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Constrained Contrastive Distribution
Learning for Unsupervised Anomaly
Detection and Localisation in Medical

Images

Yu Tian1,3(B), Guansong Pang1, Fengbei Liu1, Yuanhong Chen1,
Seon Ho Shin2, Johan W. Verjans1,2,3, Rajvinder Singh2,

and Gustavo Carneiro1

1 Australian Institute for Machine Learning, University of Adelaide, Adelaide,
Australia

yu.tian01@adelaide.edu.au
2 Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia

3 South Australian Health and Medical Research Institute, Adelaide, Australia

Abstract. Unsupervised anomaly detection (UAD) learns one-class
classifiers exclusively with normal (i.e., healthy) images to detect any
abnormal (i.e., unhealthy) samples that do not conform to the expected
normal patterns. UAD has two main advantages over its fully super-
vised counterpart. Firstly, it is able to directly leverage large datasets
available from health screening programs that contain mostly normal
image samples, avoiding the costly manual labelling of abnormal sam-
ples and the subsequent issues involved in training with extremely class-
imbalanced data. Further, UAD approaches can potentially detect and
localise any type of lesions that deviate from the normal patterns. One
significant challenge faced by UAD methods is how to learn effective low-
dimensional image representations to detect and localise subtle abnor-
malities, generally consisting of small lesions. To address this challenge,
we propose a novel self-supervised representation learning method, called
Constrained Contrastive Distribution learning for anomaly detection
(CCD), which learns fine-grained feature representations by simultane-
ously predicting the distribution of augmented data and image contexts
using contrastive learning with pretext constraints. The learned repre-
sentations can be leveraged to train more anomaly-sensitive detection
models. Extensive experiment results show that our method outperforms
current state-of-the-art UAD approaches on three different colonoscopy
and fundus screening datasets. Our code is available at https://github.
com/tianyu0207/CCD.

Keywords: Anomaly detection · Unsupervised learning · Lesion
detection and segmentation · Self-supervised pre-training · Colonoscopy
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1 Introduction

Classifying and localising malignant tissues have been vastly investigated in
medical imaging [1,11,22–24,26,29,42,43]. Such systems are useful in health
screening programs that require radiologists to analyse large quantities of
images [35,41], where the majority contain normal (or healthy) cases, and a
small minority have abnormal (or unhealthy) cases that can be regarded as
anomalies. Hence, to avoid the difficulty of learning from such class-imbalanced
training sets and the prohibitive cost of collecting large sets of manually labelled
abnormal cases, several papers investigate anomaly detection (AD) with a few
or no labels as an alternative to traditional fully supervised imbalanced learn-
ing [1,26,28,32,33,37,38,43–45]. UAD methods typically train a one-class clas-
sifier using data from the normal class only, and anomalies (or abnormal cases)
are detected based on the extent the images deviate from the normal class.

Current anomaly detection approaches [7,8,14,27,37,43,46] train deep gen-
erative models (e.g., auto-encoder [19], GAN [15]) to reconstruct normal
images, and anomalies are detected from the reconstruction error [33]. These
approaches rely on a low-dimensional image representation that must be effec-
tive at reconstructing normal images, where the main challenge is to detect
anomalies that show subtle deviations from normal images, such as with small
lesions [43]. Recently, self-supervised methods that learn auxiliary pretext
tasks [2,6,13,17,18,25] have been shown to learn effective representations for
UAD in general computer vision tasks [2,13,18], so it is important to investigate
if self-supervision can also improve UAD for medical images.

The main challenge for the design of UAD methods for medical imaging
resides in how to devise effective pretext tasks. Self-supervised pretext tasks
consist of predicting geometric or brightness transformations [2,13,18], or con-
trastive learning [6,17]. These pretext tasks have been designed to work for
downstream classification problems that are not related to anomaly detection,
so they may degrade the detection performance of UAD methods [47]. Sohn
et al. [40] tackle this issue by using smaller batch sizes than in [6,17] and a
new data augmentation method. However, the use of self-supervised learning in
UAD for medical images has not been investigated, to the best of our knowl-
edge. Further, although transformation prediction and contrastive learning show
great success in self-supervised feature learning, there are no studies on how to
properly combine these two approaches to learn more effective features for UAD.

In this paper, we propose Constrained Contrastive Distribution learning
(CCD), a new self-supervised representation learning designed specifically to
learn normality information from exclusively normal training images. The con-
tributions of CCD are: a) contrastive distribution learning, and b)two pretext
learning constraints, both of which are customised for anomaly detection (AD).
Unlike modern self-supervised learning (SSL) [6,17] that focuses on learning
generic semantic representations for enabling diverse downstream tasks, CCD
instead contrasts the distributions of strongly augmented images (e.g., random
permutations). The strongly augmented images resemble some types of abnor-
mal images, so CCD is enforced to learn discriminative normality representations
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Fig. 1. Our proposed CCD framework. Left shows the proposed pre-training method
that unifies a contrastive distribution learning and pretext learning on both global and
local perspectives (Sect. 2.1), Right shows the inference for detection and localisation
(Sect. 2.2).

by its contrastive distribution learning. The two pretext learning constraints on
augmentation and location prediction are added to learn fine-grained normal-
ity representations for the detection of subtle abnormalities. These two unique
components result in significantly improved self-supervised AD-oriented repre-
sentation learning, substantially outperforming previous general-purpose SOTA
SSL approaches [2,6,13,18]. Another important contribution of CCD is that it is
agnostic to downstream anomaly classifiers. We empirically show that our CCD
improves the performance of three diverse anomaly detectors (f-anogan [37],
IGD [8], MS-SSIM) [48]). Inspired by IGD [8], we adapt our proposed CCD pre-
training on global images and local patches, respectively. Extensive experimental
results on three different health screening medical imaging benchmarks, namely,
colonoscopy images from two datasets [4,27], and fundus images for glaucoma
detection [21], show that our proposed self-supervised approach enables the pro-
duction of SOTA anomaly detection and localisation in medical images.

2 Method

In this section, we introduce the proposed approach, depicted in the diagram of
Fig. 1. Specifically, given a training medical image dataset D = {xi}|D|

i=1, with all
images assumed to be from the normal class and x ∈ X ⊂ R

H×W×C , our app-
roach aims to learn anomaly detection and localisation using three modules: 1) a
self-supervised constrained contrastive feature learner that pre-trains an encod-
ing network fθ : X → Z (with Z ⊂ R

dz ) tailored for anomaly detection, 2) an
anomaly classification model hψ : Z → [0, 1] that is built upon the pre-trained
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network, and 3) an anomaly localiser that leverages the classifier hψ(fθ(xω)) to
localise an abnormal image region xω ∈ R

Ĥ×Ŵ×C , centred at ω ∈ Ω (Ω is the
image lattice) with height Ĥ << H and width Ŵ << W . The approach is eval-
uated on a testing set T = {(x, y,m)i}|T |

i=1, where y ∈ Y = {normal, abnormal},
and m ∈ M ⊂ {0, 1}H×W×C denotes the segmentation mask of the lesion in the
image x. For adapting our CCD pretraining on patch representations, we simply
crop the training images into patches before applying our method.

2.1 Constrained Contrastive Distribution Learning

Contrastive learning has been used by self-supervised learning methods to
pre-train encoders with data augmentation [6,17,47] and contrastive learning
loss [39]. The idea is to sample functions from a data augmentation distri-
bution (e.g., geometric and brightness transformations), and assume that the
same image, under separate augmentations, form one class to be distinguished
against all other images in the batch [2,13]. Another form of pre-training is
based on a pretext task, such as solving jigsaw puzzle and predicting geometric
and brightness transformations [6,17]. These self-supervised learning approaches
are useful to pre-train classification [6,17] and segmentation models [31,49].
Only recently, self-supervised learning using contrastive learning [40] and pretext
learning [2,13] have been shown to be effective in anomaly detection. However,
these two approaches are explored separately. In this paper, we aim at harness-
ing the power of both approaches to learn more expressive pre-trained features
specifically for UAD. To this end, we propose the novel Constrained Contrastive
Distribution learning method (CCD).

Contrastive distribution learning is designed to enforce a non-uniform dis-
tribution of the representations in the space Z, which has been associated with
more effective anomaly detection performance [40]. Our CCD method constrains
the constrastive distribution learning with two pretext learning tasks, with the
goal of enforcing further the non-uniform distribution of the representations.
The CCD loss is defined as

�CCD(D; θ, β, γ) = �con(D; θ) + �cla(D;β) + �pos(D; γ), (1)

where �con(·) is the contrastive distribution loss, �cla and �pos are two pretext
learning tasks added to constrain the optimisation; and θ, β and γ are trainable
parameters. The contrastive distribution learning uses a dataset of weak data
augmentations Ap = {al : X → X}|Ap|

l=1 and strong data augmentations
An = {al : X → X}|An|

l=1 , where al(x) denotes a particular data augmentation
applied to x, and the loss is defined as

�con(D; θ) =

− E

⎡
⎣log

exp
[
1
τ fθ(a(x̃j))�fθ(a′(x̃j))

]

exp
[
1
τ fθ(a(x̃j))�fθ(a′(x̃j))

]
+

∑M
i=1 exp

[
1
τ fθ(a(x̃j))�fθ(a′(x̃j

i ))
]
⎤
⎦ ,

(2)
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where the expectation is over x ∈ D, {xi}M
i=1 ⊂ D \ {x}, a(.), a′(.) ∈ Ap, x̃j =

aj(x), x̃j
i = aj(xi), and aj(.) ∈ An. The images augmented with the functions

from the strong set An carry some ‘abnormality’ compared to the original images,
which is helpful to learn a non-uniform distribution in the representation space
Z.

We can then constrain further the training to learn more non-uniform rep-
resentations with a self-supervised classification constraint �cla(·) that enforces
the model to achieve accurate classification of the strong augmentation function:

�cla(D;β) = −Ex∈D,a(.)∈An

[
log a�fβ(fθ(a(x)))

]
, (3)

where fβ : Z → [0, 1]|An| is a fully-connected (FC) layer, and a ∈ {0, 1}|An| is a
one-hot vector representing the strong augmentation a(.) ∈ An.

The second constraint is based on the relative patch location from the centre
of the training image – this positional information is important for segmentation
tasks [20,31]. This constraint is added to learn fine-grained features and achieve
more accurate anomaly localisation. Inspired by [10], the positional constraint
predicts the relative position of the paired image patches, with its loss defined
as

�pos(D; γ) = −E{xω1 ,xω2}∼x∈D
[
logp�fγ(fθ(xω1), fθ(xω2))

]
, (4)

where xω1 is a randomly selected fixed-size image patch from x, xω2 is another
image patch from one of its eight neighbouring patches (as shown in ‘patch
location prediction’ in Fig. 1), fγ : Z × Z → [0, 1]8, and p = {0, 1}8 is a one-hot
encoding of the synthetic class label.

Overall, the constraints in (3) and (4) to the contrastive distribution loss
in (2) are designed to increase the non-uniform representation distribution and
to improve the representation discriminability between normal and abnormal
samples, compared with [40].

2.2 Anomaly Detection and Localisation

Building upon the pre-trained encoder fθ(·) using the loss in (1), we fine-tune
two state-of-the-art UAD methods, IGD [8] and F-anoGAN [37], and a baseline
method, multi-scale structural similarity index measure (MS-SSIM)-based auto-
encoder [48]. All UAD methods use the same training set D that contains only
normal image samples.

IGD [8] combines three loss functions: 1) two reconstruction losses based on
local and global multi-scale structural similarity index measure (MS-SSIM) [48]
and mean absolute error (MAE) to train the encoder fθ(·) and decoder gφ(·), 2)
a regularisation loss to train adversarial interpolations from the encoder [3], and
3) an anomaly classification loss to train hψ(·). The anomaly detection score of
image x is

sIGD(x) = ξ�rec(x, x̃) + (1 − ξ)(1 − hψ(fθ(x))), (5)

where x̃ = gφ(fθ(x)), hψ(fθ(x)) ∈ [0, 1] returns the likelihood that x belongs to
the normal class, ξ ∈ [0, 1] is a hyper-parameter, and

�rec(x, x̃) = ρ‖x − x̃‖1 + (1 − ρ) (1 − (νmG(x, x̃) + (1 − ν)mL(x, x̃))) , (6)
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with ρ, ν ∈ [0, 1], mG(·) and mL(·) denoting the global and local MS-SSIM
scores [8]. Anomaly localisation uses (5) to compute sIGD(xω), ∀ω ∈ Ω, where
xω ∈ R

Ĥ×Ŵ×C is an image region–this forms a heatmap, where large values
denote anomalous regions.

F-anoGAN [37] combines generative adversarial networks (GAN) and auto-
encoder models to detect anomalies. Training involves the minimisation of recon-
struction losses in both the original image and representation spaces to model
fθ(·) and gφ(·). It also uses a GAN loss [15] to model gφ(·) and hψ(·). Anomaly
detection for image x is

sFAN (x) = ‖x − gφ(fθ(x))‖ + κ‖fθ(x) − fθ(gφ(fθ(x)))‖. (7)

Anomaly localisation at xω ∈ R
Ĥ×Ŵ×C is achieved by ‖xω − gφ(fθ(xω))‖, ∀ω ∈

Ω.
For the MS-SSIM auto-encoder [48], we train it with the MS-SSIM loss

for reconstructing the training images. Anomaly detection for x is based on
sMSI(x) = 1−(νmG(x, x̃) + (1 − ν)mL(x, x̃)), with x̃ as defined in (5). Anomaly
localisation is performed with sMSI(xω) at image regions xω ∈ R

Ĥ×Ŵ×C ,
∀ω ∈ Ω. Inspired by IGD [8], we also pretrain a local model using our CCD
pretraining approach based on the local patches for F-anogan [37] and MS-SSIM
autoencoder [48], respectively.

3 Experiments

3.1 Dataset

We test our framework on three health screening datasets. We test both anomaly
detection and localisation on the colonoscopy images of Hyper-Kvasir dataset [4].
On the glaucoma datasets using fundus images [21] and colonoscopy dataset [27]
that do not have lesion masks, we test anomaly detection only. Detection is
assessed with area under the ROC curve (AUC). Localisation is measured with
intersection over union (ioU).

Hyper-Kvasir is a large multi-class public gastrointestinal dataset. The
data was collected from the gastroscopy and colonoscopy procedures from
Baerum Hospital in Norway. All labels were produced by experienced radiol-
ogists. The dataset contains 110,079 images from abnormal (i.e., unhealthy) and
normal (i.e., healthy) patients, with 10,662 labelled. We use part of the clean
images from the dataset to train our UAD methods. Specifically, 2,100 images
from ‘cecum’, ‘ileum’ and ‘bbps-2–3’ are selected as normal, from which we use
1,600 for training and 500 for testing. We also take 1,000 abnormal images and
their segmentation masks and stored them in the testing set.

LAG is a large scale fundus image dataset for glaucoma detection [21], con-
taining 4,854 fundus images with 1,711 positive glaucoma scans and 3,143 neg-
ative glaucoma scans. We reorganised this dataset for training the UAD meth-
ods, with 2,343 normal (negative glaucoma) images for training, and 800 normal
images and 1,711 abnormal images with positive glaucoma for testing.



134 Y. Tian et al.

Liu et al.’s colonoscopy dataset is a colonoscopy image dataset for UAD
using 18 colonocopy videos from 15 patients [27]. The training set contains
13,250 normal (healthy) images without any polyps, and the testing set contains
967 images, having 290 abnormal images with polyps and 677 normal (healthy)
images without polyps.

3.2 Implementation Details

For pre-training, we use Resnet18 [16] as the backbone architecture for the
encoder fθ(x), and similarly to previous works [6,40], we add an MLP to this
backbone as the projection head for the contrastive learning. All images from the
Hyper-Kvasir [4] and LAG [21] datasets are resized to 256 × 256 pixels. For the
Liu et al.’s colonoscopy dataset, images are resized to 64 × 64 pixels. The batch
size is set to 32 and learning rate to 0.01 for the self-supervised pre-training. We
investigate the impact of different strong augmentations in An such as rotation,
permutation, cutout and Gaussian noise. All weak augmentations in Ap are the
same as SimCLR [6] (i.e., colour jittering, random grey scale, crop, resize, and
Gaussian blur). The model is trained using SGD optimiser with temperature
0.2. The encoder fθ(·) outputs a 128 dimensional feature in Z. All datasets are
pre-trained for 2,000 epochs.

For the training of IGD [8], F-anoGAN [37] and MS-SSIM auto-encoder [8],
we use the hyper-parameters suggested by the respective papers. For localisation,
we compute the heatmap based on the localised anomaly scores from IGD, where
the final map is obtained by summing the global and local maps. In our experi-
ments, the local map is obtained by considering each 32 × 32 image patch as a
instance and apply our proposed self-supervised learning to it. The global map
is computed based on the whole image sized as 256 × 256. For F-anoGAN and
MS-SSIM auto-encoder, we use the same setup as the IGD, where models based
the 256 × 256 whole image and the 32 × 32 patches are trained, respectively.
Code will be made publicly available upon paper acceptance.

3.3 Ablation Study

In Fig. 2 (right), we explore the influence of strong augmentation strategies,
represented by rotation, permutation, cutout and Gaussian noise, on the AUC
results on Hyper-Kvasir dataset, based on our self-supervised pre-training with
IGD as anomaly detector. The experiment indicates that the use of random
permutations as strong augmentations yields the best AUC results. We also
explore the relation between batch size and AUC results in Fig. 2 (left). The
results suggest that small batch size (equal to 16) leads to a relatively low AUC,
which increases for batch size 32, and then decreases for larger batch sizes. Given
these results, we use permutation as the strong augmentation for colonoscopy
images and training batch size is set to 32. For the LAG dataset, we omit the
results, but we use rotation as the strong augmentation because it produced the
largest AUC. We also used batch size of 32 for the LAG dataset.
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Fig. 2. Left: Anomaly detection performance results based on different batch sizes
of self-supervised pre-training. Right: Anomaly detection performance in terms of
different types of strong augmentations. Both results are on Hyper-Kvasir test set
using IGD as anomaly detector.

Table 1. Ablation study of the
loss terms in (1) on Hyper-Kvasir,
using IGD as anomaly detector.
�con[6,17] �con �pre �pat AUC -

Hyper-Kvasir

� 0.913

� 0.937

� � 0.964

� � � 0.972

Table 2. Anomaly localisation: Mean
IoU results on Hyper-Kvasir on 5 different
groups of 100 images with ground truth
masks. * indicates that we pretrained the
geometric transformation-based anomaly
detection [13] using IGD [8] as the UAD
method.
Supervision Methods Localisation

- IoU

Supervised U-Net [36] 0.746

U-Net++ [50] 0.743

ResUNet [9] 0.793

SFA [12] 0.611

Unsupervised RotNet [13]+IGD [8]* 0.276

CAVGA-Ru [46] 0.349

Ours - IGD 0.372

We also present an ablation study that shows the influence of each loss term
in (1) in Table 1, again on Hyper-Kvasir dataset, based on our self-supervised
pre-training with IGD. The vanilla contrastive learning in [6,17] only achieves
91.3% of AUC. After replacing it with our distribution contrastive loss from (2),
the performance increases by 2.4% AUC. Adding distribution classification and
patch position prediction losses boosts the performance by another 2.7% and
0.8% AUC, respectively.

3.4 Comparison to SOTA Models

In Table 3, we show the results of anomaly detection on Hyper-Kvasir, Liu et
al.’s colonoscopy dataset and LAG datasets. The IGD, F-anoGAN and MS-
SSIM methods improve their baselines (without our self-supervision method)
from 3.3% to 5.1% of AUC on Hyper-Kvasir, from −0.3% to 12.2% on Liu et
al.’s dataset, and from 0.9% to 7.8% on LAG. The IGD with our pre-trained
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Table 3. Anomaly detection: AUC results on Hyper-Kvasir, Liu et al.’s colonocopy
and LAG, respectively. * indicates that the model does not use imagenet pre-training.

Methods Hyper - AUC Liu et al. - AUC LAG - AUC

DAE [30] 0.705 0.629 * –

OCGAN [34] 0.813 0.592 * –

F-anoGAN [37] 0.907 0.691 * 0.778

ADGAN [26] 0.913 0.730 * –

CAVGA-Ru [46] 0.928 – –

MS-SSIM [8] 0.917 0.799 0.823

IGD [8] 0.939 0.787 0.796

RotNet [13]+IGD [8] 0.905 – –

Ours - MS-SSIM 0.945 0.796 0.839

Ours - F-anoGAN 0.958 0.813 0.787

Ours - IGD 0.972 0.837 0.874

features achieves SOTA anomaly detection AUC on all three datasets. Such
results suggest that our self-supervised pre-training can effectively produce good
representations for various types of anomaly detectors and datasets. OCGAN [34]
constrained the latent space based on two discriminators to force the latent
representations of normal data to fall at a bounded area. CAVGA-Ru [46] is
a recently proposed approach for anomaly detection and localisation that uses
an attention expansion loss to encourage the model to focus on normal object
regions in the images. These two methods achieve 81.3% and 92.8% AUC on
Hyper-Kvasir, respectively, which are well behind our self-supervised pre-training
with IGD of 97.2% AUC.

We also investigate the anomaly localisation performance on Hyper-Kvasir in
Table 2. Compared to the SOTA UAD localisation method, CAVGA-Ru [46], our
approach with IGD is more than 3% better in terms of IoU. We also compare
our results to fully supervised methods [9,12,36,50] to assess how much
performance is lost by suppressing supervision from abnormal data. The fully
supervised baselines [9,12,36,50] use 80% of the annotated 1,000 colonoscopy
images containing polyps during training, and 10% for validation and 10% for
testing. We validate our approach using the same number of testing samples, but
without using abnormal samples for training. The localisation results are post
processed by the Connected Component Analysis (CCA) [5]. Notice on Table 2
that we lose between 0.3 and 0.4 IoU for not using abnormal samples for training.

We present visual anomaly localisation results of our IGD with self-supervised
pre-training on the abnormal images from Hyper Kvasir [4] test set in Fig. 3.
Notice how our model can accurately localise polyps with various size and tex-
tures.
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Fig. 3. Qualitative results of our localisation network based on IGD with self-
supervised pre-training on the abnormal images from Hyper Kvasir [4] test set.

4 Conclusion

To conclude, we proposed a self-supervised pre-training for UAD named as con-
strained contrastive distribution learning for anomaly detection. Our approach
enforces non-uniform representation distribution by constraining contrastive dis-
tribution learning with two pretext tasks. We validate our approach on three
medical imaging benchmarks and achieve SOTA anomaly detection and local-
isation results using three UAD methods. In future work, we will investigate
more choices of pretext tasks for UAD.
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