.3153 (1.19) (60.20) (1.23) (2.01)

Decile 2 −3.57 0.94 −0.0070 −0.0495 (0.73) (84.28) (0.22) (0.44)

Decile 3 −5.22 0.96 −0.0239 −0.1190 (1.12) (91.28) (0.80) (1.11)

Decile 4 −4.26 0.93 0.0354 0.0167 (1.05) (102.41) (1.36) (0.18)

Decile 5 −3.18 0.90 0.0739 0.2409 (0.80) (100.39) (2.92) (2.66)

Decile 6 1.09 0.91 0.0570 0.1516 (0.30) (110.39) (2.44) (1.81)

Decile 7 −7.68 0.92 0.0373 0.0505 (1.85) (97.88) (1.39) (0.53)

Decile 8 −0.56 0.88 0.0586 0.2146 (0.11) (77.82) (1.81) (1.86)

Decile 9 −0.36 0.89 0.0892 0.2682 (0.08) (82.23) (2.91) (2.44)

Decile 10 −3.44 0.93 0.1019 0.3302 (0.50) (59.85) (2.30) (2.09)

D10–D1 4.69 0.01 0.1561 0.6455 (0.56) (0.26) (2.91) (3.39)

Rank correlation 0.50 −0.53 0.90 0.89 [0.14] [0.11] [0.00] [0.00]

B. Deciles sorted by 4-factor Kalman market-timing ability.

Decile 1 −5.13 0.94 −0.0424 −0.2106 (0.75) (60.53) (0.96) (1.33)

Decile 2 −3.24 0.90 0.0198 −0.0340 (0.63) (78.26) (0.60) (0.29)

Decile 3 −2.50 0.91 0.0949 0.3171 (0.58) (92.41) (3.45) (3.22)

Decile 4 −6.35 0.93 0.0186 −0.0515 (1.51) (97.34) (0.69) (0.53)

Decile 5 −3.06 0.91 0.0312 0.0780 (0.76) (100.06) (1.20) (0.84)

Decile 6 −2.39 0.94 0.0507 0.0581 (0.57) (99.47) (1.89) (0.61)

Decile 7 −5.96 0.92 0.0538 0.2356 (1.40) (95.48) (1.96) (2.42)

Decile 8 −0.13 0.94 0.0086 −0.0993 (0.03) (89.74) (0.29) (0.93)

Decile 9 −5.48 0.93 0.1159 0.4311 (1.24) (93.17) (4.15) (4.34)

Decile 10 −3.06 0.90 −0.0217 −0.0662 (0.53) (69.29) (0.59) (0.50)

D10–D1 2.07 −0.04 0.0207 0.1443 (0.26) (2.40) (0.40) (0.78)

Rank correlation 0.16 −0.02 0.21 0.30 [0.67] [0.95] [0.56] [0.40]

Each January the one- or four-factor Kalman filter model is estimated using the previous 60 months
of return data. On the basis of the estimated parameter values the correlation between the fund’s beta
time series and the market return is calculated. Call this correlation the fund’s forecasted market-timing
ability. Funds are then sorted into decile portfolios based on their forecasted market-timing ability. The
out-of-sample returns are then regressed on the four-factors and their lagged values in either the HM or
TM model to generate out-of-sample gamma values. These are reported in the γ HM and γ TM columns,
respectively. Next, the same out-of-sample return series is regressed on the four Carhart factors and
their lagged values, but not the market-timing variable, to generate the out-of-sample α and market β

values reported in their respective columns. Corresponding t-statistics are reported in the last 4 columns.
Line ‘‘D10–D1’’ reports the same parameters for the difference between decile 10 and decile 1 funds.
The last line reports the Spearman rank correlation for parameters across the 10 deciles, as well as the
corresponding p -values. The data uses all domestic equity mutual funds (ICDI-OBJ: AG, BL, GI, IN,
LG, PM, SF, and UT).

Table 5 repeats the exercise in Table 4 but this time sorts portfolios
on the basis of their Kalman filter market-timing estimates. The out-of-
sample returns from these portfolios are then regressed on the TM and
HM models. Now contrast the results in the two tables. Table 5 shows that
overall both the one- and four-factor Kalman filter models do a superior
job of forecasting the TM and HM timing parameters than the TM and
HM models do themselves. Furthermore, the one-factor Kalman filter
model is so accurate that it produces both high minus low gamma values
and Spearman rank correlations that are also significant at any reasonable
level.
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Another point of comparison between Tables 4 and 5 is the rank
correlation of the alpha columns. From Table 4 it appears that the in-
sample market-timing estimates from the HM model predict, if anything,
a fund’s out-of-sample alpha. Sorting by the in-sample, four-factor HM
model’s gamma coefficient produces a set of estimated alphas that have,
collectively, an out-of-sample rank correlation of 0.78 (p-value of just
over 1%). Nevertheless, none of the individual portfolios produces an
alpha that is statistically different from zero at the standard critical values.
This indicates that funds with positive alphas may be misclassified by the
HM model as having market-timing ability when in fact they have (if
anything) selection ability. Now consider the results in Table 5. Sorting
by the market-timing estimate produced with either Kalman filter model
leaves the HM model’s estimated alphas unsorted. In this case the rank
correlations are 0.50 and 0.16, which are not significant at any reasonable
level. This provides evidence that unlike the HM model, the Kalman filter
models do not similarly misclassify selection ability as timing ability.

4. Out-of-Sample Multiple Parameter Tests

4.1 Bollen and Busse (2005)
It is possible that the poor out-of-sample performance of the OLS parame-
ter estimates arises here because the tests are using the wrong forecast from
the model. An alternative is the measure used in Bollen and Busse (2005),

rp,γ = 1
N

N∑
t=1

[αP + γ P f (rm,t )] (14)

where f (rm,t ) is the HM or TM market-timing component as defined in
footnote 5. This measure has the advantage of using the model’s overall
return forecast as the benchmark rather than the accuracy of the individ-
ual parameters. Thus, if the model’s estimation errors tend to cancel out,
Equation (14) may reveal an as yet undetected forecasting power. Table 6
examines this possibility using daily data because one might hope that the
HM or TM models will produce their best estimates in this case.18

To create Table 6, parameters are estimated quarterly and the portfolios
rebalanced accordingly. The data is then sorted on the basis of the
in-sample estimate of Equation (14). Panel A provides results from the
one-factor model. As the α and γ TM columns show, sorting on (14) in-
sample then leads to out-of-sample sorts on these two parameters that are
in inverse order. Though the rank correlation coefficient on the HM timing
measure has the right sign, it is not significant. Also, none of the deciles

18 The same tests reported in Table 6 were also conducted with monthly data. Because the conclusions to
be drawn from the monthly data are similar to those from the daily data, they are not reported here.
Interested readers can obtain a copy of the table from the authors.

18
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Table 6
Four-Factor Adjusted Return and Market-timing Coefficients for Mutual Fund Deciles Cross Estimated
BB 2004 Measure with Daily Data (1970–2002)

γ sorted deciles α (bp) β γ HM γ TM Tα Tβ Tγ HM Tγ TM

A. Deciles sorted by 1-factor BB measure for HM market-timing.

Decile 1 0.63 0.94 0.0085 0.2893 (1.36) (58.67) (0.44) (2.14)

Decile 2 0.48 0.90 0.0064 0.3561 (1.33) (59.05) (0.38) (3.58)

Decile 3 0.17 0.90 0.0100 0.2004 (0.65) (102.21) (1.02) (3.16)

Decile 4 −0.02 0.90 0.0128 0.2853 (0.07) (93.29) (1.13) (3.67)

Decile 5 0.07 0.89 0.0144 0.2024 (0.35) (110.64) (1.73) (2.76)

Decile 6 0.06 0.89 0.0022 −0.0117 (0.31) (129.84) (0.24) (0.18)

Decile 7 −0.11 0.91 0.0076 0.0995 (0.5) (144.64) (0.73) (1.36)

Decile 8 −0.14 0.94 0.0064 0.1329 (0.57) (109.79) (0.54) (1.55)

Decile 9 0.02 0.98 0.0010 −0.2421 (0.07) (85.04) (0.06) (2.64)

Decile 10 0.25 0.99 0.0371 0.7709 (0.5) (35.09) (1.06) (2.8)

D10–D1 −0.38 0.05 0.0286 0.4816 (0.49) (1.62) (0.69) (1.37)

Rank correlation −0.63 0.62 0.31 −0.07 [0.05] [0.06] [0.38] [0.85]

B. Deciles sorted by 4-factor BB measure for HM market-timing.

Decile 1 −0.17 0.93 −0.0006 0.1475 (0.45) (65.75) (0.04) (1.35)

Decile 2 0.38 0.89 0.0268 0.4943 (1.32) (60.37) (1.68) (5.11)

Decile 3 0.04 0.91 0.0139 0.3314 (0.16) (78.23) (1.03) (4.2)

Decile 4 0.00 0.90 0.0042 0.0733 (0) (132.7) (0.54) (1.11)

Decile 5 0.24 0.91 0.0031 0.1094 (1.17) (104.05) (0.35) (1.52)

Decile 6 −0.06 0.92 0.0091 0.2343 (0.27) (126.15) (0.78) (3.03)

Decile 7 0.11 0.91 0.0081 0.2002 (0.54) (125.08) (0.8) (3.16)

Decile 8 0.03 0.94 −0.0061 −0.1572 (0.12) (159.54) (0.54) (2.03)

Decile 9 0.08 0.97 −0.0002 −0.0127 (0.32) (124.02) (0.02) (0.16)

Decile 10 0.84 0.95 0.0495 0.6363 (1.92) (45.66) (1.87) (3.43)

D10–D1 1.00 0.03 0.0501 0.4888 (1.73) (1.27) (1.64) (2.37)

Rank correlation 0.45 0.75 0.20 −0.09 [0.19] [0.01] [0.58] [0.82]

At the beginning of each quarter, a market-timing performance measure (BB) is estimated using the
previous quarter of return data. First, gammas are estimated with the HM model using the market return
and its lagged value or the four Carhart (1997) factors and their lagged values plus the appropriate timing

variable. Second, the BB measure is defined as rp,γ = 1
N

N∑
t=1

[αP + γ P f (rm,t )], where f (rm,t ) is the

HM or TM market-timing component. Based on these measures funds are sorted into decile portfolios
(decile 10 with the highest BB measure), which are rebalanced quarterly. The out-of-sample returns
are then regressed on the four-factors and their lagged values using the HM or TM model to generate
out-of-sample gamma values. These are reported in the γ HM and γ TM columns, respectively. Next
the same out-of-sample return series is regressed on the four Carhart factors and their lagged values,
but not the market-timing variable, to generate the out-of-sample α and market β values reported in
their respective columns. Corresponding t -statistics are reported in the last 4 columns. Line ‘‘D10–D1’’
reports the same parameters for the difference between decile 10 and decile 1 funds. The last line reports
the Spearman rank correlation for parameters across the 10 deciles, as well as the corresponding p

-values. The data uses all domestic equity mutual funds (ICDI-OBJ: AG, BL, GI, IN, LG, PM, SF,
and UT). Finally, no timing ability can be detected if γP f (rm,t ) is added to alpha only when γP is
significant at the 5% level.

produce HM timing measures that are statistically different from zero at
the 5% level. Sorts based on the four-factor model produce results that
are little better. Although the alphas and HM timing parameters generate
rank correlations of the right sign, again they are statistically insignificant.
Furthermore, the TM timing parameter now has the wrong sign on its
rank correlation. Overall, there appears to be little evidence that sorts
based on (14) provide any better out-of-sample predictability than those
based directly on the underlying parameter estimates.
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Comparing Table 5 to Table 6, one can see the difference in the out-
of-sample performance of the Kalman filter HM models. Unlike the HM
model, in-sample sorts based on the Kalman model’s market-timing mea-
sure sort the funds out-of-sample by their HM and TM timing parameters
as well. From a practical standpoint, the Kalman filter results are also
easier to utilize. Investors wishing to use the results in Table 6 need to
rebalance their portfolio every quarter, which can yield large tax bills and
other transactions costs. In contrast, the numbers in Table 5 use monthly
data with portfolios that are rebalanced annually. This makes it much
easier to exploit any of the Kalman model’s results that an investor may
wish to take advantage of.

4.2 A general omnibus parameter test
Some of the results presented in Section 3 indicate that the statistical
models may balance errors in one variable against those in another. In
the case of the TM and HM models this may account for the negative
correlation between the alpha and gamma estimates. Thus, the only way to
judge a model’s overall fit is to control for all of its estimated parameters
simultaneously and then examine the resulting portfolio’s sample statistics.

To create omnibus out-of-sample tests, this article proposes a three-step
process. First, each model is estimated fund by fund. Second, using the
estimated parameters a portfolio with a forecasted zero alpha, zero beta,
and (where appropriate) zero gamma is created. This is done by going
long the fund, taking countervailing positions in the underlying factors,
and then subtracting the predicted alpha value. By repeating the above
procedure, a time series of returns is produced (1970–2002 for this article’s
data set). Third, the resulting return sequence is then regressed against the
appropriate factor model. A model without any forecasting error should
produce portfolios that yield excess returns (alphas) and factor loadings
(betas and gammas) of exactly zero. Positive regression parameters indi-
cate that a model has underestimated a value, while negative regression
parameters imply the opposite.

For the omnibus test described, eight models are tested: the OLS,
Kalman, TM, and HM models in both their one- and four-factor forms. In
each test the same model is used for all three steps. Thus, if the one-factor
OLS model is used to create the portfolio (steps one and two), then the one-
factor OLS model is used to determine the out-of-sample distribution of the
portfolio’s loadings (step three). The only exceptions are the Kalman filter
models. The one-factor Kalman filter model is tested out of sample with
the one-factor OLS model. Similarly, the four-factor Kalman filter model
is paired with the four-factor OLS model. This asymmetric treatment
of the Kalman filter models derives from the theoretical properties that
an out-of-sample portfolio should possess if the model that created it is
properly specified. With a properly specified model the first two steps

20
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should generate portfolio returns that have time-invariant parameters
equal to zero. A static OLS model should thus be the ideal instrument with
which to capture or reject this hypothesis.

Why not use the TM and HM models for the out-of-sample Kalman
tests? If the TM and HM models properly describe the data-generation
process, then there is no harm in using them. In such cases the out-of-
sample portfolio returns they produce should have constant zero-valued
parameters, and the step-three model estimates should reflect this. Thus,
the use of the TM and HM models for their own step-three testing is both
logically consistent and has the advantage of producing a bootstrapped
distribution for the out-of-sample market-timing parameter (γ ). As
discussed earlier, however, these two models tend to produce nonzero
gammas at too high a rate even when there is every reason to believe
that the portfolios in question have zero gammas. Once the TM and HM
models no longer form the null hypothesis, there is no reason to believe that
their out-of-sample step three estimates will be unbiased. Thus, using them
in step three to test whether the OLS or Kalman models have correctly
hedged out each fund’s market-timing ability is problematic.19

Table 7 reports the distributions from the three-step omnibus tests
proposed above. Portfolio returns are bootstrapped with replacement
1000 times. The forecast errors are also broken down by fund turnover. As
noted earlier, it seems intuitive that the OLS models should do better when
fund turnover is low, and the Kalman filter model when it is high. Unlike
the previous set of tables, Table 7 also includes OLS models without the
gamma timing parameter. This was done to see if the timing parameter
actually helps or hinders the estimation of the other factors.

Each panel in Table 7 includes three sets of parameter statistics. The first
is the alpha error, the second the ‘‘return-weighted beta error,’’ and the
third the gamma error for the HM and TM models. The alpha and gamma
errors are simply the estimated alphas and gammas of the supposedly
zero-alpha, zero-beta, and zero-gamma portfolios. The return-weighted
beta is a variable designed to capture the overall misestimate of the factor
loadings within a single statistic. It is constructed by multiplying the
factor loadings estimated on the out-of-sample predicted zero-alpha and
zero-beta (and zero gamma for the HM and TM models) returns by each
factor’s average value over the sample period and adding the products
together:

return weighted beta error ≡
∑

i

β̂i r i . (15)

19 For the Kalman filter model it is also somewhat unnecessary. The Kalman filter model attempts to forecast
the time-varying factor loadings. Assuming it is successful then, by construction, the step-two fund returns
should lack any market-timing ability.
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Table 7
Out-of-Sample Returns for Zero-Alpha and Zero-Beta Portfolios

mean std 5% 10% 50% 90% 95%

Panel A: Results for the 1/3 of all funds with the lowest turnover ratio.
Alpha error

OLS 1F 3.35 1.68 0.68 1.20 3.30 5.47 6.19

OLS 4F −2.70 1.17 −4.62 −4.27 −2.71 −1.20 −0.86

HM 1F 5.16 2.69 0.78 1.68 5.06 8.60 9.49

HM 4F −8.99 1.89 −12.24 −11.35 −9.03 −6.64 −5.90

TM 1F 9.29 2.57 5.09 6.08 9.28 12.75 13.54

TM 4F −3.82 1.46 −6.15 −5.62 −3.86 −1.95 −1.45

KAL 1F 1.20 1.88 −2.01 −1.33 1.26 3.55 4.15

KAL 4F −6.02 2.04 −9.50 −8.49 −6.09 −3.40 −2.61
Return weighted beta error (bp)

OLS 1F 0.02 0.21 −0.33 −0.24 0.02 0.28 0.36

OLS 4F 2.70 0.55 1.81 2.00 2.73 3.39 3.57

HM 1F −1.12 0.35 −1.70 −1.57 −1.11 −0.68 −0.57

HM 4F 1.24 0.65 0.17 0.46 1.24 2.08 2.29

TM 1F 1.07 0.44 0.39 0.50 1.07 1.64 1.80

TM 4F 2.88 0.57 1.93 2.16 2.88 3.57 3.84

KAL 1F −0.11 0.25 −0.54 −0.43 −0.11 0.22 0.30

KAL 4F 1.91 0.83 0.55 0.87 1.91 2.96 3.19
Gamma error

HM 1F −0.01 0.01 −0.02 −0.02 −0.01 0.00 0.01

HM 4F 0.04 0.01 0.02 0.03 0.04 0.05 0.05

TM 1F −0.10 0.04 −0.16 −0.14 −0.10 −0.05 −0.04

TM 4F 0.04 0.03 −0.01 0.00 0.04 0.08 0.09

Panel B: Results for the 1/3 of all funds with middle turnover ratio.
Alpha error

OLS 1F 1.37 1.49 −1.14 −0.57 1.34 3.29 3.80

OLS 4F −4.42 1.25 −6.46 −6.03 −4.46 −2.80 −2.27

HM 1F 9.28 2.89 4.70 5.76 9.14 12.94 14.13

HM 4F −5.38 2.26 −9.02 −8.19 −5.37 −2.56 −1.54

TM 1F 11.11 2.53 6.95 7.83 11.11 14.36 15.23

TM 4F −1.64 1.50 −4.28 −3.61 −1.61 0.21 0.78

KAL 1F −2.64 1.77 −5.60 −4.98 −2.57 −0.42 0.26

KAL 4F −4.74 1.72 −7.49 −6.89 −4.78 −2.57 −1.96
Return weighted beta error (bp)

OLS 1F 0.05 0.25 −0.34 −0.25 0.04 0.37 0.48

OLS 4F −0.59 0.69 −1.74 −1.45 −0.59 0.34 0.56

HM 1F −1.33 0.44 −2.08 −1.90 −1.33 −0.76 −0.61

HM 4F −0.87 0.82 −2.27 −1.95 −0.83 0.17 0.44

TM 1F 0.27 0.41 −0.43 −0.27 0.27 0.78 0.91

TM 4F −0.54 0.65 −1.60 −1.39 −0.54 0.24 0.53

KAL 1F 0.09 0.28 −0.38 −0.27 0.09 0.44 0.55

KAL 4F −2.19 0.81 −3.48 −3.24 −2.19 −1.15 −0.88
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Table 7
(Continued)

mean std 5% 10% 50% 90% 95%

Gamma error

HM 1F −0.02 0.01 −0.03 −0.03 −0.02 0.00 0.00

HM 4F 0.03 0.01 0.02 0.02 0.03 0.05 0.05

TM 1F −0.18 0.05 −0.25 −0.23 −0.18 −0.12 −0.10

TM 4F −0.01 0.04 −0.08 −0.07 −0.02 0.04 0.05
Panel C: Results for the 1/3 funds of all funds with the highest turnover ratio.

Alpha error

OLS 1F 11.78 2.28 8.17 8.92 11.75 14.74 15.43

OLS 4F −4.22 1.45 −6.65 −6.08 −4.26 −2.39 −1.82

HM 1F 15.87 3.00 11.06 12.05 15.72 19.72 20.78

HM 4F −2.27 2.47 −6.18 −5.34 −2.34 0.84 1.71

TM 1F 14.67 2.64 10.53 11.22 14.47 18.23 19.16

TM 4F −2.16 1.63 −4.81 −4.29 −2.12 −0.06 0.45

KAL 1F −2.68 3.05 −7.94 −6.63 −2.58 1.18 2.18

KAL 4F 1.64 2.34 −2.11 −1.44 1.72 4.59 5.58
Return weighted beta error (bp)

OLS 1F −0.99 0.38 −1.63 −1.48 −0.98 −0.50 −0.40

OLS 4F −1.13 0.79 −2.45 −2.19 −1.13 −0.09 0.19

HM 1F −0.46 0.57 −1.38 −1.18 −0.48 0.23 0.52

HM 4F −2.03 0.99 −3.65 −3.31 −2.05 −0.78 −0.36

TM 1F 1.33 0.49 0.52 0.73 1.30 1.96 2.21

TM 4F −1.39 0.82 −2.81 −2.45 −1.38 −0.34 −0.05

KAL 1F −0.55 0.41 −1.23 −1.05 −0.54 −0.03 0.13

KAL 4F −3.46 0.97 −5.06 −4.73 −3.47 −2.22 −1.86
Gamma error

HM 1F −0.02 0.01 −0.04 −0.03 −0.02 −0.01 0.00

HM 4F 0.06 0.01 0.04 0.05 0.07 0.08 0.08

TM 1F −0.20 0.06 −0.29 −0.27 −0.19 −0.12 −0.10

TM 4F 0.13 0.06 0.01 0.05 0.13 0.21 0.22

For all domestic equity mutual funds (ICDI-OBJ: AG, BL, GI, IN, LG, PM, SF, and UT) that had at
least five years of monthly return data, both 1-factor and 4-factor OLS, TM, HM, and Kalman models
are used to forecast a fund’s alpha and beta (and for the HM and TM models gamma) at the beginning
of each year from 1970 to 2002. These forecasts are then used to construct fund-by-fund zero-alpha
and zero-beta (and if appropriate zero gamma) portfolios. Next, the resulting monthly time series for
the zero-alpha and zero-beta portfolio is regressed against the market factor (for one-factor models),
the four factors (for four-factor models), or the corresponding factors plus market-timing component
(for HM and TM models). This process results in risk-adjusted returns (the alpha error) and factor
loadings for each zero-alpha zero-beta portfolio. A gamma error is also produced when zero-alpha,
zero-beta, and zero-gamma portfolios are produced. The parameter distributions are then calculated
by bootstrapping with replacement the above procedure 1,000 times. The return-weighted beta error is
defined as: return-weighted beta error ≡ ∑

i β̂i ri , where β̂i is the estimated value of factor i, and ri the
factor’s average return during the sample period. The Kolmogorov–Smirnov test rejects the hypothesis
that the same probability distribution produced any pair of distributions generated by the different
models (all p -values virtually zero).
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In this equation β̂i is the estimated loading of factor i from the
regression, and ri the factor’s average return during the sample period.
This metric is designed to give greater weight to those factors, which, if
misestimated, will yield the largest systematic errors regarding a fund’s
predicted performance. The closer a model comes to producing return-
weighted beta errors of zero, the better it is at predicting a fund’s overall
future factor risks and returns.

Table 7 Panel A displays the results for low-turnover funds. Assuming
that most stock betas remain fairly constant over time, these funds would
seem to be ideally suited for OLS models as they are the most likely
to have either static or slowly changing factor loadings. For the out-
of-sample alpha errors only the one-factor Kalman model encompasses
zero within the 90% confidence interval. By contrast, the four-factor OLS
model produces portfolio returns with a 90% confidence of −4.62 bps
(basis points) to −0.86 bps per month, indicating that it overpredicts
fund alphas. The four-factor HM and TM models also produce portfolio
returns that are strictly negative (implying they too overpredict the alphas)
throughout the 90% confidence interval. Thus, if the goal is to produce an
unbiased forecast of a fund’s alpha, the one-factor Kalman model appears
to provide the best performance.

The middle part of Table 7 Panel A reports the bootstrapped distribution
of the return-weighted beta error. Once again only the one-factor Kalman
models include zero within the 90% confidence interval.

The final section of the panel displays the results for the gamma errors.
Here at least the one-factor HM and four-factor TM models encompass
zero within the 90% confidence interval. However, it is worth noting that
of all the funds these are the most likely to display the least market-timing
ability, and two of the four models still fail to produce forecast errors
around zero a reasonable fraction of the time.

Table 7 Panel B examines funds with turnover ratios in the middle
third of the data and Panel C the funds with the highest turnover ratios.
These are the groups that are more likely to create problems for the
OLS models, and the ones that the TM and HM models attempt to
address. However, the results do not provide much support for the latter.
Of the models tested, only the one-factor Kalman model encompasses
zero within the 90% confidence interval for both the out-of-sample alpha
and return-weighted beta. The one-factor OLS model manages to do the
same, but only for the middle-turnover group. The four-factor TM model
comes close, failing to encompass zero only for the high-turnover group’s
return-weighted beta. However, the gamma error for this group does not
cover zero, which is troubling, because that is the parameter on which
most applications of this model concentrate.

Overall, three panels of Table 7 indicate that the one-factor Kalman
model produces in-sample parameter estimates that successfully forecast
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a fund’s future factor loadings. The other models are far less accurate on
this front. Oddly, the OLS models appear to do particularly poorly with
low-turnover ratio funds: the one group the model should be best adapted
to. A natural conclusion is that even low-turnover funds have sufficiently
dynamic factor loadings that the OLS models end up producing biased
forecasts.

5. Time Variation in Mutual Fund Betas

Although the Kalman filter’s parameter estimates have a number of
desirable properties, are they economically reasonable? Mutual funds
cannot change their portfolio holdings very quickly, so their estimated
factor loadings should not vary too much or too fast. Figure 1 provides
some intuition regarding the actual time variation in fund factor loadings
and the Kalman filter model’s ability to track the observed changes. This
figure has three panels, each of which presents a set of comparative graphs
for a representative fund by turnover group.

The first fund in Figure 1 is ICDI 660. It has a low annual turnover of
0.38. Not too surprisingly, it also has fairly time-invariant factor loadings.
The green lines represent the rolling OLS estimates and the blue lines
the Kalman filter estimates. First, note that while a σβ,CAPM of 0.12 may
appear to be high, it actually produces a relatively stable time series. The
other thing to note is that the rolling OLS and Kalman filter estimates
track each other fairly well, although not perfectly. In general, the Kalman
filter estimates appear smoother and less prone to sudden shifts. Given
the out-of-sample evidence presented earlier, it seems likely that the sharp
fluctuations in the OLS parameter estimates are due to estimation errors
of some sort and not real changes in the fund’s holdings.

The next set of graphs examine fund ICDI 14 670. It has an average
turnover level of 0.69. Here, σβ,CAPM equals 0.16, but nevertheless
the model produces a factor-loading time series that slowly increases
throughout the 1990s. Again the model has several interacting variables,
and simply looking at the implied variance of the market factor fails to tell
the whole story. Also note that here, too, the Kalman filter estimates are
at least as smooth as the rolling OLS estimates. For example, the Kalman
filter model finds that the fund’s estimated alpha is near zero throughout
most years except for a few short negative periods. In contrast, the OLS
model claims that the fund’s alpha has varied dramatically from year to
year, a feat that seems highly unlikely given what we know about the
forecasting power typically associated with such models.

The third panel in Figure 1 looks at fund (ICDI 8100), which has a
high turnover ratio of 1.22. The comparative results between the OLS and
Kalman models are qualitatively similar to those in the other two panels.
Here, though, both models indicate that the fund’s factor loadings have
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660 0.12 0.05
14670 0.16 0.12

8100 0.23 0.21

0.38
0.69
1.22

σβ,CAPM σβ,FF

Figure 1
Time series of Kalman model estimated mutual fund alphas and betas.
First, Kalman one- and four-factor models are used to estimate the time series of mutual fund alphas and
betas based on available monthly return data in the period from 1970 to 2002. The blue lines plot the
estimated time series for one-factor alpha and beta (for the one-factor Kalman model in Panels A and B)
for three mutual funds with low, medium, and high turnover ratios. To save space, four-factor exposures
and risk-adjusted returns are not plotted. Green lines plot the rolling OLS values of the corresponding
parameter. The OLS alpha and beta values in month t are estimated from month t − 60 to month t − 1.
Fund information is summarized in the table.

varied quite a bit over the years. However, once again the OLS values
often tend to fluctuate more than the Kalman filter estimates, especially in
regard to the nonmarket factors SMB, HML, and MOM.

Although Figure 1 provides some insight regarding the volatility of
the Kalman filter estimates, Table 8 examines the issue more broadly.
In this table the Kalman model’s parameter estimates are broken
down by fund turnover and the factor model used. The penultimate
column in each panel displays the average estimated time variation
in the fund betas for each turnover group (σβ ), and the last column
provides the variance of the residual from fitting an AR(1) to each
fund’s beta over time. The former measure yields the total variation,
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Table 8
Average Cross-Sectional Kalman Parameter Statistics

A. Kalman parameters for 1-factor dynamic model
Turnover −k βp υ σε σ2

η αp bP σβ σβ,AR(1)

Low 0.0007 0.7825 0.5747 0.0224 0.0491 −0.0004 −0.2686 0.1375 0.1284
Media −0.0004 0.8825 0.5815 0.0224 0.0627 0.0006 −0.1272 0.1529 0.1407
High −0.001 1.0393 0.543 0.0265 0.1029 0.0226 0.1709 0.1787 0.1604
T -stat
Low (4.87) (94.23) (72.48) (20.53) (20.15) (0.08) (7.26) (61.46) (32.86)

Media (1.21) (98.04) (75.50) (27.65) (18.54) (0.13) (3.06) (64.59) (31.76)

High (4.57) (92.17) (70.45) (30.92) (19.03) (6.21) (3.90) (64.64) (41.59)

B. Kalman parameters for 4-factor dynamic model

Turnover −k βMKT βSMB βHML βMOM υ σε σ2
η cSMB cHML cMOM αp bP σβ σβ,AR(1)

Low −0.0006 0.8667 0.096 0.146 −0.0253 0.5513 0.0141 0.0501 0.1153 −0.2588 −0.0516 −0.0085 0.0857 0.1285 0.1038
Media −0.0014 0.9257 0.1824 0.0804 0.0094 0.5925 0.0141 0.0545 −0.0823 −0.1336 0.129 0.0032 0.0899 0.1407 0.1101
High −0.0019 0.9723 0.2832 −0.0828 0.0622 0.5907 0.0173 0.0515 −0.1454 −0.8213 0.2165 0.0137 0.1016 0.1602 0.127
T -stat
Low (4.19) (142.93) (10.29) (9.87) (7.94) (58.90) (11.91) (10.78) (0.97) (1.59) (0.56) (1.24) (1.73) (32.88) (23.97)

Media (6.74) (148.89) (15.85) (7.68) (2.10) (64.60) (17.69) (9.48) (0.67) (0.83) (1.01) (0.42) (1.94) (31.76) (23.03)

High (5.04) (122.13) (25.94) (6.44) (9.49) (68.15) (25.60) (15.44) (1.24) (5.43) (1.76) (1.79) (2.03) (41.59) (28.51)

This table reports the estimated Kalman parameters for a one- and four-factor model. The Kalman parameters are estimated based on monthly return data
from 1970 to 2002. Mutual funds are sorted into three groups according to the average turnover ratio during the same period (the break points occur at
annual turnover rates of 0.5596 and 1.0107). Each entry then reports statistics regarding the parameter values within the same turnover group. The last
two columns contain the standard deviation of the fund’s market exposure (σβ ) and that of the residual from an AR(1) fit of the fund’s market exposure
(σβ,AR(1)). The cross-section t-statistics are reported in parentheses.
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and the latter may be interpreted as the surprise in beta’s change from
period to period. As both columns indicate, an increase in fund turnover
increases the estimated volatility of the fund’s market beta. This result also
indicates that the conjecture given in footnote 9, that stock betas change
over time and that fund managers trade to maintain constant portfolio
loadings, is not supported by the data.

Beyond the beta volatility figures, the other parameter estimates in
Table 8 also seem to conform to expectations. For the middle-turnover
groups the persistence parameter υ is about 0.58 and the standard devia-
tion of the signal’s innovation (σ 2

η) equals 0.0627. The combination of the
relatively rapid revision of the fund’s beta to its long-run mean at a rate of
approximately 45% per month and the signal’s relatively modest variance
implies that though betas can drift somewhat from their long-run means,
they do not do so for very long. This in turn leads to the relatively modest
values observed in the σβ column.

6. Comparison with the FS Model

So far all tests have been conducted under the restriction that the fund
betas depend only upon some unobservable factor. This section examines
the impact on the estimated model when observable conditioning infor-
mation is added. The tests conducted here use the lagged Treasury-bill
rate and the dividend yield on the CRSP value-weighted index. Thus, the
equation for βPt becomes

βPt = β + Ft−1 + k1z1,t−1 + k2z2,t−1. (16)

If the observable information improves the model’s predictive ability, then
k1 and k2 should differ from zero. This is tested by running the model
with and without the conditioning variables on monthly returns during
the period 1970–2002. Asymptotically, the likelihood ratio under the null
should follow a chi-square distribution with two degrees of freedom.
In Figure 2, the bars represent the cross-sectional distribution of the
likelihood ratio, and the dashed line traces out a chi-square distribution
with two degrees of freedom. Overall, the null hypothesis that k1 and k2
are zero cannot be rejected at the traditional 1, 5, or 10% levels. However,
for individual funds, the fraction that rejects the null hypothesis at the 1, 5,
or 10% level is 10, 20, and 27%, respectively. These numbers are somewhat
higher than might be expected by chance, which implies that for some
funds the conditioning information appears to improve the model’s fit.

Table 9 provides further evidence about the richness of the dynamic
coefficient model used in this article. This table shows the R2’s for the
fund return regressions using the OLS, the FS two-factor conditional beta
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Likelihood Ratio: 10%, 20%, and 27% of funds reject
the null at the 1%, 5%, and 10% level

Likelihood Ratio Test for Conditional Beta Model: Lagged TBill and Dividend–Ratio

Chi2 PDF with 2 degrees of freedom
PDF for likelihood ratio

Figure 2
Likelihood ratio tests.
This figure shows the results from a likelihood ratio test in which the Kalman filter model includes
conditional information similar to that of Ferson and Schadt (1996). As in their application, lagged
macroeconomic information drives the portfolio weights. However, here portfolio weights are also
assumed to vary from some unobserved factor following an AR(1) process. As a first-order approximation
the portfolio weights are set to wit = wi + liFt + DiZt−1, where Zt−1 is the lagged information. This model
is estimated via an extended Kalman filter. For two macro instruments, the estimated system of equations is
given by rPt − rft = αPt + βPt(rmt − rft) + βX,tXt + εPt, where βPt = βP + Ft−1 + k1z1,t−1 + k2z2,t−1

and αPt = −kt + αP Ft−1 + bP F 2
t−1, Ft = νFt−1 + ηt , and Xt are other factors (SMB, HML, and MOM).

Here z1 and z2 are instruments for the lagged treasury-bill rate and the CRSP value-weighted index’s
dividend yield. The null hypothesis is that k1 = k2 = 0. The constrained and unconstrained models are
estimated using available monthly returns of CRSP equity mutual funds during the period of 1970 to 2002
(a minimum of 60 monthly returns are required). Asymptotically, the likelihood ratio test under the null
should follow a chi-square distribution with two degrees of freedom. The bars represent the cross-sectional
distribution of the likelihood ratio and the dashed line displays the mathematical values for a chi-square
distribution with two degrees of freedom. The fraction of funds that reject the null hypothesis at the 1, 5,
or 10% levels are 10, 20, and 27%, respectively.

model, and this article’s Kalman filter model across turnover terciles.20 As
can be seen, for each tercile and for the entire sample the FS model provides
an improved fit relative to the OLS model (the differences are all statistically
significant). Consider, however, how the R2 statistic changes as one moves
across models. The increase when one goes from the OLS to FS model is less
than 10% of the increase obtained when moving from the FS to the Kalman
model. On the basis of this, it appears that the Kalman model can account
for a considerably larger portion of fund return fluctuations than either

20 The Kalman model used in these tests does not use the FS conditioning variables and looks only at the
return series of funds and the market index.
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Table 9
A Comparison with Conditional Model

Turnover R2
CAPM R2

Cond R2
Kal �R2

1 �R2
2 T

�R2
1

T
�R2

2

Panel A: 1-factor model
Low 0.7120 0.7326 0.8713 0.0206 0.1387 (31.28) (40.86)

Media 0.7007 0.7211 0.8683 0.0204 0.1472 (30.85) (42.01)

High 0.6954 0.7165 0.8769 0.0211 0.1604 (25.90) (44.73)

All 0.7027 0.7234 0.8722 0.0207 0.1488 (50.18) (73.59)

Panel B: 4-factor model
Low 0.8317 0.8426 0.9478 0.0109 0.1053 (30.40) (33.84)

Media 0.8322 0.8431 0.9498 0.0109 0.1067 (28.49) (33.18)

High 0.8271 0.8395 0.9517 0.0124 0.1122 (22.34) (37.39)

All 0.8303 0.8417 0.9498 0.0114 0.1081 (44.76) (60.19)

The sample used for this table includes all equity mutual funds in the CRSP database
that contain at least 60 months of monthly return data from 1970 to 2002. Model
parameters are estimated for the unconditional CAPM model, the conditional beta
model, and the Kalman filter model. The variables R2

CAPM, R2
Cond, and R2

Kal represent

R2 statistics for each of the models, respectively. Consistent with the OLS model, R2
Kal

is defined as 1 − E(εP (t)2)/E((yt − y)2), where yt is the excess portfolio return and
εP (t)is the residual from the Kalman filter model. The variable y equals the mean value
of the yt . Also reported are the cross-sectional means and t -ratios for the improvements
of the R2 statistic: �R2

1 = R2
Cond − R2

CAPM, and �R2
2 = R2

Kal − R2
cond.

the OLS or the FS models. Also, as expected, the greatest improvements
relative to the OLS model are for those funds that have the highest turnover
rates, and are thus likely to have the most dynamic factor loadings.

Between this article, FS, and Grinblatt and Titman (1989) there is
now considerable evidence that mutual fund managers produce portfolios
with time-varying betas, and possibly alphas, too. Thus, it is clear that
portfolio managers are altering their portfolios in response to some set of
economic variables. Why then are k1 and k2 statistically indistinguishable
from zero for most funds? The model has two ways of fitting a fund’s
alphas and betas. One way is to use the observable conditioning variables
in some manner. Another is to use the estimated lagged values of alpha and
beta, and let them change according to an estimated relationship with an
unobserved factor following an AR(1) process. Figure 2 indicates that the
latter prediction method often dominates, at least when using the lagged
Treasury-bill rate and dividend yield on the CRSP value-weighted index.
One conclusion may be that a few funds use Treasury-bill rates and the
market dividend yield to help manage their assets, though most do not.
More practically, one can use the model to identify both those funds with
a more macro-based approach to asset allocation and the variables on
which they concentrate.

7. Conclusion

Mutual fund managers often trade in the hope of generating superior
returns. This trading naturally generates time-varying factor loadings.
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However, the standard multifactor OLS is not designed to handle such
time variation or to detect whether fund managers have the ability to time
the market by appropriately varying their fund’s beta. Potential solutions
to this problem are the TM and HM models, which include a market-timing
parameter in addition to the standard factors. Using these models, BB find
that while there is no evidence that fund managers possess market-timing
ability in the monthly data, they are able to detect it in the daily data.

In line with BB this article finds that the TM and HM models produce
false-positive parameters with daily data at an extraordinarily high rate.
However, the analysis here also indicates that the daily parameter estimates
are very unstable, with in-sample sorts leading to little out-of-sample
predictive power. To address the issue of time variation in mutual fund
factor loadings, this article develops a Kalman filter model. This model
generates dynamic factor loadings that can allow one to test for a fund’s
market-timing ability. Although the Kalman filter model does not appear
to reliably find market-timing ability in the daily data, it does find such
ability in the monthly data. Furthermore, the Kalman filter model’s timing
ability estimates in the monthly data exhibit good predictive power.

There are, of course, other dynamic models that have been proposed.
The conditional model of FS is one example. Their conditional model
uses macroeconomic factors to help forecast a fund’s factor loadings. The
Kalman filter model can accommodate the FS factors. However, tests
indicate that for most funds the macroeconomic factors add little in the
way of explanatory power.
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