
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

4-2019 

Reputation concerns under at-will employment Reputation concerns under at-will employment 

Jian SUN 
Singapore Management University, jiansun@smu.edu.sg 

Dong WEI 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Finance and Financial Management Commons, and the Organizational Behavior and 

Theory Commons 

Citation Citation 
SUN, Jian and WEI, Dong. Reputation concerns under at-will employment. (2019). 1-42. 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/7038 

This Working Paper is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/639?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7038&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/639?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F7038&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Reputation Concerns Under At-Will Employment*
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[Preliminary Draft]

Abstract

We study a continuous-time model of long-run employment relationship with fixed
wage and at-will firing; that is, termination of the relationship is non-contractible. De-
pending on his type, the worker either always works hard, or can freely choose his
effort level. The firm does not know the worker’s type and the monitoring is imper-
fect. We show that, in the unique Markov equilibrium, as the worker’s reputation
worsens, his job becomes less secure and the strategic worker works harder. We fur-
ther demonstrate that the relationship between average productivity and job insecurity
is U-shaped, which is consistent with typical findings in the organizational psychology
literature.
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1 Introduction

Employment relationships are usually subject to imperfect monitoring. Whereas an employer can
observe certain indicators of a worker’s performance (such as sale statistics of a salesperson, num-
ber of cases processed by a bureaucrat, etc.), the stochastic components of such indicators make it
hard to tell a worker’s actual effort.

Meanwhile, an employer has at least two tools to regulate the incentives of a worker: wages
and the threat to fire the worker. In some countries, in particular the United States, termination
of an employment relationship is “at will”, where a worker can be fired for virtually any or no
reason.1 As the Supreme Court of California explained,

[A]n employer may terminate its employees at will, for any or no reason ... the em-

ployer may act peremptorily, arbitrarily, or inconsistently, without providing specific

protections such as prior warning, fair procedures, objective evaluation, or prefer-

ential reassignment ... The mere existence of an employment relationship affords no

expectation, protectible by law, that employment will continue, or will end only on

certain conditions, unless the parties have actually adopted such terms.

Although many studies have been dedicated to understanding optimal wage contracts (Holmstrröm
1979; Sannikov 2008; Edmans et al. 2012, etc.), relatively few is focused on the role of such non-
contractible firing threats.2

In this paper, in a fixed-wage environment, we study how a firm’s at-will firing shapes a
worker’s incentive to shirk when the latter has reputation concerns. In our model, a long-run
firm is dealing with one of the two possible types of long-run workers: the good type (G) who
always works hard, and the bad type (B) who can freely choose how much to shirk. While the
worker’s type and past actions are his private information, the cumulative output process, whose
drift is determined by the worker’s effort, is commonly observed; such a history helps the firm
form beliefs about the worker’s type and predict later actions. At each instant, the firm chooses
whether to continue employing the worker, and the worker, if still employed, decides how much
effort to exert. Compared to its outside option, the employment relationship is profitable to the
firm if and only if the worker is of the good type (who never shirks) or he is of the bad type but
does not shirk too much.

We focus on Markov strategies where each player’s action only depends on the firm’s current
belief about the worker’s type, which we interpret as the worker’s reputation.3 Under a refinement

1 Exceptions include: firing because of the employee’s race or religion, termination that violates the “public policy
doctrine” (e.g. retaliating the employee for performing an action that complies with public policy), etc.

2 For an exception, see Kuvalekar and Lipnowski (2018).
3 Although the worker’s type and effort are his private information, the firm’s belief, which only depends the real-
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introduced by Kuvalekar and Lipnowski (2018), we characterize the unique Markov equilibrium
of this game for all relevant parameter values. In such a equilibrium, the firm retains the worker for
sure when the worker’s reputation for being a good type is high enough. As the worker’s reputation
worsens, the firm increases its firing probability until its belief reaches a point after which it fires
the worker for sure.4 Meanwhile, the bad worker shirks to the maximum level (i.e., exerts least
effort) when the firm trusts him sufficiently; as firing becomes imminent, the bad worker starts to
be more cautious and work harder. See Figure 1 for an illustration.

To understand their behavior, note that in our model, the bad worker can at best work as hard
as the good worker, so that the firm always weakly prefers to hire a good type. As the probability
of the bad type increases, the firm becomes more inclined to fire the worker. For the bad worker,
shirking increases his instantaneous payoff, while it also speeds up the firm’s learning of his type
and thus increases the probability of getting unemployed. When deciding how much to shirk,
he needs to balance its marginal benefit and cost. When the firm sufficiently trusts him, it is quite
unlikely for him to get fired in the near future; as a result, his incentive to shirk is very high, because
it saves the effort cost while not affecting much the firing probability. As the firm becomes more
suspicious, the worker feels more urgent to slow down the firm’s learning, and thus works harder.

We also examine how average productivity (from the firm’s viewpoint) varies with job inse-
curity, measured by the firm’s belief about the probability of the bad worker. We show that the
relationship is always U-shaped; that is, average productivity first decreases and then increases with
job insecurity (see Figure 3). Intuitively, when his job is very secure, the bad worker constantly
exerts minimum effort; in this region, if the belief about the bad worker increases, the average pro-
ductivity decreases accordingly. As the job becomes increasingly insecure, we explained before
that the bad worker starts to worker harder; it turns out that the increase in the bad worker’s ef-
fort eventually outweighs the worsening of reputation, so that the average productivity will start to
increase. This result is consistent with mixed findings in the organizational psychology literature,
which show that the effect of job insecurity on productivity is usually ambiguous: it is sometimes
found to be positive (Probst et al., 2007; Sverke and Hellgren, 2001), negative (Reisel et al., 2010;
Roskies and Louis-Guerin, 1990), and in particular, U-shaped (Selenko et al., 2013).

Related Literature. This paper examines the reputation dynamics in a fixed-wage employ-
ment relationship with at-will firing. It fits into the literature on dynamic games with reputation,
initiated by Kreps and Wilson (1982) and Milgrom and Roberts (1982). Many classical studies
focus on characterizing equilibrium payoffs. Most notably, general analyses of the discrete-time
setup with one sufficiently patient long-run player deliver sharp bounds on players’ equilibrium

ized output process and its conjecture about the worker’s action, is always common knowledge, both on and off the
equilibrium path.

4 The middle region where the firm fires the worker stochastically may not exist.
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payoffs (Fudenberg and Levine, 1989, 1992). Atakan and Ekmekci (2012, 2013) extend previous
analyses to the cases with two patient long-run players and possibly two-sided incomplete infor-
mation. Faingold and Sannikov (2011) introduce the continuous-time analogue of Fudenberg and
Levine (1992)’s setting (a long-run player v.s. a population of short-run players), and obtain a
clean characterization of sequential equilibria for fixed discount rates, using ordinary differential
equations. A novel element of our model is that the firm’s action is a stopping time. Moreover, in
a specific context of employment relationship featuring two long-run players, we are able to ana-
lytically solve both players’ equilibrium actions and payoffs. Halac and Prat (2016) study a model
of employment relationship where the firm has an endogenous type that depends on the current
attention technology to recognize (and thus reward) the worker’s good performance. They show
that, if the attention technology can occasionally break down, the firm’s incentive to costly restore
the technology is not sufficient to stop the decline in worker’s effort over time, which leads to the
deterioration of the firm’s reputation and the value of their relationship.

Another related literature examines “career-concerns” type of models started by Holmström
(1999). Distinct from our setup and the reputation games in general, an important assumption in
these models is symmetric uncertainty between players about the underlying state (e.g., quality of
a worker, difficulty level of a task, etc.). That is, along the equilibrium path both players have the
same information about the underlying state. Models with both symmetric uncertainty and private
actions are notably hard to analyze, because when the player with private actions deviates from the
equilibrium play, its belief about the underlying state will be different from that of the other player,
and thus becomes its private information. Recent works, such as Cisternas (2017) and Bhaskar and
Mailath (2019), are among the first attempts to address this issue. The most related paper to ours
is Kuvalekar and Lipnowski (2018), who look at a similar environment under the assumption of
symmetric uncertainty about match quality as well as costless and observable effort. Though the
equilibrium structures in these two models resemble each other, the economic forces generating
such predictions, as well as its implication on firm’s learning speed, are very different. We delay a
more detailed discussion on the relation between these two papers to the end of Section 3.

The rest of the paper is organized as follows. Section 2 sets up the model. Sections 3 presents
our main results on the equilibrium characterization. Section 4 discusses several extensions, in-
cluding costly worker replacement and flexible wage. Section 5 concludes.

4
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2 Model

2.1 Model Setup

Suppose that two agents enter a long-term relationship in continuous time which runs from 0 to∞.
To fix ideas, we call them firm (“it”) and worker (“he”). At each instant, the firm decides whether
or not to irreversibly fire the worker, while the worker, depending on his type, may take an action
that affects both parties’ payoffs. Wage is fixed, and neither party has commitment power.

The worker can be one of the two types, θ ∈ {0, 1}, where we refer to θ = 0 as the good type
(G) and θ = 1 as the bad type (B). Type G is hardworking and never shirks. Type B, on the other
hand, is aware of the option to shirk (divert money) which benefits himself at the cost of the firm,
and he decides how much to shirk at each instant. The worker perfectly knows his own type, while
the firm can only gradually learn it from a stochastic output process whose mean is determined by
the worker’s action.

Payoffs

We model the firm’s profit and worker’s income as diffusion processes whose drifts depend on
the worker’s type and action. Let Πt and Wt be the firm’s cumulative profit and the worker’s
cumulative income, respectively, up to time t. The laws of motion for these processes are:

dΠt = (y − θat)dt+ σdBt,

dWt = (w + θat)dt,

where y, w > 0 are some fixed instantaneous payoffs this relationship generates to these two
parties, and the worker’s action at from [0, ā] can be interpreted as how much he shirks or how
much money he diverts at time t. During time period [t, t + dt), the firm’s accrued profit is dΠt

if it employs the worker, and the worker’s accrued income is dWt. In this model, y + w is the
total surplus of the relationship at each instant which is not affected by the worker’s type or action;
his action only determines how the surplus is split. Type G can be understood as always choosing
a = 0 (i.e., an commitment type), as his action does not affect any party’s payoff; thus, from now

on, we use at to denote type B’s action at time t and focus on type B’s strategy.

The game ends after the worker is fired, and we normalize both players’ outside values to
zero. Therefore, given a (stochastic) firing time τ , the realized payoffs of the firm and the worker,
respectively, are: ∫ τ

0

e−rtdΠt and
∫ τ

0

e−rtdWt,

where r is the common discount factor.
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We assume that w > 0 and 0 < y < ā. This means that the worker always wants to stay
employed regardless of the action he takes, while the firm incurs a loss if the worker is of type B
and shirks too much. By counting time and payoffs in appropriate units, we can without loss of
generality normalize ā = σ = 1.5

Information and Learning

We assume that the firm’s profit process Πt is publicly observable, while the worker’s type θ, action
at and income process Wt are his private information. The uncertainty about the worker’s type is
asymmetric: the worker perfectly knows it, while the firm starts with an initial belief E0(θ) = p0 ∈
(0, 1), and can gradually update his belief about θ based on the observed Πt using Bayes’ rule.
Since the profit process is public, at each t the firm’s belief pt is common knowledge.

At time t, the information set of the firm contains (Πt̃)t̃<t while that of the worker contains
(θ, at̃,Πt̃)t̃<t.

6 Since actions are not observable to the firm, the firm’s interpretation of an observed
profit process depends on its conjecture about the worker’s action. Similar to the derivation in
Bolton and Harris (1999), if the firm’s conjecture about type B worker’s action at time t is ãt while
the observed output is dΠt, then the law of motion of the belief process is

dpt = −ãtpt(1− pt) [dΠt − (y − ãtpt)dt] . (1)

Since the firm’s information set is contained in that of the worker, for any given realization of
dΠt, their perceptions of the firm’s belief pt always coincide.7 Meanwhile, the stochastic process
pt is different across their respective viewpoints because the distributions of dΠt in (1) are different
for these two players. From the firm’s viewpoint, dΠt − (y − ãtpt)dt is a Brownian motion and pt
is a martingale. From the (type B) worker’s viewpoint, since he also knows θ and at, we have8

dpt = ãtpt(1− pt) [(at − ptãt)dt− dBt] . (2)

As a result, from the worker’s viewpoint pt is not a martingale.
We interpret pt as the worker’s reputation. Because pt is the probability of the bad worker, we

say that the worker has a good/better reputation if pt is small/smaller, and that he has a bad/worse

5 This normalization implicitly makes y < 1.
6 Note that the Wt process is fully determined by the at process. So given a history of actions, there is no new

information contained in the corresponding history of income.
7 Even though actions are not observable to the firm and the worker may take different actions from what the firm

expects, the firm’s belief about θ, which only depends on p0 and Πt, is always common knowledge. Hence, under
asymmetric uncertainty, off-equilibrium actions do not create additional complications to belief updating even if action
histories are the worker’s private information.

8 The worker can back out the random term dBt in the output process from his information set {dΠt, at, θ}t by
dBt = dΠt − (y − θat)dt. The firm cannot back out dBt as it only has information on dΠt.
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reputation if pt is large/larger.

2.2 Player Strategies

At each t and each information set, the worker chooses an action at ∈ [0, 1], and the firm chooses a
termination rate st ∈ [0,∞] under which the relationship is terminated with probability stdt during
[t, t+ dt).9 The relationship is terminated with certainty at time t if st =∞.

We focus on Markov strategies which use the worker’s reputation as state variable. Markov
strategies are appealing due to its simplicity, and are widely used in the literature (for example, see
Mailath and Samuelson 2001; Faingold and Sannikov 2011, etc.). Indeed, both players summarize
the information contained in the entire output history into the worker’s reputation and base their
decisions on such a variable.

Specifically, let Ā be the set of measurable mappings from (0, 1) to [0, 1], s.t. for all a, ã ∈ Ā,
both (1) and (2) admit a unique weak solution.10 We define Markov strategies as follows.

Definition 1. A Markov strategy profile is a pair (a, s), such that

1. a : (0, 1)→ [0, 1] is piecewise Lipschitz with no removable discontinuities,11 and a ∈ Ā;

2. s : (0, 1)→ [0,∞] is piecewise continuous with no removable discontinuities; it is piecewise

Lipschitz on any interval over which s is bounded, and s−1(∞) is a closed set.

Let A and S be the sets of strategies specified above for the worker and the firm, respectively.

Recall that the worker of type G always takes action 0, so it is enough to specify the strategy
of the type B worker using function a. We say that two strategies are identical if they agree almost
everywhere. In this definition, discontinuities are allowed in players’ strategies, while to be able to
solve the model, we assume enough smoothness on intervals where they are continuous.

9 In this model, the worker always prefers being employed regardless of his action; so even if the worker can choose
whether or not to resign, he would never do so. Thus, we do not explicitly model his resignation decision.

10 In general, when ã is discontinuous and sometimes equal to 0, existence and uniqueness of pt defined by (1) and
(2) are not guaranteed. Although a complete characterization of Ā is not present, we do know that it has the following
properties. First, it contains the set of all Lipschitz functions (Itô, 1946). Second, it contains the set of all functions
of bounded variation that are bounded away from 0 (Nakao, 1972). Third, it contains the set of all functions that are
locally integrable and have no zero point (Engelbert and Schmidt, 1985). Fourth, if ã ∈ Ā and ã(p) = 0, then p is an
absorbing state, and the corresponding process pt is not part of any equilibrium (see Claim 1 in the Appendix).

11 That is, there exist n ∈ N and 0 = x1 < x2 < ... < xn = 1, such that for each i ∈ {1, ..., n − 1}, there exists
a Lipschitz function fi on [xi, xi+1] such that fi(p) = a(p) for all p ∈ (xi, xi+1). The assumption of no removable
discontinuities is without loss, because if a is piecewise Lipschitz with some removable discontinuities, changing those
finite removable discontinuities to continuous points does not affect any party’s payoff.
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2.3 Equilibrium Definition

Given a conjecture ã about type B worker’s strategy and a Markov strategy profile (a, s), the type
B worker’s value at belief p is

v(p|a, s, ã) = Ea,s
[∫ ∞

0

(w + a) e−rte−
∫ t
0 sτdτdt

]
, (3)

where the expectation is taken over the (at, st) processes, which is driven by the underlying belief
process pt in (2).12 Meanwhile, the firm’s value is

π(p|s, ã) = Eã,s
[∫ ∞

0

e−rte−
∫ t
0 sτdτdΠ̃t

]
, (4)

where dΠ̃t = (y − θãt)dt + dBt is the law of motion for the profit process under the conjectured

action process, and the expectation is taken over the (ãt, st) processes driven by the underlying
belief process pt in (1).

We define Markov equilibria as follows.

Definition 2. A Markov equilibrium consists of a Markov strategy profile (a∗, s∗) and a conjecture

ã, such that the following hold for all p ∈ (0, 1):

1. Correct conjecture: ã ≡ a∗;

2. Firm optimality: s∗ ∈ argmaxs∈S π(p|s, ã);

3. Worker optimality: a∗ ∈ argmaxa∈A v(p|a, s∗, ã);

4. Instantaneous sequential optimality: If s∗ = ∞ is a neighborhood of p, we have a∗(p) =

lim∆↓0 a∆(p|a∗, s∗, a∗) where, for any ∆ > 0,

a∆(p|a, s, ã) ≡ argmaxâ∈[0,1]

{
(w + â)∆ + e−r∆E [v(p∆|a, s, ã)| p0 = p, at = â, ãt = ã0∀t ∈ [0,∆)

]}
In the above definition, the first three requirements are standard. The last requirement, first

introduced by Kuvalekar and Lipnowski (2018), is a refinement that regulates the off-equilibrium
behavior of the worker. Specifically, suppose that the relationship is not terminated at t, but ac-
cording to the firm’s equilibrium strategy it should fire the worker for sure at all beliefs around the
current one. In a continuous-time model, the worker’s action does not affect his payoff, because he
expects himself to be fired at any t′ > t. The worker’s indifference at such information sets could
generate a plethora of off-equilibrium behavior, which complicates our analysis. To circumvent

12 Note that the conjecture ã is used to characterize the law of motion (1) of pt.
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this problem, we impose “instantaneous sequential optimality” for equilibrium refinement: when
deciding what action to take at reputation pt where the relationship should have been terminated,
the worker assumes that the relationship will still last for some time period ∆ > 0, and then come
back to whatever equilibrium strategies induce. Sending ∆ to 0, the limit action is what we as-
sume the worker would take. For small ∆, the belief pt+∆ is very close to pt with high probability,
so that the relationship will be terminated after ∆ with probability close to 1, regardless of the

worker’s action. In this case, type B worker should just shirk as much as possible. As a result,
under instantaneous sequential optimality, type B worker’s off-equilibrium action is always equal
to 1. Intuitively, once the worker finds out that the firm mistakenly employs him and expects it to
be corrected soon, he tries to get the most out of the current relationship by not working at all.

3 Main Results

In our model, the firm always (weakly) prefers to employ the type G worker. Thus, as the worker’s
reputation worsens, the firm becomes more inclined to fire the worker. Such incentives of the firm
indicate that, for type B worker, he feels safer to shirk when his reputation is good, while he wants
to work harder in order to slow down belief worsening when his reputation is bad.

The following theorem, which characterizes the unique Markov equilibrium of this game for
arbitrary parameters, confirms the above intuition. The equilibrium strategies are illustrated in
Figure 1.

Theorem 1. For any y ∈ (0, 1) and w > 0, the unique equilibrium of this game is characterized

as follows. There exist 0 < p ≤ p̄ < 1 such that:

1. If p < p, the firm never fires the worker, and the type B worker shirks to the maximum level

when p is small enough while he starts working harder as p increases (i.e., as his reputation

worsens).

2. If p ∈ (p, p̄), the firm randomizes between firing and keeping the worker with an increasing

firing rate, and the type B worker works harder as p increases;

3. If p > p̄, the firm fires the worker.

While the proof details are relegated to the appendix, here we explain the key steps in find-
ing the unique equilibrium. First, we prove a result which formalizes our intuition that in any
equilibrium, the firm will keep (fire) the worker if his reputation is sufficiently good (bad), while
randomizing if his reputation is intermediate. Second, whenever the relationship continues with

9

Electronic copy available at: https://ssrn.com/abstract=3424122



Figure 1: Equilibrium Strategies

positive probability, we can find closed-form solutions to type B worker’s value and policy func-
tions. Finally, optimality of the firm’s decision (in particular, smooth pasting of its value function)
allows us to uniquely pin down those belief cutoffs p and p̄.

The equilibrium contains a region of beliefs within which the firm fires the worker stochasti-
cally. The following proposition, as illustrated in Figure 2, shows when such a region is nondegen-
erate.

Proposition 1. For any y ∈ (0, 1), there exists w̄(y) ≥ 0 s.t. for all w > w̄(y), the equilibrium

involves stochastic termination for a nondegenerate range of beliefs; that is, p < p̄. Moreover,

w̄(y) is strictly decreasing in y.

10
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Figure 2: Range of Parameters Inducing Stochastic Termination

To understand this result, note first that type B worker’s value is 1+w
r

when p = 0, because 0 is
an absorbing state at which the worker is never fired; note also that this value is increasing in w. In
equilibrium, the firm’s value falls from y/r to 0 as its belief moves from 0 to p; meanwhile, type B
worker’s value falls from 1+w

r
to some V . If w is very large, V would still be positive when p = p;

in order to deliver this positive value to the worker, the firm cannot terminate the relationship right
away, but has to mix between its firing decisions with an increasing firing rate so as to gradually
reduce the worker’s value to 0.

Average Productivity and Job Insecurity

In this model, the worker’s type is his private information which is never known to the firm/observer.
From the firm/observer’s perspective, the (average) productivity of the worker at belief p is given by
y − a∗(p)p. Further, in the unique equilibrium, the worker’s job becomes more and more insecure
as p increases. The following proposition shows that the effect of job insecurity on productiv-
ity is ambiguous (in particular, U-shaped), which is consistent with findings in the organizational
psychology literature (Selenko et al., 2013).

Proposition 2. For any fixed (w, y, r), let (a∗, s∗) be the unique Markov equilibrium of the game.

Then, y − a∗(p)p first decreases and then increases with p on (0, p̄).

At each instant, if type B worker shirks more, he can get a higher instantaneous payoff; mean-
while, from the worker’s viewpoint, holding fixed the firm’s conjecture of his action, shirking more

11
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Figure 3: Average Productivity and Job Insecurity

reveals his bad type more quickly, and thus increases his probability of being fired. When deciding
his action, type B worker’s must balance these two forces.

When the worker’s reputation is good (i.e., when p is small), marginally increasing the firm’s
belief will not significantly affect the firing probability as the threshold is still far away, so the
worker’s incentive to shirk is very high; indeed, he exerts minimal effort when p is small enough.
Within this region, average productivity decreases with firm’s belief as it becomes more probable
that the worker exerts minimal effort.

As his reputation worsens and gets closer to the mixing region, the worker’s job becomes more
insecure, and type B worker’s incentive to work hard gets stronger because he increasingly wants
to slow down the firm’s learning of his type. As a result, he exerts more effort while still working
less hard than type G worker’s default level. It turns out that the effort improvement from type
B worker eventually dominates reputation worsening, so that average productivity starts to grow
with the firm’s belief.

When the worker’s reputation reaches the mixing region, the firm’s indifference requires that
average productivity stays at 0, which is weakly increasing. Therefore, no matter whether the
mixing region exists, the effect of job insecurity on productivity is U-shaped.

Comparison with Kuvalekar and Lipnowski (2018)

Our result regarding the relationship between productivity and job insecurity resembles that in
Kuvalekar and Lipnowski (2018), who study a similar model under the assumptions of costless
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and observable effort and symmetric uncertainty about match quality between the firm and the
worker. Though they (sometimes) also obtain a U-shape relationship between productivity and job
insecurity, these results are different in the following ways.

First, the U-shape feature shows up in Kuvalekar and Lipnowski (2018) only when the equi-
librium involves some stochastic termination; indeed, in their model, when the unique Markov
equilibrium is in pure strategies, the worker’s average productivity strictly decreases as his job
becomes more insecure. In contrast, the U-shape relationship holds in our model even when the
equilibrium only involves deterministic termination.13

Second, the economic reasons generating the equilibrium behavior are different. In our model
with unobservable actions and asymmetric uncertainty, the worker’s action affects the firm’s learn-
ing through the drift term in (2), holding fixed the firm’s conjecture and thus the diffusion term.
In particular, a higher effort (i.e., a smaller at) from type B worker reduces the drift term and
slows down the firm’s learning of his type, because the induced output distribution gets closer to
that generated by type G. When his job is fairly secure, type B worker exerts minimum effort to
achieve the highest instantaneous payoff by saving the cost and as a result induces fastest learning
(i.e., largest drift term in (2)); as his reputation worsens and unemployment becomes imminent,
type B worker feels more urgent to slow down the firm’s learning, and thus he increases his effort
level, making his action better mimic type G’s default action.

On the contrary, in their model with observable action and symmetric uncertainty, from both

players’ viewpoints the drift in the belief process always has zero expectation (i.e., belief is mar-
tingale), and learning is affected by the worker’s action through the variance/diffusion term. In
particular, a higher effort in their model increases belief variation. When his job is secure, in order
to maintain its safe status, the worker exerts minimum effort to generate as little new information
as possible. As the firm becomes more suspicious about match quality, the worker exerts higher
effort to increase the variance of learning, hoping that a more positive signal can be realized to
improve his reputation.

To summarize, the worker’s incentive to achieve the highest instantaneous payoff results in
the initial decreasing region of productivity in our model, while his incentive to generate least
information leads to the same region in their model; furthermore, the worker’s incentive to slow
down learning generates the increasing region of productivity in our model, while his incentive to
boost belief variance induces the counterpart of their model.

13 However, if the wage w is too low, then it is possible in our model that the type B worker always exerts least effort
until he is fired, in which case average productivity simply decreases with job insecurity.
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4 Extensions

4.1 Costly Replacement

Our framework can be extended to a model with costly replacement. Suppose that there is a pool
of workers and the proportion of them being the bad type is p0. At time 0, the firm is randomly
assigned a worker; at any instant, the firm can choose one from the following three actions: (i)
keeping the worker; (ii) terminating the relationship and getting outside option zero; (iii) replacing
the current worker with a new one at a cost of c. We consider stationary Markov equilibria where
the firm and the worker always use the same Markov strategy regardless of how many workers
the firm has hired before The stationary Markov equilibrium shares similar structure to that in the
model without replacement. Indeed, when the replacement cost is high enough, in equilibrium the
firm never replaces the worker, and their behavior is the same as in the baseline model. When
the replacement is not so costly, instead of getting the outside option, in equilibrium the firm will
replace the worker if his reputation is too bad, while the worker’s behavior is still similar to that in
the baseline model. The following proposition summarizes these results.

Proposition 3. Given (w, y, r, p0), there exists c̄ ≥ 0, such that

1. If c > c̄, the unique equilibrium is characterized by Theorem 1 under parameter values

(w, y, r), in which the firm either keeps the worker or takes the outside option, but never

replace the worker.

2. If c < c̄, there is an equilibrium in which the firm either keeps the worker or replaces him,

but never takes the outside option. Moreover, such an equilibrium has the same structure as

that in Theorem 1 under parameter values (w, yR, r) for some yR < y.

If replacement is not too costly, the firm has a positive continuation value after firing the cur-
rent worker; in our model, this is equivalent to reducing the firm’s instantaneous payoff from an
employment relationship (from y to some yr), while normalizing its continuation value after firing
to 0.

4.2 Flexible Wage

Throughout our analysis, we have assumed that the wage is constant. As a robustness check, we
show that our equilibrium characterization holds for a larger set of Markovian wage contracts with
downward rigidity (possibly due to some minimum wage requirement).

Consider the following class W of Markovian wage contracts. Any w ∈ W is a bounded,
weakly decreasing and continuously differentiable function of the firm’s belief with bounded
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derivative; in addition, there is some pm ∈ (0, 1) and w > 0 such that w(p) = w for all p ≥ pm.
Conditional on employment, any of such contracts has a minimum wage ω that the employer can-
not go under even if the worker’s reputation is bad.

Proposition 4. There exist p∗ ∈ (0, 1) and M > 0, such that for any w ∈ W with pm < p∗ and

supp |w′(p)| < M , any Markov equilibrium has the same structure as characterized in Theorem 1,

and the average productivity is U-shaped as in Proposition 2.

As a technical remark, the assumption that w is decreasing is not required; the above proposi-
tion holds as is if the wage contract w has bounded variation.

5 Conclusion

We develop a continuous-time model of employment relationship in which the worker faces moral
hazard and reputation concerns, and the firm can only decide whether to retain or dismiss the
worker without committing to a contract. We characterize the unique Markov equilibrium of this
game. Our results suggest that the worker’s moral hazard problem is mitigated as his reputation
worsens, and that the relationship between average productivity and job insecurity is U-shaped.
Besides, a stochastic termination region endogenously arises when the relationship is valuable
enough. Our qualitative predictions still hold even when the firm can replace its current worker at
a cost, or the wage varies subject to downward rigidity. In contrast to the contract theory literature,
our paper provides an alternative angle for understanding how a firm’s non-contractible firing threat
can regulate its employee’s incentive to shirk, when the latter has reputation concerns.
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A Proofs

The technical structure of our problem resembles that of Kuvalekar and Lipnowski (2018). Their paper

proves a number of results on the technical properties of equilibrium strategies and value functions. To be

able to apply their results, however, we need to establish that the worker’s strategy a∗ in any equilibrium is

bounded away from 0 on its domain (0, 1).

In this appendix, we proceed as follows. In A.1, we show that a∗ in any equilibrium is indeed bounded

away from 0 (Lemma 2), which validates the technical lemmas proved in Kuvalekar and Lipnowski (2018)

(Lemmas 3 through 5). In A.2, we characterize the unique features of equilibrium strategies (Lemmas 6

through 8), and reduce the research for an equilibrium to finding a finite dimensional vector. In A.3, we

pin down the unique such vector satisfying the equilibrium conditions. Finally, in A.4, we establish several

properties of the unique Markov equilibrium, proving the results in Section 3.

A.1 Technical Preliminaries

Recall that A is the set of piecewise Lipschitz functions with no removable discontinuities. We note that

A = {a : (0, 1)→ [0, 1]|a is piecewise Lipschitz with finite number of jump discontinuities} , (5)

because on any open interval over which a is Lipschitz, the right (left) limit of a at the left (right) boundary

point exists. This implies that any a ∈ A has one-sided limits everywhere on (0, 1). Our first goal is to show

that for the purpose of finding an equilibrium, it is without loss to restrict attention to

A∗ = {a ∈ A|∃εa > 0, s.t. a(p) > εa,∀p ∈ (0, 1)}. (6)

To establish some necessary conditions of an equilibrium, let us take an equilibrium (a∗, s∗) as given.

We define v∗ ≡ v(·|a∗, s∗, a∗) and π∗ ≡ π(·|a∗, s∗).

Claim 1. In any equilibrium (a∗, s∗), a∗(p) > 0 for all p ∈ (0, 1).

Proof. Suppose (by contradiction) that there exists p̃ ∈ (0, 1) s.t. a∗(p̃) = 0. Since, in equilibrium, the

firm’s conjecture satisfies ã = a∗, the law of motion of the belief process in (1) implies that p̃ is an absorbing

state. It cannot be that s∗(p̃) = ∞, for otherwise if the belief process reaches p̃, by deviating to s ≡ 0 the

firm can get a payoff of y > 0 at belief p̃, instead of 0. So we must have s∗(p̃) < ∞, which implies that

the (type B) worker’s value at the absorbing state p̃ is ra∗(p̃)
r+s∗(p̃) . Apparently, worker optimality requires that

a∗(p̃) = 1, a contradiction to a∗(p̃) = 0.

Claim 1 indicates that, without loss of generality, the firm’s conjecture can be restricted to the following

space.

A0 = {a ∈ A|a(p) > 0,∀p ∈ (0, 1)}.
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Lemma 1. Fix 0 < p0 < p1 < 1, worker’s strategy a ∈ A, stopping rate s ∈ S and conjecture ã ∈ A0.

Suppose that, on [p0, p1], s is Lipschitz and finite, and a, ã are Lipschitz. Let v ≡ v(·|a, s, ã) and v∗ ≡
supa∈A v(·|a, s, ã). Then v, v∗ are C2 on [p0, p1] and satisfy

(r + s(p))v(p) = w + a(p) + p(1− p)
[
a(p)ã(p)− pã(p)2

]
v′(p) +

1

2
p2(1− p)2ã(p)2v′′(p). (7)

(r + s(p))v∗(p) = sup
â∈[0,1]

w + â+ p(1− p)
[
âã(p)− pã(p)2

]
v∗′(p) +

1

2
p2(1− p)2ã(p)2v∗′′(p). (8)

Moreover, any boundary value problem of differential equation (7) admits at most one solution.

Proof. Since ã(p) > 0 and is Lipschitz on [p0, p1], by Weierstrass theorem minp∈[p0,p1] ã(p) > 0, so that

the belief process in (1) is uniformly nondegenerate on [p0, p1]. The result then follows from Theorem 5 in

Chapter 1 of Krylov (2008).

Claim 2. In any equilibrium (a∗, s∗), if there exist 0 ≤ p0 < p1 ≤ 1 s.t. s∗|(p0,p1) > 0, then y−a∗(p)p ≤ 0

at all but finite p ∈ (p0, p1); moreover, if s∗|(p0,p1) ∈ (0,∞), then y − a∗(p)p = 0 at all but finite

p ∈ (p0, p1).

Proof. Suppose that s∗|(p0,p1) > 0. Then, the worker’s indifference, if any, implies that π∗(p) = 0 for all

p ∈ (p0, p1). At any continuous point p̃ ∈ (p0, p1) of a∗, suppose (by contradiction) that y − a∗(p̃)p̃ > 0.

Then there is a neighborhood I ( (p0, p1) of p̃, s.t. y−a∗(p)p > 0 for all p ∈ I . Consider another stopping

rule s̃ defined by

s̃ =

0, if p ∈ I

∞, if p /∈ I
.

Obviously, π(p̃|a∗, s̃) > 0 = π∗(p̃), but this is a contradiction to the optimality of s∗ at p̃. Since a∗ only has

finite discontinuities, y − a∗(p)p ≤ 0 for all but finite p ∈ (p0, p1).

Now suppose that s∗|(p0,p1) ∈ (0,∞). Suppose (by contradiction) that y − a∗(p̃)p̃ < 0. Then there is a

neighborhood I ( (p0, p1) of p̃, s.t. y − a∗(p)p < 0 for all p ∈ I . Let τ(p̃) = inf{t : pt /∈ I, p0 = p̃}. The

firm’s indifference and optimality imply that

0 = π∗(p̃) = Eτ

[∫ τ(p̃)

0
e−rt(y − a∗(pt)pt)dt+ e−rτ(p̃)π∗(pτ(p̃))

]

= Eτ

[∫ τ(p̃)

0
e−rt(y − a∗(pt)pt)dt

]
< 0

where the second line follows from π∗(pτ(p̃)) = 0 everywhere because I ( (p0, p1). But 0 < 0 is a

contradiction.
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Claim 3. In any equilibrium (a∗, s∗), fixing 0 ≤ p0 < p1 ≤ 1 such that a∗|(p0,p1) is continuous and s∗|(p0,p1)

is continuous and finite, then on (p0, p1),

a∗(p) =
1

max{1,−v∗′(p)p(1− p)}
. (9)

Further,

• if s∗|(p0,p1) = 0 and a∗|(p0,p1) < 1, then

v∗(p) =
w

r
+

1√
2r

Φ−1

(
A1

p

1− p
+A2

)
, (10)

for some A1 < 0 and A2 ∈ R, where Φ is the CDF of standard normal distribution.

• if s∗|(p0,p1) = 0 and a∗|(p0,p1) = 1, then

v∗(p) =
1 + w

r
+B1

(
p

1− p

)β1
+B2

(
p

1− p

)β2
, (11)

for some B1, B2 ∈ R, where β1, β2 are roots of 1
2x(x+ 1) = r, satisfying β1 > 0 > β2.

• if s∗|(p0,p1) ∈ (0,∞), then

a∗(p) =
y

p
, (12)

v∗(p) =
ln(1− p)

y
+ C, (13)

s∗(p) =
w + y

2

v∗(p)
− r, (14)

for some C ∈ R.

Proof. Suppose that a∗|(p0,p1) is continuous and s∗|(p0,p1) is continuous and finite. Then on any closed

interval I ⊂ (p0, p1), a∗|I is Lipschitz and s∗|I is Lipschitz and finite. So Lemma 1 applies to all such I’s.

Fix any closed interval I ⊂ (p0, p1). By Lemma 1, we know that (8) is satisfied on I . Note that the RHS

of (8) is affine in its choice variable â, with coefficient 1 + p(1 − p)ã(p)v∗′(p). Optimality of a∗ requires

that, almost everywhere on I ,

a∗(p)


= 1, if 1 + p(1− p)ã(p)v∗′(p) > 0

∈ [0, 1], if 1 + p(1− p)ã(p)v∗′(p) = 0

= 0, if 1 + p(1− p)ã(p)v∗′(p) < 0

. (15)

In equilibrium ã = a∗, so condition (15) implies that (9) must hold almost everywhere on I . Since a∗

and ν∗′ are continuous on I , (9) must hold everywhere on I . Applying the above argument to In ≡[
p0 + 1

n , p1 − 1
n

]
, we conclude that (9) holds on (p0, p1).
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Now, let us first suppose that s∗|(p0,p1) = 0 and a∗|(p0,p1) < 1. By condition (9), we must have

a∗(p) = − 1
v∗′(p)p(1−p) > 0 on (p0, p1). This implies that v∗′|(p0,p1) < 0. Substituting it into (8), we get

rv∗(p) = w − 1

v∗′(p)(1− p)
+

1

2

v∗′′(p)

[v∗′(p)]2
.

The general solution to the above second-order differential equation is given by (10).

Next, suppose that s∗|(p0,p1) = 0 and a∗|(p0,p1) = 1. Substituting it into (8), we get

rv∗(p) = w + 1 + p(1− p)2v∗′(p) +
1

2
p2(1− p)v∗′′(p).

The general solution to the above second-order differential equation is given by (11).

Finally, suppose that s∗|(p0,p1) ∈ (0,∞). By Claim 2, a∗|(p0,p1) must satisfy that a∗(p)p = y, i.e.,

a∗(p) = y/p as in (12). By condition (9), we have

y/p = − 1

v∗′(p)p(1− p)
,

which implies that v∗|(p0,p1) satisfies (13). Finally, Lemma 1 implies that s∗ must be such that (14) holds

almost everywhere on (p0, p1). As s∗|(p0,p1) is continuous, (14) must hold everywhere on (p0, p1).

Lemma 2. In any equilibrium (a∗, s∗), a∗ ∈ A∗ where A∗ is defined in (6).

Proof. Since a∗ is piecewise Lipschitz, its one-sided limit exists everywhere on (0, 1). Since a∗(p) 6= 0 for

all p ∈ (0, 1), we are done if we can show that at any p̃ of the finite discontinuities of a∗, a∗−(p̃), a∗+(p̃) > 0.

We first look at its left limit a∗−(p̃). Since a∗ is piecewise continuous, there exists ε > 0 s.t. a∗

is continuous on (p̃ − ε, p̃). Suppose (by contradiction) that a∗−(p̃) = 0. Then there exists ε1 ≤ ε s.t.

y−a∗(p)p > 0 for all p ∈ (p̃−ε1, p̃), and then firm optimality requires that s∗(p) <∞ for all p ∈ (p̃−ε1, p̃).

Piecewise continuity of s∗ indicates that we can without loss assume s∗ to be continuous on (p̃−ε1, p̃). Note

that now both a∗ and s∗ satisfy the condition in Claim 3 on (p̃− ε1, p̃), so Claim 3 tells us that

a∗(p) =
1

max{1,−v∗′(p)p(1− p)}
,

which implies that v∗′−(p̃) = −∞. Now we argue that this is not possible.

To see this, Claim 3 indicates that if s∗(p̂) > 0 for some p̂ ∈ (p̃−ε1, p̃), then s∗(p) > 0 for all p ∈ (p̂, p).

This is because s∗(p) defined by (14) in Claim 3 is strictly increasing in p, so that if s∗(p) drops back to 0

within (p̂, p), then it violates continuity. This implies that there exists ε2 ≤ ε1 s.t. either s∗|(p̃−ε2,p̃) = 0 or

s∗|(p̃−ε2,p̃) ∈ (0,∞). As y − a∗(p)p > 0 for all p ∈ (p̃ − ε2, p̃), Claim 2 tells us that the latter case is not

possible. Meanwhile, if s∗|(p̃−ε2,p̃) = 0, then v∗ is given by (10). Note that

v∗′(p) =
A1√
2r

1

(1− p)2φ
[√

2r (v∗(p)− w/r)
] ,
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where φ is the PDF of standard normal distribution. In this case, v∗′(p) is bounded on (p̃ − ε2, p̃) as v∗(p)

is bounded (by (w + 1)/r). This is a contradiction to v∗′−(p̃) = −∞.

An argument very similar to above shows that a∗+(p̃) > 0, so we are done.

Lemma 2 implies that for the purpose of finding an equilibrium, we can restrict firm’s conjecture ã to

be from A∗, though the worker’s strategy space, especially when considering deviations, remains to be the

originalA. As defined in (6), any ã ∈ A∗ is such that it is bounded away from 0 by some number εã (which

can be ã-dependent). From (1), we know that for any fixed ã ∈ A∗, the belief process pt does not have any

absorbing state (because the coefficient on dBt is always positive) for all a ∈ A. These enable us to draw

from the results in Kuvalekar and Lipnowski (2018), and extend our analysis of equilibrium structure to the

entire domain (0, 1).

Lemma 3. Given any a ∈ A, s ∈ S and ã ∈ A∗, the value functions v(·|a, s, ã) and π(·|ã, s) are continu-

ous.

Proof. This follows from the proof of Lemma 1 of Kuvalekar and Lipnowski (2018).

Lemma 4. Fix a conjecture ã ∈ A∗. Let π∗ ≡ sups∈S π(·|ã, s), and suppose s∗ ∈ argmaxs∈S π(·|ã, s).

Fixing 0 ≤ p0 < p1 ≤ 1 s.t. s∗|(p0,p1) = 0, then on (p0, p1), π∗ is piecewise C2 and satisfies14

rπ∗(p) = y − ã(p)p+
1

2
p2(1− p)2ã(p)2π∗′′(p); (16)

Proof. On any subinterval over which ã is Lipschitz, (16) follows from Theorem 5 in Chapter 1 of Krylov

(2008). The lemma follows because ã is piecewise Lipschitz.

Lemma 5. Take any s ∈ S. Let p ∈ (0, 1) be such that s(p) < ∞. Given any a ∈ A, s ∈ S and ã ∈ A∗,
v(·|a, s, ã) is continuously differentiable at p.

Proof. This follows from the proofs of Lemmas 4 and 5 of Kuvalekar and Lipnowski (2018).

A.2 Establishing the Unique Equilibrium Structure

The following three lemmas give a characterization of the equilibrium structure. We show that, in any

equilibrium, the firm continues the relationship when p is low, it stochastically terminates the relationship

when p is intermediate, and it fires the worker for sure when p is high (Lemma 7). Moreover, we provide

closed-form formula to type B worker’s equilibrium strategy (Lemmas 6 and 8).

14 Except at the finite number of discontinuities of ã on (p0, p1).
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Define h : (0, 1)→ (0,∞) by

h(p) ≡ p

1− p
. (17)

For notational convenience, we sometimes write players’ value and policy functions using h as the state

variable, which is equivalent to using p as the state variable because h is a strictly increasing transformation

of p. In particular, given an equilibrium (a∗, s∗) and its associated value functions v∗ and π∗, we can define

â, ŝ, v̂ and π̂ by

â(h) = a∗
(

h

1 + h

)
,

ŝ(h) = s∗
(

h

1 + h

)
,

v̂(h) = v∗
(

h

1 + h

)
,

π̂(h) = π∗
(

h

1 + h

)
.

(18)

The following lemma, which will be repeatedly used, generalizes Claim 3.

Lemma 6. In any equilibrium (a∗, s∗), fixing 0 ≤ p0 < p1 ≤ 1, if s∗|(p0,p1) < ∞, then a∗|(p0,p1) is

continuous and satisfies (9). Furthermore,

1. if s∗|(p0,p1) = 0, then on any open interval I ⊂ (p0, p1),

• if a∗|I < 1, then v∗|I satisfies (10), and a∗(p) on I must be increasing, or decreasing, or first

increasing and then decreasing; same for p · a∗(p).

• if a∗|I = 1, then v∗|I satisfies (11).

2. if s∗|(p0,p1) ∈ (0,∞), then on (p0, p1), a∗, v∗ and s∗ satisfy (12), (13) and (14), respectively; a∗ and

v∗ are strictly decreasing, and s∗ is strictly increasing.

3. if s∗|(p0,p1) =∞, then on (p0, p1), a∗ = 1, v∗ = 0.

Proof. Compared to Claim 3, Lemma 6 removes the restriction that a∗ and s∗ are continuous on (p0, p1).

So Claim 3 implies that (9) holds at all p ∈ (p0, p1) but finite discontinuities of a∗ and s∗. By Lemma

5, the RHS of (9) is continuous everywhere on (p0, p1). Recalling condition (5), all of the finite number

of discontinuous points of a∗ are jump discontinuities; thus, that (9) holds a.e. on (p0, p1) implies that (9)

holds on the entire interval (p0, p1).15

15 Note first that for any piecewise Lipschitz function, one-sided limits are well defined everywhere. Take any
a ∈ A s.t. a(p̃) 6= 1

max{1,−v∗′(p̃)p̃(1−p̃)} for some p̃ ∈ (p0, p1). Let us show that a violates (9) on some interval.
If a is continuous at p̃, obviously a(p) 6= 1

max{1,−v∗′(p)p(1−p)} in a neighborhood of p̃. If a is discontinuous at p̃,
since all discontinuous points of a are jump discontinuities, we have limpn↑p̃ a(pn) 6= limpn↓p̃ a(pn). Without loss,
let us assume limpn↑p̃ a(pn) 6= 1

max{1,−v∗′(p̃)p̃(1−p̃)} . Since a is continuous on (p̃ − ε, p̃) for some ε > 0, we have
a(p) 6= 1

max{1,−v∗′(p)p(1−p)} for all p ∈ (p̃− ε, p̃). In both cases, we do not have (9) hold almost everywhere.
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Now we move on to the numbered points in the lemma.

For Part 1, since we have shown that a∗ is continuous on (p0, p1), Claim 3 applies so that we only need

to establish the statement regarding monotonicity a∗ on any open interval I ⊂ (p0, p1) such that a∗|I < 1.

Recall that h ≡ p
1−p . By (2) and Ito’s Lemma, the law of motion of ht (from type B worker’s viewpoint)

is

dht = ãtht (atdt− dBt)

Recall the definitions of v̂ and â in (18). By the chain rule, v∗′(p) = v̂′(h(p)) 1
(1−p)2 . Then, by equation

(9) and the assumption that a∗|I < 1, we know that for all h ∈ Ih ≡ (h(p0), h(p1)),

â(h) = − 1

v̂′(h)h
. (19)

By definition of h and â, we have

sgn[a∗′(p)] = sgn[â′(h(p))] = −sgn
[
d

dh

(
−v̂′(h)h

)]
. (20)

From (10), we can see that

v̂(h) =
w

r
+

1√
2r

Φ−1(A1h+A2), (21)

thus v̂′(h) = A1√
2rφ[
√

2r(v̂(h)−w/r)]
where φ is the PDF of standard normal distribution. Equation (19) and

that â|Ih ∈ (0, 1) then imply that A1 < 0. Moreover,

d

dh

(
−v̂′(h)h

)
=

d

dh

|A1|h√
2rφ

[√
2r (v̂(h)− w/r)

]
=
|A1|√

2r

φ− h
√

2rv̂′(h)φ′

φ2

=
|A1|√

2r

φ+ hv̂′(h)2r (v̂(h)− w/r)φ
φ2

=
|A1|
φ
√

2r

[
1− 2(rv̂(h)− w)

â(h)

]
=
|A1|
φ
√

2r

[
1−
√

2rΦ−1(A1h+A2)

â(h)

]
(22)

where the third line follows from the property of the standard normal PDF that φ′(x) = −xφ(x), the fourth

line follows from (19), and the last line follows from (21). Note that d
dh (−v̂′(h)h) is continuous on Ih.

The above expression tells us that, if â′(h2) > 0 for some h2 ∈ Ih, then â′(h) > 0 for all h ≤ h2 on Ih.

To see this, let us take such an h2. Since v̂ is C2 (by Lemma 1) and â satisfies (19), â is C1; hence, there
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exists ε > 0 such that â′(h) > 0 for all h ∈ (h2 − ε, h2]. Then,

d

dh

(
−v̂′(h)h

)∣∣∣∣
(h2−ε,h2)

=
|A1|
φ
√

2r

[
1−
√

2rΦ−1(A1h+A2)

â(h)

]∣∣∣∣∣
(h2−ε,h2)

<
|A1|
φ
√

2r

[
1−
√

2rΦ−1(A1h+A2)

â(h)

]∣∣∣∣∣
h=h2

<
d

dh

(
−v̂′(h)h

)∣∣∣∣
h=h2

where the first inequality follows from â(h) < â(h2) and Φ−1(A1h + A2) > Φ−1(A1h2 + A2) on (h2 −
ε, h2), recalling that A1 < 0. Let

h̃ = inf{k ∈ Ih : â′(h) > 0,∀h ∈ (k, h2]}.

We need to show that h̃ = inf Ih. Suppose (by contradiction) h̃ > inf Ih. Since â′(h) is continuous, it must

be that â′(h̃) = 0, which implies that d
dh (−v̂′(h)h)

∣∣
h=h̃

= 0. But since â′(h) > 0 for all h ∈ (k, h2), by

previous argument we know that d
dh (−v̂′(h)h)

∣∣
(k,h2]

< 0 and is increasing at all h arbitrarily close to but

greater than k, thus d
dh (−v̂′(h)h) cannot be continuous at h̃, a contradiction.

By (20), we conclude that a∗(p) must be increasing, decreasing or first increasing and then decreasing

on I . A completely analogous argument establishes the same property for p · a∗(p).

For Part 2, Claim 3 implies that (12), (13) and (14) hold at all p ∈ (p0, p1) but finite discontinuities of

a∗ and s∗. Since a∗ has no removable discontinuities, (12) must hold everywhere on (p0, p1). By Lemma

3, v∗ is continuous, thus (13) holds everywhere on (p0, p1). This means that (14) holds at all p ∈ (p0, p1)

but finite discontinuities of s∗. We now show that s∗ is continuous on (p0, p1). Suppose (by contradiction)

that s∗ is discontinuous at some p̃ ∈ (p0, p1). Since s∗ has only finite discontinuities, there exists ε > 0

s.t. s∗ is continuous and (thus) satisfies (14) on [p̃ − ε, p̃) and (p̃, p̃ + ε]. Since v∗ is continuous, from (14)

we know that the left and right limits of s∗ at p̃ are the same, a contradiction to s∗ having no removable

discontinuities.

For Part (3), if s∗|(p0,p1) = ∞, apparently v∗|(p0,p1) = 0. To show that a∗|(p0,p1) = 1, we appeal to

“instantaneous sequential rationality”. Define zt = log pt
1−pt . From the law of motion of pt in (2), one can

easily verify that the law of motion of zt (from type B worker’s view point) is given by

dzt = ãt

[(
at −

1

2
ãt

)
dt− dBt

]
. (23)

Suppose that z ∈ (z0, z1) where z0 = log p0
1−p0 and z1 = log p1

1−p1 . Given such z, define ε0 ≡ z − z0 > 0

and ε1 ≡ z1 − z > 0. We want to show that, for ∆ small enough, a∆(p(z)|a∗, s∗, a∗) = 1. To see this,

recall that

a∆(p|a, s, ã) ≡ argmaxâ∈[0,1]

{
(w + â)∆ + e−r∆E [v(p∆|a, s, ã)| pt=0 = p, at = â, ãt = ã0∀t ∈ [0,∆)

]}
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We would like to argue that the marginal effect of changing â on the second term in the above maximization

problem is negligible compared to that on the first term. Since v∗ = 0 on (z0, z1), we have∣∣∣∣ ddâE [v(p∆|a, s∗, ã)| pt=0 = p, at = â, ãt = ã0∀t ∈ [0,∆)]

∣∣∣∣
≤ 1 + w

r

(∣∣∣∣ ddâ Pr(z∆ − z < −ε0)

∣∣∣∣+

∣∣∣∣ ddâ Pr(z∆ − z > ε1)

∣∣∣∣)
For any â,

z∆ − z ∼ N
(
ã(z)

(
â− 1

2
ã(z)

)
∆, ã(z)2∆

)
Therefore,

Pr(z∆ − z < −ε0) = Φ

[
− ε0
ã(z)2∆

−
â− 1

2 ã(z)

ã(z)

]

Pr(z∆ − z > ε1) = Φ

[
− ε1
ã(z)2∆

+
â− 1

2 ã(z)

ã(z)

]

As a result, ∣∣∣∣ ddâ Pr(z∆ − z < −ε0)

∣∣∣∣ , ∣∣∣∣ ddâ Pr(z∆ − z > ε1)

∣∣∣∣ ∼ exp

(
− 1

∆2

)
In contrast, the marginal effect of â on the first term in the maximization problem is ∆, which is of lower

order than exp
(
− 1

∆2

)
. So a∆(p(z)|a∗, s∗, a∗) = 1 for ∆ small enough, and thus a∗(p(z)) = 1. Since z is

arbitrary on (z0, z1), we conclude that a∗|(p0,p1) = 1.

The following Lemma establishes the structure of the firm’s strategy in any Markov equilibrium.

Lemma 7. In any equilibrium (a∗, s∗), there exist 0 < p ≤ p̄ < 1 s.t. s∗|(0,p) = 0, s∗|(p,p̄) ∈ (0,∞), and

s∗|(p̄,1) =∞.

Proof. We prove this lemma in several steps.

Step 1. There exists p > 0 s.t. s∗(p) = 0 for all p ∈ (0, p).
To see this, notice that for p < y, we have y−a ·p > 0 for all a ∈ [0, 1]. So in any equilibrium, we must

have s∗(p) = 0 for p < y, for otherwise if s∗(p̃) > 0 at some p̃ < y which implies that π(p̃|a∗, s∗) = 0,

then there is an alternative stopping rate s defined by

s(p) =

0, if p < y

∞, if p ≥ y

which generates strictly positive value, π(p̃|a∗, s) > 0, to the firm at belief p̃; this is a contradiction to the
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optimality of s∗ at p̃. Define

p ≡ sup{k : s∗(p) = 0,∀p ∈ (0, k)}. (24)

Note that p ≥ y > 0, and s∗(p) = 0 for all p ∈ (0, p).

Step 2. There does not exist any open interval I > p s.t. s∗(p) = 0 for all p ∈ I .
To see this, suppose (by contradiction) that such an I exists, and let p̃ ∈ I . Without loss, I = (p0, p1)

where

p0 ≡ inf {k : s∗(p) = 0, ∀p ∈ (k, p̃]} ,

p1 ≡ sup {k : s∗(p) = 0,∀p ∈ [p̃, k)} .

Note that p0 > p, for otherwise if p0 = p, then either p is a removable discontinuity of s∗ or the definition

of p is violated.

Now we show that there exists ε > 0 s.t. s∗(p) > 0 for all p ∈ (p0 − ε, p0) ∪ (p1, p1 + ε). First, since

s∗ is piecewise continuous, there exist ε1 > 0 s.t. s∗ is continuous on (p0 − ε1, p0) and (p1, p1 + ε1).16 By

definition of p0, there exists p2 ∈ (p0 − ε1, p0) s.t. s∗(p2) > 0.

• If s∗(p2) ∈ (0,∞), then by Lemma 6(2), s∗ is strictly increase around p2. Since s∗ is continuous on

(p2, p0), s∗|(p2,p0) is either strictly increasing and finite, or strictly increasing to∞ and then staying

at∞. So s∗|(p2,p0) > 0.

• If s∗(p2) = ∞, since s∗ is continuous on (p2, p0), we must have s∗|(p2,p0) = ∞, for otherwise the

strict increasing property of s∗ when s∗(p) ∈ (0,∞) (recall Lemma 6(2)) will lead to a contradiction

to the continuity of s∗|(p2,p0). So s∗|(p2,p0) > 0.

By definition of p1, there exists p3 ∈ (p1, p1 + ε1) s.t. s∗(p3) > 0. By the same argument as above,

we have s∗|(p3,p1+ε1) > 0. Moreover, it is easy to see that such a p3 can be chosen arbitrarily close to

p1, thus s∗|(p1,p1+ε1) > 0. Finally, define ε ≡ min{p0 − p2, ε1}. Then we have s∗(p) > 0 for all p ∈
(p0 − ε, p0) ∪ (p1, p1 + ε).

Given such an ε, optimality of s∗ implies that π∗(p) = 0 for all p ∈ (p0 − ε, p0) ∪ (p1, p1 + ε),

so that π∗′−(p0) = π∗′+(p1) = 0. Since s∗ is an optimal stopping rule, smooth pasting of π∗ implies that

π∗′(p0) = π∗′(p1) = 0. But then, to ensure that π∗(p) ≥ 0 for p close to but greater than p0, we must have

π∗′′+ (p0) ≥ 0 and π∗′′− (p1) ≥ 0. Moreover, since s∗|(p0,p1) = 0, Lemma 4 implies that (16) is satisfied on

(p0, p1), so that

y − a∗(p0)p0 = −1

2
p0(1− p0)a∗(p0)2π∗′′+ (p0) ≤ 0.

By a similar argument, we have

y − a∗(p1)p1 = −1

2
p1(1− p1)a∗(p1)2π∗′′+ (p1) ≤ 0.

16 Such an ε can be found regardless of whether s∗ is continuous at p0 and p1.
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By Lemma 6(1), on (p0, p1), p · a∗(p) is increasing, decreasing, or first increasing and then decreasing.

In any of case these cases, we must have

y − a∗(p)p ≤ 0,∀p ∈ (p0, p1).

Then, (16) implies that π∗′′(p) ≥ 0 for all p ∈ (p0, p1). Since π∗(p0) = π∗(p1) = π∗′(p0) = π∗′(p1) = 0,

this can be true only if π∗(p) = 0 and a∗(p)p = y for all p ∈ (p0, p1); that is, d
dp [a∗(p)p] = 0 on

p ∈ (p0, p1). Since s∗|(p0,p1) = 0, from the proof of Lemma 6(1), this implies that v∗(p) is constant on

(p0, p1), which implies that a∗(p) = 1
max{1,−v∗′(p)p(1−p)} = 1 on (p0, p1). But this is a contradiction to

a∗(p)p = y for all p ∈ (p0, p1). So there does not exist any open interval I > p s.t. s∗|I = 0.

Step 3. If s∗(p̃) = 0 and p̃ > p, then s∗ is discontinuous at p̃.
To see this, take such a p̃ and suppose (by contradiction) that s∗ is continuous at p̃. Since s∗ only has a

finite number of (isolated) discontinuities, there exists ε > 0 s.t. s∗ is continuous on (p̃ − ε, p̃]. By Step 2,

there exists p3 ∈ (p̃− ε, p̃) s.t. s∗(p3) > 0; in fact, we can also have s∗(p3) <∞ because s∗ is continuous

on (p̃ − ε, p̃] and s∗(p̃) = 0. By the same reasoning as in the second paragraph of Step 2, s∗|(p3,p̃) must be

strictly increasing and finite, or strictly increasing to ∞ and then staying at ∞. In any of these cases, we

reach a contradiction to the continuity of s∗ at p̃ with s∗(p̃) = 0.

Step 4. If s∗|I <∞ on some open interval I > p, then s∗|I ∈ (0,∞).
To see this, since s∗ is piecewise continuous, by Step 3 s∗ can have at most finite zero points in I .

In any subinterval of I over which s∗ 6= 0, Lemma 6(2) applies. Since v∗ defined in (13) has only one

undetermined constant, continuity of v∗ implies that such a constant does not change on I , so that the RHS

of (14) has well-defined left and right limits equal to each other everywhere on I . Since s∗ does not have

removable discontinuities, this implies that s∗|I satisfies (14), which is continuous and strictly increasing.

So s∗|I ∈ (0,∞).

Step 5. There does not exist p̂ such that s∗(p) ∈ (0,∞) for all p ∈ (p̂, 1).
To see this, suppose (by contradiction) such a p̂ exists. Lemma 6(2) indicates that π∗(p) = ln(1−p)

y + C

on (p̂, 1) for some constant C, which implies that π∗ is unbounded when p tends to 1, a contradiction to

π∗ ≤ y
r in any equilibrium.

Step 6. If s∗(p̂) =∞, then s∗(p) =∞ for all p ≥ p̂.
To see this, let p̂ be such that s∗(p̂) = ∞. We first show that s∗(p) = ∞ for all p ≥ p̂ at which s∗

is continuous. Suppose (by contradiction) that for some p̃ > p̂, s∗(p̃) < ∞ and s∗ is continuous at p̃.

Since s∗ has only finite discontinuities, s∗ is continuous at some open interval I containing p̃. Without loss,

I = (p4, p5) where

p4 ≡ inf {k : s∗(p) <∞, ∀p ∈ (k, p̃]} ,

p5 ≡ sup {k : s∗(p) <∞,∀p ∈ [p̃, k)} .

We make several observations about p4 and p5. First, p5 < 1. This is because by Step 4 s∗|(p4,p5) ∈ (0,∞),

and then that p5 = 1 would contradict Step 5. Second, s∗(p4) = s∗(p5) =∞. This is because by definitions
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of p4 and p5, we can find an increasing (decreasing) sequence converging to p4 (p5) such that the value of

s∗ is∞ along the sequence. Since s∗−1(∞) is closed, we conclude that s∗(p4) = s∗(p5) =∞. This further

implies that v∗(p4) = v∗(p5) = 0.

Recall that by Step 4, s∗|(p4,p5) ∈ (0,∞). Lemma 6(2) tells us that v∗ is strictly decreasing on (p4, p5),

which is a contradiction to v∗(p4) = v∗(p5) = 0. So s∗(p) = ∞ for all p ≥ p̂ at which s∗ is continuous.

Finally, since the discontinuities of s∗ are isolated, s∗−1(∞) being closed implies that s∗(p) = ∞ for all

p ≥ p̂.

Step 7. There exists p̂ s.t. s∗(p̂) =∞.
To see this, since s∗ is piecewise continuous on (0, 1), we let I ≡ (p̃, 1) be the last subinterval of

(0, 1) over which s∗ is continuous. By Step 3, s∗ does not have zero point in I; by Step 5, it cannot be

0 < s∗(p) <∞ for all p ∈ (p̃, 1). So there must exist p̂ ∈ (p̃, 1) s.t. s∗(p̂) =∞.

Let us now complete the proof of the lemma. Recall that p is already defined in (24). Now we define

p̄ ≡ inf{k : s∗(p) =∞,∀p ≥ k}. (25)

By Steps 6 and 7, p̄ is well-defined and satisfies p ≤ p̄ < 1. By definitions of p and p̄, we have s∗|(0,p) = 0

and s∗|(p̄,1) = ∞. Moreover, if p < p̄, then by definition of p̄ and Step 6, s∗(p) < ∞ for all p ∈ (p, p̄);

finally, by Step 4, we have s∗|(p,p̄) ∈ (0,∞).

Parts 2 and 3 of Lemma 6 characterizes type B worker’s behavior when p is in (p, p̄) or (p̄, 1). The fol-

lowing lemma extends Part 1 of Lemma 6 and provides a closed-form formula for type B worker’s behavior

when p ∈ (0, p).

Define

Vm =
1 + w

r
− 1

β1
, (26)

where β1 is the positive root of r = 1
2x(x+ 1).

Lemma 8. In any equilibrium (a∗, s∗), let V ≡ v∗(p).

1. If V < Vm, then there exists p1 ∈ (0, p) s.t.

a∗(p) =

1, if p ≤ p1

1
−v∗′(p)p(1−p) , if p1 < p ≤ p

, (27)

where v∗ on (0, p1) and (p1, p) is given by (11) and (10), respectively, with the undetermined con-
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stants satisfying

A1 = 1
h

{
Φ
[√

2r
(
V − w

r

)]
− Φ

[√
2r
(
Vm − w

r

)]
−
√

2rφ
[√

2r
(
Vm − w

r

)]}
A2 = Φ

[√
2r
(
Vm − w

r

)]
+
√

2rφ
[√

2r
(
Vm − w

r

)]
B1 = − 1

β1h
β1
1

B2 = 0

, (28)

where h ≡ p

1−p , h1 ≡ p1
1−p1 and it satisfies

h1 = −
√

2r

A1
φ
[√

2r
(
Vm −

w

r

)]
. (29)

Moreover, v∗ is decreasing on (0, p) with v∗(p1) = Vm; a∗ is decreasing on (p1, p).

2. If V ≥ Vm, then a∗(p) = 1 for all p ∈ (0, p), and v∗ on (0, p) is given by (11) withB1 = −( 1+w
r
−V )

hβ1

B2 = 0
. (30)

Proof. Suppose first that V < Vm. Let us first show that there exists p1 ∈ (0, p) s.t.

a∗(p)

= 1, if p ∈ (0, p1)

< 1, if p ∈ (p1, p)
. (31)

We proceed in several steps.

Step 1. We show that a∗(p) < 1 for some p ∈ (0, p). Suppose (by contradiction) that a∗(p) = 1

for all p ∈ (0, p) (i.e., â(h) = 1 for all h ∈ (0, h)). In this case, type B worker’s value function v̂ is

given by (11) on (0, h). Boundedness of v̂ requires that B2 = 0. Moreover, condition (9) then implies that

B1β1h
β1−1h ≥ −1 for all h ∈ (0, h), so that

v̂(h) =
1 + w

r
+B1h

β1
1 ≥

1 + w

r
− 1

β1
= Vm, ∀h ∈ (0, h).

This is a contradiction to our assumption that v̂(h) = V < Vm.

By Step 1, let us pick any h′ ∈ (0, h) s.t. â(h′) < 1. Define

h1 ≡ inf{k : â(h) < 1,∀h ∈ (k, h′)}. (32)

Step 2. We show that h1 > 0. Suppose (by contradiction) that h1 = 0. By the definition of h1

in (32), we have â(h) < 1 for 0 < h < h′. By Claim 3, type B worker’s value function v̂ on (0, h′)

satisfies Φ
(√

2r
(
v̂ − w

r

))
= Ã1h+ Ã2 for some

(
Ã1, Ã2

)
. In addition, his equilibrium action is given by
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â(h) = −1
v̂′(h)h =

−
√

2rφ(
√

2rv̂)
Ã1h

. Since v̂(h) is bounded (so that the denominator is bounded away from 0),

â(h) tends to infinity as h→ 0, which is impossible because â is bounded by 1.

Step 3. We show that â(h) < 1 for all h ∈ (h1, h). Suppose (by contradiction) that there exists

h′′ ∈ (h1, h) s.t. â(h′′) = 1. Because h1 > 0, continuity of â and condition (32) imply that â(h1) = 1.

By Lemma 6(1), â is increasing, or decreasing, or first increasing and then decreasing on (h1, h
′′). Since

â(h1) = â(h′′) = 1 and â is bounded above by 1, it can only be the case that â(h) = 1 for all h ∈ (h1, h
′′),

but this is a contradiction to â(h′) < 1.

Step 4. We show that â(h) = 1 for all h ∈ (0, h1). Were it not the case, we can find some point between

(0, h1) s.t. â < 1, and then the same construction in Steps 2 and 3 would render a contradiction.

Having established the structure of a∗ on (0, p), Lemma 6 then implies that v∗ is given by (11) when

p ∈ (0, p1) and by (10) when when p ∈ (p1, p). That is,

v̂(h) =

1+w
r +B1h

β1 +B2h
β2 , if h ≤ h1

w
r + 1√

2r
Φ−1 (A1h+A2) , if h ∈ (h1, h)

where β1 and β2 are the roots of r = 1
2x(x+ 1) s.t. β2 < 0 < β1.

Now we characterize those undetermined constants (A1, A2, B1, B2) and p1 as functions of V and p

(and primitive parameters). Note first that the boundedness of v̂ implies that B2 = 0. The value-matching

conditions at h1 and h are

Φ

[√
2r

(
1 + w

r
+B1h

β1
1 −

w

r

)]
= A1h1 +A2 (33)

Φ
[√

2r
(
V − w

r

)]
= A1h+A2 (34)

Moreover, continuity of â at h1 implies the following two smooth-pasting conditions:

1 = −v̂′(h)h
∣∣
h=(h1)−

= −B1β1h
β1−1
1 h1 (35)

1 = −v̂′(h)h
∣∣
h=(h1)+

= −

√
2rφ

[√
2r
(

1+w
r +B1h

β1
1 − w

r

)]
A1h1

(36)

Direct computation shows that the unique solution to the system of equations (33)-(36) is given by (28) and

(29).

Finally, that B1 < 1 and A1 < 1 imply that v∗ is decreasing on (0, p); that a∗ is decreasing on (p1, p)

follows from a∗(p1) = 1 and Lemma 6(1).

Suppose now that V ≥ Vm. The previous argument implies that, in general, either a∗(p) = 1 for all

p ∈ (0, p) or (31) holds for some p1 ∈ (0, p) with v∗(p1) = Vm; the latter is impossible when V ≥ Vm,

because v∗ is strictly decreasing on (p1, p) (as implied by condition (9)). The solution to v∗ follows from

Lemma 6(1) and the boundary condition that v∗(p) = V .
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Lemmas 6 through 8 indicate that the equilibrium strategies are pinned down by (p, p̄, V ), where p and

p̄ are the cutoffs in the firm’s strategy, and V is type B worker’s value at belief p.

A.3 Solving for the Markov Equilibrium

We will provide necessary conditions to pin down a unique vector (p, p̄, V ), and then show that the corre-

sponding candidate strategy profile (given by Lemmas 6 through 8) is a Markov equilibrium.

Given an equilibrium (a∗, s∗), let p be the lower cutoff in the firm’s strategy. Recalling that h =
p

1+p ,

we define α : (0, h)→ (0, 1) by

α =
h

h
. (37)

For p ∈ (0, p) (equivalently, for h ∈ (0, h)), we can without loss write their strategies as functions of α.

Specifically, given (â, ŝ, v̂, π̂) defined in (18), we define ǎ, š, v̌, π̌ : (0, 1]→ R by

š(α;h) = ŝ (αh)

π̌(α;h) = π̂ (αh)

ǎ(α;h) = â (αh)

v̌(α;h) = v̂ (αh)

(38)

To be sure, these functions also depend on V (i.e., type B worker’s value at p), as well as primitive pa-

rameters (w, y, r). Whenever there is no confusion, we will typically not make the dependence notationally

explicit. However, such dependence will be analyzed in detail in Claim 5 below.

Notice that we have given close-form formula for â, v̂ and ŝ in Lemmas 6 through 8. The next lemma

characterizes the firm’s value function on (0, p),17 as well as the lower cutoff p in the firm’s strategy.

Lemma 9. In any equilibrium (a∗, s∗), the corresponding ǎ and š defined in (38) do not depend on h.

Moreover, π̌ satisfies that

π̌(α;h) =
αh

1 + αh
π̌1(α) +

1

1 + αh
π̌0(α) (39)

where π̌1(α) is the unique solution to 18

rπ̌1(α) = y − ǎ(α) + π̌′1(α)ǎ(α)2α+
1

2
π̌′′1(α)ǎ(α)2α2

17 For all p > p, indifference/optimality of the firm’s behavior implies that its value is 0.
18 For existence of solution, see Online Appendix.
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with boundary conditions π̌1(0) = y−1
r and π̌1(1) = 0; and π̌0(α) is the unique solution to 19

rπ̌0(α) = y +
1

2
π̌′′0(α)ǎ(α)2α2

with boundary conditions π̌0(0) = y
r and π̌0(1) = 0.

Finally, h satisfies that

h = − π̌
′
0(1)

π̌′1(1)
. (40)

Proof. Since š(α;h) = 0 for all α, š is independent of h. Also, it is straightforward to use conditions (27)

and (28) in Lemma 8 to verify that â is only a function of h
h (which is just α), and thus ǎ is independent of

h.

Given the law of motion of pt (from the firm’s viewpoint) in (1), by Ito’s lemma, we have

dαt = αtǎ(αt)

(
αth

1 + αth
ǎ(αt)dt− dBF

t

)
,

where dBF
t a Brownian motion. Then, π̌ satisfies that

π̌(αt;h) =

(
y − αth

1 + αth
ǎ(αt)

)
dt+ Et

[
e−rdtπ̌(αt+dt;h)

]
.

Above, notice that pt =
αth

1+αth
. The HJB equation for π̌ is

rπ̌(α;h) = y − ǎ(α)
αh

1 + αh
+ π̌′(α;h)αǎ(α)2 αh

1 + αh
+

1

2
π̌′′(α;h)α2ǎ(α)2, ∀α ∈ (0, 1), (41)

with boundary conditions π̌(0;h) = y
r and π̌(1;h) = 0.

Now we verify that equation (39) is the unique solution to (41).20 Let us denote the RHS of (39) by

π̌conj . Note that

π̌′conj(α;h) =
αh

1 + αh
π̌′1(α) +

1

1 + αh
π̌′0(α) +

h

(1 + αh)2 [π̌1(α)− π̌0(α)] ,

π̌′′conj(α;h) =
αh

1 + αh
π̌′′1(α) +

1

1 + αh
π̌′′0(α) +

2h

(1 + αh)2

[
π̌′1(α)− π̌′0(α)

]
− 2h2

(1 + αh)3 [π̌1(α)− π̌0(α)] .

Direct computation then shows that π̌conj satisfies (41). Moreover, it is also easy to verify that π̌conj(0;h) =
y
r and π̌conj(1;h) = 0, so π̌conj solves (41) with the associated boundary conditions.

Finally, we prove that in equilibrium h = − π̌′0(1)
π̌′1(1)

. To see this, notice that π∗(p) = 0 for all p ≥ p, as

19 For existence of solution, see Online Appendix.
20 We establish the uniqueness of solution in the Online Appendix.
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required by firm optimality. Smooth pasting of π∗ at p implies that

0 = π̌′(α;h)|α=1

=
h

(1 + αh)2
[π̌1(α)− π̌0(α)] +

1

(1 + αh)2
[αhπ̌1(α) + π̌0(α)]

∣∣∣∣
α=1

=
1

(1 + h)2
[hπ̌1(1) + π̌0(1)] .

Thus, h = − π̌′0(1)
π̌′1(1)

.

Before we proceed, we provide a useful result on the linearity of the solution to an ODE w.r.t. its

boundary values.

Claim 4. Let X = [0, 1]. Suppose that y(x) defined on X is the unique solution to the following ODE

a(x)y′′ + b(x)y′ + c(x)y = d(x)

with boundary conditions y(0) = y0, y(1) = y1. Moreover, suppose that g0(x) is the unique solution to

a(x)g′′ + b(x)g′ + c(x)g = 0

with boundary conditions g(0) = 1, g(1) = 0; g1 is the unique solution to

a(x)g′′ + b(x)g′ + c(x)g = 0

with boundary conditions g(0) = 0, g(1) = 1; g2 is the unique solution to

a(x)g′′ + b(x)g′ + c(x)g = d(x)

with boundary conditions g(0) = 0, g(1) = 0. Then we must have

y(x) = g0(x)y0 + g1(x)y1 + g2(x).

Proof. The claim can be easily verified by substituting y(x) = g0(x)y0 + g1(x)y1 + g2(x) into the first

ODE.

Recall the definition of ǎ in (38). Lemma 9 indicates that it is independent of h, and its value only

depends on α as well as (V,w, y, r). Define

a(V ) ≡ ǎ(1;V ) (42)

That is, if in equilibrium type B worker’s value at p is V , then a(V ) is his equilibrium action at belief p.

Note that a is independent of the firm’s instantaneous payoff y, and that we have dropped its dependence on
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w and r for notational convenience.

Also, as in Lemma 9, define

h(V, y) ≡ − π̌
′
0(1;V, y)

π̌′1(1;V, y)
. (43)

Finally, define

e(V, y) ≡ y − a(V )
h(V, y)

1 + h(V, y)
. (44)

Again, for notational convenience, we have dropped their dependence on w and r.

Claim 5. The following statements hold.

1. 0 < h(V, y) <∞ whenever e(V, y) ≤ 0.

2. For any fixed V ∈
[
0, 1+w

r

)
, 1+h(V,y)

h(V,y) e(V, y) is strictly increasing in y.

3. For any fixed y ∈ (0, 1), e(V, y) is strictly decreasing in V , satisfying e(Vm, y) < 0; moreover, e(·, y)

always admits a unique zero point.

Proof. 1. To analyze the sign of h(V, y) defined in (40), first we need to understand better π̌′0(1) and

π̌′1(1), which are defined in Lemma 9.

By Claim 4, there exist functions k0(α;V ), g0(α;V ) and g1(α;V ), all independent of y, such that

π̌0(α;V, y) =
y

r
− k0(α;V )

y

r
,

π̌1(α;V, y) =
y − 1

r
− g0(α;V )

y − 1

r
+ g1(α;V ),

(45)

where k0(α;V ) is the unique solution to

rk0 =
1

2
k′′0 ǎ(α;V )2α2

with boundary conditions k0(0) = 0 and k0(1) = 1; g0(α;V ) is the unique solution to

rg0 = αǎ(α;V )2g′0 +
1

2
α2ǎ(α;V )2g′′0

with boundary conditions g0(0) = 0 and g0(1) = 1; g1(α;V ) is the unique solution to

rg1 = 1− ǎ(α;V ) + αǎ(α;V )2g′1 +
1

2
α2ǎ(α;V )2g′′1 (46)

with boundary conditions g1(0) = g1(1) = 0.
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The following observations on k0 and g0 turn out to be important.

k′0(1;V ) > 0, (47)

g′0(1;V ) > 0, (48)

k′0(1;V )− g′0(1;V ) > 0. (49)

To prove (47), suppose the contrary. Then there must exist a local maximum point α1 ∈ (0, 1] of k0

such that k′0(α1;V ) = 0 and k′′0(α1;V ) ≤ 0. Since k0(α;V ) > 0 for all α ∈ (0, 1),21 the ODE for

k0(α;V ) will be violated at α1, a contradiction. A similar argument can be used to establish (48).

To prove (49), consider a new function δ = k0(α;V )−g0(α;V ). Then δ satisfies the following ODE

rδ = −αǎ(α;V )2g0(α;V ) +
1

2
α2ǎ(α;V )2δ′′

with boundary conditions δ(0) = δ(1) = 0. A similar argument to the above paragraph shows that

δ′(1) > 0, which is equivalent to k′0(1;V )− g′0(1;V ) > 0.

From (44), we know that e(V, y) ≤ 0 implies h(V,y)
1+h(V,y) > 0; so, whenever e(V, y) ≤ 0, we must have

1+h(V,y)
h(V,y) e(V, y) ≤ 0. Now we argue that 1+h(V,y)

h(V,y) e(V, y) ≤ 0, in turn, implies that h(V, y) ≥ 0.

Substituting (45) into (43), we get

h(V, y) =
k′0(1;V )yr

g′0(1;V )1−y
r + g′1(1;V )

. (50)

Conditions (47) and (48) then imply that

h(V, y) > 0 ⇐⇒ y

r
≤
g′1(1;V ) + g′0(1;V )1

r

g′0(1;V )
,

and h(V, y) =∞ when the equality holds. Moreover, conditions (47) and (49) imply that

1 + h(V, y)

h(V, y)
e(V, y) ≤ 0 ⇐⇒ y

r
≤
k′0(1;V ) ǎ(1;V )

r − g′0(1;V )1
r − g

′
1(1;V )

k′0(1;V )− g′0(1;V )
.

Consider first the case where ǎ′(1;V ) = 0, so that ǎ(α;V ) = 1 for all α ∈ [0, 1]. In this case, the

solution to ODE (46) is g1(α) ≡ 0, and condition (50) becomes

h(V, y) =
k′0(1;V )yr
g′0(1;V )1−y

r

.

Conditions (47), (48) and that y < 1 implies that 0 < h(V, y) <∞.

21 Suppose that minα∈(0,1) k0(α;V ) < 0, and let α′1 ∈ argminα∈(0,1) k0(α;V ). Then k0(α′1) < 0 while
k′′0 (α′1;V ) ≥ 0, violating the ODE for k0, a contradiction.
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Consider now the case where ǎ′(1;V ) < 0. Toward showing that 1+h(V,y)
h(V,y) e(V, y) ≤ 0 implies that

0 < h(V, y) <∞, it suffices to prove that

k′0(1;V ) ǎ(1;V )
r − g′0(1;V )1

r − g
′
1(1;V )

k′0(1;V )− g′0(1;V )
<
g′1(1;V ) + g′0(1;V )1

r

g′0(1;V )
. (51)

Rearranging, we know that condition (51) is equivalent to

g′1(1;V ) +
1− ǎ (1;V )

r
g′0(1;V ) > 0.

To show that this condition holds, let us define a function Y (α) ≡ g1(α;V ) + 1−ǎ(1;V )
r g0(α;V ), and

we need to show that Y ′(1) > 0. It is easy to see that Y (α) satisfies the following ODE

rY = 1− ǎ(α;V ) + Y ′αǎ(α;V )2 +
1

2
α2ǎ(α;V )2Y ′′ (52)

with boundary conditions Y (0) = 0 and Y (1) = 1−ǎ(1;V )
r .

Suppose (by contradiction) that Y ′(1) < 0. Then there must exist α1 ∈ (0, 1) such that Y (α1) >

Y (1), Y ′(α1) = 0 and Y ′′(α1) ≤ 0. This implies that

1− ǎ(α1;V ) ≥ rY (α1) > rY (1) = 1− ǎ(1;V ).

But this is a contradiction to ǎ(α;V ) being decreasing in α.22

Suppose (by contradiction, again) that Y ′(1) = 0. Since Y (1) = 1−ǎ(1;V )
r , by (52), we must have

Y ′′(1) = 0. Differentiating both sides of (52) at α = 1 and substituting Y (1) = 1−ǎ(1;V )
r and

Y ′(1) = Y ′′(1) = 0 into the result,23 we can get

ǎ′(1;V ) =
1

2
ǎ2(1;V )Y ′′′(1).

Because ǎ′(1;V ) < 0 by Lemma 6(1), we have Y ′′′(1) < 0. Together with Y (1) = Y ′(1) =

Y ′′(1) = 0, we know that there must exist α1 ∈ (0, 1) such that Y (α1) > Y (1), Y ′(α1) = 0 and

Y ′′(α1) ≤ 0. So the same contradiction as in the previous case arises.

2. By equation (50), we have

1 + h(V, y)

h(V, y)
e(V, y) = y

1 + h(V, y)

h(V, y)
− ǎ(1;V )

=
k′0(1;V )− g′0(1;V )

k′0(1;V )
y +

g′0(1;V )

k′0(1;V )
+ r

g′1(1;V )

k′0(1;V )
− ǎ(1;V ).

22 Recall the definition of ǎ in (38) and that the equilibrium action is decreasing in belief by Lemma 8.
23 Y ′′′(1) must exist because ǎ in (52) is differentiable at α = 1.
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Part 2 of the claim follows easily from conditions (47) and (49).

3. [TO BE ADDED]

Lemma 10. In any equilibrium (a∗, s∗),

• if V = 0, then e(0, y) ≤ 0 and p = p̄, where p is given by (40).

• if V > 0, then e(V, y) = 0 and p < p̄, where p is given by (40) and

p̄ = 1− e−V y(1− p).

For any (w, y, r), there exists unique (p, p̄, V ) satisfying the above equilibrium conditions.

Proof. Suppose first that v∗(p) = V = 0. By Claim 3, v∗ is strictly decreasing on (p, p̄). Since v∗(p) ≥ 0

for all p, we must have p = p̄. Further, for p ∈ (0, p), Lemma 4 indicates that the firm’s value function π∗

satisfies

rπ∗(p) = y − a∗(p)p+
1

2
p2(1− p)2a∗(p)2π∗′′(p).

As p → p, we have π∗′′(p) ≥ 0 (i.e., the firm’s value function must be locally convex at the boundary, for

otherwise π∗(p) < 0 for p close enough to p), which implies that y − a∗(p)p− rπ∗(p) ≤ 0. Since a∗(p) is

continuous on (0, p] and π∗(p) = 0,24 we have e(0, y) = y − a∗(p)p ≤ 0.

Suppose now that V > 0. Using equation (13), as well as the conditions that v∗(p̄) = 0 and v∗(p) = V ,

one can find that p̄ = 1− e−V y(1− p) (note that p̄ > p). By Claim 2, we know that y − a∗(p)p = 0 for all

p ∈ (p, p̄); by Lemma 6, a∗ is continuous at p, so that e(V, y) = y − a∗(p)p = 0.

Fix any (w, y, r). If e(0, y) ≤ 0, then Claim 5(1) tells us that p determined by (40) is well-defined. So

setting V = 0 and p̄ = p satisfies the first equilibrium condition. Moreover, Claim 5(2) implies that it is

impossible to have any V > 0 satisfying e(V, y) = 0. On the other hand, if e(0, y) > 0, by Claim 5(2),

there exists a unique V ∈ (0, Vm) such that e(V, y) = 0. The previous calculation implies that such a V ,

together with p determined by (40) and p̄ = 1 − e−V y(1 − p), uniquely satisfies the second equilibrium

condition.

A.4 Proofs of the Main Results

Proof of Theorem 1. Fix any (w, y, r), and let (p, p̄, V ) be the unique vector that satisfies the equilibrium

condition in Lemma 10. We will show that the strategy profile, parameterized by (p, p̄, V ), indeed constitutes

an equilibrium. We consider the cases V = 0 and V > 0 separately.

24 Lemma 6 implies that a∗ is continuous on (0, p̄); in the current case where p̄ = p, a∗ is continuous on (0, p).
Because we treat two strategies that are almost surely equal as the same, it is without loss to assume that a∗ is
continuous on (0, p].
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Case 1. V = 0 and e(0, y) ≤ 0.

Consider the following strategies. Let a∗(p)|(0,p) be given by Lemma 8, a∗(p)|(p,1) = 1; s∗(p)|(0,p) = 0,

s∗(p)|[p,1) = ∞. Note that these strategies satisfy the properties claimed in Theorem 1. We want to show

that (a∗, s∗) is an equilibrium. First, given the firm’s strategy s∗, since a∗ (and the induced v∗) are solved

from Lemma 8 and thus satisfy the HJB in Lemma 1, we know that a∗ satisfies worker optimality.

To see that s∗ is optimal for the firm, let us define π(p) in the following way: on (0, p), π(p) solves the

following ODE

rπ = y − pa∗ +
1

2
π′′p2(1− p)2a∗2 (53)

with boundary conditions π(0) = y
r and π(p) = 0; moreover, π(p)|(p,1) = 0. The construction of h (and

thus p) in Lemma 9 ensures that π′(p) = 0. Lemma 3 in Kuvalekar and Lipnowski (2018) provides sufficient

condition for s∗ to be the firm’s best response to a∗. In particular, we need to check the following conditions:

1) π ≥ 0;

2) π is C1 and piecewise C2;

3) π|(p,1) = 0;

4) For a.e. p ∈ (0, 1), y − pa∗ ≤ rπ − 1
2π
′′p2(1− p)2a∗2 with equality if p ≤ p.

It is easy to verify that conditions 2), 3) and 4) are satisfied. Now we prove 1).

Recall that e(0, y) = y − a∗(p)p ≤ 0. Suppose first that y − a∗(p)p < 0. We know from the ODE for

π that π′′(p) > 0, so that π(p) > 0 for p close to p. Suppose (by contradiction) that there exists p0 such

that π(p0) < 0. Then there must exist a local minimum point p1 and a local maximum point p2 of π with

0 < p1 < p2 < p, such that π(p1) < 0 and π(p2) > 0. Notice that

a∗(p1)p1 ≥ y − rπ(p1) > y − rπ(p2) ≥ a∗(p2)p2

where the first (third) inequality follows from π′′(p1) ≥ 0 (π′′(p2) ≤ 0), and the second inequality follows

from π(p1) < 0 < π(p2). Then, by a similar argument to that of Lemma 6(1), one can show that a∗(p)p

must be decreasing on [p2, p]. However, since y − a∗(p)p < 0, we have

a∗(p)p > y ≥ y − rπ(p2) ≥ a∗(p2)p2,

a contradiction. Thus, when y − a∗(p)p < 0, we must have π(p) ≥ 0 for all p.

Suppose now that y − a∗(p)p = 0. Lemma 8 and Claim 5(3) imply that a∗(p) < 1. The argument in

the last part of Proposition 2’s proof (see below) shows that d
dp [y − a∗(p)p]

∣∣∣
p=p

> 0. Taking derivatives on

both sides on (53), we can see that π′′′(p) < 0. Together with π(p) = π′(p) = π′′(p) = 0, we know that

π(p) > 0 for p less than but close to p. Then the same argument as above shows that π(p) ≥ 0 for all p.

Case 2. V > 0 and e(V, y) = 0.
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Consider the following strategies. Let a∗(p)|(0,p) be given by (27) in Lemma 8, a∗(p)|(p,p̄) = y
p as in

(12), and a∗(p)|(p̄,1) = 1; also, let s∗(p)|(0,p) = 0, s∗(p)|(p,p̄) be given by (14),25 and s∗(p)|[p̄,1) =∞. Note

that these strategies satisfy the properties claimed in Theorem 1. An argument analogous to Case 1 verifies

worker and firm optimality.

Finally, equilibrium uniqueness follows from the uniqueness part of Lemma 10.

Proof of Proposition 1. As the proof of Lemma 10 shows, e(V, y;w, r) depends on (V,w, r) only through

V − w
r . Let u0(y) be such that whenever V − w

r = u0(y), e(V, y;w, r) = 0. Note that u0(y) is well-defined

and unique because of Claim 5(3). Now define

w̄(y; r) = max {0,−ru0(y)} .

Notice that whenever w > w̄(y; r), 0 − w
r < u0(y), so that e(0, y;w, r) > 0. Then, by Lemma 10 and

Theorem 1, p < p̄ in the equilibrium wheneverw > w̄(y, r). That w̄(y, r) is decreasing in y follows directly

from Claim 5(1) and Claim 5(2).

Proof of Proposition 2. Fix (w, y, r) and let (a∗, s∗) be the unique equilibrium with the associated (p, p̄, V ).

By Lemma 8, there exists p1 ≤ p s.t.

a∗(p)

= 1, if p ∈ (0, p1)

< 1, if p ∈ (p1, p)
.

Obviously y − a∗(p)p is decreasing on (0, p1). Moreover, by Lemma 6(1), there exists p2 ∈ [p1, p] s.t.

y − a∗(p)p is decreasing on (p1, p2) and increasing on (p2, p). Finally, by Lemma 6(2), y − a∗(p)p is

constant on (p, p̄).

By the continuity of a∗ on (0, p̄), we conclude that there exists p2, s.t. y − a∗(p)p is decreasing on

(0, p2) and increasing on (p2, p̄).

In fact, whenever (w, y, r) is such that a∗(p) < 1, we have that y − a∗(p)p is strictly increasing at any

p less than but close to p. To see this, note that derivations similar to that of (22) gives us

sgn
[
d

dp
(y − a∗(p)p)

]
= sgn

[
d

dh

(
−v̂′(h)(1 + h)

)]
= sgn

[
1− 2(rv̂(h)− w)

â(h)p(h)

]
. (54)

If v̂(h) = V = 0 (i.e., the equilibrium does not involve stochastic termination), it is obvious from (54)

that y − a∗(p)p is strictly increasing in a left neighborhood of p. On the other hand, if v̂(h) = V > 0,

let us suppose (by contradiction) that (54) takes a non-positive value at p; for brevity, suppose that it is

strictly negative.26 Then by Lemma 6(1), y − a∗(p)p is decreasing and thus positive on (0, p). Recall the

25 The constant C in (13) is found by solving v∗(p) = V . For s∗(p) to be well-defined, (14) also requires that
w + y

2 ≥ rV . This is established later on in the proof of Proposition 2; see footnote 27.
26 The case where the derivative is 0 can be dealt with using an approach similar to this section, by taking higher-

order derivatives of π

40

Electronic copy available at: https://ssrn.com/abstract=3424122



defining ODE of π in (53). The positivity of y − a∗(p)p implies the positivity of π on (0, p), because

π(p) = Eτ
[∫ τ

0 (y − a∗(pt)pt)e−rtdt|p0 = p
]

where τ is first time pt reaches p. From (53), we know that

π′′(p) = 0 because π′(p) = y − a∗(p)p = 0. Taking derivative on both sides of (53) at p = p, we have

rπ′(p) =
d

dp
[y − a∗(p)p]

∣∣∣∣
p=p

+
1

2
π′′′p2(1− p)2a∗(p)2.

This implies that π′′′(p) > 0. Together with π(p) = π′(p) = π′′(p) = 0, we have that for p less than but

close enough to p, we have π(p) < 0. But this is a contradiction to the positivity of π we just deduced. So

we conclude that y − a∗(p)p is strictly increasing in a left neighborhood of p.27

Proof of Proposition 3. Let us first derive some properties of any equilibrium that involves replacement.

Within the relationship with a particular worker, at each instant the firm is comparing his payoff from

staying in the current relationship, π∗(p), from taking the outside option, 0, and from replacing the worker,

πR = π∗(p0) − c. If an equilibrium involves replacement, it must be that πR ≥ 0. Taking the equilibrium

value of πR as given, the players are playing the game in our baseline model specified in Section 2 with the

firm’s outside value being πR; on the other hand, any πR induces a (static) Markov equilibrium in a given

relationship. It is easy to see that our baseline model (without replacement) with firm instantaneous payoff

y and outside value πR is strategically equivalent to one with yR ≡ y − rπR and outside value 0.28 We find

a stationary Markov equilibrium with replacement if the (static) equilibrium (a∗, s∗) induced by πR satisfies

πR = π∗(p) = π∗(p0)− c. (55)

where p is the lowest belief above which s∗(p) > 0, as in Theorem 1. The aforementioned strategic

equivalence also implies that, instead of searching over πR to check if (55) holds, we can fix the outside

value to 0 while varying yR, until the induced (static) equilibrium satisfies

π∗(p0) = c. (56)

Now we go back to our baseline model and examine when condition (56) can be satisfied. Given our

previous analysis, one can show that the firm’s value function, π∗(·; yR), in the unique Markov equilibrium

delivered by Theorem 1 is continuous in yR. Moreover, for any fixed p0, π∗(p0; yR)→ 0 as yR → 0. Define

c̄ = max
yR∈[0,y]

π∗(·; yR).

• If c > c̄, there does not exist any yR ∈ [0, y] s.t. (56) holds; in other words, there does not exist any

πR ≥ 0 s.t. (55) holds. As a result, no stationary Markov equilibrium involves replacement because

such an option is too costly. The unique stationary Markov equilibrium is characterized by Theorem

1, in which the firm takes its outside option after firing the first worker.

27 From (54), an immediate implication of this result is that w + y
2 > rV . This corresponds to footnote 25.

28 Namely, any Markov equilibrium in one game is also a Markov equilibrium in the other.
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• If c ≤ c̄, intermediate value theorem delivers some y∗R ∈ [0, y] s.t. (56) holds. Our previous argument

implies that the static equilibrium in our baseline model under parameter values (w, y∗R, r) constitutes

a stationary Markov equilibrium, in which the firm replaces the worker if his reputation is bad enough,

but never takes its outside option.

Proof of Proposition 4. In the Online Appendix, we provide explicit bounds on w′(p) and pm, under which

the worker’s value function v∗ in any Markov equilibrium (a∗, s∗) satisfies

1 + v∗′ (p) p (1− p) ≥ 0,∀p ≤ pm.

Lemma 2 and condition (15) then imply that a∗(p) = 1 for all p ≤ pm. Intuitively, if the incentive provided

by wage variation (capture by w′) is not strong enough, and if the worker’s reputation is good enough (so

that job is sufficiently secure), then type B worker wants to shirk to the maximum level.

The same argument as that in the proof of Lemma 7 can then establish that the firm’s strategy s∗ in any

Markov equilibrium fits Theorem 1’s description.29

With respect to the worker’s strategy a∗, we mentioned above that a∗(p) = 1 for all p ≤ pm, whereas for

all p > pm, w(p) is by assumption constant, so that the analyses in Lemmas 6 and 8 apply. Consequently,

the worker’s strategy a∗ in any Markov equilibrium fits Theorem 1’s description.

Finally, since the equilibrium strategies have the same structure as that Theorem 1, almost the same

analysis as the proof of Proposition 2 establishes that the average productivity y − a∗(p)p is a U-shaped

function of p in any Markov equilibrium.

29 The upper bound we provide for pm is less than y. Thus, for all p ≤ pm where wage could vary, we always have
s∗(p) = 0 because at those beliefs the firm’s instantaneous payoff y− ap is always positive regardless of the worker’s
action. The analysis for p > pm where wage is constant follows closely with the proof of Lemma 7.
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