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Abstract

Motivation: Identification of virulence factors (VFs) is critical to the elucidation of bacterial pathogenesis and preven-
tion of related infectious diseases. Current computational methods for VF prediction focus on binary classification or
involve only several class(es) of VFs with sufficient samples. However, thousands of VF classes are present in real-
world scenarios, and many of them only have a very limited number of samples available.

Results: We first construct a large VF dataset, covering 3446 VF classes with 160 495 sequences, and then propose
deep convolutional neural network models for VF classification. We show that (i) for common VF classes with suffi-
cient samples, our models can achieve state-of-the-art performance with an overall accuracy of 0.9831 and an F1-
score of 0.9803; (ii) for uncommon VF classes with limited samples, our models can learn transferable features from
auxiliary data and achieve good performance with accuracy ranging from 0.9277 to 0.9512 and F1-score ranging
from 0.9168 to 0.9446 when combined with different predefined features, outperforming traditional classifiers by 1-
13% in accuracy and by 1-16% in F1-score.

Availability and implementation: All of our datasets are made publicly available at http://www.mgc.ac.cn/VFNet/,

and the source code of our models is publicly available at https://github.com/zhengdd0422/VFNet.

Contact: yangj@ipbcams.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite advances in diagnosis, treatment and prevention, bacterial
infectious diseases still significantly threaten public health world-
wide (van Oosten et al., 2015). Virulence factors (VFs) are elements
(i.e. gene products) that enable microorganisms to establish colo-
nies, achieve immune escape, survive in host environments and cause
tissue damage or systemic inflammation (Cui et al., 2013). The mo-
lecular mechanisms of bacterial VFs, which are involved in various
functional classes/categories (classes and categories are used inter-
changeably hereafter), form the cellular and molecular basis of
pathogenesis. Therefore, the characterization of VFs is not only es-
sential to the comprehensive understanding of bacterial pathogenesis
but also valuable to the effective prevention and therapy of bacterial
infectious diseases.

The rapid development and wide application of DNA sequencing
technologies in recent years have led to the availability of a large

amount of bacterial genomic data, which in turn enables sequence
analysis as the primary approach for potential VF identification. On
the one hand, an increasing number of VFs have been identified by
sequence similarity search methods (e.g. Basic Local Alignment
Search Tool, BLAST) against known VFs (Vinatzer et al., 2005).
In addition, hidden Markov models (HMMs) are used to assist
sequence similarity searches to identify more distinct homologs of
VFs in bacterial genomes (Manuel Martinez-Garcia et al., 2015).
More recently, via the combination of BLAST- and HMM-based
methods, VFanalyzer (Liu et al., 2019) conducts iterative and thor-
ough sequence similarity searches in the virulence factor database
(VEDB) to identify known/potential VFs from bacterial genomes.
Nevertheless, homology-based methods are generally computation-
ally expensive, especially when handling large-scale sequences with
long lengths.

On the other hand, traditional machine learning approaches, e.g.
the support vector machine (SVM) and random forest (RF)
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algorithms, have recently been introduced to predict new VFs based
on predefined sequence features, such as frequency components,
physicochemical properties, protein functional domains and
position-specific  scoring matrices (PSSMs). For instance,
VirulentPred (Garg and Gupta, 2008) extracts features including the
amino acid composition (AAC), dipeptide composition (DPC) and
PSSMs and then employs an SVM and BLAST to predict the bacter-
ial VFs. MP3 (Gupta et al., 2014) further uses an integrated SVM—
HMM approach to predict bacterial VFs in both genomic and meta-
genomic data. Although the training of classification models can be
computationally costly, they are generally highly efficient at the test-
ing stage since they use trained models to directly make predictions.

However, the aforementioned machine learning-based methods
are focused on binary predictions of bacterial VFs (e.g. whether viru-
lence related or not). Since there are usually tens to hundreds of VFs
involved in the pathogenesis of any individual well-established bac-
terial pathogen, further classification of new VFs into fine-grained
functional categories is critical for in-depth follow-up biological val-
idations of the VFs. Indeed, some studies have attempted to address
this issue by performing prediction on only specific class(es) of VFs,
i.e. a subset of known bacterial VFs. For example, SPAAN
(Sachdeva et al., 2005) applies an SVM to predict adhesins and
adhesin-like proteins. Su et al. (2014) extract functional domain fea-
tures and apply an SVM to predict endotoxins and exotoxins. Many
other machine learning-based approaches focus on the prediction of
secreted proteins or effectors of known bacterial secretion systems,
including SecretP (Yu et al., 2010), SSPred (Pundhir and Kumar,
2011), T4SEpre (Wang et al., 2014), T4EffPred (Zou et al., 2013)
and Bastion6 (Wang et al., 2018). Nevertheless, existing methods
typically involve only one or several VF classes rather than all
known bacterial VFs, which consist of thousands of functional cate-
gories. Furthermore, traditional machine learning methods are heav-
ily dependent on predefined sequence features, which are derived
from training samples. The effectiveness of these approaches is nor-
mally built upon the assumption that there are sufficient high-
quality training samples for each class. Unfortunately, this is not al-
ways true in real-world bacterial VF scenarios. Pathogenic bacteria
have acquired various VFs, many of which are commonly shared by
different strains, indicating universal requirements for causing infec-
tion. However, there are some narrowly distributed VFs that are
encoded by only a small subset of known genomes, which determine
species- and/or strain-specific characteristics. Therefore, the limited
sample sizes of these uncommon VFs obstruct the effective applica-
tion of current approaches to all categories of bacterial VFs. In add-
ition, the predefined features are extracted independently from
downstream classification methods. By doing so, the discriminative
information embedded in the extracted features is generic rather
than specifically defined or learned for specific classification meth-
ods. As a result, the underlying discriminative information in the
data cannot be fully exploited.

In recent years, due to the capability to automatically learn
semantic-rich abstract representations from raw data, deep learning
has transformed many different machine learning tasks and achieved
state-of-the-art performance in a broad range of real-world applica-
tions, including many biological sequence-based applications (Min
et al., 2017). For instance, convolutional neural network (CNN)
models are widely used for various biological feature predictions,
including enhancer—promoter interactions (Zhuang et al., 2019),
promoters in the human genome (Umarov et al., 2019), functional
categories of proteins (Seo et al., 2018), genomic sequence polymor-
phisms (Poplin et al., 2018) and taxa from metagenomic sequences
(Fiannaca et al., 2018). Furthermore, some studies use recurrent
neural network (RNN) or the combination of CNN and RNN for
the prediction of antimicrobial peptides (Hamid and Friedberg,
2019; Veltri et al., 2018). Motivated by these successful applica-
tions, especially DeepFam (Seo et al., 2018) and ProtCNN (Bileschi
et al., 2019), which use CNN models to classify over 2000 protein
families well, we propose to explore the potential of deep learning
models for the classification of large-scale datasets of bacterial VFs.

In this work, we aim to leverage deep learning techniques to
address the aforementioned issues of traditional machine learning-

based methods that hinder comprehensive prediction and classifica-
tion. First, we compile a comprehensive VF dataset of 32 genera of
human bacterial pathogens, which contains 3446 VF classes with
160 495 sequence samples. This dataset has the largest number of
VF classes and samples ever built so far, providing an important
benchmark for developing and testing novel methods for the predic-
tion of bacterial VFs. Then, we present an end-to-end deep CNN
model, termed VFNet, which can automatically learn expressive fea-
ture representations for the classification of bacterial VFs. In add-
ition, we empirically justify three critical characteristics of our
VENet, including its capability of harnessing expanded data from
easily accessible databases to significantly enhance the accuracy, ef-
fectively combining automatically learned and predefined features
to achieve state-of-the-art performance, and learning transferable
features for accurate prediction of uncommon VFs that have very
limited samples. Impressively, for common VFs with sufficient train-
ing samples available (i.e. >10), VFNet achieves the desired per-
formance with an overall accuracy of 0.9831 and an Fl-score of
0.9803; in the case of uncommon VFs in divergent datasets, our
model also achieves remarkable performance with an accuracy of
0.9512, a precision of 0.9542, a recall of 0.9499 and an F1-score of
0.9446, which outperforms traditional classifiers by about 1-13%
in accuracy and 1-16% in terms of the Fl1-score when combined
with different predefined features. In addition, we show that the
VFENet model can well capture conserved regions or motifs that are
highly similar to the known patterns of protein domains, which pro-
vides important insights into the underlying driving factors of the ef-
fectiveness of our model.

2 Materials and methods

2.1 Dataset construction

VFDB is a comprehensive repository of bacterial VFs. It has been
dedicated to providing up-to-date knowledge of VFs from various
medically significant bacterial pathogens for over a decade (Chen
et al., 2016). In particular, the intragenus VF comparison dataset of
the VFDB covers known and potential VFs of 474 genomes from 32
genera of human bacterial pathogens. The dataset is well classified
and contains many more samples than any VF datasets previously
used for modeling (Garg and Gupta, 2008; Gupta et al., 2014), so
the VFDB data are collected as the original dataset in this study
(accessed on April 2019), which consists of 24 739 protein sequen-
ces from 4100 VF classes (Supplementary Table S1). However, the
sequence samples are unevenly distributed across different VF
classes with 3548 classes containing no more than 10 sequences. It is
known that the VFDB usually includes only representative genomes
for brevity, whereas there are thousands of fully sequenced bacterial
genomes available in the public domain. We, therefore, download a
total of 7183 complete bacterial genomes from the NCBI server
(accessed on May 2019), which are all from the 32 genera included
in the original dataset (Supplementary Table S2). VFanalyzer is then
employed to conduct an exhaustive similarity search for known and
potential VFs within each genome. The homologous VF sequences
identified in the new genomes are assigned the same class as their
counterparts in the VFDB. Thus, the original dataset is substantially
expanded to 164 119 sequences after excluding identical sequences.
Supplementary Figure S1 shows the sample size of each genus before
and after data expansion.

Based on the expanded dataset, we perform the following data
screening procedures before further analysis. We first remove
sequences related to more than one VF class, which yields 163 417
unique sequences from 4058 unambiguous VF classes. Then, we
manually merge the corresponding categories related to components
of type III/IV secretion systems of various pathogens into a set of
pan-genera VF superclasses (Supplementary Table S1) since
these bacterial secretion systems are generally conserved in terms of
both biological function and genetic organization. Therefore,
the resulting data contain 3778 VF (super) classes. As shown in
Supplementary Figure S2, the majority of the VF sequences
(98.57%) have a length no longer than 2500 amino acids. To limit
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the required computing memory resources in the subsequent model-
ing analysis, we further remove 2330 sequences longer than 2500
amino acids. Besides, 332 VF categories with no more than three
sequences are excluded from further analysis since the extremely
small sample size is insufficient to produce statistically significant
results. Thus, we produce an expanded nonredundant dataset of
3446 VF classes with 160 495 sequences.

Due to the intrinsic genetic diversity of pathogenic bacteria,
there are some species-/strain-specific VFs for many pathogens,
which are encoded by only a small subset of known genomes.
Therefore, although we already excluded extremely undersampled
classes from the expanded dataset, severe imbalance in the sample
size of VF classes is inevitable. We divide the expanded dataset into
two subsets, namely, VFG-2706 and VFG-740, which consist of
2706 and 740 classes, respectively. VFG-2706 covers all the com-
mon VFs, which are empirically defined as classes with more than
10 labeled samples, whereas VFG-740 includes uncommon VF
classes (i.e. <10 samples). More details on the VFG-2706 and
VFG-740 datasets are provided in Supplementary Table S3.

To examine the potential effect of high sequence homology on
the overall performance of our methods, we apply CD-HIT (Fu
et al., 2012) to each class of the original dataset and the VFG-2706
dataset to remove highly homologous sequences (defined as having
>90% sequence identity), which respectively result in two divergent
datasets: VFG-564 and VFG-2706-1066. Lower CD-HIT thresholds
might help further reduce the potential bias introduced by sequence
homology and produce more reliable models (Wang ez al., 2018),
but 86.54% of the classes in the original dataset contain no more
than 10 sequences, which limits us from using those thresholds. The
resulting VFG-564 is derived from the original dataset and covers
only 3382 sequences from 564 uncommon VF classes (i.e. those that
contain 4-10 labeled samples), whereas VFG-2706-1066 is pro-
duced from the VFG-2706 dataset and covers 34 078 sequences
from 1066 common VF classes (i.e. those that contain >10 labeled
samples). We do not use CD-HIT on the VFG-740 dataset because
of the limited sample size in each class. More details on the different
VF datasets used in this study are given in Supplementary Figure S3.

Transfer learning (TL) is widely used to improve the perform-
ance of a learner on one domain of insufficient data by transferring
information from a related domain that has abundant data (Weiss
et al., 2016). To improve the classification performance on the un-
common VFs in the VFG-564 dataset, we apply popular TL techni-
ques to a large dataset from the database of Clusters of Orthologous
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Groups of proteins (COGs) (Tatusov, 2000). Specifically, we ex-
clude sequences longer than 1000 amino acids in COGs and keep
the categories with 500-1000 valid samples, which results in a COG
dataset, namely, COG-755, with 755 classes and 514 310 labeled
sequences.

2.2 VFNet: our proposed deep learning model

2.2.1 The proposed CNN model

We propose to use an end-to-end sequence-based CNN model to
classify bacterial VFs. A CNN model is used rather than an RNN-
based model, such as a gated recurrent unit (GRU) or long short-
term memory (LSTM) model, mainly because CNN models are able
to capture sequential spatial correlations while being significantly
more efficient than RNN models (LeCun et al., 2015; Zhang et al.,
2015).

The model we introduce is called VFNet, and it is a CNN model
with seven layers. As shown in Figure 1, VFNet consists of one one-
hot encoding input layer, two 1D convolution (Conv1D) layers, two
1D global max pooling (MaxpoolinglD) layers and two fully con-
nected (fc) layers. The model is summarized as follows:

yi = g(f (xi; Or); ©y), (1)

where x; is a raw input sequence; f : {0, 1}2%**—R%'2 is a feature
representation learner that maps the one-hot encoding matrix of a
sequence onto a 512D space, which is composed of all the convolu-
tion layers, max pooling layers and the first fc layer; ©is the set of
parameters to be learned; g : R312—R?7% represents the softmax
layer, which is a classifier that takes the learned representations as
inputs and yields the prediction probability of each sequence belong-
ing to each class, in which @, is the associated parameter set.

In particular, each input protein sequence is converted into a
one-hot encoding matrix as follows. Each standard amino acid is
represented by a vector of length 20, where an entry is equal to one
if a specific amino acid is present and is equal to zero otherwise. For
instance, A is encoded as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
because A occurs in the first entry only, and similarly, C is encoded
as [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], etc. In addition, sequen-
ces are preprocessed to have the same length before being fed to
VFNet. Specifically, based on the length distribution of all the
sequences (Supplementary Fig. S2), we found that 2500 is a desired
fixed length to retain most sequence information while not being
biased by a small number of exceptionally long sequences. Thus,
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Fig. 1. Our proposed VFNet model and a visualization of its four key layers. VFNet is a CNN model with seven layers, including one input encoding layer, two convolution
layers, two max pooling layers, one fc layer and one softmax layer. Specifically, the encoding layer converts each peptide sequence into a matrix of size 2500 x 20. The convo-
lution layers are Conv1D using 128 filters with 7 kernel sizes. The pooling layer is a max pooling layer of size 5. The fc layer consists of 512 units. The softmax layer contains
2706 units to classify the categories. To clearly demonstrate the feature representations that VFNet learns from the raw data, we visualize 10 VF classes randomly chosen from
the 2706 categories in a 2D projected space using t-SNE. The visualization is performed in the four key layers, including the one-hot encoding input layer, two convolution

layers and the fc layer
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sequences longer than 2500 are removed, while the widely used
strategy, zero padding, is applied to sequences that are shorter than
the fixed length.

Accordingly, each sequence becomes a matrix of 2500 x 20. Let
X; be the one-hot encoding matrix of the sequence x;; then, the fea-
ture representation learner can be represented by a compound func-
tion of two replicate convolution functions /" and one fc mapping
function f:

f=FCof" o f"(Xi; ), 2)

where ‘o’ is a compound operation and /" consists of nonlinear
convolution and pooling operations as follows:

fe" = Maxpooling1 D(ReLU(Conv1D(X;))). (3)

The Conv1D layer is composed of 128 filters with 7 kernel sizes. It
computes the dot product between its weights and a small region in
the input to extract shallow features and yields an output feature
map of size 2494 x 128. The rectified linear unit (ReLU) (Agarap,
2018) function a is used as a nonlinear activation function in the
Conv1D layer to transform the data from one volume to another.
ReLU can be represented by a(#) = max(0,#), in which we retain
the input scalar # if it is not <0 and omit the input otherwise. A
Maxpooling1D layer of size 5 is used after ConvlD to reduce the
output dimension to 498 x 128. The second f*°", employed in the se-
cond convolution and max pooling layers, is exactly the same as the
first f°" to extract more features and produces an output of size
98 x 128. The 98 x 128 feature map is then flattened and fed to the
fc layer f with 512 units to learn more expressive high-level ab-
stract features, yielding a 512D vector for each input raw sequence.
These vectors are further fed into the final softmax layer, which is
equivalent to a classifier g using 2706 units with a softmax function
to learn the probability of the input sequence belonging to each VF
category. Finally, each input sequence is classified into the corre-
sponding class with the highest probability value. Note that dropout
with a rate of 0.5 is used after each pooling layer as well as between
the two fc layers to avoid overfitting by randomly masking positions
of the output (Srivastava et al., 2014). The specific structural details
of VFNet are shown in Supplementary Figure S$4.

The cross-entropy loss and ‘Adam’ optimizer (Kingma and Ba,
2014) are used to learn the parameters ®; and ©, of VFNet. Since
our datasets contain hundreds/thousands of categories, it is difficult
to determine the length dependence between sequences. Therefore, a
number of convolution options were probed on VFG-2706, includ-
ing filter size of 64, 128, 256 and 512, kernel sizes of 5, 7, 11 and
13, max pooling sizes of 3, 5 and 7 and fc layer units of 64, 128,
256 and 512. By using the validation set, we found that setting the
filter size to 128, the kernel size to 7, the max pooling size to 5 and
the fc layer units to 512 achieved the best performance. These hyper-
parameters are used by default in our experiments. The Keras
(http://www keras.io) library with a TensorFlow (http://tensorflow.
org/) backend is used to implement all deep learning models, which
are executed with a GeForce RTX 2080 Ti graphics card.

2.2.2  Visualization of the learned features

To explore what our model VFNet has learned, we randomly choose
10 categories (Supplementary Table S1) from VFG-2706, each with
more than 100 samples, and visualize this data subset in a 2D pro-
jected space using t-distributed stochastic neighbor embedding (t-
SNE) (van der Maaten and Hinton, 2008). To gain insights into the
feature learning process, a visualization is performed in four key
layers: the one-hot encoding input layer, the two convolutional
layers and the fc layer. Particularly, for each specific layer, we first
obtain the representations of the sequences of these 10 classes, and
we then use t-SNE to further reduce the data dimensions to two. To
obtain a more meaningful visualization, principal component ana-
lysis (Wold et al., 1987) is first applied to project the data onto 20D
space before using t-SNE. The visualization results are illustrated in
the upper part of Figure 1. It is clear that the sequence samples of
these 10 classes are highly entangled in the one-hot encoding input

layer, but they become more separable with deeper representations.
This finding demonstrates that VFNet can effectively learn disen-
tangled representations from original highly entangled input data.

Note that VFNet learns disentangled representations for all the
classes. Here, we focus on 10 randomly selected categories mainly
because it is difficult to clearly visualize all 2706 classes in a single
figure.

2.3 Competing methods

2.3.1 Two relevant deep learning methods

To examine the effectiveness of the design of our deep learning
model, we compare VFNet to the methods ‘Embed + CNN +
LSTM’ (Veltri et al., 2018) and ‘“Word2vec + biGRU’ (Hamid and
Friedberg, 2019) proposed previously. They are two representative
models using different sequence encoding methods and deep archi-
tectures from our VFNet, which uses one-hot encoding and CNN.

Specifically, instead of one-hot encoding, ‘Embed + CNN +
LSTM’ utilizes the distributed representation idea in the word
embedding (Levy and Goldberg, 2014) to encode sequence data. In
addition, it uses a convolutional-recurrent neural network architec-
ture to make predictions, while we use a convolutional network
only. ‘Embed + CNN + LSTM’ first uses a 128D vector in the
embedding layer to learn sequence embeddings, followed by a
ConvlD layer with 64 filters, a kernel size of 16 and a
Maxpooling1D layer of size 5. It is then connected to a LSTM layer
with 100 units before feeding to the output softmax layer to make
predictions.

‘Word2vec + biGRU” uses the UniProt/TrEMBL dataset
(Boeckmann, 2003) as the document corpus and pretrains a
Word2vec model based on the skip-gram method (Goldberg and
Levy, 2014) to represent the sequences. It builds a deep learning
model consisting of one embedding layer with 200 units, two-layer
bidirectional GRUs (Chung ez al., 2014) and a softmax layer to
make predictions.

2.3.2  Four traditional classifiers using predefined features

To verify the advantages of deep learning methods over traditional
machine learning methods using predefined features, we apply four
well-established classification algorithms widely used in predicting
bacterial VFs (Zeng and Zou, 2019) as the baselines. These algo-
rithms include logistic regression (LR), decision tree (DT), RF and
SVM models. For the RF model, we searched the number of base
models from 10 up to 100 and found that 100 base models worked
best (data not shown), which is used by default in our experiments.
For the SVM model, we apply the linear kernel function with the
penalty hyperparameter C set to 1. We also tried an SVM model
with nonlinear kernel functions, but it works less effectively than the
linear kernel on our datasets. We extracted five types of widely used
predefined features, including AAC, DPC, composition, transition
and distribution (CTD) and pseudo amino acid composition
(PseAAC1 and PseAAC2). These five types of features cover both
sequence-based features and physicochemical features and can be
further concatenated to produce a full feature set (designated as
‘ALL’ hereafter) to cover information from all the aforementioned
statistics and properties of amino acids (see Supplementary
Methods).

2.4 A variant of VFNet: combining automatically learned

and predefined features

VFNet is designed to achieve the end-to-end classification of bacter-
ial VFs, but it is also flexible enough to incorporate any readily
available predefined features into the end-to-end classification pro-
cess. To achieve this flexibility, we introduce a variant of VFNet,
called VFNet-H, which employs a hybrid of automatically learned
features and predefined features to make predictions. The key mo-
tivation is to incorporate some statistical information or property of
the amino acids into VFNet, which may otherwise not be captured
by VFNet. This method may help further enhance the capability of
VFNet. The procedure of VENet-H is shown in Supplementary
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Figure S5. Specifically, as shown at the top of Supplementary Figure
S5, VFNet-H uses exactly the same architecture and hyperpara-
meters as VENet for learning features from the raw data, while add-
ing another parallel branch to take predefined features and fuse the
automatically learned and predefined features through an fc layer.
Unlike the deep architecture in the feature learning component, the
new branch of the network consists of an input layer only since the
inputs are extracted features rather than raw data. The number of
units of this input layer depends on the type of predefined features
used: AAC, 20; DPC, 400; CTD, 147; PseAAC1, 30; PseAAC2, 40;
ALL, 637. Finally, we concatenate the features from the two
branches and feed them to the fc layer before using the softmax layer
to perform classifications. VFNet-H is trained using the same opti-
mizer and hyperparameters as VFNet.

2.5 Performance evaluation

Our datasets are divided into three exclusive datasets: training, val-
idation and testing using the ratio of 6:2:2 with class-wise stratified
sampling by default. The training dataset is used to train the pro-
posed models, while the validation dataset is used to monitor the
generalization capabilities and turn the hyperparameters of the mod-
els. The test dataset is used as an independent dataset to evaluate the
final performance. All the methods are performed by 5 folds with
different dataset splitting random seeds. The reported performance
is averaged over the results of the five implementations. The accur-
acy, precision, recall and F1-score (see Supplementary Methods) are
used to evaluate the performance. We report both the macro and
micro average values of the above metrics. Note that since our task
is multiclass classification, the micro averages of precision and recall
are always the same. As a result, the micro average of Fl-score also
equals to that of precision and recall, as well as the overall accuracy.
Thus, we report only the overall accuracy for the micro average met-
rics while report precision, recall and F1-score for the macro average
metrics.

3 Results

3.1 Comparison to other deep learning models

3.1.1 Classification performance

Table 1 and Supplementary Figure S6 show the classification per-
formance of our VFNet model and two previously proposed deep
learning models on the VFG-2706 dataset. VFNet achieves the best
performance in terms of all the classification performance metrics,
including the training accuracy, test accuracy, precision, recall and
Fl-score, as well as the training and testing runtime. Particularly,
VENet achieves a nearly perfect model fit to the training data by
having a training accuracy of more than 0.99. More importantly, it
generalizes well to the independent test data by achieving the desired
performance of a test accuracy of 0.9663, a precision of 0.9693, a
recall of 0.9551 and an F1-score of 0.9577. Compared to ‘Embed +
CNN + LSTM’ and ‘Word2vec + biGRU’ that use more complex
sequence encoding methods and network architectures, VFNet
achieves respective 3% and 1% improvement in both F1-score and
accuracy. This performance is remarkable given that the VFG-2706

dataset contains as many as 2706 classes. Since VFNet performs bet-
ter in both the macro average F1-score and the overall accuracy than
the two competing deep methods, it indicates VFNet is more effect-
ive in classifying both large and small classes in VFG-2706.
Impressively, VFNet is the most efficient deep model here, which
runs more than 210 times and 16 times faster than the “Word2vec +
biGRU’ and ‘Embed + CNN + LSTM’ methods, respectively, at the
training stage; VFNet is also highly efficient at the testing stage, tak-
ing only 21 s in total to classify 31 086 sequence samples.

3.1.2  Visualization of learned feature representations

We further explore the underlying reasons to explain the perform-
ance difference between the three deep learning models in Table 1
by looking into the feature representations learned by these models.
Specifically, we apply the 3 models to the sequences of 10 randomly
selected VF classes (Supplementary Table S1) and visualize the final
feature representations extracted from the penultimate layer of each
model. The visualization using t-SNE is presented in Supplementary
Figure S7. It is clear that VFNet disentangles the sequences of differ-
ent classes much better than those of ‘Embed + CNN + LSTM’ and
‘Word2vec + biGRU’. Particularly, VFNet learned separable feature
representations for all the classes except a few outlier sequences,
whereas ‘Embed + CNN + LSTM’ and “Word2vec + biGRU’ effect-
ively disentangle most of the classes but mix up the two classes
‘C04’> and ‘COS’. Indeed, classes CO04 and COS are integral mem-
brane proteins FagA and iron enterobactin transporter FagB, re-
spectively (Supplementary Table S1). They are two essential
components of the same iron uptake system of Corynebacterium. In
particular, FagA and FagB share ~30% overall sequence similarity
since both of them are extremely hydrophobic proteins with at least
seven predicted transmembrane helices (Billington et al., 2002). This
demonstrates that VFNet learns better abstraction representations
of both heterogeneous and homologous VFs than the other two deep
learning methods, enabling VFNet to achieve the best VF classifica-
tion performance.

3.2 Comparison of VFNet performance before and after

data expansion

To construct VFNet, we deliberately expand the original VF dataset
of VFDB to include additional homologous VFs within more bacter-
ial genomes available from NCBI. In an attempt to investigate
whether the data expansion procedure effectively improves the per-
formance of VFNet as expected, we select a subset of VFG-2706,
namely, VFG-552, which contains only 552 of 2706 classes that
have more than 10 sequence samples before data expansion. Then,
the sample size for each class of the VFG-552 dataset is sufficient to
avoid potential impacts due to data insufficiency. The VFG-552
dataset originally contains 10 530 sequences (VFG-552a), whereas
the total number of sequences increases to 68 673 after data expan-
sion (VFG-552b), obtaining an approximately 7-fold expansion.
Figure 2 and Supplementary Table S4 present the performance of
VENet on the VFG-552 test dataset before and after data expansion.
Undoubtedly, benefiting from the data expansion, the performance

Table 1. Performance (means = SDs) of VFNet and two other deep learning methods on the VFG-2706 dataset

Method Training stage Testing stage
Accuracy Runtime Accuracy (micro) Precision (macro) Recall (macro) F1-score (macro) Runtime
VFNet 0.9915 (£0.0016) 46 m44s 0.9663 (=0.0011) 0.9693 (+0.0018) 0.9551 (+0.0019) 0.9577 (=0.0018) 215
Embed + 0.9893 (£0.0022) 12h39m45s  0.9405 (£0.0046) 0.9491 (=0.0031) 0.9276 (£0.0050) 0.9314 (=0.0043) 1m3s
CNN + LSTM
Word2vec 0.9672 6d19h23m31s 0.9570 0.9614 0.9479 0.9492 10 m 3s
+ biGRU

Note: The runtime in the training stage denotes the training time of 100 epochs. Word2vec + biGRU is too computationally expensive, so we report its per-

formance in a single run only. The best performance on a metric is highlighted in bold.
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Fig. 2. Performance of VFNet on the VFG-552 datasets before (VFG-552a) and after
(VFG-552b) data expansion from NCBI. VFG-552a and VFG-552b contain 10 530
and 68 673 sequences, respectively

of VENet is significantly improved by 8%, 3%, 3% and 4% for the
test accuracy, precision, recall and F1-score, respectively.

3.3 Comparison to traditional classifiers

The performance of VFNet, VFNet-H and the best-competing trad-
itional machine learning method per predefined feature on VFG-
2706 is shown in Table 2 (see Supplementary Table S5 and Fig. S8
for the full results). It is clear that as an end-to-end sequence classifi-
cation method, VFNet automatically learns highly expressive feature
representations from the raw VF data, enabling the model to achieve
a performance that is very comparable to the traditional classifiers
that heavily rely on predefined features. This finding verifies the ap-
plicability of deep learning models to the classification of bacterial
VFs. Furthermore, VFENet-H is able to leverage both its automatical-
ly learned features and predefined features to achieve the best per-
formance in terms of the test accuracy (0.9831), recall (0.9783) and
Fl-score (0.9803). It is interesting that some traditional classifiers
(e.g. RF) using predefined features can perform very well in most
cases and obtain better performance than VFNet, while other classi-
fiers (e.g. LR and DT) often perform poorly.

Since VFG-2706 is a highly imbalanced dataset, we try to investi-
gate whether balanced class weighting methods can be used to fur-
ther enhance the prediction performance. A popular class weighting
method that assigns class weights inversely proportional to the class
size (King and Zeng, 2001) is incorporated into VFNet, VFNet-H
and the best-competing classifier per predefined feature on VFG-
2706. The results presented in Supplementary Table S6 show that
the introduction of balanced class weights to the training model
does not consistently improve the results of the methods. To better
understand the results, we calculate the correlation between the F1-
score and the class weights. As shown in Supplementary Figure S9,
there is no clear correlation. The added class weights only contribute
to some extra improvements in a small subset of classes while deteri-
orate the performance in the others. Thus, we do not use class
weights in this work.

As the VFG-2706 dataset covers expanded data from NCBI
based on sequence similarity, it will contain highly similar sequences
within some VF classes, which may lead to an overestimated view of
the prediction performance. To address this issue, we examine the
correlation between the sequence identity and the F1-score across all
the classes. Our results show that there is a low linear Pearson cor-
relation (p=0.2280) between the Fl-score of VFNet and the se-
quence identity in VFG-2706 (see Supplementary Fig. S10). In other
words, the superior performance of VFNet is not related to the po-
tential sequence identity/homology issue, i.e. VFNet obtains similar-
ly good/bad performance on classes of either high or low sequence
similarities. In addition, we further apply VFNet and four tradition-
al classifiers to the divergent dataset VFG-2706-1066, which has
excluded highly homologous sequences by CD-HIT. The results of
VFG-2706-1066, as shown in Supplementary Table S7, present the
same performance trend as that in the VFG-2706 dataset
(Supplementary Table SS5), which confirms that the VFNet model is
consistently the best classifier. Note that as expected, the removal of

highly homologous sequences leads to some loss in the performance
accuracy for all classifiers, but it is very impressive that the perform-
ance of VENet and VFNet-H has significantly smaller drops than
the competing methods, e.g. 4-6% drop in VFNet/VFNet-H versus
10-14% in RF when comparing the performance on the VFG-2706
and VFG-2706-1066 datasets. This demonstrates that VFNet learn
well generalized representations of different VF classes rather than
simply memorizing the training data.

3.4 Experiments on genome-independent data

VF samples expanded from the same data source may lead to some
levels of sample dependency in our data, which can violate the i.i.d.
(independent and identically distributed) assumption (Cover and
Thomas, 2006) commonly made by machine learning-based predic-
tion, rendering our cross-validation less effective. To address this
potential issue, we train and test the models on genome-independent
data. Particularly, the VF classes in our data are originally created
based on bacterial genera, with a number of genomes within each
VF class. To create more reliable datasets, instead of randomly split-
ting the data within each VF class, we use the genome source infor-
mation of each sequence to divide the VFG-2706 dataset into
genome-independent training and testing datasets. This guarantees
that the sequence samples from each genome appear in either train-
ing or testing data; the training and test datasets contain no overlap-
ping genomes. Since there are two classes in VFG-2706 that have
only one genome sequences, we exclude them to obtain a dataset
called VFG-2706-i.i.d., covering 2704 classes and 155 368 sequen-
ces. We take all sequences from ~20% of genomes (at least one)
within each class of VFG-2706-i.i.d. as the independent test dataset.
The remaining sequences from the other genomes are used to per-
form 5-fold cross-validation. After the cross-validation, all models
are also evaluated on independent testing dataset. As shown in
Supplementary Table S8, VENet-H (DPC) achieves the best test ac-
curacy, precision and Fl-score, while VFNet-H (ALL) achieves the
best recall performance at the 5-fold cross-validation stage.
Similarly, on the independent testing dataset, VFNet-H (DPC) out-
performs other methods with the best Fl-score of 0.9788 and
VFNet-H (ALL) achieves the best recall of 0.9765. It is worth noting
that the results in Supplementary Table S8 are generally consistent
with those based on the random sampling scheme in Supplementary
Table S5. This implies that our primary sampling scheme does not
clearly overestimate the generalization ability of these classification
methods and is applicable to follow-up analysis.

3.5 Classification of uncommon VFs

Traditional classifiers rely on predefined features that are extracted
from training datasets, so it is difficult to transfer the predefined fea-
tures through the classification models. To examine whether VFNet
and VENet-H can transfer the feature representations learned from
relevant abundant datasets to uncommon VFs (i.e. the VF classes
with no more than 10 labeled samples), we apply a popular deep TL
method to the nonredundant dataset VFG-740 and the divergent
dataset VFG-564, respectively.

For VFG-740, we first pretrain VFNet and VFNet-H using its
correlated large-scale dataset VFG-2706, and then initialize the
weight parameters of VENet and VFNet-H on VFG-740 using the
corresponding pretrained models, and finally fine-turn the models
using the VFG-740 dataset. This process transfers the knowledge of
VFNet/VFNet-H learned from VFG-2706 to the classification on
VFG-740. Four aforementioned traditional baseline methods are
applied for comparison. As shown in Supplementary Table S9, by
pretraining on the VFG-2706 dataset, both VFNet (TL) and VFNet-
H (TL) significantly outperform the models without TL, whereas
VENet-H (TL) and SVM combining with ALL predefined features
achieve the best accuracy and Fl-score performance. However, a
Pearson correlation coefficient analysis indicates a linear correlation
of p=0.5286 between the mean macro Fl-score of VENet and the
sequence identity of each class in VFG-740 (Supplementary Fig.
$11), implying that, to some extent, the performance of all methods
on the VFG-740 dataset might have been overestimated due to the
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Table 2. Performance (means * SDs) of VFNet, VFNet (TL), VFNet-H, VFNet-H (TL) and four traditional classifiers on VFG-2706, VFG-2706-
1066 and VFG-564

Dataset Feature Method Train Test Precision Recall F1-score
accuracy accuracy (macro) (macro) (macro)
(micro)

VFG-2706  Raw data  VFNet 0.9915 (£0.0016)  0.9663 (£0.0011)  0.9693 (=0.0018)  0.9551 (+=0.0019)  0.9577 (£0.0018)
AAC RF 1.0000 (£0.0000)  0.9631 (£0.0008) 0.9772 (+=0.0007) 0.9477 (£0.0014) 0.9584 (+0.0012)
VENet-H 0.9849 (£0.0009) 0.9661 (£0.0021) 0.9683 (£0.0019) 0.9553 (+0.0027) 0.9574 (£0.0025)
DPC RF 1.0000 (£0.0000) 0.9767 (=0.0036) 0.9896 (+=0.0003) 0.9645 (£0.0006) 0.9743 (=0.0005)
VENet-H 0.9984 (+=0.0003) 0.9831 (+0.0004) 0.9868 (=0.0012) 0.9783 (+=0.0129) 0.9803 (+0.0015)
CTD RF 1.0000 (£0.0000) 0.9630 (=0.0010) 0.9755 (+=0.0008) 0.9479 (£0.0012) 0.9581 (*£0.0011)
VFNet-H 0.9887 (+=0.0057)  0.9684 (£0.0081) 0.9704 (=0.0089) 0.9582 (+0.0103) 0.9602 (£0.0104)
PseAAC1 RF 1.0000 (£0.0000)  0.9640 (=0.0011)  0.9793 (=0.0010)  0.9490 (£0.0018)  0.9604 (=0.0013)
VENet-H 0.9861 (+=0.0031) 0.9664 (£0.0023) 0.9690 (=0.0033) 0.9559 (+0.0039) 0.9587 (£0.0039)
PseAAC2 RF 1.0000 (£0.0000)  0.9706 (=0.0005)  0.9841 (+=0.0003) 0.9565 (£0.0013) 0.9671 (=0.0009)
VFNet-H 0.9891 (+0.0023)  0.9685 (=0.0010)  0.9713 (£0.0013)  0.9594 (£0.0016) 0.9614 (£0.0016)
ALL RF 1.0000 (£0.0000) 0.9758 (=0.0014) 0.9853 (+=0.0016) 0.9649 (£0.0018) 0.9718 (=0.0021)
VENet-H 0.9976 (=0.0002) 0.9826 (£0.0006) 0.9857 (=0.0005) 0.9782 (+=0.0010) 0.9798 (£0.0007)
VFG-2706- Raw data  VFNet 0.9961 (£0.0011)  0.9244 (£0.0024) 0.9354 (£0.0036) 0.9153 (+=0.0028) 0.9164 (£0.0032)
1066 AAC RF 1.0000 (£0.0000)  0.8447 (=0.0064) 0.8660 (+=0.0033) 0.8073 (£0.0035) 0.8155 (%=0.0025)
VFNet-H 0.9873 (£0.0013) 0.9161 (*£0.0024) 0.9242 (£0.0039)  0.9040 (+=0.0025) 0.9039 (+£0.0032)
DPC SVM 0.9873 (£0.0008)  0.9275 (*£0.0042) 0.9432 (£0.0030) 0.9380 (+0.0025) 0.9334 (£0.0028)
VFNet-H 0.9983 (+0.0043) 0.9414 (£0.0032) 0.9599 (=0.0019) 0.9439 (+=0.0018) 0.9458 (£0.0019)
CTD RF 1.0000 (£0.0000)  0.8838 (=0.0021)  0.8930 (+0.0053) 0.8549 (£0.0042) 0.8585 (=0.0038)
VENet-H 0.9886 (+=0.0028) 0.9132 (*£0.0035) 0.9203 (£0.0043) 0.9031 (+=0.0037) 0.9017 (£0.0040)
PseAAC1 RF 1.0000 (£0.0000)  0.8565 (+0.0039) 0.8841 (+0.0061) 0.8216 (+0.0053)  0.8320 (*=0.0038)
VFNet-H 0.9885 (+£0.0019)  0.9155 (*£0.0027)  0.9240 (£0.0049) 0.9057 (=0.0039)  0.9051 (*£0.0046)
PseAAC2 RF 1.0000 (£0.0000) 0.8672 (*£0.0059) 0.8954 (+=0.0075) 0.8334 (£0.0073) 0.8448 (=0.0072)
VFNet-H 0.9896 (+=0.0018) 0.9171 (*£0.0025) 0.9266 (=0.0050) 0.9074 (+=0.0038)  0.9070 (*£0.0043)
ALL SVM 0.9939 (+£0.0007)  0.9387 (£0.0039) 0.9510 (*£0.0048) 0.9477 (=0.0026) 0.9434 (+0.0039)
VENet-H 0.9959 (£0.0021)  0.9376 (£0.0020) 0.9541 (£0.0026) 0.9397 (+=0.0038) 0.9401 (*£0.0027)
VFG-564 Raw data  VFNet 0.9969 (+£0.0005) 0.8516 (*+0.0046) 0.8440 (*=0.0116) 0.8427 (+=0.0063) 0.8236 (*+0.0087)
VFNet (TL) 0.9911 (+£0.0007)  0.9262 (*£0.0058) 0.9268 (=0.0088) 0.9235 (+0.0063) 0.9146 (£0.0078)
AAC RF 1.0000 (£0.0000) 0.8287(*=0.0113) 0.8153 (+0.0137) 0.8185 (*£0.0098) 0.7971 (=0.0113)
VFNet-H 0.9944 (+£0.0021) 0.8565 (+0.0040) 0.8530 (*=0.0081) 0.8481 (+0.0036) 0.8313 (*£0.0054)
VENet-H (TL)  0.9939 (£0.0014) 0.9327 (=0.0084) 0.9363 (+=0.0058) 0.9315 (£0.0070)  0.9245 (£0.0075
DPC SVM 0.9997 (£0.0004)  0.9307 (=0.0066)  0.9288 (=0.0075) 0.9267 (£0.0079) 0.9174 (£0.0077)
VFNet-H 0.9999 (£0.0002)  0.8940 (+0.0079) 0.8901 (£0.0093) 0.8871 (+=0.0079) 0.8739 (+0.0093)
VFNet-H (TL)  1.0000 (=0.0000)  0.9503 (+0.0058) 0.9520 (*£0.0048) 0.9478 (=0.0050) 0.9427 (=0.0052)
CTD SVM 0.9924 (+£0.0009)  0.8902 (=0.0051) 0.8771 (%£0.0091) 0.8808 (£0.0072) 0.8648 (£0.0087)
VFNet-H 0.9929 (+0.0010)  0.8619 (£0.0086)  0.8552 (*=0.0131) 0.8512 (+0.0093) 0.8349 (£0.0120)
VENet-H (TL)  0.9950 (£0.0023) 0.9277 (+0.0067) 0.9287 (+=0.0079)  0.9242 (£0.0068) 0.9168 (*=0.0078)
PseAAC1 RF 1.0000 (£0.0000)  0.8359 (=0.0088) 0.8246 (+=0.0142) 0.8268 (£0.0101) 0.8063 (=0.0126)
VFNet-H 0.9947 (£0.0013)  0.8575 (=0.0075) 0.8531 (*=0.0108) 0.8489 (*+0.0074) 0.8323 (*£0.0090)
VENet-H (TL)  0.9933 (£0.0009) 0.9302 (=0.0054) 0.9304 (=0.0048) 0.9274 (£0.0045) 0.9191 (£0.0047)
PseAAC2 SVM 0.9770 (=0.0025) 0.8808 (x0.0041) 0.8611 (*=0.0077) 0.8704 (+=0.0055) 0.8509 (*£0.0068)
VFNet-H 0.9938 (+0.0012)  0.8597 (+0.0085) 0.8581 (*=0.0094) 0.8529 (+=0.0073) 0.8378 (+0.0087)
VENet-H (TL)  0.9945 (£0.0089) 0.9336 (=0.0071)  0.9323 (=0.0071)  0.9301 (£0.0062)  0.9215 (*£0.0069)
ALL SVM 0.9994 (=0.0007)  0.9434 (£0.0060) 0.9441 (=0.0067) 0.9418 (=0.0067)  0.9343 (£0.0068)
VFNet-H 0.9994 (+£0.0005) 0.8952 (+0.0078) 0.8929 (+0.0064) 0.8897 (+=0.0063) 0.8771 (*£0.0067)
VFNet-H (TL)  1.0000 (=0.0000)  0.9512 (+0.0053) 0.9542 (£0.0069) 0.9499 (=0.0045) 0.9446 (+=0.0058)

Note: The best performance of each dataset on a metric is highlighted in bold.

relatively high sequence homology. Unfortunately, VFG-740 is not
suitable to further exclude highly homologous sequences since it

contains no more than 10 sequences in each class.

Then, we employ the same TL method on VFG-564, which is the
uncommon VFs in divergent datasets. There is a considerable over-
lap between VFG-564 and VFG-2706 since both of which are
derived from the original dataset. Thus, we pretrain VFNet and
VFNet-H on the dataset of COG-755 rather than VFG-2706 and
then fine-tune the models using VFG-564. Given the limited overall
sample size of VFG-564, we divide the dataset into training and test-
ing subsets using the ratio of 6:4 to trade-off the samples for testing

and training. For brevity, Table 2 shows the best-competing trad-
itional machine learning method per predefined feature, with the

full performance results given in Supplementary Table S10.

Impressively, by pretraining on the large COG-755 dataset,
VENet (TL) significantly outperforms the counterpart without pre-
training, VFNet, by 9%, 10%, 10% and 11% improvement in test
accuracy, precision, recall and Fl-score, respectively. This is very
encouraging in the sense that the features transferred from the
COG-755 dataset significantly boost the performance of our deep
model on VFG-564. VENet-H consistently outperforms VFNet on
raw data in F1-score. This indicates that the predefined features can

2202 UoIBIN 2Z uo 1s8nb Aq Z6G918S/E69€/Z L/9E/OI0NIE/SOIBULIOJUIOIG/WOY"dNODIWSPED.//:SA]Y WOl PAPEOJUMOC


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa230#supplementary-data

3700

D.Zheng et al.

also provide complementary information to the automatically learn-
ed features. It is remarkable that VENet-H (TL) combined with dif-
ferent types of predefined features performs rather stably, achieving
the test accuracy ranging from 0.9277 to 0.9512 and the Fl-score
ranging from 0.9168 to 0.9446. In contrast, the best traditional clas-
sifier varies for different predefined features and the best perform-
ance they achieve fluctuates largely when using different predefined
features. For example, the best traditional classifier is RF with an ac-
curacy of 0.8287 and an F1-score of 0.7971 only when the AAC fea-
tures are used, while the best-competing classifier changes to SVM
with an accuracy of 0.9307 and an Fl-score of 0.9174 when the
DPC features are employed. Overall, VFNet-H (TL) consistently
outperforms the best-competing classifier in using all types of prede-
fined features, achieving 1-13% improvement in accuracy and 1-
16% in F1-score. VFNet and VFNet-H without using the transferred
features as well as some traditional classifiers (e.g. DT and RF) can
obtain nearly perfect training accuracy, but perform poorly on the
test data. This is because these classifiers lack sufficient samples to
train and generalize their classification models, even though these
models (especially RF) indeed have the capability to perform excel-
lent classification on the VF dataset of VFG-2706, as evidenced in
Table 2. These results demonstrate the importance of our deep
learning model’s capability in leveraging auxiliary large datasets to
learn transferable features for classifying uncommon VFs.

3.6 Interpretation of the VFNet model with known

domains
To gain a biological explanation of why VFNet performs well in
classifying VF datasets, following a previous strategy (Wang and
Wang, 2019), we use the 128 filters in the first convolutional layer
of VFNet to detect potential motifs and compare them to known
protein domains. However, it is infeasible to perform this compari-
son for all VF classes in this study since our datasets cover thousands
of VF classes. Instead, we focus on two well-studied pan-genera
classes, T3SS-C0S5 and T3SS-C11 of VFG-2706. T3SS-COS is the
major needle complex component of T3SS, which is arranged in a
helical fashion to offer an extended cylindrical structure with a cen-
tral channel for the translocation of effectors into host cell (Cordes
et al., 2003). T3SS-C11 is one of the inner membrane components
of the export apparatus of T3SS, which form a unique assembly on
the periplasmic side of the inner membrane (Filloux and Whitfield,
2016). These two VF classes are selected because both of them have
conserved protein domains that have already been established in the
Pfam database of protein families (El-Gebali er al., 2019).
Specifically, we first train VFNet on the training dataset of VFG-
2706, and then feed all sequences of each class to the trained model
to collect the amino acid subsequences that successfully activate
each filter of the model with the largest positive activation value.
The length of the subsequence is seven as it is determined by the ker-
nel size of the VFNet filters. Finally, all subsequences reported by
each filter are used to generate sequence logos using the WebLogo
software (Crooks, 2004). The comparison baseline is the WebLogo
visualization of the known protein domains of the two classes based
on multiple alignments of the seed sequences available from the
Pfam database (accessions PF09392 and PF01313 for T3SS-C0S5 and
T3SS-C11, respectively). Among the alignments, the sites with the
gaps presented in the majority of seed sequences are manually
excluded since the VFNet filters produce ungapped motifs only. The
results are illustrated in Supplementary Figure S12, in which for
each Pfam domain we present a set of nonoverlapped motifs that are
generated by the VFNet filters and matched the baseline motifs.
Given the fact that the Pfam domains consist of sequences from vari-
ous bacteria whereas our VF datasets are only composed by 32 gen-
era of important human pathogens, it is impressive that the
discovered amino acid motifs revealed by VENet exhibit high simi-
larity to the known patterns of protein domains. This result indi-
cates that our VFNet model has very good capability to capture
conserved regions or motifs related to protein families, explaining
its accurate classification of sequences from hundreds/thousands of
VF classes.

4 Discussion

In this study, we first construct a comprehensive bacterial VF dataset
containing 3446 VF classes with 160 495 sequences from 32 genera
of medically significant pathogens. To the best of our knowledge,
this is the largest bacterial VF dataset used for machine learning
studies reported in the literature so far. Previous studies use only
selected representative samples available from public resources such
as the VFDB database, whereas we further expand the original
VFDB dataset to include more additional homologous VFs available
from NCBL. Our results highlight the importance of the large dataset
for enhancing the performance of machine learning models.
Therefore, the VF dataset produced in this work provides a valuable
benchmark for future development and evaluation of novel methods
for the classification of bacterial VFs. Furthermore, our dataset is
well categorized into thousands of bacterial VF functional classes,
which are informative for further biological studies for real-world
application of bacterial VF prediction.

Second, we propose an end-to-end VENet model to automatical-
ly learn expressive feature representations for the classification of
bacterial VFs. Compared with the other two deep learning methods,
VENet is substantially more efficient and accurate for VF data classi-
fication. We therefore recommend that CNNs with one-hot encod-
ing should be considered first rather than bidirectional GRU or
‘CNN + LSTM’ models to classify bacterial VF data. In addition,
we employ four popular traditional machine learning methods as
baseline methods and show that they can also classify VF data suc-
cessfully. The feature DPC outperforms the other predefined fea-
tures for all methods, even enabling equivalent performance to the
use of all predefined features (ALL), which implies that the amino
acid pair frequency of each sequence makes the main contribution
to VF classification. It is worth noting that traditional classifiers
heavily rely on predefined features. For instance, from the results of
the four baseline methods on the VFG-564, the SVM model with
ALL achieves the best performance, while the SVM model with the
other features (i.e. AAC, CTD, PseAAC1 and PseAAC2) performs
poorly (see Supplementary Table S10). Although evolutionary
information-based features such as PSSMs have been used to im-
prove the accuracy of secreted effector prediction (Wang et al.,
2018), we do not include these features in this study, as extracting
such features from our dataset with more than 160 000 samples is
extremely time-consuming. Besides, we employ a popular balanced
class weighting method to improve the performance on minority
classes, but it does not consistently improve the performance of
VFNet on the VFG-2706 dataset. We believe that having an appro-
priate class weight per class is an important way to further improve
the model’s performance, but more advanced methods are required
to automatically learn adaptive class weights for different classes in
our dataset that contains thousands of classes. In this work, we
focus on the design of effective deep learning models to work at
scale in classifying common/uncommon VF classes. We plan to ex-
plore this adaptive class weighting idea in future.

Third, we empirically justify three critical characteristics of our
VFNet model. We demonstrate that VENet has the capability of har-
nessing expanded data from easily accessible databases. With the
expanded data, the generalization ability of our VFNet has been
greatly improved, which provides important insight that public
databases (e.g. VFDB and NCBI) should be well leveraged to im-
prove prediction on sequences when using deep learning models.
Then, we show that we can combine our automatically learned fea-
tures with predefined features by a variant of VFNet, VFNet-H, to
perform more effective classification of the bacterial VF dataset. The
generalization ability of VFNet-H improves on nearly all features,
especially DPC, with which VENet-H obtains the best performance.
This shows that our VFNet is very flexible and can learn expressive
features from raw data to perform the desired classification and
combine the automatically learned and predefined features to fur-
ther enhance its performance. Finally, we verify that VFNet and its
variant VENet-H can transfer the feature representations learned
from an auxiliary large dataset, COG-753, to empower the classifi-
cation of uncommon VF classes (e.g. VFG-564). The resulting mod-
els significantly improve the classification performance of VFNet on
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uncommon VFs and substantially outperform the best traditional
classifier. This suggests that the TL approach is helpful and effective
in improving the classification accuracy of CNN models on VF
classes with limited samples. In addition, our empirical results also
show that our model can well capture conserved motifs that exhibit
high similarity to a set of known patterns of protein domains, ena-
bling us to explain the effectiveness of our model from a biological
perspective.

5 Conclusion

In this study, we first construct a large bacterial VF dataset of 32
genera of human pathogens from the public domain. We believe
that these well-organized VF data are important for further identifi-
cation and prediction of bacterial VFs, providing an important
benchmark for future development and testing of novel methods for
computational prediction of VFs. We further introduce the end-to-
end CNN-based classification model VFNet and its variant VFNet-
H to effectively and efficiently classify the bacterial VFs. To the best
of our knowledge, this is the first successful application of deep
learning algorithms on the classification of bacterial VF data with
thousands of categories. Our results emphasize the power of deep
learning models to automatically combine learning features and
traditional predefined features to achieve striking performance. The
predefined features (e.g. DPC and PSSMs) are good representatives
of the current knowledge in the biological sciences. However, we
are far from a full understanding of the law of life. The capability of
hybrid automatically learned and predefined features highlighted in
this study is particularly valuable to future applications of deep
learning models on biological data. Moreover, we reveal that our
deep learning models can leverage large auxiliary data to learn
transferable features to enhance the classification of uncommon
VFs. The specific characteristics of deep learning models on TL illus-
trated here provide new avenues for computational studies on bio-
logical issues without sufficient and readily accessible samples.
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