
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2014

Teaching analysis of software designs using dependency graph Teaching analysis of software designs using dependency graph

Kevin STEPPE
Singapore Management University, kevinsteppe@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Higher Education Commons, and the Software Engineering Commons

Citation Citation
STEPPE, Kevin. Teaching analysis of software designs using dependency graph. (2014). 2014 IEEE 27th
Conference on Software Engineering Education and Training (CSEE&T): Proceedings: April 23-25,
Klagenfurt, Austria. 65-73.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7031

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1245?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Teaching Analysis of Software Designs using Dependency Graphs

Kevin Steppe
School of Information Systems, Singapore Management University

kevinsteppe@smu.edu.sg

Abstract

We present the use of a new type of dependency graph to aid students in analyzing

the modifiability of software designs. Though a variety of software design concepts,

such as information hiding, separation of concerns and patterns are taught to

undergraduate students, they often have difficulty applying these concepts to the

analysis of designs and particularly to comparing designs, perhaps due to the

subjective nature of these concepts. Our new technique complements design structure

matrix and ‘uses’ techniques to handle asymmetric dependency impacts and provide a

deterministic approach to comparing alternative designs. A major goal of this

technique was for students to be able to quickly learn about dependencies and use them

to make design decisions. In this paper we present findings from a study with thirty

third- and fourth-year undergraduates indicating that most were able to use the

technique to analyze and compare designs after a single short workshop and indicate

that they are likely to continue use the technique in the future.

1. Introduction

Modifiability is critical for any software system –to ease both initial development and

future changes. Effective modularity and minimization of ripple effects have long been

recognized as key aspects for a modifiable design[1, 2, 3, 4]. Much research work has been

done in software design to promote modifiability – polymorphism, patterns[5], aspects,

messaging middleware, web services, and more. However, guidance on modularity and

comparing designs are typically taught to software engineering students as informal principles

and heuristics. Such techniques require considerable experience to apply well – when

separating concerns which functions should be separated and which encapsulated or does an

adaptor, which introduces more calls, promote loose coupling? Students rarely have the

opportunity to evolve homework assignments and thus develop limited experience and

intuition regarding modifiability. Given these imprecise and sometimes subjective techniques

it is difficult to assess students’ ability to evaluate designs.

To improve this situation, we are testing a new technique based on dependency graphs to

enable students to analyze and compare designs. In developing this technique we had 3 major

goals: The technique must produce design analysis and advice consistent with practiced

design patterns [5], it must aid in the comparative analysis of different designs, and it must be

sufficiently precise and objective to be applied correctly by novices. The last follows our

observations both from attempting to teach other software analysis techniques and having

design debates with experienced professionals. All too often design debates start from

different designs all of each exhibit good principles, practices, and patterns then move into

relative merits of specific technologies without ever reaching a rigorous comparative analysis.

Similarly our students frequently have trouble applying simple, but somewhat subjective,

judgments about ‘uses’, encapsulation vs. separation, and other principles. The lack of

precise, objective building blocks for analysis results in considerable confusion before we

even get to the cognitively difficult tasks of analyzing impacts and making tradeoffs.

The technique we developed extends from several earlier techniques in analyzing

dependencies, including Parnas’s early concept of ‘uses’ structures [6], Jackson’s analysis of

assumptions [7], indirect coupling [8], and design structure matrices (DSM) [3, 9]. Of these,

our dependency graph technique is most similar to DSMs. This technique uses modules

(classes or packages) as the nodes of a graph. Dependencies into two categories: ‘semantic’

for data and functional dependencies and ‘syntactic’ for code level references. Semantic

dependencies are considered to be transitive while syntactic dependencies are not. Also

different from DSMs is that dependencies are explicitly directional. This structure allows us

to make objective and comparative evaluations of designs.

In this paper we present our results teaching this technique to a group of 30 undergraduate

information systems students. In one and a half hours we were able to explain the technique,

discuss the implication and uses, and give some examples. We gave a thirty minute test

covering 13 questions followed by a usability survey based on the Likert-style survey

developed by Brooke[10]. The test showed that the majority of the students were able to

learn and correctly apply the technique to a variety of questions and cases. Where students

had difficulty we saw the same mistake repeatedly, suggesting that slight improvements to the

teaching could result in nearly perfect application of the technique. The usability survey

indicated that students generally found the technique easy to use and would use it in the

future; on the negative side they felt it required learning a lot in a short time frame and were

not extremely confident in its use.

This study is similar to the work on DSMs in education [11, 12] in that we are also

working to bring improved analysis of design modularity and modifiability into software

education. The DSM papers focus on conformance of implementation to an instructor

specified design and uses tool support to assess that conformance. The authors also examine

the causes for non-conformance and how much instructor support in reviewing the tool’s

output is needed for students to identify that non-conformance. Our study also checks

students’ ability to relate implementation to design level dependencies, but this study focuses

primarily on design questions – where will ripple effects occur, which alternative design will

best handle a given change, and how can expected variations be protected.

The rest of this paper is organized as follows: Section 2 explains the dependency graph

technique. Section 3 discusses the method of the study and questions used for evaluation.

Section 4 discusses the results and Section 5 concludes.

2. Dependency Graph for Modifiability Analysis

This new technique extends on Parnas’s early concept of ‘uses’ structures, Jackson’s

analysis of assumptions, indirect coupling and design structure matrices. The dependency

graph is a concise graph language sufficient to explain a range of existing best practices,

compare different designs for a software system, and provide guidance for improving those

designs. The graph model does not aim to provide new solutions to any particular design

problem. Rather, it provides a ‘language’ and statements about structures expressed in that

language thus allowing analysis of a wide range of designs.

The graph model views systems as being composed of behaviors – functions within the

system – the modules which implement behaviors, data exchanged by those modules, and

interfaces to those modules. A module is defined as an atomic, independently editable piece

of system implementation. This is a piece of system code – either procedural or declarative –

which is separate from other modules in its editable representation. In an object-oriented

language a class is the most common example, but could also include a configuration file

when it specifies system behavior, or a package of classes. Data is defined as any variable,

or information storage not including behavior or processing. An interface is defined as a

precise description of how to access the behavior of a module while being separate from

the implementation of that module – for example a java interface. The behavior nodes

are useful in comparing designs with different modularizations, but in practice it is

frequently possible to omit them and include only modules and interfaces.

The model has two kinds of dependencies to show relations between the element.

Behaviors can depend on other behaviors or on data through ‘semantic’ dependencies. These

represent the need for functions to get data with the proper semantics – similar to Yang’s

indirect dependency[8] – and also capture the intent of Jackson’s assumptions[7] by one

function about other behaviors. We call these semantic dependencies because of the

dependence on the right meaning of the data as separated from the details of its format or

method of access.

The second category of dependencies is syntactic dependencies. These arise from the

syntax of the implementation code. We break these into three types. First, a module can

implement an interface. This indicates a promise by the module that any client which uses the

rules of the interface to access the module will get the results promised by the interface. This

implies that a change to the definition of the interface, without a corresponding change to the

module, results in a module which no longer fulfills this promise. The implementation of the

interface – the module – can be changed, even replaced, without breaking the promise as long

as the new implementation continues to provide the results specified by the interface.

A module may also depend on an interface by having a reference to that interface. This

represents a direct access to a behavior defined in the interface and can be observed as a code

reference within the module to that interface. If the interface is modified, the referencing

module will also need to be modified in order to work as before.

Modules may also depend on other modules through references. Like references to

interfaces, this represents direct access from one module to another. This can be observed in

code as reference or other explicit naming of the depended on module. A module to module

reference implies that a modification to the depended on module may require a modification

to the dependent module.

The last dependency type between modules is a data dependency. The module access data

whose type and format is defined by the module depended on. This dependency is different

from Yang’s indirect dependency, in [5] the “definition” of the data is wherever the data is

first instantiated while here the “definition” is where the format expected by the receiving

module is defined. A data dependency may “pass through” several modules (for example if

an xml document is created and then passed through several intermediaries before being

parsed), but often is only direct (module X gets an array of integers from module Y – how

module Y gets those integers is unknown to X). The dependency between the actual source

and sink is captured by the semantic dependency described earlier.

The full set of nodes and dependencies are represented graphically as shown in Figure 1.

Given this graph structure we can assign modifiability properties to pairs of nodes based on

the dependency or lack of dependency between them. We have defined semantic

dependencies such that they are inherent in the structuring of the solution – no rearrangement

of code into different chunks will remove them. Making behaviors changeable with respect to

each other requires structuring the behaviors t

dependent on each other’s data

behaviors change.

Figure 1: Nodes and dependency relations

Given the limits of the semantic

which works while maximizing

implementations changeable independently, they must be divided into independent modules.

However, any structural dependencies will inhibit this independence. In this sense, all

structural dependencies restrict

balance between decomposition and dependencies, and to structure

optimize modifiability for modules likely to be changed

Assuming no semantic changes to data, we can then assign properties to modules based on

the syntactic dependencies. The

variation – that other module

Thus changeable” is directional and relative

not imply B is “changeable” relative to A nor that A is “changeable” relative to C.

Changeable is defined as: “

respective to module Y if and only if: 1) X and Y are separate modules and 2) there are

no direct syntax dependencies from module Y to module X

ensures that separation of concerns is identified

larger and more complex modules. Note that part 2 implies that syntactic dependencies are

considered non-transitive. The intuition is that if Z depends on Y and Y depends on X, then

modifications to X which effect the dependencies from Y to X can by absorbed by Y and need

not impact the syntax Z uses to access Y.

From this definition we can then define two sets for each seed module. A

direct syntactic dependency on the

each other requires structuring the behaviors themselves such that they are either not

dependent on each other’s data or ensuring that the data’s semantics are not changed when the

Figure 1: Nodes and dependency relations

the semantic dependencies, the designer’s goal is to find a structure

maximizing the modifiability of the system implementation. To make

implementations changeable independently, they must be divided into independent modules.

l dependencies will inhibit this independence. In this sense, all

structural dependencies restrict modifiability. The work of the designer is then to find a

balance between decomposition and dependencies, and to structure those dependencies to

odifiability for modules likely to be changed.

Assuming no semantic changes to data, we can then assign properties to modules based on

the syntactic dependencies. The “Changeable” property derives from the idea of protected

that other modules are protected from variation in the “changeable” module.

Thus changeable” is directional and relative – module A is “changeable” relative to B does

not imply B is “changeable” relative to A nor that A is “changeable” relative to C.

ed as: “The implementation module X is labeled changeable

if and only if: 1) X and Y are separate modules and 2) there are

no direct syntax dependencies from module Y to module X. Part 1 of the definition

concerns is identified – failure to separate results in

larger and more complex modules. Note that part 2 implies that syntactic dependencies are

transitive. The intuition is that if Z depends on Y and Y depends on X, then

cations to X which effect the dependencies from Y to X can by absorbed by Y and need

not impact the syntax Z uses to access Y.

From this definition we can then define two sets for each seed module. All modules with a

on the seed module are in the dependent set. All other modules,

hemselves such that they are either not

anged when the

dependencies, the designer’s goal is to find a structure

system implementation. To make

implementations changeable independently, they must be divided into independent modules.

l dependencies will inhibit this independence. In this sense, all

. The work of the designer is then to find a

dependencies to

Assuming no semantic changes to data, we can then assign properties to modules based on

“Changeable” property derives from the idea of protected

s are protected from variation in the “changeable” module.

module A is “changeable” relative to B does

not imply B is “changeable” relative to A nor that A is “changeable” relative to C.

changeable

if and only if: 1) X and Y are separate modules and 2) there are

Part 1 of the definition

failure to separate results in modifying

larger and more complex modules. Note that part 2 implies that syntactic dependencies are

transitive. The intuition is that if Z depends on Y and Y depends on X, then

cations to X which effect the dependencies from Y to X can by absorbed by Y and need

ll modules with a

are in the dependent set. All other modules,

with no direct syntactic dependency on the seed module

modification to the seed module, all modules in the dependent set may need to also be

modified, while modules in the protected set will not have to be modified.

In figure 2 we show the dependency graph for a potential design of a vending machine. In

this design the Coin Collector module identifies inserted coins and calls the Coin Return to

increment its count and holdings. The Coin Collector also activates the panel with the

amount of money inserted. The Selection Panel

Soda Dispenser with the selected soda. The Soda Dispenser

change the inventory. Based on the price from Soda the Dispenser tells the Coin Return how

many coins to return. Focusing on the bottom half of the graph, we can see that the Soda

Dispenser makes calls to both Coin Return a

both. Soda Dispenser is called by the Selection Panel and thus is depended on. Selection

Panel doesn’t do anything with the output of the dispenser so there is no semantic dependency

there. However, the ‘return coins’ behavior of Coin Return

matter how those prices get to Coin Return, hence the semantic dependency.

Figure 2: Dependency graph for a potential design of a vending machine

We are going to test whether studen

syntactic dependencies have a direct mapping to code, we expect that students with some

development experience should have no trouble understanding the

Additionally, since the modifiability properties are deterministic, we expect that even without

extensive experience students will

well students are able to learn and apply the technique after a short training workshop.

3. Study Methodology

For this study we got thirty student volunteers to sit for a 1.5 hour workshop on the

technique. All were in either their third or fourth year of an undergraduate information

systems degree. All had completed courses on programming

with no direct syntactic dependency on the seed module are the protected set. Thus given a

modification to the seed module, all modules in the dependent set may need to also be

ules in the protected set will not have to be modified.

In figure 2 we show the dependency graph for a potential design of a vending machine. In

the Coin Collector module identifies inserted coins and calls the Coin Return to

nt and holdings. The Coin Collector also activates the panel with the

amount of money inserted. The Selection Panel highlights the sodas available and calls the

Soda Dispenser with the selected soda. The Soda Dispenser emits cans and informs Soda to

change the inventory. Based on the price from Soda the Dispenser tells the Coin Return how

Focusing on the bottom half of the graph, we can see that the Soda

Dispenser makes calls to both Coin Return and Soda and hence has syntactic dependencies to

both. Soda Dispenser is called by the Selection Panel and thus is depended on. Selection

Panel doesn’t do anything with the output of the dispenser so there is no semantic dependency

eturn coins’ behavior of Coin Return depends on the Soda prices, no

matter how those prices get to Coin Return, hence the semantic dependency.

Figure 2: Dependency graph for a potential design of a vending machine

We are going to test whether students find this technique easy to learn and apply. As the

syntactic dependencies have a direct mapping to code, we expect that students with some

development experience should have no trouble understanding the concept of dependencies.

e modifiability properties are deterministic, we expect that even without

students will apply the technique correctly. Our study will assess how

well students are able to learn and apply the technique after a short training workshop.

For this study we got thirty student volunteers to sit for a 1.5 hour workshop on the

technique. All were in either their third or fourth year of an undergraduate information

ee. All had completed courses on programming, software engineering,

. Thus given a

modification to the seed module, all modules in the dependent set may need to also be

In figure 2 we show the dependency graph for a potential design of a vending machine. In

the Coin Collector module identifies inserted coins and calls the Coin Return to

nt and holdings. The Coin Collector also activates the panel with the

highlights the sodas available and calls the

emits cans and informs Soda to

change the inventory. Based on the price from Soda the Dispenser tells the Coin Return how

Focusing on the bottom half of the graph, we can see that the Soda

nd Soda and hence has syntactic dependencies to

both. Soda Dispenser is called by the Selection Panel and thus is depended on. Selection

Panel doesn’t do anything with the output of the dispenser so there is no semantic dependency

depends on the Soda prices, no

Figure 2: Dependency graph for a potential design of a vending machine

ts find this technique easy to learn and apply. As the

syntactic dependencies have a direct mapping to code, we expect that students with some

concept of dependencies.

e modifiability properties are deterministic, we expect that even without

apply the technique correctly. Our study will assess how

well students are able to learn and apply the technique after a short training workshop.

For this study we got thirty student volunteers to sit for a 1.5 hour workshop on the

technique. All were in either their third or fourth year of an undergraduate information

, software engineering,

databases, and systems integration, including multiple large (semester long) team projects.

Seven of the students had completed a group, capstone project of at least four months.

Thirteen had completed an internship with significa

weeks. Based on our previous classrooms experiences with the students, we estimate they

were distributed across the top half of the cohort.

Institutional Revenue Board for this human subjec

The workshop consisted of a lecture portion including motivation for the technique and

covering the dependency graph technique presented above. We presented examples of

creating a graph based on code or UML diagrams. We also presented examples of

dependency and ripple sets for a simple graph of domain object, data access object, and

persistent storage. Finally we discussed example cases using the technique to decide between

alternative designs and using the technique to improve designs.

Immediately after the workshop we had the students attempt a 13 question

this test to assess whether the students were able to correctly apply the technique and thus

whether it is usable by novices after limited training.

assess five tasks the students should be able to complete. First was to take sample code and

produce a dependency graph showing the syntactic dependencies in the code. The second

was to take a given sequence diagram and produce a dependency graph to match. In the third

category we gave the students a dependency diagram plus a change scenario, inc

modules are the seed of the change, and asked them to determine which other modules might

need to be modified due to ripple effects. In the fourth category we gave the students

dependency diagrams for two alternative designs plus a change sce

determine which of the alternatives would respond to the change with fewer ripples. Lastly,

we presented them with a candidate design and change scenario and had them modify the

design to make the change easier to accommodate. The

how well students are able to match implementation and design with dependencies. The third

let’s us measure the students’ grasp of the graph properties. The last two categories test

whether students can evaluate the i

After the assessment students were asked to fill out a ten question usa

survey was a reworded version of

Lickert scale to elicit responses on difficulty in learning a system, need for expert assistance,

likelihood of future use, complexity and confidence in use. We used this survey to assess the

students’ perception of the ease of learning to apply this technique.

4. Results

Across all 13 questions the median student answered 10 correctly.

shown in Figure 3. In Table 1 we show the percentage of correct answers by category of

question. We discuss these results in more detail below.

Table 1: Percentage of cor

databases, and systems integration, including multiple large (semester long) team projects.

Seven of the students had completed a group, capstone project of at least four months.

Thirteen had completed an internship with significant programming work of at least 10

weeks. Based on our previous classrooms experiences with the students, we estimate they

were distributed across the top half of the cohort. We obtained approval from our

Institutional Revenue Board for this human subject study before running the study.

The workshop consisted of a lecture portion including motivation for the technique and

dependency graph technique presented above. We presented examples of

creating a graph based on code or UML diagrams. We also presented examples of

dependency and ripple sets for a simple graph of domain object, data access object, and

Finally we discussed example cases using the technique to decide between

alternative designs and using the technique to improve designs.

Immediately after the workshop we had the students attempt a 13 question test

the students were able to correctly apply the technique and thus

whether it is usable by novices after limited training. We had five categories of questions to

assess five tasks the students should be able to complete. First was to take sample code and

roduce a dependency graph showing the syntactic dependencies in the code. The second

was to take a given sequence diagram and produce a dependency graph to match. In the third

category we gave the students a dependency diagram plus a change scenario, including which

modules are the seed of the change, and asked them to determine which other modules might

need to be modified due to ripple effects. In the fourth category we gave the students

dependency diagrams for two alternative designs plus a change scenario and asked them to

of the alternatives would respond to the change with fewer ripples. Lastly,

we presented them with a candidate design and change scenario and had them modify the

design to make the change easier to accommodate. The first two categories let us measure

how well students are able to match implementation and design with dependencies. The third

let’s us measure the students’ grasp of the graph properties. The last two categories test

whether students can evaluate the implication of those properties on decision making.

After the assessment students were asked to fill out a ten question usability survey. This

was a reworded version of Brooke’s System Usability Survey[10]. The survey uses a

responses on difficulty in learning a system, need for expert assistance,

likelihood of future use, complexity and confidence in use. We used this survey to assess the

students’ perception of the ease of learning to apply this technique.

ss all 13 questions the median student answered 10 correctly. The distribution is

In Table 1 we show the percentage of correct answers by category of

question. We discuss these results in more detail below.

Table 1: Percentage of correct answers by question category.

databases, and systems integration, including multiple large (semester long) team projects.

Seven of the students had completed a group, capstone project of at least four months.

nt programming work of at least 10

weeks. Based on our previous classrooms experiences with the students, we estimate they

We obtained approval from our

t study before running the study.

The workshop consisted of a lecture portion including motivation for the technique and

dependency graph technique presented above. We presented examples of

creating a graph based on code or UML diagrams. We also presented examples of

dependency and ripple sets for a simple graph of domain object, data access object, and

Finally we discussed example cases using the technique to decide between

test. We used

the students were able to correctly apply the technique and thus

We had five categories of questions to

assess five tasks the students should be able to complete. First was to take sample code and

roduce a dependency graph showing the syntactic dependencies in the code. The second

was to take a given sequence diagram and produce a dependency graph to match. In the third

luding which

modules are the seed of the change, and asked them to determine which other modules might

need to be modified due to ripple effects. In the fourth category we gave the students

nario and asked them to

of the alternatives would respond to the change with fewer ripples. Lastly,

we presented them with a candidate design and change scenario and had them modify the

first two categories let us measure

how well students are able to match implementation and design with dependencies. The third

let’s us measure the students’ grasp of the graph properties. The last two categories test

mplication of those properties on decision making.

bility survey. This

Brooke’s System Usability Survey[10]. The survey uses a

responses on difficulty in learning a system, need for expert assistance,

likelihood of future use, complexity and confidence in use. We used this survey to assess the

The distribution is

In Table 1 we show the percentage of correct answers by category of

rect answers by question category.

Figure 3: Number of students vs. correct answers

Interestingly, the best results were for the questions on choos

designs, which was our main goal for the technique. Across the three decision q

average 88% of the students were able to choose the design with fewer ripple effects for the

proposed change. If we omit the two students who did not complete all questions, the

percentage rises to over 91%. We take this as indication that t

straightforward for making comparative analyses. The two questions on improving existing

designs showed 85% were able to apply strategies from the workshop to decouple problem

dependencies.

The students also did extremely well in

with 92% of the answers correct. This is highly encouraging as it suggests that students could

effectively work with the technique

time to consider modifiability implications.

The questions requiring translation from code to dependency graphs caused more trouble

with only 62% answered correctly. The lower accuracy could be due to either a

misunderstanding of the precise relationship between code and th

in the graph, or due to a lack of careful attention in reading the provided code. The latter

explanation is not much concern; since the mapping of code to dependency graphs is

completely deterministic, this step can be automated

million LOC) system. If we were to use this technique more extensively in programming

courses we would likely give students an automated tool. Of more concern is the possibility

that students do not see the linkag

modifiability. This is the same question explored in [11

understanding of dependencies and low level code syntax instantiating those dependencies is

an area of concern we hope to investigate further in the future.

The most difficulty was encountered in using provided graphs to identify likely ripple

effects for a given modification, with

making mistakes nearly all made the same error. Based on the repeated mistakes we could

make slight changes to the workshop and expect over 70% accuracy.

One common error was misinterpreting the arrow directionality. We have chosen for

arrows to follow the direction of dependence. Thus A

this means that ripple effects go the opposite direction of the arrows

could ripple to A. We’ve found that in analyzing the graphs some students in

direction inconsistently and thus expect different effects than the graph indicates. While we

were quite explicit in the workshop about the meaning of the arrow direction, we could do

Figure 3: Number of students vs. correct answers

Interestingly, the best results were for the questions on choosing between alternative

which was our main goal for the technique. Across the three decision questions, on

88% of the students were able to choose the design with fewer ripple effects for the

proposed change. If we omit the two students who did not complete all questions, the

percentage rises to over 91%. We take this as indication that the technique is clear and

straightforward for making comparative analyses. The two questions on improving existing

designs showed 85% were able to apply strategies from the workshop to decouple problem

The students also did extremely well in translating UML diagrams to dependency graphs,

with 92% of the answers correct. This is highly encouraging as it suggests that students could

effectively work with the technique while thinking through their designs – the appropriate

fiability implications.

The questions requiring translation from code to dependency graphs caused more trouble

with only 62% answered correctly. The lower accuracy could be due to either a

misunderstanding of the precise relationship between code and the dependencies represented

in the graph, or due to a lack of careful attention in reading the provided code. The latter

explanation is not much concern; since the mapping of code to dependency graphs is

completely deterministic, this step can be automated – and we have done so for one large (~1

If we were to use this technique more extensively in programming

courses we would likely give students an automated tool. Of more concern is the possibility

that students do not see the linkage between code structures and dependencies inhibiting

modifiability. This is the same question explored in [11]. The disconnect between high level

understanding of dependencies and low level code syntax instantiating those dependencies is

ern we hope to investigate further in the future.

The most difficulty was encountered in using provided graphs to identify likely ripple

effects for a given modification, with 53% of questions answered correctly. However, those

making mistakes nearly all made the same error. Based on the repeated mistakes we could

make slight changes to the workshop and expect over 70% accuracy.

One common error was misinterpreting the arrow directionality. We have chosen for

rrows to follow the direction of dependence. Thus A� B means A depends on B. However

this means that ripple effects go the opposite direction of the arrows – modifications to B

could ripple to A. We’ve found that in analyzing the graphs some students interpret the arrow

direction inconsistently and thus expect different effects than the graph indicates. While we

workshop about the meaning of the arrow direction, we could do

ing between alternative

uestions, on

88% of the students were able to choose the design with fewer ripple effects for the

proposed change. If we omit the two students who did not complete all questions, the

he technique is clear and

straightforward for making comparative analyses. The two questions on improving existing

designs showed 85% were able to apply strategies from the workshop to decouple problem

translating UML diagrams to dependency graphs,

with 92% of the answers correct. This is highly encouraging as it suggests that students could

the appropriate

The questions requiring translation from code to dependency graphs caused more trouble

with only 62% answered correctly. The lower accuracy could be due to either a

e dependencies represented

in the graph, or due to a lack of careful attention in reading the provided code. The latter

explanation is not much concern; since the mapping of code to dependency graphs is

and we have done so for one large (~1

If we were to use this technique more extensively in programming

courses we would likely give students an automated tool. Of more concern is the possibility

e between code structures and dependencies inhibiting

]. The disconnect between high level

understanding of dependencies and low level code syntax instantiating those dependencies is

The most difficulty was encountered in using provided graphs to identify likely ripple

However, those

making mistakes nearly all made the same error. Based on the repeated mistakes we could

One common error was misinterpreting the arrow directionality. We have chosen for

B means A depends on B. However

modifications to B

terpret the arrow

direction inconsistently and thus expect different effects than the graph indicates. While we

workshop about the meaning of the arrow direction, we could do

more exercises to solidify the understanding. A second common mistake comes up when the

scenario calls for adding a new module. If we are not explicit about how the new module is

placed in the design, students often make surprising assumptions that do not parallel the

original design. This issue impacted one question in the category for identifying ripples.

For the survey we got an average score of 70, which indicates a generally favorable view

from the students. The highest score was for “I would like to use this technique frequently” –

mean 4.2 out of 5 – which suggests that they found this technique helpful in comparison to

the informal and subjective methods they learned in previous classes. The lowest score –

average 2.9 – was for “I needed to learn a lot of things before I could get going with this

technique”, indicating that the concepts were new or challenging to roughly half the students.

Notably, we did not have students complete any exercises and get instructor feedback

during the workshop period. As a result, the post-workshop test was done ‘cold’ as a very

first attempt at using the technique. In retrospect this was a mistake. We know that even

short exercises plus feedback eliminate many simple misunderstandings and leads to much

better learning. As we’ll discuss under the results a couple of simple misunderstandings

appeared in the post-workshop test which could have been avoided. We use exercises

extensively in our normal courses and will add them any future workshops on the dependency

graph technique.

We have two concerns about the results from the test. Many of the students had just

completed a class with the author. Their responses to the usability survey may have been

influenced by a desire to please their instructor. Lastly students had more difficulty as the

dependency graphs got more complicated. Our experience with industry systems suggests

that simplicity can be maintained, but that graphs can get very large, and without care

portions become complicated. Thus with complex systems more automation and tool is likely

to be necessary to make sense of the graphs.

5. Conclusions

The paper reported the teaching of a new dependency graph technique for analyzing

software modifiability to third and fourth year undergraduate students. We explicitly tested

the students’ ability to apply this technique to analyzing the impact of changes on given

designs and to choose between alternative design options. Our tests find that most students

are able to make good design choices after only a short workshop. Additionally the students

generally felt the technique was easy to use and would be likely to use it in the future. This

study demonstrates that objective design analysis can be taught to students quickly.

Acknowledgment
The author would like to thank Singapore Management University for supporting this

work. The author would also like to thank Eric Nyberg from Carnegie Mellon

University, Narayan Rammasubbu from University of Pittsburgh, and Jason Woodard

from Singapore Management University for extensive advice in formulating both the

technique and the study.

References

[1] Parnas, D.L., “On the Criteria To Be Used in Decomposing Systems into Modules.” Communications of the
ACM, 1972. 5(12).

[2] Yassine, A., et al., “Information hiding in product development: the design churn effect.” Research in
Engineering Design, 2003. 14: p. 17.

[3] Baldwin, C.Y. and K.B. Clark, “Design Rules, Vol 1: The Power of Modularity.” 2000: MIT Press.

[4] Wilkie, F. and B. Kitchenham, Coupling measures and change ripples in C++ application software. The Journal
of Systems and Software, 2000. 52: p. 8.

[5] Gamma, E., et al., “Design Patterns: Elements of Reusable Object-Oriented Software.” 2002: Addison-Wesley.

[6] Parnas, D.L., “Designing software for ease of extension and contraction.” IEEE Transactions of Software Eng.,
1979. 5(2).

[7] Jackson, D., “Module dependences in software design”, in Monterey Workshop on Radical Innovations of
Software and Systems Engineering in the Future. 2002: Venice, Italy

[8] Yang, H., E. Tempero, and R. Berrigan, “Detecting Indirect Coupling”, in Australian Software Engineering
Conference. 2005.

[9] M. J. LaMantia, Y. Cai, A. D. MacCormack, and J. Rusnak. “Analyzing the evolution of large software systems
using design structure matrices and design rule theory.” In Proc. 7th WICSA, pages 83-82, 2008.

[10] System Usability Scale from http://www.usabilitynet.org/trump/methods/satisfaction.htm

[11] Y. Cai, R. Kazman, C. Jaspan, J. Aldrich. “Introducing Tool-Supported Architecture Review into Software
Design Education.” In Proc. of the 26th IEEE Conference on Software Engineering Education and Training.
2013.

[12] Y. Cai, D. Iannuzii, and S. Wong, “Leveraging Design Structure Matrices in Software Design Education”. In
Proc. of the 24th IEEE Conference on Software Engineering Education and Training. 2011.

	Teaching analysis of software designs using dependency graph
	Citation

