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Heterogeneous Univariate Outlier Ensembles
in Multidimensional Data

GUANSONG PANG, The University of Adelaide

LONGBING CAO, University of Technology Sydney

In outlier detection, recent major research has shifted from developing univariate methods to multivariate

methods due to the rapid growth of multidimensional data. However, one typical issue of this paradigm shift

is that many multidimensional data often mainly contains univariate outliers, in which many features are

actually irrelevant. In such cases, multivariate methods are ineffective in identifying such outliers due to

the potential biases and the curse of dimensionality brought by irrelevant features. Those univariate outliers

might be well detected by applying univariate outlier detectors in individually relevant features. However, it is

very challenging to choose a right univariate detector for each individual feature since different features may

take very different probability distributions. To address this challenge, we introduce a novel Heterogeneous

Univariate Outlier Ensembles (HUOE) framework and its instance ZDD to synthesize a set of heterogeneous

univariate outlier detectors as base learners to build heterogeneous ensembles that are optimized for each

individual feature. Extensive results on 19 real-world datasets and a collection of synthetic datasets show

that ZDD obtains 5%–14% average AUC improvement over four state-of-the-art multivariate ensembles and

performs substantially more robustly w.r.t. irrelevant features.

CCS Concepts: • Computing methodologies → Anomaly detection; Bagging;

Additional Key Words and Phrases: Outlier detection, outlier ensemble, anomaly detection, univariate outlier,

multidimensional data, heterogeneous data
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1 INTRODUCTION

Outliers are data objects that are significantly different from the majority of objects. Outlier de-

tection can offer important insights into many real-world domains, such as cybersecurity, finance,

and health care. For example, outlier detection is widely used to detect network attacks and credit

card frauds [2, 10]. In general, outlier detection methods can be categorized into univariate and
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68:2 G. Pang and L. Cao

multivariate methods, of which univariate methods detect outliers that are exceptional in individ-

ual features (i.e., univariate outliers) while multivariate methods identify outliers in a multidimen-

sional space. Univariate methods [6] dominated the area of outlier detection for a long period in

the last century, but the ubiquitous multidimensional data and the endeavor to build more sophisti-

cated models have led to supreme efforts on multivariate outlier detection methods in recent years.

Consequently, univariate methods have been often disregarded in the development and evaluation

of outlier detection in multidimensional data [5, 8, 16, 23, 27, 32, 33, 36, 37]. Such a paradigm shift

may result in some critical issues. One major issue is that multivariate methods may fail to detect

univariate outliers due to the potential biases and curse of dimensionality brought by irrelevant

features, i.e., features that cannot highlight or explain the outlyingness of the outliers [4, 30]. By

contrast, univariate methods are not affected by irrelevant features and thus work well in iden-

tifying univariate outliers when there are many irrelevant features. Another major issue is that

multivariate methods often treat all features in a homogeneous way and thus fail to capture het-

erogeneous distributions of different features, whereas it may be more appropriate to identify a

set of heterogeneous univariate methods to capture complex feature heterogeneities [9] in such

data.

However, due to the aforementioned paradigm shift, as far as we know, there is very limited re-

search on inventing appropriate univariate outlier detection methods for multidimensional data.

This work aims to fill this gap. There are generally the following three major challenges in de-

veloping univariate methods for multidimensional data: (i) since univariate outlier detectors are

often only applicable for a certain distribution while heterogeneous data distributions may ex-

ist across the features, it is very difficult to determine suitable univariate detectors for specific

features; (ii) it would be challenging to properly combine the D detection results from D fea-

tures since univariate detectors work in a feature-wise manner; and (iii) most univariate outlier

detectors, such as the popular Z-Score, Dixon’s Q test (Dixon test for short) and boxplot [6],

are frustrated with the presence of outliers and may face the swamping or masking problem,

i.e., an outlier is masked as an inlier due to the presence of inliers (swamping) or other outliers

(masking).

Some recent efforts have been made to partially address these challenges. For example, studies

in the statistic community [14, 21] focus on improving the robustness and theoretical bounds of the

popular univariate detectors, which help address the above third issue. However, since these efforts

focus on univariate data, they do not consider the first two issues. Some recent studies [18, 33–35]

have attempted to use multiple heterogeneous multivariate outlier detection methods (i.e., different

outlier detection methods or the same method with different parameter settings) to improve the

detection accuracy on heterogeneous datasets. However, the heterogeneous ensembles in these

studies work on multidimensional feature subspaces, which fail to work effectively in the presence

of irrelevant features, and they also ignore the heterogeneities between individual features, thus

ineffective for data with heterogeneous features.

To address the aforementioned three challenges, this article introduces a novel outlier detection

framework to learn Heterogeneous Univariate Outlier Ensembles (HUOE) to identify univariate

outliers in multidimensional data with feature heterogeneities. HUOE first defines multiple dif-

ferent univariate detectors to effectively compute outlier scores w.r.t. different data distributions

in each feature. It then defines an outlier ranking evaluation measure to find an optimal combi-

nation of the outlier scores obtained from these heterogeneous outlier detectors, resulting in a

high-quality outlier ranking per feature. HUOE finally exploits the correlation between the outlier

rankings to integrate them into one final outlier ranking. Additionally, HUOE operates on random

subsamples to avoid the swamping and masking problems [38].

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 68. Publication date: September 2020.
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We further instantiate the HUOE framework into an instance, called ZDD,1 which uses multiple

specifications of Z-Score, Dixon test, and data-dependent-based outlier detectors to well capture

outlierness in a variety of data distributions. ZDD then defines a Cantelli’s inequality-based out-

lier ranking evaluation measure to produce an optimized outlier score ranking per feature. ZDD

further computes a weight for each ranking based on its internal score distribution and its correla-

tion with other rankings, and then conducts a weighted combination of all the rankings to obtain

a global outlier ranking.

Accordingly, this article makes the following three major contributions.

• This is the first work to have a comprehensive empirical study of using univariate outlier

detection methods to identify outliers in a large number of real-world multidimensional

datasets. It reveals that many real-world multidimensional data mainly contains univariate

outliers, and consequently univariate methods are better choice than multivariate methods

in such cases.

• In contrast to the existing multivariate methods that treat each feature equally and work

on feature subspaces or the full space, the proposed HUOE framework can model complex

heterogeneous data distributions within individual features. As a result, our framework

enables more effective solutions to detect univariate outliers in multidimensional data with

many irrelevant or heterogeneous features than multivariate methods.

• The HUOE-instantiated ZDD method defines heterogeneous univariate outlier detectors

and Cantelli’s inequality-based outlier ranking evaluation measures to yield feature-wise

optimal heterogeneous outlier ensembles for multidimensional data.

Extensive experiments on 19 real-world datasets and 1 synthetic dataset show the following:

(i) ZDD obtains 5%–14% average AUC (Area Under the receiver operating characteristic Curve)

improvement over four state-of-the-art multivariate ensembles, and perform much more stably

than three simple ensembles of univariate detectors; (ii) surprisingly, the three simple univariate

ensembles consistently outperform the four advanced multivariate ensembles; and (iii) the benefit

of each module of ZDD is empirically justified via an ablation study. Also, our empirical results

on a set of synthetic datasets show that univariate methods show substantially better robustness

w.r.t. irrelevant features than multivariate methods, in which ZDD (or its variants) achieves the

best robustness.

The rest of this article is organized as follows. The related work is given in Section 2. The HUOE

framework is introduced in Section 3. The instantiated model, ZDD, is introduced in Section 4. A

theoretical analysis is provided in Section 5. A series of empirical results is presented in Section 6.

After discussing the research implications in Section 7, we conclude this work in Section 8.

2 RELATED WORK

2.1 Univariate Outlier Detection Methods

Many univariate outlier detection methods were developed in the statistic community in the

last century [6]. Most of these methods were designed for specific probability distributions.

Two popular methods of this kind are Z-Score and Dixon test. Z-Score [19] uses the difference

between a given value and the mean divided by the standard deviation as the outlier score of

the tested value. It may apply to any distribution in which the mean and variance are defined.

It can obtain a guaranteed error bound based on the 68-95-99.7 rule by making the normal

distribution assumption of the data. In contrast to the Z-Score that focuses on the global statistics

1ZDD comes from the first character of the three different univariate detectors used in this instantiation.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 68. Publication date: September 2020.



68:4 G. Pang and L. Cao

to characterize the outlierness, the Dixon test [11] focuses on local information, which defines the

outlier scores w.r.t. the distance of a given value to its nearest-neighbor values normalized by the

range of all the values. The Dixon test is well suited to exponential or extreme value distributions.

Many variants of these two methods can be found in [6].

There are other popular methods such as boxplot [14, 39] that use the quartile-based summary

statistics to determine outliers, e.g., the query values that are smaller than the first quartile or

larger than the third quartile. These methods attempt to directly label the outliers with certain

error bounds, while we focus on assigning outlier scores to the objects and returning an outlier

ranking. Some recent studies are dedicated to understand some important properties of popular

methods, such as addressing the masking and swamping problems for Z-Score [40]. To gain more

information for measuring univariate outlierness, one interesting idea is to convert univariate data

into multivariate data, e.g., each data object in univariate time series data can be represented by the

data object together with a set of its consecutive context neighbors, and then employ multivariate

methods to detect univariate outliers [22].

However, the above studies on univariate data ignore the heterogeneities in each individual

feature. Also, they focus on univariate data, so they do not deal with the problem of combining

multiple outlier scoring results from different features.

2.2 Multivariate Outlier Detection Methods

There have been numerous multivariate outlier detection methods in the data mining and machine

learning community. These methods can be generally categorized into the following five groups

[2]: probabilistic methods, e.g., Gaussian mixture model (GMM) [16]; linear model-based method,

e.g., principal component analysis (PCA) [32]; distance-based methods, e.g., kNN [37]; density-

based methods, e.g., local outlier factor [36]; and clustering-based methods, e.g., CBUID [23].

One major issue with these methods is that they assume all the features are drawn from homo-

geneous distributions, which make them less effective in datasets with heterogeneous distributions

across the features. Another major issue is due to the presence of irrelevant features. These irrel-

evant features form a main cause to the curse of dimensionality [44], and they can hide outliers

and consequently become noise to the multivariate outlier detectors.

2.3 Outlier Ensembles

The ensemble methods have been well established for learning tasks such as clustering and clas-

sification, but ensemble learning for outlier detection attracts wide attention only in recent years

[1, 42]. It has been shown in [24, 26, 31, 34, 35, 37, 38, 41, 43] that building outlier ensembles can

substantially improve the efficacy of the above traditional multivariate detectors. We discuss the

following two main groups of relevant outlier ensembles: subspace-based methods and subsample-

based methods. Subspace-based methods [24, 26, 27] work on a set of relevant or randomly selected

feature subspaces, while subsample-based methods [28, 31, 37, 38, 41, 43] build ensembles using a

set of randomly selected subsamples. As far as we know, existing outlier ensembles focus on multi-

variate methods and no work has been reported on how to make use of univariate outlier detection

methods to build effective outlier ensemble methods. As shown in Section 6, a proper ensemble of

univariate detectors can perform significantly better than state-of-the-art multivariate methods.

There have been some work dedicated to handling some issues of data heterogeneities [9] by

building heterogeneous ensembles, including the use of the same outlier scoring method but with

different parameter settings [33, 35] and the use of diversified outlier scoring methods [34]. Addi-

tionally, recent studies have also introduced some score unification methods [18, 25]) to properly

transform outlier scores from different detectors into a space of the same semantic for the final ag-

gregation of the scores. Some other studies (e.g., [34, 35]) focus on the score combination part and
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Fig. 1. Our proposed HUOE framework. HUOE first applies a set of heterogeneous univariate outlier detec-

tors C = {ϕ1,ϕ2, . . . ,ϕK } to each univariate subsample Si j of X to obtain |C| outlier rankings per feature.

An objective function J is then defined to select and aggregate an optimal subset of |C| outlier rankings to a

unified outlier ranking ri j . The same process is applied to all D individual features of t subsamples, obtain-

ing a set of t × D rankings, R = {r11, r12, . . . , rt D }, which is lastly aggregated by a weighted combination

function f to produce a final outlier ranking r
�.

use correlations between outlier scores from different detectors to selectively combine their output

scores through the goal of diversifying the obtained outlier ensembles. These ensembles improve

the original individual outlier detectors, but they focus on the high-level data heterogeneity by

ignoring the feature-level heterogeneity, which may render the ensembles ineffective in datasets

with strong feature heterogeneity.

3 THE PROPOSED HUOE FRAMEWORK

The general outlier detection problem can be stated as follows. Given a dataset X with D features,

we aim to return a ranking of the data objects based on their outlierness, and identify the data ob-

jects that have the largest outlier scores as outliers. The class labels are not available in this setting,

i.e., we focus on unsupervised outlier detection, as it is too costly to collect these label information

in many outlier detection applications. A rarely explored subproblem within outlier detection is

how to effectively detect univariate outliers in multivariate datasets with many irrelevant and/or

heterogeneous features.

We introduce the HUOE framework to address this problem, which builds a feature-wise hetero-

geneous outlier ensemble to capture the fine-grained feature heterogeneities. The resulted model

can well identify univariate outliers in data with heterogeneous features and/or irrelevant fea-

tures. As described in Figure 1, given a dataset X with D features, HUOE first samples a set of t
random subsamples, {S1,S2, . . . ,St } (i.e., Si ⊂ X), and employs a set of heterogeneous univariate

base outlier detectors, C = {ϕ1,ϕ2, . . . ,ϕK }, on each feature of the subsample Si to identify out-

liers w.r.t. different data distributions taken in individual features. HUOE then defines an objective

function J to unify a selective subset of the outlier rankings produced by the base detectors in C
into an optimal ranking, ri j (i.e., there are 2 |C | − 1 subsets of the collection of |C| base detectors; B
in Figure 1 is one of the possible subsets). This procedure is iteratively applied to all D features of t
subsamples, resulting in a set of t × D outliers rankings, i.e., R = {r11, r12, . . . , rt D }. HUOE further

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 68. Publication date: September 2020.



68:6 G. Pang and L. Cao

defines a weighted combination function f to combine all the outlier rankings in R so as to obtain

a final outlier ranking r
�.

HUOE is very different from the existing outlier ensemble frameworks in that: (i) HUOE models

the low-level feature heterogeneities, while most current frameworks are for homogeneous en-

sembles and the existing heterogeneous ensembles are built upon the data object level; as a result,

HUOE works better than the other frameworks when the data distributions in different features are

very different; and (ii) HUOE is a univariate outlier ensemble for identifying univariate outliers in

data with many irrelevant features, whereas the existing frameworks focus on building ensembles

on the full feature space or subspaces to identify multivariate outliers and they are often misled

by irrelevant features and thus do not work well when data contains many irrelevant features.

Note that previous subspace-based ensembles like [24, 26] may be reduced to univariate feature

subspace-based methods by setting the subspace size to be one. However, these ensembles focus

on reducing the influence of irrelevant features on multivariate methods and also do not consider

the feature heterogeneity issue. HUOE is introduced to provide a novel perspective of addressing

the issues of both irrelevant features and feature heterogeneity in a univariate fashion.

We introduce the motivation of each component of HUOE in detail in the following subsections.

3.1 Building a Set of Heterogeneous Univariate Base Outlier Detectors C on Each
Feature of Subsamples

Features in real-world datasets often follow different data distributions. Moreover, each feature

may be taken from a mixture of data distributions [9]. Since outliers are defined per data distribu-

tion, outlier detection methods designed for different distributions are required to identify these

distribution-sensitive outliers. To address this issue, HUOE first defines a set of heterogeneous uni-

variate outlier detection methods, C = {ϕ1,ϕ2, . . . ,ϕK }, where ϕi : X.k �→ R is a univariate outlier

scoring method, andϕi andϕ j are different methods or the same method but with different parame-

ter settings. These heterogeneous detectors are then used as base learners to build a heterogeneous

ensemble to detect the aforementioned heterogeneous outliers.

The previous work on outlier ensembles [27, 31, 37, 38] has shown that building multivariate

outlier detectors on random subsamples of the full dataset helps address the swamping and mask-

ing problems, leading to significant improvement of detection accuracy. Motivated by this success,

the base detectors in HUOE also operate on subsamples S to address the same problems for uni-

variate methods.

3.2 Finding an Optimal Combination of the Heterogeneous Detectors w.r.t. the
Objective Function J

Given a set of |C| outlier scores output by the heterogeneous outlier detectors per feature, a key

problem is how to reasonably integrate them to produce a high-quality outlier ranking. HUOE

defines an objective function J to find a selective combination of the outlier scores to maximize a

quality measure of outlier rankings:

B∗ = arg max
B∈P

J (B). (1)

where P = P (C) is the power set of C excluding the empty set.

Since C contains a set of different outlier detectors, their detection results may disagree. The

J function is to find |B∗| outlier detectors that work consistently and/or complement with each

other by filtering conflicting results. We then aggregate the |B∗| outlier rankings to get a unified

outlier ranking for each feature of each subsample.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 68. Publication date: September 2020.
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3.3 Combining the Outlier Rankings in R
Since J works on a feature-wise manner, HUOE obtains a set of t × D outlier rankings after apply-

ing J to all D features of the t subsamples, namely R = {r11, r12, . . . , rt D }. Among these rankings,

only a certain percentage of them is from the relevant features and the others are from the irrele-

vant features. HUOE therefore defines a function f below to have a weighted combination of these

rankings:

r
� = fΘ(R ) = ω11r11 + ω12r12 + · · · + ωt D rt D , (2)

where Θ = {ω11, . . . ,ωt D } are the weights to be learned.

Alternatively, this stage may be an outlier ranking selection for only retaining highly relevant

rankings rather than the weighted combination. Here, we focus on the weighted combination

because the number of rankings in R is very large in high-dimensional data, and it can be very

computationally expensive to perform an optimal ranking selection.

4 A HUOE’S INSTANCE: ZDD

The HUOE framework is instantiated into a heterogeneous univariate ensemble model, ZDD. To

leverage the advantages of different types of outlier detectors, ZDD uses three different types

of base detectors to build an ensemble per univariate input. An exhaustive search and the Can-

talli’s inequality are then used to offer an optimal combination of these base detectors. Homophily

weights are further used to well combine the outlier scores produced in each individual feature.

4.1 Specifying the Base Outlier Detector Set with Z-Score, Dixon Test, and kNN

Three different types of univariate outlier detection methods are used in instantiating HUOE, in-

cluding Z-Score, Dixon test, and kNN, because these methods can well-complement each other in

detecting different distribution-sensitive outliers (See Section 6.5.4 for details). Below, we intro-

duce these three outlier scoring methods in detail.

Given a dataset X = {x1, x2, . . . , xN } with xi ∈ RD , let x ∈ X and Si j be the j-th feature of its

i-th subsample that contains s randomly selected data objects with replacement, Z-Score defines

the outlierness of the value of x in the j-th feature, x j , as follows:

z_score (x j ) =

(
x j − μSi j

σSi j

)2

, (3)

where μSi j
and σSi j

are the mean and standard deviation of the univariate random subsample Si j .

Note that the squared Z-Score is used because the sum of squared Z-Scores is always equal to the

number of Z-Score values in different univariate samples, which offers not only a natural way of

capturing suspicious negative deviations but also score normalization.

The Dixon test uses the difference between the given object x and its nearest neighbor to define

the outlierness:

dixon(x j ) =
|x j − nnx j

|
max j −minj

, (4)

where nnx j
is the closest value to x j , max j is the maximum value in Si j , and minj is the minimum

value.

Motivated by the success of subsample distance-based methods reported in [31, 37, 38], we de-

sign a univariate average kNN outlier scoring method as follows:

knn(x j ) =
1

k

√ ∑
x ′

j
∈Nxj

(x j − x ′j )2, (5)

where Nx j
denotes the set of k nearest neighbors of x j .

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 68. Publication date: September 2020.



68:8 G. Pang and L. Cao

LetA = {z_score,dixon,knn} be the set of basic outlier detectors. ZDD then applies these three

base methods to each Si j to generate a set of |C| = c |A| heterogeneous detectors per univariate

input, with each base method specified with c different parameter settings (see Section 6.2 for the

detailed specifications). Alternatively, we can apply one of these base methods with different pa-

rameter settings to each Si j to produce a set of heterogeneous detectors, however, the learning

ability relies on a single detector. In contrast, ZDD learns a much better ensemble than the alter-

native method in heterogeneous data (see Section 6.5.4 for empirical support of this observation).

4.2 Exhaustive Search of the Optimal Combination Using Cantelli’s Inequality-based
Outlier Ranking Measure

We obtain a set of |C| = K outlier score rankings for each feature of a subsample after the above

stage. Our next task is to find an optimal selective combination of these score rankings as in Equa-

tion (1). The same operation will be applied to aggregate |C| score rankings in each of theD feature

of each subsample, so this stage will yield a set of t × D outlier rankings if t subsamples are used.

Specifically, let B ∈ P, the J function is specified as:

J (B) = ψ (rB ), (6)

where ψ : RN �→ R is an outlier ranking evaluation measure function, and rB =
∑

ϕ ∈B д(ϕ (X.j ))
is a combined outlier score ranking of |B| outlier score lists, in which ϕ returns an outlier score

list for a univariate input X.j and д is a score unification function that normalizes heterogeneous

outlier score rankings into comparable ones.

Two key ingredients of the objective function J are the combination search methods (i.e., how to

generate B) and the outlier ranking quality measures (i.e., theψ function). There are generally two

types of search methods: exhaustive and heuristic search. An exhaustive search is computationally

expensive if |C| is large, i.e., the search space is 2 |C | − 1, but it produces a globally optimal solution.

A heuristic search, such as the breadth-first or depth-first search, is efficient but may produce a

suboptimal solution. Since the detectors |C| used is quite small, the exhaustive search is used to

find a globally optimal combination solution.

The outlier ranking quality evaluation is essentially an internal outlier detection evaluation

problem, i.e., evaluating outlier rankings without class labels. Internal clustering evaluation mea-

sures have been well established, while very limited related work has been reported on unsuper-

vised outlier detection [29]. The work reported in [29] uses maximum margin classifiers to evaluate

the deviant distance of each outlier candidate to the classification boundary as the quality criterion.

The outlier ranking that produces the average largest deviant distance for all the outlier candidates

is of the best quality. As shown in [29], the output best outlier ranking has high correlation to the

true ranking. However, this method has a time complexity of O (N 3), which is computationally

prohibitive to be used in our framework, since the evaluation measure is needed to be recursively

used in each feature of different subsamples. We introduce a linear-time and statistically sound

Cantelli’s inequality-based outlier ranking measure below to address this efficiency issue.

Definition 4.1 (Cantelli’s Inequality-based Outlier Ranking Measure). Given an outlier score rank-

ing r ∈ RN produced on X.j , in which large scores indicate high outlierness, and let μ and σ 2 be

its expected value and variance, then its overall ranking quality is defined as follows:

ψci (r) =
1

|O|
∑

x j ∈O
[r(x j ) −medr], (7)

where O ⊂ X.j is the set of outlier candidates that have outlierness no less than μ + ασ , r(x j )
returns the outlier score of x j , and medr denotes the median outlier score of the inlier candidates,

i.e., X \ O.
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The purpose of ψci (·) is to obtain the outlier candidate set O, which is built upon the Cantelli’s

inequality. We show in Section 5.3 that we can obtain an outlier candidate set with a false positive

upper bound of 1
1+α 2 due to the properties of the Cantelli’s inequality, in which α is a user-defined

parameter of determining the bound.

Similar to [29], Equation (7) aims to maximize the margin between outlier candidates and inlier

candidates. One main difference is that Equation (7) simplifies the problem and maximizes the

margins between their outlier scores; while the measure in [29] performs this maximization in the

original data space, which leads to substantially higher time complexity than Equation (7).

Combining Equations (6) and (7), we aim to obtain the optimal B∗ by:

B∗ = arg max
B∈P

ψci (rB ). (8)

We then combine the outlier scores resulted from the detectors in B∗ by:

rB∗ =
∑

ϕ ∈B∗
д(ϕ (X.j )). (9)

The �1-norm length-based normalization is used in the score unificationд function:д(ri ) = ri

| |r | |1 ,

where ri is an entry of the outlier ranking vector r. Unlike the unification methods in [18, 25] that

assume the distribution of the outlier scores following a specific probability distribution, the �1-

norm length-based normalization does not have this assumption. Our experiments also show that

the �1-norm length-based normalization produces better and more stable detection performance

than the methods in [18, 25].

4.3 Homophily Weights for the Weighted Combination of Univariate Outlier
Rankings

Lastly, we need to learn the weight parameters Θ = {ω11,ω12, . . . ,ωt D } in Equation (2) to highlight

high-quality outlier rankings in the final ranking aggregation. Homophily weights are defined

below to assign large weights to outlier rankings that are consensus to other high-quality outlier

rankings in the ranking set R.

Definition 4.2 (Homophily Weight). Given an outlier ranking r ∈ R, its homophily weight ω is

defined as follows:

ω =
∑

r
′ ∈R\r

ψci (r)ρ (r, r′)ψci (r
′), (10)

where ρ is a correlation coefficient.

Equation (10) states that the ranking r has the highest quality if and only if (i) it has a large

outlierness margin between candidate inliers and outliers, i.e., having a largeψci; and (ii) it is also

strongly associated with the other outlier rankings that have a largeψci. Since the ranks of the data

objects in r are important, Spearman’s rank correlation coefficient is used to specify ρ to capture

the rank-sensitive correlation. After obtaining all the weights in Θ by Equation (10), we then obtain

the final outlier ranking r
� by the weighted combination function fΘ(R ) as in Equation (2).

4.4 The Algorithms and Their Time Complexities

The procedure of ZDD is presented in Algorithm 1. In Steps 2–8, ZDD applies the three detec-

tors in A with c different parameter settings to obtain |C| = c |A| heterogeneous detectors. ZDD

achieves this by using bootstrapping approaches, i.e., to estimate the parameters using different

random subsamples (see Section 6.2 for details). After obtaining |C| candidate outlier rankings per

feature of each subsample, Steps 9–12 use the exhaustive search and the Cantelli’s inequality-based

ranking quality measure to produce the globally optimal subset of these |C| outlier rankings and

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 6, Article 68. Publication date: September 2020.



68:10 G. Pang and L. Cao

unify them into one outlier ranking, ri j . Particularly, in Step 10, Pj is the power set of the |Cj |
rankings obtained in Steps 2–8. Steps 2–12 are repeated t times and yield a set of t outlier rank-

ings in each feature, resulting in a total of t × D rankings for D features. Steps 14–18 compute a

weight for each ranking ri j . ZDD finally outputs a weighted combination of the t × D rankings in

Steps 19–20.

ALGORITHM 1: ZDD

Require: X - data objects, s - subsampling size, t - bagging size

Ensure: r
� - an outlier ranking of objects

1: for i = 1 to t do

2: for k = 1 to c do

3: S ← Randomly select a subsample of size s from X
4: for j = 1 to D do

5: Apply univariate outlier detectors in A to Si j

6: Cj ← Cj ∪ A
7: end for

8: end for

9: for j = 1 to D do

10: B∗ ← arg maxB∈Pj
ψci (rB )

11: ri j ←
∑

ϕ ∈B∗ д(ϕ (X.j ))
12: end for

13: end for

14: for i = 1 to t do

15: for j = 1 to D do

16: ωi j ←
∑

i′
∑

j′ ψci (ri j )ρ (ri j , ri′j′ )ψci (ri′j′ )
17: end for

18: end for

19: r
� ← ω11r11 + ω12r12 + · · · + ωt D rt D

20: return r
�

In Algorithm 1, since the outer two loops have linear time complexity w.r.t. the bagging size m
and the dimensionality D, the time complexity of ZDD is determined by the more complex inner

operations in Steps 4–7 and Steps 9–12. The time complexity of the outlier scoring methods in

Step 5 is betweenO (logN ) andO (N logN ). Since we apply |C| (i.e., c |A|) detectors in D features,

we have O ( |C|DN logN ) in Steps 2–8. Finding the optimal solution in Step 10 takes O (2 |C | − 1),
resulting in O (2 |C |D) in Steps 9–12. Obtaining t outlier rankings using t subsamples result in

O ( |C|tDN logN + 2 |C |tD). The pairwise Spearman’s rank correlation computation takesO (D2) in

Step 11. Therefore, the worst-case time complexity is O ( |C|tDN logN + 2 |C |tD + D2). |C| and t
are typically very small constants and far smaller than N , e.g., using |C| = 6 and t = 10 enables

ZDD to perform very well, so the complexity can be simplified toO (DN logN + D2). Hence, ZDD

is expected to have the time complexity that is nearly linear w.r.t. N and quadratic w.r.t. D.

5 THEORETICAL FOUNDATION

5.1 When Can Univariate Methods Outperform Multivariate Methods?

There are two main reasons for when multivariate outlier detection methods are ineffective in

multidimensional data. One is due to the curse of dimensionality brought by the concentration of

distances in high-dimensional spaces.
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Theorem 5.1 (Concentration of All p-norms [17]). Let X = (X1,X2, . . . ,XD ) be a random

vector with i.i.d. components: Xi ∼ F . Then,

lim
D→∞

√
Var( | |X | |p )

E( | |X | |p )
= 0, (11)

where p ∈ (0,∞], i.e., including Minkowski norms and fractional norms.

This theorem indicates that the relative contrast of any givenp-norms vanishes as the dimension

increases. The concentration effect is much more severe when the increased dimensions are irrel-

evant to the underlying data structure, e.g., clusters. As shown in [44], in such cases, the standard

deviation of the normalized vector lengths can decrease towards zero at about 10 dimensions. The

severe concentration mixes outliers with inliers in the metric space, which makes it difficult for

multivariate distance-based outlier detection methods to work well. Although many other state-

of-the-art multivariate methods do not involve distances in its outlier scoring, their foundation is

built on the meaningfulness of data distances. For example, although density-based methods use

local densities as outlier scores, they rely on distance measures to find the local region of a given

data object; Loda [33] uses the likelihood of falling into bins of one-dimensional random projection

as outlier scores, but the objective of random projection is to retain the pairwise distances in the

original space. As a result, although these non-distance-based methods may suffer less from the

concentration effect compared to distance-based methods, they fail to have an accurate outlierness

estimation. Since univariate detectors work on a feature-wise manner, they are not affected by this

concentration problem. Another reason is due to the presence of noisy features, which is defined

as follows.

Definition 5.2 (Noisy Feature). Let X.l be the l-th feature of the data X, ϕ be a multivariate out-

lier scoring function, and 0 ≤ k ≤ D − 1. X.l is said to be a noisy feature w.r.t. ϕ if there exist

some outliers xi and inliers x
′
i s.t. ϕ (xi j , . . . ,xi j+k ) > ϕ (x ′i j , . . . ,x

′
i j+k

) but ϕ (xi j , . . . ,xi j+k ,xil ) ≤
ϕ (x ′i j , . . . ,x

′
i j+k
,x ′

il
).

Such noisy features override the relevant features and render the outlier scoring functions less

effective. When there exist some individually relevant features, univariate outlier detectors can

well detect these outliers, while the multivariate detectors fail due to the presence of the noisy

feature Xl .

5.2 Modeling Heterogeneous Distributions on Subsamples

Outlier detectors that are capable of detecting outliers in different probability distributions are

required to build an effective heterogeneous ensemble. Z-Score, Dixon, and kNN are chosen based

on this principle. According to [6], Z-Score was designed to identify outliers that do not fit normal

distributions well, and the Dixon test excels at detecting outliers that violate exponential, Gumbel,

Frechet, or Weibull distributions. Since they are tailored for specific data distributions, the expected

distribution of the outlier scores and the statistical significance levels of detecting the outliers can

accordingly be obtained. A series of significance levels for reporting the upper (or lower) outliers

of specific data distributions can be found in [6]. kNN is a data-dependent method that does not

make any assumption on the distribution of inliers, which is used to complement Z-Score and

Dixon in features with mixed distributions.

Formally building ensembles with highly biased heterogeneous models on subsamples helps

achieve low variance and low bias of our models. Specifically, let f (·) be an unknown outlier

scoring function that can provide the idea score of each data object in the dataset X and д(·;θ ) be
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an outlier detection model that estimates the outlier scores with the parameter setθ , then according

to [3], we have

E[MSE] =
1

N

N∑
i=1

(
f (xi ) − д(xi ,X;θ )

)2
+

1

N
E
[(

E
[
д(xi ,X;θ )

]
− д(xi ,X;θ )

)2]
, (12)

where MSE = 1
N

∑N
i=1 (yi − д(xi ,X;θ ))2 with yi be the ideal outlier score of xi yielded by an

underlying specification of the function f . The two terms on the right-hand side of Equation (12)

are respectively analogous to the well-known model bias and variance. In this work, we assume

the real-world data contains highly heterogeneous distributions per feature, so the underlying

true model of such datasets, i.e., the function f , presumed to be composed by a set of feature-wise

heterogeneous д functions. ZDD uses a set of heterogeneous and complementary weak univariate

outlier detectors to specify the function д so as to approximate the true model f as much as

possible in the first term. This is expected to achieve lower bias than the models that ignore the

feature-level heterogeneity. On the other hand, we aggregate models on bootstrapped subsamples

that represent a collection of different realizations of the data X, which helps reduce the variance

of our ZDD model, i.e., the error in (E[д(xi ,X;θ )] − д(xi ,X;θ ))2, due to the difference between

the data subsets used for modeling. Note that the bias-variance analysis is built upon the setting

where we have separate training and test data in supervised learning, which is different from our

setting (i.e., training and evaluating unsupervised outlier detection models on the same dataset).

Nevertheless, the generalized bias-variance analysis shown in Equation (12) provides some

straightforward insights into the explanation of the possible errors made by our outlier ensemble.

5.3 Building Optimal Ensembles

As we use the exhaustive search to find the optimal B∗ in Equation (8), B∗ is guaranteed to be

globally optimal. Then, the key to the optimization problem is the effectiveness of the objective

function, Equation (7), which uses the margin of the outlier scores between the pseudo outliers

in O and the pseudo inliers in X \ O. Accordingly, the quality of the solution to the score margin

maximization relies on the quality of the outlier candidate set O, i.e., Equation (7) is effective

only when most, if not all, of the objects in O are truly outliers. Below, we show that the outlier

thresholding strategy used in Equation (7) can well guarantee the quality of O.

Corollary 5.3 (False Positive Bound [30]). Assume the scores in r have the expected value μ
and variance σ 2. Then the outlier candidate set O resulted by the threshold μ + ασ has a false positive

upper bound of 1
1+α 2 .

We have Prob(ri ≥ μ + b) ≤ σ 2

σ 2+b2 per Cantelli’s inequality. By replacing b = ασ , we obtain

Prob(ri ≥ μ + ασ ) ≤ 1

1 + α2
, (13)

in which it is assumed that most outlier scores in r distribute around μ, with the probability of

up to 1
1+α 2 that a few exceptions occur. Since large values in r indicate high outlierness, μ + ασ

can be used as a threshold to label data objects that have outlierness no less than the threshold

as outliers. In other words, we have a probability of up to only 1
1+α 2 to falsely treat inliers that

have large outlier scores as outliers. Also, Cantelli’s inequality makes no assumption on specific

probability distributions, which holds for any distributions that have statistical mean and variance.
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Table 1. AUC Performance of ZDD, Its Five Variants, and Four Competing

Methods on 20 Datasets

Basic Data Characteristics Multivariate Ensembles Univariate Ensembles: ZDD and Its Variants

Data N D Outliers (%) iForest LeSiNN Loda EGMM ZDD ZDD-fc HOMZ Z-Score Dixon kNN

http 567497 3 0.39% 0.9998 1.0000 0.9958 1.0000 0.9923 0.9983 0.9840 0.9988 0.9980 0.9980

census 299285 7 6.20% 0.6633 0.7160 0.6863 0.7334 0.7426 0.7667 0.5500 0.7051 0.6991 0.8048

FC 286048 10 0.96% 0.8733 0.8966 0.9066 0.9217 0.9304 0.9309 0.9351 0.9326 0.9452 0.8881

fraud 284807 29 0.17% 0.9510 0.9531 0.9482 0.9504 0.9452 0.9526 0.9454 0.9525 0.9536 0.9485

mulcross 262144 4 10.00% 0.9581 0.9994 0.6993 0.7415 0.9744 0.9790 0.9993 0.9987 0.7157 0.9995

celeba 202599 39 2.24% 0.6797 0.7594 0.7487 0.7000 0.8104 0.7893 0.8108 0.7814 0.7834 0.7876

breast 181903 13 3.45% 0.7630 0.8223 0.7768 0.8409 0.8677 0.8657 0.8726 0.8619 0.8322 0.8678

smtp 95156 3 0.03% 0.8825 0.8326 0.8344 0.7012 0.9469 0.9004 0.7947 0.7575 0.9072 0.8855

probe 64759 34 6.58% 0.9952 0.9974 0.9549 0.9086 0.9883 0.9887 0.9883 0.9928 0.9793 0.9877

u2r 60821 36 2.97% 0.9881 0.9877 0.9895 0.9855 0.9884 0.9891 0.9884 0.9793 0.9882 0.9887

w7a 49749 300 5.39% 0.4053 0.4851 0.4679 0.6750 0.8058 0.7947 0.8045 0.5081 0.8259 0.8028

shuttle 49097 9 7.15% 0.9966 0.9903 0.9784 0.9808 0.9764 0.9953 0.9924 0.9899 0.9899 0.9957

bank 41188 62 11.27% 0.7110 0.6879 0.6688 0.7412 0.7584 0.7376 0.7519 0.7422 0.8031 0.7085

MG 11183 6 2.33% 0.8505 0.8253 0.8183 0.8290 0.8661 0.8772 0.8161 0.8847 0.8666 0.8687

mc1 9466 38 0.72% 0.9051 0.8936 0.8742 0.8882 0.9151 0.9093 0.9202 0.9154 0.9060 0.9076

thyroid 7200 6 7.42% 0.8364 0.6578 0.6135 0.6294 0.9040 0.7644 0.7317 0.6617 0.7847 0.8221

PB 5473 10 6.43% 0.8971 0.8866 0.8883 0.8856 0.9084 0.8808 0.9098 0.9048 0.8537 0.8846

hiva 4229 1617 7.71% 0.6809 0.6843 0.6743 0.5000 0.7286 0.7257 0.7279 0.6912 0.7421 0.7297

isolet 730 617 1.37% 1.0000 1.0000 0.9997 0.4108 0.9994 0.9995 0.9995 0.9998 0.9996 0.9937

mfeat 410 649 2.44% 0.9462 0.9742 0.8377 NaN 0.9535 0.9513 0.9615 0.9321 0.9504 0.9177

Average 0.8556 0.8611 0.8261 0.7903 0.9053 0.8943 0.8815 0.8631 0.8812 0.8938

P-value 0.0072 0.0333 0.0017 0.0005 - 0.2322 0.6791 0.0400 0.2110 0.1305

EGMM cannot obtain the results on mfeat due to its algorithmic constraints. The following acronyms are used:

FC = ForestCover, MG = mammography, thyroid = annthyroid, PB = PageBlocks. The best performance per data

is boldfaced.

6 EXPERIMENTS AND EVALUATION

6.1 Datasets

As shown in Table 1, 20 publicly available datasets2, including 19 real-world datasets and 1 syn-

thetic dataset (i.e., mulcross), are used in our evaluation, which cover a broad range of application

domains, e.g., intrusion detection, credit card fraud detection, disease detection, molecular bioac-

tivity detection, and imaging object detection. About half of the real-world datasets, including

http, fraud, smtp, probe, u2r, thyroid, and hiva, contain real outliers. Following the literature (e.g.,

[26, 27, 31, 33, 34, 37, 38]), the other datasets are transformed from very imbalanced classification

datasets by treating the rare class(es) as outliers and the largest class as the normal class, which re-

sults in data with semantically real outliers. The synthetic data mulcross contains two large dense

Gaussian clusters as the normal classes and two small clusters as clustered outliers.

2fraud, celeba, breast, and w7a datasets are respectively available at https://www.kaggle.com/mlg-ulb/creditcardfraud,

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, http://www.bcsc-research.org/rfdataset/dataset.html, and https://

www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/. mulcross is taken from [27]. All the other dataset are from the UCI

Machine Learning Repository [15].
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6.2 Default Settings of ZDD

The subsampling size s and the ensemble size t are respectively set to 30 and 10 by default in ZDD.

ZDD is built by ensembles of six base learners, i.e., ZDD use two specifications (i.e., c = 2) of each of

the three outlier scoring methods presented in Section 4.1. Specifically, Z-Score with two sets of μ
and σ computed on two different random subsamples are used. Since the subsamples are different,

we obtain two different sets of μ and σ for the same feature. Similarly, the Dixon score has different

ranges and neighborhood on two different subsamples, which also lead to heterogeneous Dixon-

based detectors. For thekNN detector, bothk = 10 andk = s are used to obtain heterogeneouskNN

detectors. Other specifications of the three base learners may also be applicable, but our empirical

results show this set of specifications performs most stably across the 20 datasets. Thus, these

settings are used throughout the experiments by default. The source code of ZDD is available at

https://sites.google.com/site/gspangsite/sourcecode.

6.3 Performance Evaluation Methods

6.3.1 Performance Metric. Following the literature [27, 30, 33, 34, 37, 38], the AUC is used to

evaluate the performance of outlier detection. Specifically, all outlier detectors first produce a rank-

ing of data objects based on their outlier scores. The AUC is then calculated based on the outlier

ranking. AUC has been widely used in outlier detection. One main reason of its popularity is due

to its straightforward interpretability. That is, an AUC value of 0.5 indicates a random ranking

of the objects while an AUC value of one indicates perfect performance; having an AUC above

(below) 0.5 indicates that the performance is better (worse) than random results. Since ensemble

methods involve randomness, we report average AUC results over 10 independent runs.

6.3.2 Significance Test. Two different statistical significance tests, namely the Wilcoxon signed

rank test and Friedman-Nemenyi test, are used to have a good summarized description of our re-

sults of multiple detectors on a large set of datasets. The Wilcoxon signed rank test is a pairwise

approach, which is used to examine the significance of the AUC performance of ZDD against in-

dividual competitors. The Friedman-Nemenyi test is for comparing multiple participated detectors

simultaneously. We refer readers to [13] for detailed introduction of these two tests.

6.4 Effectiveness in Real-world Multidimensional Data

6.4.1 Experiment Settings. ZDD is compared with four state-of-the-art multivariate outlier en-

sembles to verify their effectiveness in multidimensional data, including two homogeneous en-

sembles, iForest and LeSiNN, and two heterogeneous ensembles, Loda and EGMM.

• Isolation-based Ensemble: iForest [27]. iForest defines outliers by the number of partitions

to isolate data objects. Following [27], the ensemble size is set to 100 and the subsampling

size is set to 256.

• Distance-based Ensemble: Ensembles of distance-based methods (e.g., Sp [37] and LeSiNN

[31]) use the nearest neighbor distances in small subsamples as outlier scores. Since LeSiNN

performs substantially better and more stably than Sp as shown in our previous studies [31],

LeSiNN is used. The subsampling size is set to 8 and 50 random subsamples are used as these

settings often enable the best performance of LeSiNN.

• One-dimensional random histograms: Loda [33]. Loda defines outlierness via the log-

likelihood computed on a set of one-dimensional optimized histograms produced by using

random projection with different random Gaussian projection vectors. Loda is parameter-

free.

• Ensembles of Gaussian Mixture Models: EGMM [2]. EGMM defines outliers based on the

probability densities of fitting GMMs. Similar to ZDD, 10 base models are used to construct
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the EGMM ensemble. Following [16], 15 bootstrap replicates are used to train a single GMM.

Following [7], we use Akaike’s information criterion (AIC) to search the optimal number of

components in the range of [1, 6].

Note that the above methods may use different subsampling and/or ensemble sizes. In general,

most methods are not sensitive to the ensemble size, which perform very stably using 10–100

base models to build the ensemble. iForest and LeSiNN are sensitive to the subsampling size. We

use the recommended subsampling sizes for iForest and LeSiNN as in [27, 31]. All methods are

implemented in MATLAB except iForest that is in Java in Weka [20].

It should also be noted that this work focuses on comparing univariate ensembles and mul-

tivariate ensembles. The competing multivariate ensembles include state-of-the-art specifically

designed outlier ensemble method, iForest, and the methods that are substantially enhanced en-

semble versions of traditional single-model outlier detectors, i.e., LeSiNN, Loda, and EGMM.

6.4.2 Finding - ZDD Substantially Outperforms State-of-the-art Multivariate Methods. The AUC

performance of ZDD and four multivariate ensembles on the 20 datasets is shown in Table 1 (the

five variants of ZDD and their performance will be discussed in Section 6.5). Compared to the

competing multivariate ensembles iForest, LeSiNN, Loda, and EGMM, ZDD obtains the best AUC

performance on 12 datasets, with 5 close to the best competitor (having difference in AUC less

than 0.01). On average, ZDD substantially outperforms iForest (6%), LeSiNN (5%), Loda (9%), and

EGMM (14%). The pairwise Wilcoxon signed rank test shows the improvement of ZDD over these

four competing methods is statistically significant at the 95% confidence level. The superiority of

ZDD is due to two main reasons. First, many real-world datasets contain univariate outliers, and

thus, univariate methods are sufficient to detect such outliers. Second, there often exist heteroge-

neous data distributions within each individual feature. In such cases, ZDD models the fine-grained

feature-level heterogeneities much better than multivariate ensembles do, resulting in better per-

formance in identifying data distribution-sensitive outliers.

6.5 Ablation Study

6.5.1 Experiment Settings. The success of ZDD motivates us to examine the performance of

their individual components to answer the following four key questions:

• Why do we use univariate ensembles other than multivariate ensembles? We in-

vestigate this question by examining the performance of simple bagging ensembles of each

individual univariate detector against the above four advanced multivariate outlier ensem-

bles. Similar to ZDD, the final outlier scores of data objects are based on the bootstrap

aggregation of 10 random subsamples, and the subsampling size is set to 30.

• What is the benefit of building univariate ensembles on subsamples other than

original full data? To answer this question, we examine the performance of the three

univariate ensembles on the subsamples compared to that on the original full data.

• What is the benefit of using heterogeneous univariate base learners other than the

homogeneous ones? We investigate this question by comparing ZDD to its variants that

are more homogeneous.

• What is the benefit of the selective combination of |C | detectors? We answer this

question by comparing the performance of ZDD to its variant that uses a full combination

of all |C| detectors.

To enable the analysis of the above four questions, the following five variants of ZDD are im-

plemented and used as baselines.
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• Z-Score, Dixon, kNN are the simple bagging ensembles of the three univariate outlier mea-

sures Z-Score, Dixon, and kNN, respectively. kNN is used with k = s for this case. The mean

and variance in Z-Score are computed based on each univariate subsample. Their subsam-

pling size and the number of subsamples are set to the same values as that in ZDD.

• HOMZ (short for HeterOgeneous enseMbles of Z-Score) is a simplified heterogeneous en-

semble of ZDD. HOMZ is exactly the same as ZDD except that HOMZ uses only the Z-Score

measure rather than all the three detectors in A to specify the base detectors. Particularly,

HOMZ is composed by six independent Z-Score-based outlier detectors per univariate sub-

sample. That is, for each specific univariate subsampleSi j , we randomly sample six versions

of Si j , and compute the mean and standard deviation of each Si j independently, resulting

in six different Z-Score-based outlier detectors on each univariate subsample.

• ZDD-fc is a variant of ZDD, which is exactly the same as ZDD except that ZDD-fc uses a

Full Combination of all |C| detectors while ZDD uses the selective optimal combination of

the detectors.

6.5.2 Findings I - Univariate Ensembles Improve 4%–13% Performance over Advanced Multivari-

ate Ensembles. The performance of the bagging ensembles of Z-Score, Dixon, and kNN is shown

in Table 1. Interestingly, the simple Z-Score, Dixon, and kNN ensembles substantially outperform

the state-of-the-art multivariate methods iForest, LeSiNN, Loda, and EGMM on most datasets, and

obtain comparable performance on the datasets where the multivariate methods perform better.

On average, the AUC improvement of univariate ensembles over the four multivariate ensembles

is up to 4%–13%. In addition to the fact that there exist strongly relevant features for identifying

univariate outliers, another major reason for this result is that the datasets may contain a large

percentage of irrelevant features that largely bias the outlier scoring of the multivariate outlier

detectors. Although univariate methods may also be affected by the irrelevant features in the final

aggregation of outlier scores obtained from each feature, they can accurately compute the out-

lier scores in relevant features. Therefore, univariate methods can obtain higher-quality outlier

scores than multivariate methods. More results about the robustness w.r.t. irrelevant features are

discussed in Section 6.6.

6.5.3 Findings II - The Subsampling Significantly Improves Univariate Outlier Detectors. We fur-

ther compare the Z-Score, Dixon, kNN ensembles with their corresponding single models that

work on the original data, denoted as Z-Score′, Dixon′, and kNN′, respectively. The comparison

is summarized as in the Friedman-Nemenyi test results in Figure 2. It shows that the bagging en-

sembles, kNN and Dixon, obtain significantly better performance than their single models, kNN′

and Dixon′; and Z-Score performs the same well as Z-Score′. This demonstrates the effectiveness

of using bagging ensembles to address the swamping and masking problems in univariate outlier

detectors, which also justifies the value of the subsampling component in ZDD.

6.5.4 Findings III - Combination of Heterogeneous Univariate Detectors Achieves More Stable and

Better Performance. This section compares ZDD with three homogeneous univariate ensembles,

namely, Z-Score, Dixon, and kNN, and the simplified heterogeneous ensemble HOMZ to show the

importance of building heterogeneous ensembles.

The last column in Table 1 shows that ZDD and HOMZ achieve nearly the same performance

on most datasets, but HOMZ performs unstably and obtains poor performance on some datasets,

such as census and thyroid, whereas ZDD performs very stably. As a result, ZDD obtains over 3%

average AUC improvement over HOMZ. This is mainly because HOMZ only uses Z-Score to define

outliers, which fail to work on data distributions other than normal distributions, while ZDD cover
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Fig. 2. Friedman-Nemenyi test results for ensembles Z-Score, Dixon, kNN, and their corresponding single

models Z-Score′, Dixon′, kNN′ over 20 datasets. Each outlier detector is represented by a vertical line. There

is no significant difference between the performance of outlier detectors if their corresponding vertical lines

are intersected by a horizontal line on the top; and otherwise the performance difference is significant at the

95% confidence level.

outliers in a broader distribution family. Similar results are expected if only Dixon or kNN is used

to specify the simplified heterogeneous ensemble.

Similar to HOMZ, since the Z-Score, Dixon, and kNN ensembles consist of only one type of base

detectors, they perform unstably and fail to obtain good performance on such datasets as mulcross,

celeba, smtp, and thyroid. Different from these three univariate ensembles, ZDD uses the Cantelli’s

inequality-based outlier ranking quality measure to effectively find an optimal combination of

the outlier scores from multiple different types of outlier detectors, resulting in better and more

stable performance. This set of results demonstrates the importance of using different types of

base detectors in building heterogeneous ensembles.

6.5.5 Findings IV - Selective Combination of Univariate Detectors Yields Substantial Improve-

ment in Complex Data. This section compares ZDD with ZDD-fc to investigate the contribution

of the module of selectively combining the heterogeneous base detectors in ZDD. The results in

the last column in Table 1 demonstrates that ZDD achieves averagely better AUC performance

than ZDD-fc. In many datasets, ZDD and ZDD-fc performs comparably well, but ZDD signifi-

cantly outperforms ZDD-fc in datasets with highly heterogeneous data distributions across the

features, such as celeba, smtp, and thyroid, in which each feature may demand a different combi-

nation of the base detectors to work well. In those data, the outstanding base detectors in ZDD-fc

may be severely dragged down by under-performed base detectors due to the simple average ag-

gregation, whereas ZDD can avoid this issue by its selective optimal combination component.

This observation becomes clearer in our experiments on synthetic data with irrelevant features in

Section 6.6.

6.6 Robustness w.r.t. Irrelevant Features

6.6.1 Experiment Settings. We use a similar method as in [44] to generate a collection of 100-

dimensional synthetic datasets with different percentages of relevant features (or irrelevant fea-

tures). In this data, inliers are drawn from a Gaussian distribution, in which outliers are set at two

standard deviations of the distribution in relevant features and the other features are from uni-

form distribution and used as irrelevant features. Each dataset contains 10,000 data objects with

2% outliers. The average AUC with ±1 standard deviation over 10 runs is reported to have more

reliable and straightforward comparisons.
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Fig. 3. AUC performance w.r.t. different percentage of relevant features. All detectors perform stably and

achieve the AUC of one with over 32% relevant features, except Loda whose AUC performance increases

slower than the other detectors.

Because the AIC search in EGMM performs poorly with irrelevant features, we use EGMM* that

sets the number of optimal components to be one, i.e., the ground truth. All the other detectors

are used with the default settings.

6.6.2 Findings I - ZDD Achieves Excellent Robustness w.r.t. Irrelevant Features. The AUC per-

formance of all 10 detectors w.r.t. different percentage of irrelevant features is illustrated in

Figure 3. ZDD obtains excellent robustness w.r.t. the irrelevant features, which can obtain an AUC

of nearly one even when there are only 1% relevant features, i.e., only one relevant feature in

100-dimensional data, and they perform very stably with increasing number of relevant features.

HOMZ outperforms ZDD and becomes the best performer among all the detectors. This is because

the synthetic data is strictly drawn from Gaussian distributions and HOMZ excels at identifying

outliers from Gaussian distributions. Although ZDD is slightly dragged down by the base detec-

tors other than Z-Score, it is interesting that the individual Z-Score, Dixon, and kNN perform

badly while ZDD, which is a mixture of Z-Score, Dixon, and kNN, can achieve performance very

comparable to the best performer HOMZ. This is mainly because the Cantelli’s inequality-based

outlier ranking measure enables ZDD to effectively filter out irrelevant outlier rankings to produce

high-quality ranking combination. This explanation can also apply to the AUC difference between

HOMZ and the other two detectors, Z-Score and EGMM*.

6.6.3 Findings II - Univariate Ensembles Obtain Consistently Better Robustness Than Multivariate

Ensembles. As shown in Figure 3, it is clear that the six univariate ensembles, including ZDD, ZDD-

fc, HOMZ, Z-Score, Dixon, and kNN, consistently outperform the four multivariate ensembles,

iForest, LeSiNN, Loda, and EGMM. This result can be explained by the bias and dimensionality

curse brought by the irrelevant features to the multivariate ensembles. Since univariate methods

work on an individual feature basis, they are less affected by the irrelevant features. By working

on feature subspaces, iForest reduces the effects of irrelevant features and accordingly obtains

better robustness than the full space-based methods like LeSiNN and Loda. Although EGMM* is

specifically designed to detect outliers in a single Gaussian distribution, but it cannot find the
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Fig. 4. AUC Performance w.r.t. different ensemble sizes. Only representative results are shown. Similar re-

sults are obtained in other data. Vertical bars indicate ±1 standard deviation.

Gaussian cluster exactly due to the distortion of the large percentage of irrelevant features and

consequently can only achieve fairly good performance.

6.7 Sensitivity Test

6.7.1 Experiment Settings. This section examines the sensitivity of ZDD w.r.t. the ensemble

size, t , and the subsampling size, s . t ∈ {1, 5, 10, 30, 50, 100} and s ∈ {15, 30, 60, 120, 240, 480} are

used. ZDD was tested on the 20 datasets. We report representative results on four datasets for

brevity. Similar trends are found on the rest of other datasets. The runtimes of all detectors are

calculated at a node in a 2.8 GHz Titan cluster with 256 GB memory.

6.7.2 Findings I - ZDD Performs More Stably with Increasing Ensemble Size. The AUC perfor-

mance of ZDD w.r.t. different ensemble size is presented in Figure 4. The average AUC performance

of ZDD flattens from t = 10, and the standard deviation becomes smaller as the ensemble size t
increases. Similar results can also be observed in the other datasets. A sufficiently large ensemble

size (e.g., ≥ 10) is generally required for bagging approach-based ensembles like ZDD to obtain

statistically sound performance. The performance of these ensembles then becomes very stable

w.r.t. increasing ensemble size due to the law of large numbers [12]. This is consistent to the re-

sults in the prior work [27, 31, 38]. Additionally, ZDD can perform very well and stably on data

with simple distributions as breast and w7a even when using t = 1, while it requires a slightly

large ensemble size to achieve similar performance in complex data such as census and fc. This is

because outliers are much more difficult to be distinguished from the inliers in random subsamples

taken from complex data than simple data.

6.7.3 Findings II - ZDD Obtains Consistently Good Performance Using Small Subsampling Size.

The AUC performance of ZDD w.r.t. different subsampling size is presented in Figure 5. ZDD

achieves consistently good performance when using a small subsampling size. Using larger sub-

sampling size has a higher probability of including outliers into subsamples and consequently

masking outliers or biasing the outlier scoring functions, leading to worse AUC performance, such

as the case in census. In some other cases as in fc, a larger subsampling size is required to have a

better approximation of the inliers. In simple datasets such as breast and w7a, ZDD performs very

stably when using a wide range of subsampling size.
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Fig. 5. AUC performance w.r.t. different subsample sizes. Representative results are shown. Similar results

are obtained in other data. Vertical bars indicate ±1 standard deviation.

Fig. 6. Distribution of the subsamples and all outliers in each individual feature of thyroid.

6.8 Further Analysis of Our Results by Visualizing Underlying Outlying Behaviors

To understand the underlying outlying behaviors and explain the results we obtain, this section

presents the visualization of all outliers (blue circles) and the randomly sampled 30 data objects (red

crosses), i.e., the subsample used in our ensemble, in each individual feature from four representa-

tive datasets, including thyroid in Figure 6, smtp in Figure 7, census in Figure 8, and PB in Figures 9

and 10. Here we focus on low-dimensional datasets to well visualize the data. Note that all features
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Fig. 7. Distribution of the subsamples and all outliers in each individual feature of smtp.

Fig. 8. Distribution of the subsamples and all outliers in each individual feature of census.

are normalized into the range [0, 1] before applying the outlier detectors, but some features in the

figures have rather narrow value ranges because those features have highly skewed distributions.

The results on thyroid, smtp, and census are provided in Figures 6–8 to gain possible under-

standing of why the univariate methods can significantly outperform the multivariate methods in

Table 1. It is clear that in one or multiple individual features many (or most) of the outliers have

significant deviations from the subsamples that represent the majority of the data objects, e.g., Fea-

ture #2 in thyroid, Feature #3 in smtp, Features #2, #3, and #5 in census. This means these datasets

contain many univariate outliers that are highly separable in this view and can be easily detected

by the univariate methods. On the other hand, these datasets also contain a large percentage of

noisy features in which outliers have no clear deviations from the data. These noisy features can

largely mislead the multivariate methods, making them ineffective in detecting the outliers that

are highly visible in the univariate views.

Among these three datasets, the heterogeneous univariate method ZDD substantially outper-

forms its homogeneous or less heterogeneous variants on thyroid and smtp. This is because the

heterogeneous base detectors in ZDD are complementary to each other and are able to detect dif-

ferent sets of outliers in different features, whereas the homogeneous base detectors in the variants

of ZDD suffer from the inherent weakness of the employed base detectors on less relevant features

and yield poor overall performance. For example, on thyroid, using Z-Score only works very well
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Fig. 9. Distribution of 30 randomly sampled objects and all outliers in each individual feature of PB.

Fig. 10. Distribution of 240 randomly sampled objects and all outliers in each individual feature of PB.

on Feature #2 but it can seriously mess up on the rest of the other five features; by contrast, ZDD

has base detectors that work well not only on Feature #2 (e.g., using any of its base detectors)

but also on Features #3, #4, and #6 (e.g., using Dixon and kNN). On the other hand, homogeneous

univariate methods like kNN can outperform the heterogeneous method ZDD, e.g., on census in

Table 1. This is mainly because Z-Score and/or Dixon are ineffective in some relevant features,

e.g., Features #4 and #5, and their performance can drag down the effectiveness of kNN in those

features when they are used as an integrated unit in ZDD.

Note that the multivariate methods perform better than the univariate methods on a few datasets

such as http, fraud, isolet, and mfeat, though the univariate methods can obtain very competitive

performance on most of these datasets. This indicates that these datasets may contain a mixture

of univariate and multivariate outliers, with the majority of outliers being univariate outliers. The

univariate methods cannot detect the small number of multivariate outliers and are thus slightly

less effective than the multivariate methods.

It is interesting that the performance of ZDD is very stable w.r.t. its two hyperparameters, espe-

cially the subsampling size on datasets like breast and w7a shown in Figure 5. These two datasets

are used as representatives only. Similar results can also be observed in several other datasets such

as PB on which ZDD achieves very stable AUC results that are consistently within [0.886, 0.889]

with the subsampling size in [15, 480] and the ensemble size in [1, 100]. To understand why we
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Fig. 11. Scaleup tests w.r.t. data size and dimensionality. iForest is excluded since it is implemented in a

programming language different from the others.

have such results, we visualize and analyze the outliers and subsamples of the low-dimensional

dataset PB in Figures 9 and 10 with two diverse subsampling sizes, 30 and 240. It can be seen that

the majority of the outliers clearly deviate from the subsamples on all individual features except

Features #2, #5 and #6 when using the subsampling size 30 in Figure 9; this desired pattern persists

with a much larger subsampling size, 240 in Figure 10. As a result, those clearly deviated outliers

can always be detected with different subsampling sizes, resulting in stable AUC performance.

Also, due to the strong outlying signals observed in those relevant features, even using a small

ensemble size, ZDD can achieve the similarly good performance to that using a large ensemble

size.

6.9 Scalability Test

6.9.1 Experiment Settings. We generate synthetic data by varying the data size in {10,000,

50,000, 250,000, 1250,000} of a 10-dimensional dataset for scaleup test w.r.t. data size, and like-

wise, varying the dimension in {10, 50, 250, 1, 250} w.r.t. a fixed data size (i.e., 10,000) for scaleup

test w.r.t. dimensions. We test the scalability of ZDD, with multivariate ensembles as baselines.

6.9.2 Findings - ZDD Scales Up Well w.r.t. Both Data Size and Dimensionality. The scalability test

results are presented in Figure 11. In the left panel, ZDD, LeSiNN, and EGMM have a linear time

complexity w.r.t. data size, while that of Loda seems to be quadratic. Specifically, ZDD completes

the outlier scoring in a dataset of size 1,250,000 within 520 seconds, i.e., less than one millisecond

per data object, which runs comparably fast to LeSiNN and is one or two orders of magnitude faster

than Loda and EGMM. In the right panel, ZDD has a quadratic time complexity w.r.t. the number

of features. This is expected since it uses the pairwise correlations between the outlier rankings

output from individual features to capture the homophily relations among outlying behaviors. As a

result, ZDD runs slower than LeSiNN by a factor of 5, but it runs about 10 times faster than EGMM.

Since Loda involves only such simple operations as random matrix generation and element-wise

matrix multiplications, it is not sensitive to the dimensionality size, resulting in the best efficiency

on high-dimensional data.

7 DISCUSSION

7.1 Univariate or Multivariate Methods?

Our empirical results suggest that many real-world datasets mainly contain univariate outliers, in

which univariate outlier detection methods are sufficient to well identify these outliers. This leads
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to an interesting question: When should we use univariate methods (or multivariate methods) in

real-life applications? It can be seen as the problem of defining an indicator function to deter-

mine whether a given dataset contains univariate outliers or multivariate outliers. However, this

problem may be more challenging than outlier detection itself due to the unavailability of class

labels. One possible approach is to use the correlation across features as the indicator. We have

attempted this approach, but the feature correlation did not show useful hints for the selection

of univariate methods or multivariate methods. This is because the full dataset is dominated by

inliers, and thus, the feature correlation on the full dataset indicates the feature interdependence

for inliers rather than outliers. Consequently, this problem gets into a dilemma: identification of

(univariate or multivariate) outliers and the feature correlation for outliers. On the other hand,

a given multidimensional dataset may contain both univariate outliers and multivariate outliers.

Since multivariate methods are ineffective in identifying univariate outliers, a safer strategy for

real-world deployments is to synthesize both univariate and multivariate outlier detection meth-

ods via, e.g., ensemble learning, to complement each other.

7.2 Extensions of HUOE

The capacity of our HUOE framework may be further extended w.r.t. the following two main

strategies: (i) using more univariate outlier detectors that have different assumptions from Z-

Score, Dixon test, and kNN; and (ii) increasing the number of base outlier detectors by using Z-

Score, Dixon test, and kNN with different parameter settings. For the first strategy, as shown in

Section 6.5.4, the use of different types of outlier detectors in C helps substantially improve the

effectiveness and stability of the instances of HUOE. For the second strategy, we have empirically

compared the use of three, six and nine base outlier detectors in ZDD. Our results show that the

use of six base outlier detectors has substantial AUC improvement over the case of using three

bases, e.g., achieving about 7% AUC improvement on census, but using nine base outlier detec-

tors does not gain extra AUC improvement. On the other hand, increasing the number of base

detectors can largely increase the runtime, since we have an exhaustive search over C to find the

globally best combination. Therefore, it is suggested to increase the capacity of the instantiation

by including other types of base detectors rather than increasing the base number with different

parameter settings.

Additionally, HUOE may also be extended to handle multivariate outliers by changing its data

inputs. For example, the original data input may be replaced with the projected data resulted from

unsupervised data projection methods like PCA, random projections and many of their variants.

In this case, although HUOE works in a feature-wise manner, it works on the resulting latent

features that capture the interactions between multiple features in the original data space. As a

result, HUOE is also capable to identify multivariate outliers. However, it is challenging to find

the latent features that are highly relevant to outlier detection, since the dataset is dominated by

inliers and the outliers may be irregularly distributed.

7.3 Homophily Weight vs. Time Cost

HUOE defines the homophily weights of the outlier rankings to obtain a weighted aggregation

at its final stage. The homophily weights are important when the relevant feature are weak, i.e.,

the outlier scores of outliers in weakly relevant features are only marginally higher than that of

inliers in irrelevant features. In such cases, the homophily weights leverage the weak relevance

across the features to derive large weights for the weakly relevant features, which can substantially

enlarge the outlierness gap between outliers and inliers. For example, in the thyroid dataset, the

homophily weights help ZDD significantly improve its AUC performance, i.e., lifting from 0.7632

to 0.9040. On the other hand, the homophily weight-based aggregation achieves almost the same
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performance as the general average aggregation in the other datasets, but it is more computation-

ally costly due to the pairwise correlation computation. Hence, the homophily weights might be

removed when handling very high-dimensional data, which may not affect the detection accuracy

but substantially reduce the computational cost.

7.4 Multivariate Outlier Detection Benchmark Data

One major concern here is that most of datasets used in our experiments are widely used in the

literature, e.g., [8, 27, 33, 37, 38], in which multivariate outlier detection methods are proposed and

evaluated, but our results indicate that most, if not all, of the outliers in these datasets are univariate

outliers. Consequently, some important questions are, what types of outliers do these multivariate

methods detect, univariate or multivariate outliers? and do we really evaluate the performance of

these methods in detecting multivariate outliers? Although applying multivariate methods to detect

univariate outliers in multidimensional data helps evaluate their robustness w.r.t. irrelevant fea-

tures, there may be serious mismatched specifications between our ideal objective of evaluating

the detection of multivariate outliers and the real settings of those datasets. We therefore sug-

gest a careful consideration of choosing these widely-used benchmark datasets when we intend to

evaluate the capability of outlier detection methods in detecting specific types of outliers. It is also

important to develop real-world datasets that mainly contain multivariate outliers to well evaluate

newly proposed multivariate outlier detection methods.

8 CONCLUSION

In this article, we introduce a novel framework and its instantiation for building outlier ensembles

to detect univariate outliers in multidimensional data with feature heterogeneities. By leveraging

heterogeneous outlier detectors with a Cantelli’s inequality-based outlier ranking quality measure,

we build optimized heterogeneous ensembles for each feature, which enables an effective detec-

tion of outliers in features with heterogeneous probability distributions. This is justified by their

substantial AUC improvement over state-of-the-art multivariate methods. We empirically justify

the necessity and importance of each individual component of the framework. Additionally, we

show that simple ensembles of univariate outlier detection methods can substantially outperform

advanced multivariate outlier detection methods for such data, which has important implication of

choosing outlier detectors in real-world applications and evaluating newly proposed multivariate

outlier detectors. In future work, we plan to design effective data indicator functions to determine

whether univariate or multivariate methods should be applied to a given dataset.
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