
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2014

CenKNN: A scalable and effective text classifier CenKNN: A scalable and effective text classifier

Guansong PANG
Singapore Management University, gspang@smu.edu.sg

Huidong JIN

Shengyi JIANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Citation Citation
PANG, Guansong; JIN, Huidong; and JIANG, Shengyi. CenKNN: A scalable and effective text classifier.
(2014). Data Mining and Knowledge Discovery. 29, (3), 593-265.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7027

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7027&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7027&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Data Min Knowl Disc (2015) 29:593–625
DOI 10.1007/s10618-014-0358-x

CenKNN: a scalable and effective text classifier

Guansong Pang · Huidong Jin · Shengyi Jiang

Received: 3 March 2013 / Accepted: 27 May 2014 / Published online: 3 July 2014
© The Author(s) 2014

Abstract A big challenge in text classification is to perform classification on a large-
scale and high-dimensional text corpus in the presence of imbalanced class distribu-
tions and a large number of irrelevant or noisy term features. A number of techniques
have been proposed to handle this challenge with varying degrees of success. In this
paper, by combining the strengths of two widely used text classification techniques,
K-Nearest-Neighbor (KNN) and centroid based (Centroid) classifiers, we propose a
scalable and effective flat classifier, called CenKNN, to cope with this challenge.
CenKNN projects high-dimensional (often hundreds of thousands) documents into a
low-dimensional (normally a few dozen) space spanned by class centroids, and then
uses the k-d tree structure to find K nearest neighbors efficiently. Due to the strong
representation power of class centroids, CenKNN overcomes two issues related to
existing KNN text classifiers, i.e., sensitivity to imbalanced class distributions and irrel-
evant or noisy term features. By working on projected low-dimensional data, CenKNN
substantially reduces the expensive computation time in KNN. CenKNN also works

Responsible editor: Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, Filip Zelezny.

This work was mainly done when Guansong Pang was with Guangdong University of Foreign Studies,
China.

G. Pang (B)
Clayton School of Information Technology, Monash University, Melbourne, VIC 3800, Australia
e-mail: Guansong.Pang@monash.edu

H. Jin
CSIRO Computational Informatics, GPO Box 664, Canberra, ACT 2601, Australia
e-mail: Warren.Jin@csiro.au

S. Jiang
School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China
e-mail: jiangshengyi@163.com

123

594 G. Pang et al.

better than Centroid since it uses all the class centroids to define similarity and works
well on complex data, i.e., non-linearly separable data and data with local patterns
within each class. A series of experiments on both English and Chinese, benchmark
and synthetic corpora demonstrates that although CenKNN works on a significantly
lower-dimensional space, it performs substantially better than KNN and its five vari-
ants, and existing scalable classifiers, including Centroid and Rocchio. CenKNN is
also empirically preferable to another well-known classifier, support vector machines,
on highly imbalanced corpora with a small number of classes.

Keywords Text classification · KNN · Centroid · Dimension reduction ·
Imbalanced classification

1 Introduction

Text Classification is the task of assigning predefined classes to text documents and has
become an effective tool to organize the surging volume of text data in electronic for-
mat such as emails, web pages, news reports, scientific articles, blogs and microblogs.
One of the big challenges in numerous real-world text classification applications such
as spam detection, web page organization, news filtering and organization, news event
tracking, social media user classification, blog classification and sentiment classifica-
tion (Sebastiani 2002; Aggarwal and Zhai 2012; Yang et al. 2000; Pang et al. 2013),
is that the large size and high dimensionality of a text dataset renders various clas-
sification techniques less effective. There is another common challenge to perform
classification on imbalanced text corpora, where at least one class is underrepresented
in the training data (He and Garcia 2009; Forman 2003). It is expected that the continu-
ous exponential growth of online text documents will aggravate this challenge (Forman
2003). Also, in many text datasets, a large number of term features may be irrelevant
or noisy, which restrain classifiers’ performance in terms of both effectiveness and
efficiency (Forman 2003; Han et al. 2001; Yang and Pedersen 1997). Therefore, there
is a growing need to develop effective text classification techniques to deal with the
problem of classification on large-scale and high-dimensional text data in the presence
of imbalanced class distributions and irrelevant or noisy features.

The K-Nearest-Neighbor (KNN) text classification algorithm is a popular instance-
based learning method, which uses all the training documents to search K nearest
neighbors for test documents to make predictions (Sebastiani 2002; Aggarwal and
Zhai 2012; Wu and Kumar 2008). A test document is normally assigned to the most
abundant class of its K nearest neighbors. KNN is a straightforward yet remarkable
classifier, which has been shown as one of the most effective methods for text clas-
sification (Joachims 1998; Lam and Han 2003; Yang and Liu 1999). However, it is
computationally expensive due to its lazy learning pattern, especially when classifying
large-scale and high-dimensional document collections. Moreover, KNN text classifi-
cation is sensitive to irrelevant or noisy term features. The success of the KNN classifier
is dependent on the availability of effective similarity measures, e.g., the cosine mea-
sure, which however will become less effective in the presence of irrelevant or noisy
features because these features have the same influence as informative features in the

123

CenKNN: a scalable and effective text classifier 595

similarity measures (Han et al. 2001; Cunningham and Delany 2007). At the same
time, KNN also suffers from the class imbalance problem due to its majority voting
classification scheme (Batista et al. 2004; Sun et al. 2009; Mani and Zhang 2003;
Tan 2005). Specifically, in the presence of imbalanced class distributions, training
documents from small classes (i.e., minority classes) occur sparsely, in contrast to the
dense distribution of documents from large classes (i.e., majority classes). Given a test
document, its nearest neighbors bear higher probabilities of training documents from
majority classes. As a result, KNN is likely to be biased towards majority classes.
Another issue in KNN text classification is how to decide an appropriate value for
K to enable KNN to obtain consistently favorable performance on corpora of differ-
ent characteristics such as different class distributions (e.g., balanced and imbalanced
corpora).

Fast search trees like k-d trees (Bentley 1975) are widely used neighborhood search
structures to speed up KNN classification, but they perform poorly on documents of
tens of thousands of different term features. A popular speedup method forKNN text
classification is to use an inverted index but with the premise that documents are of
short length and a large stop word list is used (Wang et al. 2011; Manning et al. 2008).
The combination of KNN with latent semantic indexing (LSI) dimension reduction
or its variants is another commonly used method (Sun et al. 2004; Liu et al. 2004;
Yang and King 2009). However, these dimension reduction methods normally require
parameter tuning and expensive computation.

Numerous methods have been proposed to improve KNN text classification accu-
racy1, such as cluster-based methods, feature-based weighting methods and instance-
based weighting methods (Han et al. 2001; Lam and Han 2003; Tan 2005; Guo et al.
2006; Tan 2006; Pang and Jiang 2013; Jiang et al. 2012). In general, these methods
improve KNN’s accuracy to some degree while still suffering from issues like expen-
sive computation time or sensitivity to imbalanced class distributions and redundant
features.

In this paper, by combining KNN with efficient centroid-based text classification
(denoted by Centroid) techniques, we propose a scalable and effective flat classifier2,
called CenKNN, to scale up KNN text classification as well as to improve its effective-
ness on high-dimensional and large-scale corpora with imbalanced class distributions
and irrelevant or noisy term features. The basic idea of CenKNN is to use an effective
and efficient class-centroid-based dimension reduction method to substantially reduce
dimensionality of documents, and then employ the k-d tree structure to conduct a rapid
K nearest neighbors search for KNN classification.

Motivated by the remarkable performance of Centroid (Han and Karypis 2000),
for CenKNN, we propose a class-centroid-based dimension reduction method, called
CentroidDR. The underlying assumption of CentroidDR is that documents (with the
exception of outlying and noisy documents) are normally closer to their inherent class

1 In this paper, classification accuracy is referred to the performance in micro-averaging F1 (denoted by
microF1) and macro-averaging F1 (denoted by macroF1) values, rather than the ratio between the number
of correctly classified test documents and the total number of test documents.
2 By “flat” classifiers, we focus on text classification tasks without considering a class hierarchy. Flat
classifiers are the building blocks for successful hierarchical text classifiers.

123

596 G. Pang et al.

centroid rather than other centroids. This rationale has been demonstrated by the effec-
tiveness of Centroid on a wide range of both balanced and imbalanced corpora (Han
and Karypis 2000). The success of centroid-based classification techniques is mainly
due to the strong representation power of class centroids, which have good robust-
ness to imbalanced class distributions and irrelevant or noisy term features (Lam and
Han 2003; Guo et al. 2006; Han and Karypis 2000). Another reason for Centroid’s
impressive performance is that the cosine similarity measure function accounts for
term dependencies between class centroids and documents (Han and Karypis 2000).
However, unlike Centroid (which finds the most similar class centroid for test doc-
uments in order to perform classification), CentroidDR aims to use class centroids
and the cosine similarity measure to reduce the dimensionality of documents. Basi-
cally, CentroidDR projects high-dimensional documents into a low-dimensional space
spanned by class centroids. On this class-centroid-based space, intuitively, Centroid
is essentially CentroidDR plus a simple linear classifier. In CenKNN, the simple lin-
ear classifier is replaced byKNN, a sophisticated non-linear classifier, to find a better
classification boundary in the class-centroid-based space.

By combining CentroidDR with KNN, CenKNN essentially utilizes all the class
centroids and the cosine similarity measure to define similarities between projected
documents and search for neighborhoods to make predictions in the low-dimensional
class-centroid-based space. Therefore, CenKNN benefits from both the strengths of
Centroid and KNN. A series of experiments on both English and Chinese, benchmark
and synthetic corpora demonstrates its promising performance. Compared to KNN and
its variants based on feature selection, dimension reduction or clustering techniques,
CenKNN is scalable, and can run one to two orders of magnitude faster, and can clas-
sify documents with markedly greater accuracy. CenKNN can generate substantially
better results than existing scalable classifiers, e.g., Centroid and Rocchio. CenKNN is
also empirically preferable to another well-known classifier, Support Vector Machines
(SVM), on highly imbalanced corpora with a small number of classes.

Our contribution in this paper is to propose a scalable and effective flat classifier
for large-scale and high-dimensional text data with imbalanced class distributions and
irrelevant or noisy term features. This is illustrated by a series of experimental results
on a variety of corpora.

The rest of this paper is organized as follows. Related work is discussed in Sect.
2 and we introduce our proposed method in Sect. 3. Section 4 presents a series of
experimental results and comparisons. The paper is concluded in Sect. 5.

2 Related work

2.1 Existing text classification algorithms

A wide range of text classification algorithms and their variants has been developed
over the years, e.g., KNN (Han et al. 2001; Lam and Han 2003; Wang et al. 2011;
Pang and Jiang 2013; Jiang et al. 2012; Yang 1994), Centroid (Han and Karypis
2000; Tan and Cheng 2007; Guan et al. 2009), Rocchio (Lam and Han 2003; Pang
and Jiang 2013; Joachims 1996) and SVM (Joachims 1998; Joachims 2001; Kim et

123

CenKNN: a scalable and effective text classifier 597

al. 2005; Wan et al. 2012). Below we briefly introduce these algorithms and discuss
their advantages and drawbacks.

In KNN classification, to determine the class of a test instance, there are a range of
methods on how to use its K nearest neighbors. The most straightforward method is
to assign the majority class among the neighbors to the instance, while it is often more
intuitive to assign higher weight to the nearer neighbors in the class assignment, such
as distance weighted voting methods (Cunningham and Delany 2007). The process of
distance-weighted KNN text classification can be described briefly as follows: given
a test document dt, find the nearest neighbors for dt among the training document set
D, and score class candidates for dt based on the classes of the neighbors, as detailed
in formula (1). KNN then assigns the class with the highest score to dt.

yt = arg max
C j

∑

di∈K N N dt

sim(dt, di)I(di, C j) (1)

where K N N dt denotes the set of the K nearest neighbors of dt, sim(dt, di) denotes the
similarity between dtand di, and I(di, C j) is the indicator function, which is 1 when
di belongs to the class C j and otherwise 0. KNN has been reported as one of the most
effective algorithms for text classification (Joachims 1998; Lam and Han 2003; Yang
and Liu 1999). But it suffers from several drawbacks such as expensive computation
time on test documents, of O(N · T ravg · T evoc)(where N is the number of training
documents, T ravgis the average number of unique terms of training documents and
T evoc denotes the number of unique terms in a given test document) when using the
linear search method to search for the neighbors (Sebastiani 2002; Cunningham and
Delany 2007; Manning et al. 2008), sensitivity to skewed class distributions (Batista
et al. 2004; Sun et al. 2009; Tan 2005, 2006) and irrelevant or noisy features (Han
et al. 2001; Cunningham and Delany 2007), and parameter (i.e., the K value) tuning
(Sebastiani 2002; Guo et al. 2006).

Centroid is a class centroid based linear classifier. In Centroid, each class is repre-
sented by its centroid, and a test document is assigned to the class label of its closest
centroid. Its classification boundary is the linear boundary between class centroids.
Despite its simplicity, it substantially outperforms many other popular classifiers,
such as naïve Bayes, KNN and C4.5, on a wide range of both balanced and imbal-
anced corpora (Han and Karypis 2000). Centroid combines prevalent term features
within each class centroid, so that each class centroid is distinctive and separable
from others. Although the class centroids of majority classes tend to contain some
term features of minority classes, the average weights of these features in majority
classes are much smaller than those in minority classes. So the centroid-based rep-
resentation model is less likely to be biased towards majority classes. In terms of
efficiency,Centroid can scale up well with data size as it has computational complex-
ity of O

(
l · N · T ravg

) + O(l · Cenavg · T evoc) (where l and Cenavg are the number
of classes and the average number of unique terms in a class centroid respectively).
However, Centroid can be plagued by modeling misfit problems when documents
are not linearly separable by the boundaries between class centroids (Tan and Cheng
2007).

123

598 G. Pang et al.

Rocchio functions similarly to Centroid except that it uses prototype vectors to clas-
sify documents. The prototype vectors are generalized from class centroids, calculated
as formula (2).

pvj = α
1∣∣C j

∣∣
∑

di∈C j

di − β
1∣∣D − C j

∣∣
∑

dm∈D−C j

dm (2)

where pvjdenotes the prototype vector of the class C j . Parameters α and β adjust
the relative importance of positive and negative documents. Rocchio is equivalent to
Centroid with α = 1 and β = 0. Rocchio has similar merits to Centroid, though Roc-
chio has slightly higher computation time than Centroid due to Rocchio’s inclusion of
prototype vector generation. Moreover, centroid-based representation models, such as
class centroids or generalized class centroids (i.e., prototype vectors), are the summa-
rizations of training documents, which have stronger representation power than single
documents, because this kind of model can distill out certain prevalent or distinctive
term features, and is robust to noisy or irrelevant features (Lam and Han 2003; Guo
et al. 2006). Both Rocchio and Centroid have shown impressive performance on a
range of corpora (Pang and Jiang 2013; Han and Karypis 2000), which also can be
observed from our experimental results. Apart from the hypothesis of linear separabil-
ity, another drawback of Rocchio and Centroid is that they are not adapted to handle
classes with underlying sub-clusters (or say local patterns Vilalta et al. 2003) rather
than one single cluster, i.e., they fail to fully represent a class within which there are
fine-grained sub-classes (Pang and Jiang 2013; Han and Karypis 2000).

The main principle of SVM is to determine support vectors that maximize margins of
separation between classes in a hyperplane. SVM performs well on linearly separable
space, and it can use kernel methods such as polynomial and RBF kernels, to adapt
to non-linearly separable data space. It has been reported in (Joachims 1998; Yang
and Liu 1999; Kim et al. 2005; Lan et al. 2009) that, compared to polynomial and
RBF kernels, the linear kernel can enable SVM to achieve better or very comparable
text classification accuracy and to perform more efficiently. This is due to the fact
that text documents distribute throughout a very high dimensional space in most text
classification problems and they are often linearly separable there (Joachims 1998).
However, SVM performs less effectively on skewed data, since its optimization goal is
biased against minority classes in order to minimize total error (He and Garcia 2009;
Forman 2003; Tang and Liu 2005). We will compare our proposed methods with these
four classifiers in Sects. 4.3–4.6 extensively.

Other widely used algorithms include naïve Bayes and neural networks (Sebastiani
2002). Naïve Bayes is a simple and easy-to-implement text classifier. Despite its
simplicity, it can achieve impressive classification performance in a lot of applications.
However, it has poor classification performance when handling skewed corpora (Yang
and Liu 1999; Jiang et al. 2012). Neural networks are also known as one of the most
effective classification algorithms, but they require very expensive computation in
high-dimensional text documents. Due to these methods’ high sensitivity to the class
imbalance problem or high computation time, we will not compare them with our
techniques directly in this paper.

123

CenKNN: a scalable and effective text classifier 599

2.2 Previous work on improving KNN

A range of previous work has aimed at improving the KNN text classification algo-
rithm. In order to enhance KNN’s efficiency, an inverted index is often used to pre-
process training documents for KNN classification over test documents (Wang et
al. 2011; Yang 1994), which hopefully can reduce the classification time com-
plexity of KNN from O(N · T ravg · T evoc) to O(n · T evoc + p · T ravg · T evoc)

(n is the size of vocabulary and p is the number of training documents that con-
tain terms appearing in the test document) (Manning et al. 2008). But the effi-
ciency of inverted index based KNN classification is closely related to classifica-
tion tasks. The inverted index will work well in the context where a large num-
ber of stop words is used and the terms of the test document do not overlap with
a large number of training documents (Manning et al. 2008). It should be noted
that some informative term features would be removed if a large stop word list is
employed.

Data compression methods like text feature selection or dimension reduction are
also commonly integrated into KNN text classification to save classification time
(Yang and Pedersen 1997; Sun et al. 2004). Many text feature selection meth-
ods have been proposed to reduce the number of term features (Sebastiani 2002;
Forman 2003; Yang and Pedersen 1997), such as information gain, document fre-
quency (DF) and mutual information. However, we might lose critical information
for classification when preserving only a small proportion of term features (Han et
al. 2001; Joachims 1998), resulting in the degradation of KNN classification accu-
racy. Dimension reduction methods, such as Latent Semantic Indexing (LSI), super-
vised LSI, local LSI and topic modeling techniques (Sun et al. 2004; Liu et al.
2004; Du et al. 2010, 2012), are commonly used in text classification, but they
normally require parameter tuning and expensive computation. Random projection
(RP) techniques are efficient tools for dimension reduction (Bingham and Man-
nila 2001; Achlioptas 2003; Lin and Gunopulos 2003). They are motivated by the
Johnson–Lindenstrauss lemma that a set of samples in a high-dimensional space
can be projected onto a subspace of small size of dimensionality such that distances
between the samples are nearly preserved (Achlioptas 2003). Although RP is of lin-
ear time complexity and can perform more efficiently than LSI and its variants, it
does not preserve as much information as LSI-based methods (Lin and Gunopulos
2003).

Fast search trees, such as k-d trees (Bentley 1975), B+ trees (Jagadish et al.
2005), SR-trees (Katayama and Satoh 1997) and lower bound trees (Chen et al.
2007), can substantially speed up KNN classification without any loss in classi-
fication accuracy. However, fast search tree methods such as k-d trees and B+
trees, cannot perform well on text data, since the neighborhood searching in
text classification normally operates on a large number of documents distributed
throughout a very high dimensional space; or they need to spend a lot of time
on clustering training documents to construct the search tree, e.g., lower bound
trees.

In terms of classification accuracy, various cluster-based methods have been pro-
posed for KNN to deal with its sensitivity to noise (Lam and Han 2003; Guo

123

600 G. Pang et al.

et al. 2006; Pang and Jiang 2013; Jiang et al. 2012). For example, INNTC is
an improved cluster-based KNN text classification method (Jiang et al. 2012). It
uses a constrained incremental clustering algorithm with a clustering radius to
group training documents into clusters. INNTC then classifies test documents by
searching the nearest neighbors upon clusters instead of original training docu-
ments. Similar work can be found in (Lam and Han 2003; Guo et al. 2006; Pang
and Jiang 2013). The difference is that they utilize Rocchio to produce general-
ized instances or cluster centroids to replace the original training documents. As
the clusters or generalized instances are compact summarizations of training doc-
uments, they can perform more efficiently and effectively than KNN. However,
the process of clustering or generalized instance generation is time-consuming,
and they still need to identify the neighbors on the high-dimensional term feature
space.

Some works aim to examine KNN’s sensitivity to imbalanced class distributions
(Batista et al. 2004; Mani and Zhang 2003; Tan 2005, 2006) and irrelevant or noisy
features (Han et al. 2001; Wettschereck et al. 1997). Instance-based or feature-based
weighting methods have been explored to improve the sensitivity of KNN text clas-
sification, but they do not try to reduce KNN’s high computation time. KNN can also
be improved to conduct hierarchical text classification (Wang et al. 2011) and multi-
label text classification (Zhang and Zhou 2007), but we focus on non-hierarchical
single-label text classification.

3 Proposed scalable and effective text classifier

We use the Vector Space Model (VSM) (Salton et al. 1975), a widely used model in
text classification tasks, to represent documents. In VSM, given a set of N training
documents D = {(d1, y1) , (d2, y2) , · · · , (dN, yN)}and a set of predefined classes
yi ∈ {C1, C2, · · · , Cl}, each document is represented by a term-based vector di =
{t1, t2, · · · , tn} ∈ R

n and weighted by T F × I DF (TF and IDF are short for Term
Frequency and Inverse DF respectively). n is the size of the vocabulary derived from
D. The vocabulary consists of different terms in D.

3.1 Proposed dimension reduction method: CentroidDR

CentroidDR first computes the centroids of all classes, and then maps documents into
the class-centroid-based space via the cosine similarity measure function. A class
centroid is the mean representation vector of documents within the class, as detailed
in formula (3), which can be generated very efficiently.

centroidj = 1∣∣C j
∣∣
∑

di∈C j
di (3)

So centroidjdenotes the centroid of the class C j , j = 1, 2, · · · , l. We project docu-
ments onto the new space via formula (4).

123

CenKNN: a scalable and effective text classifier 601

x (j)
i = sim(di, centroidj) = 〈di, centroidj〉

‖di‖ × ‖centroidj‖

=
∑n

s=1 d(s)
i × centroid(s)

j√
∑n

s=1

(
d(s)

i

)2 ×
√

∑n
s=1

(
centroid(s)

j

)2
(4)

where s = 1, 2, · · · , n; the superscripts s and j denote the indices of the dimensions
for original documents di and projected data xi respectively. Details of CentroidDR
are given as follows:

Algorithm 1 (CentroidDR)
Input: Given a set of training documentsD.
Output: The projected data D∗ = {(x1, y1) , (x2, y2) , · · · , (xN, yN)}, where xi ∈

R
l , yi ∈ {C1, C2, · · · , Cl}, for i = 1, 2, · · · , N .

(1) Compute the centroid of each class via formula (3).
(2) For each document, compute the similarities between the document and all of

the centroids, and assign these similarity values to the dimension values of the
projected data via formula (4).

(3) Obtain the projected data D∗ = {(x1, y1) , (x2, y2) , · · · , (xN, yN)}. Each xi is
projected from di. The coordinates of the original documents in the projected
space are the similarities obtained in step (2), and their class labels are retained
from their original documents.

3.2 Proposed text classifier: CenKNN

Our proposed CenKNN is described in Algorithm 2. We first use CentroidDR to project
high-dimensional documents onto a low dimensional class-centroid-based space, and
then employ a k-d tree to store the projected data and search the K nearest neighbors
to classify documents.

The k-d tree search method is a binary search tree for associate searching (Bentley
1975). A k-d tree is a data structure used to store data in a k-dimensional space. Tree’s
leaf nodes store instances, and its inner nodes correspond to the axis-oriented splits of
the space. For constructing a k-d tree, the construction algorithm simply chooses one
coordinate of the k dimensions to iteratively divide the remaining instances. Given
a target instance, to search for its nearest neighbors, the k-d tree search method first
finds a leaf node that contains the target instance, and then recursively rolls back
from that leaf node and scans nearby leaf nodes. When the distance from the next
leaf node cannot improve, the method stops the search. The k-d tree search method is
one of the most efficient methods for searching for the nearest neighbor. Therefore,
it is a commonly used search method to replace the linear search method to scale up
KNN classification. However, it only performs well on data of small dimensionality as
its computational complexity increases exponentially with the dimensionality of the
dataset, and is therefore not directly applicable for high dimensional text data.

On the class-centroid-based space, the number of dimensions is equivalent to the
number of classes contained in a corpus, so it is typically very small in most text

123

602 G. Pang et al.

classification tasks, compared to the size of vocabulary in a typical text corpus (e.g.,
two classes in spam detection, legitimate and spam mails). Therefore, we can construct
the k-d tree upon the projected data and search the nearest neighbors very efficiently.
This enables CenKNN to become a scalable text classifier.

It should be noted that the k-d tree search method is only efficient for Minkowski
metrics (Bentley 1975). One widely used distance measure among Minkowski metrics
for the k-d tree search is the Euclidean distance. However, the Euclidean distance has
less effective performance than the cosine similarity measure in KNN text classification
(Wu and Kumar 2008). To tackle this problem, CenKNN uses the k-d tree search
method via Euclidean distance on the normalized space of the projected data. By
doing this, CenKNN can work on the k-d tree to locate the neighbors in terms of the
cosine similarity. This is supported by the following lemma.

Lemma 1 The K nearest neighbors returned from a k-d tree on a normalized space
are identical with the K nearest neighbors found from the original data space via
cosine similarity measure.

Proof In the original data space, the cosine similarity measure between two document

vectors di and dj can be denoted as cosine
(
di, dj

) = 〈di,dj〉
‖di‖×‖dj‖ = 〈 di‖di‖ ,

dj
‖dj‖ 〉 =

〈d̂i, d̂j〉, where d̂i is the normalized vector of di . The Euclidean distance of two
normalized vectors is ‖d̂i − d̂j‖2 = ‖d̂i‖2 + ‖d̂j‖2 − 2 × 〈d̂i, d̂j〉 = 2 − 2 × 〈d̂i, d̂j〉.
Therefore, the K nearest neighbors with the smallest Euclidean distance w.r.t. d̂i are
identical with KNN with K nearest neighbors with the highest cosine similarity w.r.t.
di.

Algorithm 2 (CenKNN)
Input: Given a set of training documents D and a test document dt.
Output: The class label of document dt.

(1) Project the high dimensional documents D onto a class-centroid-based space via
CentroidDR, and obtain the projected data D∗ ={(x1, y1), (x2, y2), · · ·, (xN, yN)}.

(2) Normalize the projected document vectors in D∗.
(3) Build a k-d tree on the normalized data.
(4) For the test document dt ∈ R

n , project it onto the class-centroid-based space, and
normalize it, we then obtain x̂t ∈ R

l .
(5) Search for the K nearest neighbors of x̂t over the k-d tree.
(6) Classify x̂t based on the KNN decision rule, as detailed in formula (5).

yt = arg max
C j

∑

x̂i∈K N N x̂t

(
1 − dist

(
x̂t, x̂i

))
I(x̂i, C j) (5)

where K N N x̂t denotes the set of K nearest neighbors of x̂t, dist
(
x̂t, x̂i

)
denotes

the Euclidean distance between x̂t and x̂i, and I(x̂i, C j) is the indicator function,
which is 1 when x̂i belongs to C j otherwise 0.

We illustrate the working scheme of CenKNN on two classes of documents from
the Fudan text classification corpus (see Sect. 4.2 for more details about this corpus),

123

CenKNN: a scalable and effective text classifier 603

Fig. 1 Visualization of classification results on projected test data derived from classes Communication
and Economy

Communication and Economy, which contain 1,613 training documents (of which
1,600 documents belong to Economy) and 64,439 different terms (a large number of
terms are irrelevant or noisy features) in total. These documents therefore originally
span a 64,439-dimensional space. Recall that CenKNN consists of CentroidDR and
KNN classification with a k-d tree. In CentroidDR, we first compute the centroids of
classes Communication and Economy, denoted as centroid1 and centroid2; and then
for each document di, we calculate its similarities with centroid1 and centroid2; these
similarity values are then assigned to x (1)

i and x (2)
i respectively, and the class label yi of

xi is retained from document di. In this way, we obtain a set of projected data in R
l

space, with l = 2 in this case. The projected data in the Communication class would be
distributed near centroid1 (as they are normally closer to their inherent class centroid
than other class centroids), and most of these are separable from that of Economy, and
vice versa.

There are 14 and 1,601 test documents in the classes Communication and Economy
respectively. To show the effectiveness of CenKNN clearly, we plot the Centroid and
KNN classification results on the projected test data in Fig. 1, where thered dashed line
indicates the classification boundary of Centroid, which misclassifies 5 documents that
are not linearly separable via the central linear boundary between the class centroids
of Communication and Economy. In the original term feature space, KNN (K = 10)

performs worse than Centroid, misclassifying 6 documents. We use thegreen contour
to represent the KNN (K = 10) classification boundary on the projected data. The
figure shows that KNN with cosine similarity measure works on the 2-D data better
than Centroid, and only misclassifies 2 documents. Since the class distribution of this

123

604 G. Pang et al.

Table 1 Time complexity comparison between KNN, Centroid and CenKNN

Training stage Classification stage

KNN O(N · T ravg) O(N · T ravg · T evoc) or O(n · T evoc + p · T ravg · T evoc)

Centroid O(l · N · T ravg) O(l · Cenavg · T evoc)

CenKNN O(l · N · Cenavg
+ l · N · log N)

O(l · Cenavg · T evoc + K · log N)

dataset is highly skewed, very few misclassified documents can lead to a significant
difference in the classification accuracy. In particular, CenKNN (i.e., KNN working
on the class-centroid-based space), with microF1 = 0.9988 and macroF1 = 0.9627,
consistently outperforms Centroid (microF1 = 0.9969 and macroF1 = 0.9208) and
KNN (microF1 = 0.9963 and macroF1 = 0.8793) in both microF1 and macroF1,
especially in macroF1. In terms of execution time, CenKNN takes 9 seconds on
this classification task, and runs much faster than KNN (150 seconds), and is slightly
slower than Centroid (5 seconds). Similar results and comparisons can be found in the
experiment section.
Computation complexity analysis The CenKNN method consists of three main stages:
document projection via CentroidDR, k-d tree construction and k-nearest-neighbor
search over the k-d tree. In the training stage, we need to generate class centroids
and project training documents onto the class-centroid-based space via CentroidDR,
which has time complexity O(l · N ·Cenavg). The k-d tree construction is built on the
projected data and has time complexity O(l · N · log N) (Bentley 1975). In terms of
classification, CenKNN first maps a test document onto the projected space. The time
complexity of this mapping is O(l · Cenavg · T evoc). The k-d tree is then applied to
search for the neighbors, and its time complexity is O(K · log N), which is expected
to be constant when N is sufficiently large with respect to k (Bentley 1975; Moore
and Hall 1990).

A time complexity comparison between KNN, Centroid and CenKNN is shown in
Table 1. In the training stage, KNN only needs to scan the document collection once
to index training documents (inverted index or general index), and has O(N · T ravg).
Centroid generates l class centroids and has time complexity of O(l · N · T ravg).
Since Cenavgis often far larger than logN , the time complexity of CenKNN is
O(l · N · Cenavg), which is slightly larger than Centroid and KNN. In terms of classi-
fication stage, the complexity of KNN is O(N · T ravg · T evoc) when using the linear
search method to search for neighborhoods. When an inverted index is employed, it
will become O(n · T evoc + p · T ravg · T evoc) (where the former part refers to identi-
fying training documents that have term overlap with the test document; the latter part
denotes the similarity computation complexity). Centroid needs to compute the simi-
larities between the test document and all the class centroids to perform classification,
and it has time complexity O(l · Cenavg · T evoc). In CenKNN, likewise, Cenavgis
normally far larger than logN , and so CenKNN’s classification time is dominated by
the test document projection, and has O(l · Cenavg · T evoc).

From the above complexity analysis, it is clear that the main difference between
KNN, Centroid and CenKNN is decided by the classification stage. In general, KNN

123

CenKNN: a scalable and effective text classifier 605

classification complexity is linear to the size of training documents. It would be inde-
pendent of the size of training documents and linear to the size of vocabulary, provided
that an inverted index is used and the test document has no term overlap with a large
number of training documents (i.e., p is very small compared to N) (Manning et al.
2008). In this case, KNN’s classification time can be reduced by a factor of 10 or more
(Manning et al. 2008). The classification time complexity of CenKNN andCentroid
is dependent on the average size of class centroids and the number of classes, and is
independent of the size of training documents. Therefore, when datasets only contain
a small number of classes and a large number of training and test documents, CenKNN
and Centroid can run orders of magnitude faster than KNN on these datasets.

4 Experimental results and comparisons

4.1 Experimental settings

We first carried out experiments on real world corpora (see details in Sect. 4.2) to
analyze the performance of CenKNN in terms of classification accuracy at the begin-
ning of Sect. 4.3. KNN and Centroid were used as baseline classifiers. INNTC 3 and
Rocchio were used as comparison classifiers. The results reported in Jiang et al. (2012)
demonstrated that INNTC could obtain relatively stable performance when its cluster-
ing radius r and the K value were set in the interval [3.0 × ex, 10.0 × ex] and [5, 45]
respectively (ex is the average of the similarities of sampling document pairs). After
running INNTC with different r and K values on the corpora used, we found that
INNTC could obtain stable performance with r = 9.0 × ex and K = 10 respectively.
We used this parameter setting for INNTC in our experiments. This parameter tuning
method is also applied to Rocchio, and its adjustment parameters, i.e., α and β, are
finally set as α = 2β = 1 . The default K value of CenKNN and KNN was 10, as our
sensitivity examination experiments show that CenKNN and KNN can achieve their
typical classification performance when K = 10.

Later in Sect. 4.3, CenKNN was also compared with other KNN variants using
different data compression methods, including DF and Information Gain (IG) feature
selection methods, and LSI and RP dimension reduction methods. DF, IG and LSI
are commonly used data compression methods and have been reported as promising
methods for text classification (Yang and Pedersen 1997; Sun et al. 2004). RP has
emerged as another powerful tool for dimension reduction in recent years (Bingham
and Mannila 2001; Achlioptas 2003; Lin and Gunopulos 2003; Papadimitriou et al.
1998). Sparse RPs (Bingham and Mannila 2001) were used in our experiments, since
they can achieve a threefold speedup compared to conventional RPs. For both LSI
+KNN and RP+KNN, we used the k-d tree to search for the K nearest neighbors
because LSI and RP can project documents into a lower dimension space.

3 Our experiments showed that another variant we proposed in Pang and Jiang (2013) had quite similar
performance as INNTC (Jiang et al. 2012). So we only compared CenKNN with INNTC rather than both of
them.

123

606 G. Pang et al.

We then examined the scalability of CenKNN on a very large-scale and high-
dimensional corpus in Sect. 4.4. In Sect. 4.5, to examine the sensitivity of CenKNN,
we applied CenKNN to perform classification with different K values, as the K value
is the only parameter in CenKNN. We also investigated the sensitivity of CenKNN
with respect to varying numbers of classes.

We finally compared CenKNN with SVM and its variant in Sect. 4.6. We used
LibSVM (Chang and Lin 2011) for SVM implementation. Following Yang and Liu
(1999); Guan et al. (2009); Lan et al. (2009), the linear kernel and the default settings
were used (Joachims 1998; Yang and Liu 1999; Guan et al. 2009).

A series of large scale hierarchical text classification (LSHTC) Pascal challenges
has drawn researchers’ attention to classification on a corpus with large-scale text doc-
uments and hierarchical classes (Kosmopoulos et al. 2010). The majority of hierarchi-
cal text classifiers applied into the challenges were modified from flat text classifiers
with hierarchical classification strategies (Kosmopoulos et al. 2010; Han et al. 2012;
Miao and Qiu 2009). Moreover, these modified flat text classifiers (e.g., KNN, SVM,
Centroid) have achieved promising performance in the challenges, such as the arthur
systems of the past LSHTC Pascal challenges (Wang et al. 2011, 2013). Obviously, the
effectiveness and efficiency of flat text classifiers plays an important role in the success
of hierarchical text classifiers. We therefore focus on examining the non-hierarchical
classification performance of CenKNN in this paper, though it can be recursively used
for hierarchical classification.

4.2 Datasets and performance metrics

A series of experiments has been conducted on both English and Chinese corpora to
evaluate our proposed method. To have a comprehensive examination of our proposed
method, both balanced and imbalanced corpora were selected as our experimental
data, i.e., the ratio of the number of training documents in the smallest and the largest
class (referred to as skew ratio) ranges from 1:1 up to 1:284. We first briefly describe
the benchmark corpora used.

Reuters-215784 is a standard benchmark corpus for text classification. We used
the “ModApte” split version of Reuters-21578, which is one of the most popular
splits. To ensure a sufficient number of documents to train the classifiers and perform
classification, classes with no less than 10 training documents and one test document
were selected. Under this constraint, 35 out of 115 classes are left in our subset (denoted
R35), which contains 6,454 and 2,513 training and test documents respectively. After
filtering out stop words, the subset has 21,476 different terms in total.

20Newsgroup5 is a collection of nearly 20,000 newsgroup documents, organized
evenly into 20 different newsgroups. Different preprocessing leads to three versions
of this corpus. We used the “by-date” version, denoted by News20, which had 11,268
and 7,503 training and test documents respectively. The size of vocabulary for this
corpus is 53,239 after removing stop words.

4 Reuters-21578 is available at http://archive.ics.uci.edu/ml/databases/reuters21578/.
5 20Newsgroup is available at http://qwone.com/~jason/20Newsgroups/.

123

http://archive.ics.uci.edu/ml/databases/reuters21578/
http://qwone.com/~jason/20Newsgroups/

CenKNN: a scalable and effective text classifier 607

TanCorp6 is a widely used Chinese text classification corpus. This corpus contains
14,150 documents in total, which are organized into two hierarchies. The first hierarchy
has 12 classes, which are divided into 60 classes in the second hierarchy. We focus
on checking the flat text classification performance of CenKNN, so this corpus is used
with the first level classes, denoted by Tan12. Two thirds of the documents are split
into the training set and the rest is regarded as test documents. There are 53,907 terms
contained in this corpus.

The Fudan University text classification corpus7 is from the Chinese natural lan-
guage processing group in the Department of Computer Information and Technology
at Fudan University. It is another widely used corpus for Chinese text classification.
The collection contains 20 classes with 9,804 Chinese training documents and 9,833
Chinese test documents. The entire Fudan Univ. text classification corpus was used
(referred to as Fudan20). During preprocessing, some types of stop words were fil-
tered out, i.e., prepositions, conjunctions, pronouns, interjections, auxiliary particles
and particles of speech. We obtained 335,664 different terms at this stage. Since the
documents are collected from academic journals, they contained many numbers and
mathematical symbols. To save experiment time, we removed these terms to obtain a
document collection with 101,351 terms.

The DMOZ data used is a large-scale dataset based on the ODP (Open Directory
Project) web directory data, which was constructed and distributed by the first edition
of the Large Scale Hierarchical Text classification (LSHTC) challenge8 in 2009. Two
datasets, a large one and a small one, were used in this challenge. We used the large
one (referred to as DMOZ10). The number of classes in this dataset, with hierarchy,
amounts to 12,294, and there are 10 classes in the first level of the hierarchy. We
focus on examining CenKNN’s non-hierarchical classification performance on these
10 classes. DMOZ10 consists of training data, validation data and test data. However,
the test data cannot be used for evaluating our classifiers, because the class labels of
the test data are all set to 0, in order to prevent the challenge participants from knowing
the true class of the data. We therefore used the training data to train classifiers and
tested the classifiers on the validation data. Overall, DMOZ10 consists of 10 classes
and contains 93,805 training documents and 34,905 test documents, and the size of
the vocabulary is 368,113.

Table 2 is a summary of these five corpora. In Forman (2003), the ratio 1:67 was
suggested to be the threshold for highly skewed corpora. Following this threshold, R35
is a highly skewed corpus; Fudan20 is quite close to highly skewed; and DMOZ10,
Tan12 and News20 belong to low skewed or balanced corpora. In terms of the split
of documents into training and test document sets, for News20, DMOZ10, Fudan20
and R35, we used the original splits, designed by the corpus creators or developers,
to facilitate other researchers to compare their techniques with our method on these

6 TanCorp is available at http://www.searchforum.org.cn/tansongbo/corpus.htm.
7 Fudan University text classification corpus is available at http://www.nlp.org.cn/docs/download.php?
doc_id=294.
8 DMOZ datasets are available at http://lshtc.iit.demokritos.gr/node/3.

123

http://www.searchforum.org.cn/tansongbo/corpus.htm
http://www.nlp.org.cn/docs/download.php?doc_id=294
http://www.nlp.org.cn/docs/download.php?doc_id=294
http://lshtc.iit.demokritos.gr/node/3

608 G. Pang et al.

Table 2 Basic information of the corpora News20, Tan12, DMOZ10, Fudan20 and R35

Corpora # of Classes # of Terms # of Train Docs # of Test Docs Skew ratio

News20 20 53, 239 11, 268 7, 503 1:1

Tan12 12 53, 907 9, 431 4, 719 1:20

DMOZ10 10 368, 114 93, 805 34, 905 1:28

Fudan20 20 101, 351 9, 804 9, 833 1:64

R35 35 21, 476 6, 454 2, 513 1:284

corpora. Since Tan12 is available without a specific corpus split, we used the ratio 2:1
to split this corpus into training and test document sets9.

Two commonly used performance measures, microF1 and macroF1, were used
as classification accuracy metrics. F1 is a combination measure of precision and recall,
i.e., F1 = 2×precision×recall

precision+recall . Both microF1 and macroF1 were used for the overall
performance evaluation of different classifiers. MicroF1 is the global calculation of
F1 regardless of classes. MacroF1 is the average over the F1 values of all the classes.
Therefore, the microF1 value is normally dominated by the performance on majority
classes while macroF1 treats every class equally, and so macroF1 is a more important
measure for classification performance on skewed corpora than microF1.

4.3 Classification performance

Extensive experiments were conducted to compare CenKNN with Centroid, Rocchio,
KNN and its five variants on the five corpora except DMOZ10, which is a very large-
scale corpus and is quite time-consuming for KNN and most of its variants. Comparison
results on DMOZ10 will be given in the coming subsections.
Comparison with Centroid, Rocchio, KNN and its variant using clustering techniques
We first compare CenKNN with Centroid, Rocchio (parameterized version of Cen-
troid), KNN and its variant using clustering techniques (i.e., INNTC). Table 3 shows
the microF1 and macroF1 values of CenKNN, KNN, INNTC, Centroid and Rocchio
on News20, Tan12, Fudan20 and R35 with different skew ratios (underlined numbers
indicate the best performance per measure). The p-values of paired Student’s t-tests of
CenKNN against the other four classifiers over F1 crossing classes are listed in Table
4 (bold numbers indicate statistical significance) 10. It can be observed that CenKNN
consistently outperforms KNN, INNTC, Centroid and Rocchio on both balanced and
imbalanced corpora in terms of both microF1 and macroF1 values. Compared to
KNN, on average, CenKNN has about 6.18 and 7.42 percent improvements in microF1
and macroF1 values respectively. Student’s t test result shows these improvements are

9 This version of Tan12 is available at http://www.scholat.com/vpost.html?pid=3047.
10 In our significance test, for each classifier per data set, the F1 values for each class of all the classes
were used as sample data. The paired-sample t-test was used to test the null hypothesis that the pairwise
difference between the F1 values of two classifiers has a mean equal to zero. 0.05 is used as the statistical
significance level throughout this paper.

123

http://www.scholat.com/vpost.html?pid=3047

CenKNN: a scalable and effective text classifier 609

Table 3 Performance of five classifiers on both English and Chinese corpora

CenKNN KNN INNTC Centroid Rocchio

News20 microF1 0.7710 0.7345 0.7294 0.7608 0.7549

macroF1 0.7640 0.7306 0.7335 0.7550 0.7505

Tan12 microF1 0.9243 0.8979 0.8887 0.9099 0.9074

macroF1 0.8915 0.8489 0.8456 0.8732 0.8720

Fudan20 microF1 0.9023 0.8715 0.8723 0.8266 0.8556

macroF1 0.7756 0.6975 0.7324 0.7154 0.7327

R35 microF1 0.9491 0.8365 0.8822 0.9256 0.9113

macroF1 0.8905 0.8152 0.8480 0.8531 0.8343

Table 4 p values from paired one-side Student’s t tests of CenKNN against other classifiers over F1 crossing
classes

KNN INNTC Centroid Rocchio

CenKNN 0.0125 0.0069 0.0194 0.0019 News20

0.0427 0.0064 0.0135 0.0338 Tan12

0.0002 0.0058 0.0000 0.0001 Fudan20

0.0020 0.0134 0.1526 0.0391 R35

statistical significantly over all the four corpora, as the corresponding p values range
0.0002 to 0.0427. Similar improvements can be found over the other three methods.
Comparison with KNN variants using feature selection methods We compared our
method to the combinations of KNN with two widely used text feature selection meth-
ods, i.e., IG and DF. The proportions of the most informative term features we used
range from 0.1 to 1.0. CenKNN was performed on the full feature space by default.
To have a fair performance comparison, we applied CenKNN on features selected by
IG or DF in this subsection. For KNN, the optimal K value is used with respect to
different corpora based on the results of our sensitivity examination over different K
values (i.e., K = 50 on News20, K = 40 on Tan12, K = 5 on Fudan20, K = 20 on
R35). The results are illustrated in Figs. 2 and 3. The results show that given different
proportions of term features and different skew ratios, CenKNN performs better than
KNN with IG or DF over all the four corpora. This is especially clear for the skewed
corpora.

It can also be observed from Fig. 3 that, after removing substantial term features
(e.g., 50–90 %), CenKNN works stably on all the four corpora. This indicates that large
proportions of term features in these four corpora are irrelevant or noisy features. KNN
is less stable. After removing the redundant features, it had some improvements (say,
after removing 80 % terms in Fudan20 or Tan12) or became clearly worse in terms
of macroF1 in News20 and R35. CenKNN performs consistently better than KNN
with or without irrelevant or noisy features in both of microF1 and macroF1 values.
Additionally, the results also suggest that using feature selection methods (e.g., IG)
might substantially downgrade the KNN text classification accuracy.

123

610 G. Pang et al.

Fig. 2 Comparison of CenKNN and KNN with IG feature selection

Fig. 3 Comparison of CenKNN and KNN with DF feature selection

123

CenKNN: a scalable and effective text classifier 611

Fig. 4 Performance of KNN with LSI dimension reduction compared to CenKNN and KNN

Comparison with KNN variants using dimension reduction methods We also compared
our method to the combinations of KNN with LSI or RP dimension reduction. Both LSI
and RP dimension reduction performed on the original full term feature space. Instead
of the default K value, KNN also used the optimal K value with respect to different
corpora in this subsection. To have a broad comparison to KNN and CenKNN, we
tested LSI on the corpora News20, Tan12, Fudan20 and R35 using various dimensions
(i.e., 10, 30, 60, 90, 120, 150). To conduct a comparison of CenKNN to RP+KNN and
LSI+KNN, we only report their detailed results on two typical corpora, one balanced
corpus News20, and one highly skewed corpus R35. Similar comparison results could
be found on the other two corpora. The experiments of RP+KNN were also conducted
with a set of dimensions, i.e., 100, 200, 300, 400, 500, 600. Both LSI and RP dimension
reduction were conducted in Matlab. We used the svds function to perform Singular
Value Decomposition (SVD) for LSI. The svds function is an efficient SVD tool for very
large sparse matrices, which is likely to reduce LSI’s time complexity from O(N · n2)

to O(n · N · T ravg) (Lin and Gunopulos 2003).
The results of LSI+KNN and RP+KNN are shown in Figs. 4 and 5 respectively. The

results of RP+KNN derive from 10 independent runs to avoid randomness. In these
two figures, KNN and CenKNN were used as comparison classifiers, and they both
worked on the full term feature space rather than the LSI or RP based projected space,
which is why their microF1 and macroF1 values are flat regardless of the changes
of dimensionality.

It can be seen from Fig. 4 that although LSI+KNN sometimes obtains some improve-
ments over KNN, e.g., the macroF1 values on Tan12 and the microF1values onR35,
it performs substantially worse than CenKNN on these four corpora. Figure 5 shows
RP+KNN’s mean curve with a 95 percent confidence interval over 10 runs. In Fig.

123

612 G. Pang et al.

Fig. 5 Performance of KNN with RP dimension reduction compared to CenKNN and KNN

Table 5 Comparison of RP+KNN,LSI+KNN and CenKNN

Classifier News20 R35

Dimension Time microF1 macroF1 Dimension Time microF1 macroF1

RP+KNN 100D 156+160 0.3117 0.3105 100D 35+32 0.6906 0.3465

600D 390+869 0.6725 0.6708 600D 97+169 0.8661 0.6417

LSI+KNN 10D 23+9 0.4985 0.4850 10D 9+1 0.8484 0.3435

150D 200+227 0.7188 0.7145 150D 87+42 0.9134 0.6830

CenKNN 20D 29+22 0.7710 0.7640 35D 10+11 0.9491 0.8905

Underlined numbers indicate the best performance per measure

5, in the performance on News20, RP+KNN obtains nearly equivalent performance
in microF1 and macroF1 values, which are all statistically significantly lower than
those of KNN and CenKNN as its upper bound of the 95 % confidence intervals lies far
below its counterparts. Similarly, RP+KNN works poorly on R35, with the exception
that RP+KNN achieves higher microF1 values than KNN, when the dimension size
of the projected space reaches 500. The superiority of CenKNN over RP+KNN is still
statistically significant on R35. Increasing dimensionality size of the projected space
is expected to further improve the classification accuracy of RP+KNN, at the expense
of longer classification time because KNN will run much slower with a larger size of
dimensionality.

We conducted an overall comparison between RP+KNN,LSI+KNN and CenKNN
in terms of time efficiency (i.e., dimension reduction time + KNN classification time in
seconds) and classification accuracy. For RP+KNN and LSI+KNN, we directly derived
the most efficient results and the most accurate results above. The only parameter
of CenKNN was still set by default, i.e., K = 10, though it was not the optimal

123

CenKNN: a scalable and effective text classifier 613

setting. The comparisons are shown in Table 5. Although CenKNN performs on a
significantly lower-dimensional space than RP+KNN(600D)11 and LSI+KNN(150D),
it obtains substantially better classification accuracy. Since RP does not preserve as
much information as LSI, KNN needs to work on a RP-based projected space with a
larger size of dimensionality in order to obtain a comparable accuracy to LSI+KNN,
which is consistent with the results reported in Lin and Gunopulos (2003). In terms
of execution time, LSI+KNN(10D) achieves the best efficiency with CenKNN second,
while it performs poorly on both of News20 and R35. CenKNN runs about 8 times
and 6 times faster than LSI+KNN(150D), and is about 25 times and 13 times faster
than RP+KNN(600D), on News20 and R35 respectively. The speedup of CenKNN
over RP+KNN(600D) and LSI+KNN(150D) will increase substantially when dealing
with data with large numbers of documents, since CenKNN can project documents
efficiently and works on a smaller dimensionality size.

4.4 Scalability examination

In real-world text classification applications, it is of great importance that classifiers
can scale up well with the number of text documents. We used DMOZ10 to examine
the scalability of CenKNN, with Centroid and KNN as baselines. To demonstrate the
classifiers’ scalability, we first sampled (via stratified random sampling where each
class is a stratum) multiple subsets of training documents of DMOZ10 using a range
of sampling ratios (i.e., 1/20, 1/10, 1/8, 1/5, 1/4, 1/3 and 1/2). The three classifiers
were then trained on these subsets and the entire training document set, and finally
classified the whole test documents. We repeated this process 10 times. The number of
documents in the training sets range from 4,691 documents up to 93,805 documents.
The mean curves of microF1 and macroF1 of these three classifiers, with a 95 percent
confidence interval, are presented in Fig. 6. The figure shows that CenKNN statistically
significantly outperforms Centroid and KNN in the microF1 values regardless of the
changes of training data size as its lower bound lies higher than the upper bounds
of its two counterparts on each sampling proportion. In macroF1, the mean curve
of CenKNN consistently outperforms Centroid and KNN though the difference is
not statistically significant. It is worthwhile to note that, compared to the fluctuating
performance of Centroid, the accuracy of CenKNN and KNN has small variations at a
specific sampling ratio and goes up steadily with increasing size of training documents.

The total execution time and online execution time, i.e., computation time on test
data, including dimension reduction time on test data (if applicable) and class assign-
ment time, on DMOZ10 are shown in Fig. 7. To show the scalability clearly, time cost is
plotted on a logarithmic scale. As shown in the left panel, CenKNN takes 57 seconds in
the classification task with 4,691 training documents and 34,905 test documents (i.e.,
when sampling ratio is 1/20), and takes 239 seconds in the classification task with
93,805 training documents and 34,905 test documents (i.e., when the entire training
data set is used). CenKNN runs about 25 times to 107 times faster than KNN, and
is comparably fast as Centroid. In fact, the execution time of CenKNN and Centroid

11 Hereafter this format refers to the classifier working on a space with a specific dimension.

123

614 G. Pang et al.

Fig. 6 Mean curves along with a 95 percent confidence interval of CenKNN, KNN and Centroid on DMOZ10

Fig. 7 Computation time of CenKNN, KNN and Centroid on DMOZ10 with varying size of training
documents

increases very slowly with the number of text documents, as opposed to the rapid
increase of KNN. Similar to Centroid, CenKNN can scale up well with data size.

The online execution time of these classifiers is detailed in the right panel of Fig.
7. Since KNN is a lazy learning method, its online execution time is nearly equivalent
to the total execution time. CenKNN is about 27–278 times faster than KNN. Apart
from the test documents’ projection time, the speedup of CenKNN over KNN ranges

123

CenKNN: a scalable and effective text classifier 615

Fig. 8 Performance of CenKNN and KNN over various K values

from 37 to 550 times. CenKNN runs slightly slower than Centroid. It is worth noting
that CenKNN requires significantly less main memory than KNN as only projected
data for each document is stored in CenKNN. Therefore, considering the accuracy
degradation of KNN on the sampled training documents (as shown in Fig. 6), the
speedup of CenKNN can be very high when the entire training document set cannot
fit into the main memory.

4.5 Sensitivity examination over different K values and number of classes

We employed various K values (i.e., 1, 5, 10, 20, 30, 40, 45, 50) to perform classification
to analyze the sensitivity of our method, using KNN as a baseline. The experimen-
tal results are shown in Fig. 8. CenKNN has more effective and stable performance
than KNN over all the different K values on these four corpora. The superiority of
CenKNN becomes clearer on skewed corpora. It should be noted that the classifica-
tion performance will be substantially degraded when using large K values on highly
skewed corpora. As a specific example, many minority classes in R35 have only 10–20
training documents while majority classes have hundreds or thousands of documents.
Thus, if we use K values that are too large (e.g., larger than 20), we will obtain high
F1 values for majority classes but low F1 values for minority classes since minority

123

616 G. Pang et al.

Fig. 9 Performance of CenKNN, Centroid and KNN with varying numbers of classes on News20

classes lack sufficient training documents to make predictions. As a result, macroF1
values decrease dramatically with the increase of K values in R35, while microF1
values remain relatively steady.

With the increase of class number, the discrepancy between different classes would
reduce. So it would become more challenging to perform dimension reduction and clas-
sification effectively. For CenKNN, the change of class number also means the change
of the dimensionality in the class-centroid-based space built by CentroidDR. We used
the News20 to examine the effect of varying class numbers on the performance of
CenKNN, with KNN and Centroid as baselines. The main reason for choosing News20
is that classification results on News20 can better reflect the relationship between the
number of classes and classification performance, as there are no skewed class dis-
tribution issues and fewer irrelevant term features in News20 (This can be observed
from Fig. 3). The experiments start by randomly selecting two classes, ending up with
twenty classes12. The results are shown in Fig. 9, which demonstrates that although
the classification performance of all the classifiers decreases rapidly with increasing
class number, CenKNN is able to outperform KNN and Centroid consistently over dif-
ferent numbers of classes. This suggests that CenKNN can achieve good performance
regardless of the variation in class numbers.

4.6 Comparison with SVM and its variant

We now turn to examine CenKNN’s performance against another state of the art text
classifier, SVM, as well as CenSVM, in which SVM performs on the class-centroid-
based space.

12 These synthetic corpora are available at http://www.scholat.com/vpost.html?pid=2395.

123

http://www.scholat.com/vpost.html?pid=2395

CenKNN: a scalable and effective text classifier 617

Table 6 CenKNN, SVM and CenSVM classification results on the five corpora

CenKNN SVM CenSVM

microF1 macroF1 microF1 macroF1 microF1 macroF1

News20 0.7710 0.7640 0.8040 0.8010 0.7728 0.7660

Tan12 0.9243 0.8915 0.9479 0.9200 0.9243 0.8892

DMOZ10 0.7829 0.7481 0.8513 0.8279 0.7869 0.7535

Fudan20 0.9023 0.7756 0.9191 0.7640 0.9064 0.7679

R35 0.9491 0.8905 0.9387 0.8665 0.9033 0.6992

Underlined numbers indicate the best performance per measure

Table 6 shows the classification results of CenKNN against SVM and CenSVM
on News20, Tan12, DMOZ10, Fudan20 and R35. CenSVM is SVM with RBF kernel
performing on the class-centroid-based space. For the γ value in the RBF kernel, a
set of values (i.e., 0.03, 0.1, 1, 3, 5, 10, 20, 30, 40 and 50) along with other default
settings has been used to check its classification performance on all the five corpora13.
Our results showed that CenSVM obtained the best performance on most of the five
corpora when the γ value was 30. CenSVM performed less effectively and stably
when changing to the other γ values. Here we present the experimental results of
CenSVM with the γ value setting as 30 in order to facilitate a fair comparison. It can
be seen from Table 6 that SVM obtains better performance than CenKNN on balanced
and low skewed corpora, e.g., News20, Tan12 and DMOZ10. However, on corpora
with greater levels of class skew, SVM becomes less effective. When there is a quite
highly skewed corpus (i.e., Fudan20), CenKNN achieves higher macroF1 than SVM.
In the highly skewed corpus R35, CenKNN outperforms SVM in both of microF1
and macroF1. This is because SVM performs poorly on minority classes on which
CenKNN performs well, and dragged down the macroF1 values. CenSVM performs
similarly as CenKNN except R35, on which CenSVM performs substantially worse than
CenKNN. Its macroF1 value on R35 is as low as 0.6992, which indicates relatively
less stability for a fixed γ value.

The computation time of these three classifiers are summarized in Table 7. CenKNN
runs much faster than SVM, especially for large corpora. For instance, for DMOZ10,
SVM takes 29,410 seconds, while CenKNN takes only 239 seconds, about 123 times
faster. In terms of online execution time, CenKNN consistently outperforms SVM
except on R35. Although CenSVM can save a bit on classification time, it runs slower
than CenKNN in terms of total computation time.

To further examine the influence of class skew on the performance of CenKNN, SVM
and CenSVM, we utilized Fudan20to create several subsets of highly skewed corpora.
There are 9 minority classes in Fudan20 that have 25–75 training documents, against
11 majority classes with documents between 466 and 1,600. We randomly sampled half

13 The results of CenSVM using different kernels show that non-linear kernels perform better than the
linear kernel on the five corpora. This suggests that documents are often not linearly separable in the
low-dimensional class-centroid-based space. Our results also show that the RBF kernel outperforms the
polynomial kernel. These results have been made available at http://www.scholat.com/portalPaperInfo_
Eng.html?paperID=19993\&Entry=pines.

123

http://www.scholat.com/portalPaperInfo_Eng.html?paperID=19993&Entry=pines
http://www.scholat.com/portalPaperInfo_Eng.html?paperID=19993&Entry=pines

618 G. Pang et al.

Table 7 Computation time (in seconds) of CenKNN, SVM and CenSVM

Total execution time Online execution time

CenKNN SVM CenSVM CenKNN SVM CenSVM

News20 51 238 52 35 62 25

Tan12 25 241 30 9 59 9

DMOZ10 239 29, 410 942 91 5, 049 271

Fudan20 131 918 142 73 309 68

R35 21 60 34 14 6 7

Underlined numbers indicate the best performance per measure

Fig. 10 CenKNN, SVM and CenSVM comparisons on a highly skewed corpus with increasing class numbers

of the documents from all the minority classes. Together with the 11 majority classes,
we had a new highly skewed corpus with the skew ratio of approximately 1:123. We
used this corpus to further create 8 highly skewed subsets with the same skew ratio but
with different class numbers that range from 2 to 20. The experiments start by classi-
fication on the largest and the smallest classes, followed by randomly adding minority
and majority classes, ending up with twenty classes. Each subset contains nearly the
same number of minority classes and majority classes14. We checked the performance
of CenKNN, SVM and CenSVM given data with a fixed highly skewed ratio and varying
class numbers. The microF1 and macroF1 results of CenKNN, SVM and CenSVM
on these 8 subsets, with KNN and Centroid as baselines, are shown in Fig. 10.

The figure shows that, with the increase of the class number, the performance of
CenKNN, SVM and CenSVM is degraded, while CenKNN and CenSVM substantially

14 These synthetic corpora are available at http://www.scholat.com/vpost.html?pid=2396.

123

http://www.scholat.com/vpost.html?pid=2396

CenKNN: a scalable and effective text classifier 619

outperform SVM over all the subsets in terms of macroF1 values. CenKNN performs
often better than CenSVM in terms of macroF1while quite similarly in terms of
microF1. It is worth noting that the gap between SVM and CenKNN (or CenSVM)
in terms of the macroF1 value decreases with class numbers, while the gap on the
microF1 value increases. This could be because the skew ratio between any two
different classes (except the smallest and the largest classes) is lower than 1:123 with
the increase of the class number. That is, for these 8 data sets with the skew ratio
1:123, CenKNN outperforms SVM consistently in terms of macroF1. CenKNN has
more competitive macroF1 values when the class size ratios become extreme. Recall
thatmicroF1 is of less importance for measuring classification performance on skewed
corpora than macroF1, especially for highly skewed corpora. Therefore, although
SVM outperforms CenKNN (or CenSVM) in the average microF1 value, CenKNN’s
performance on these highly skewed corpora is more desirable than that of SVM and
CenSVM.

We also conducted experiments to check the performance of CenKNN, SVM and
CenSVM given data with a fixed class number and varying imbalance ratios. Two
subsets were selected from DMOZ10, consisting of two classes for each subset, denoted
by DMOZ10-S1 and DMOZ10-S2 respectively15. DMOZ10-S1 contains one large class
and one small class with 6,921 training documents and 2,555 test documents in total,
and its vocabulary size is 62,334. DMOZ10-S2 consists of two of the largest classes in
DMOZ10, with 24,335 training documents and 9,281 test documents in total. There
are 176,828 terms contained in this subset. For these two subsets, we kept documents
of the larger class unchanged and randomly sampled training and test documents of
another class according to 13 different class imbalance ratios, ranging from 1:10 to
1:130. CenKNN, SVM and CenSVM then performed on these subsets sampled. The
mean curves of microF1 and macroF1 of these three classifiers on DMOZ10-S1 and
DMOZ10-S2, with a 95 percent confidence interval over 10 runs, are shown in Figs. 11
and 12 respectively. KNN and Centroid were used as baselines. The results demonstrate
that the performance of these five classifiers decrease with imbalance ratios in terms
of macroF1. For both subsets of data, when the skew ratio is small, CenKNN is not as
good as SVM. However, CenKNN clearly outperforms SVM in terms of both microF1
and macroF1 when the skew ratio is large (for example, >30 for DMOZ10-S1 and
>100 for DMOZ10-S2). Thus, CenKNN is more resilient to imbalanced text corpora
than SVM. CenSVM has similar classification performance to CenKNN for these two
subsets of DMOZ10.

4.7 Discussion

The promising performance of CenKNN has been illustrated by our extensive experi-
ments on a variety of corpora. We now discuss when to use CenKNN.

The effectiveness and efficiency of CenKNN is closely related to the performance
of the class-centroid-based dimension reduction method CentroidDR and the k-d tree
search. The strong representation power of the class-centroid-based space enables

15 These two subsets are available at http://www.scholat.com/vpost.html?pid=4038.

123

http://www.scholat.com/vpost.html?pid=4038

620 G. Pang et al.

Fig. 11 CenKNN,SVM and CenSVM comparisons on DMOZ10-S1 with varying imbalance ratios

Fig. 12 CenKNN, SVM and CenSVM comparisons on DMOZ10-S2 with varying imbalance ratios

CenKNN to obtain substantially better classification accuracy than KNN and its vari-
ants, though CenKNN normally works on a significantly lower-dimensional space.
Compared to the performance gap between CenKNN and KNN on balanced corpora
(e.g., News20), the superiority of CenKNN becomes clearer when dealing with more
complex corpora, such as imbalanced corpora with large proportions of irrelevant or
noisy term features (e.g., Tan12, Fudan20 and R35), where KNN itself cannot perform

123

CenKNN: a scalable and effective text classifier 621

well. The performance of CentroidDR is dependent on the Centroid classifier, because
CentroidDR uses class centroids to define similarity. Therefore, CenKNN can usually
obtain good performance in corpora where Centroid works well, such as the classi-
fication results on News20, Tan12, Fudan20 and R35. But this does not necessarily
mean that CenKNN would perform less effectively when Centroid performs poorly,
since CenKNN makes prediction via the KNN classification rule, which has better
classification ability than Centroid. A case in point is the results on DMOZ10. The
main reason why Centroid obtains the worse classification accuracy on this corpus,
we conjecture, is that the classification assumption of Centroid is strongly inconsistent
with the characteristic of DMOZ10, within which each class contains a number of sub-
clusters, i.e., child classes in the original data format. This may result in degradation
of the performance of CentroidDR to some extent. However, due to the better classifi-
cation ability of KNN, CenKNN could also obtain favorable classification accuracy on
DMOZ10. It is worth noting that although classes within the corpus Tan12 bear under-
lying sub-clusters, CenKNN and Centroid can perform pretty well on this corpus, and
outperform KNN and its variants. This may be because, compared to the complex class
hierarchy in DMOZ10, Tan12 only contains few sub-clusters within each class, and
this has less effect on the representation power of class centroids. Overall, CenKNN
is also likely to achieve desirable classification accuracy on corpora with underlying
sub-clusters, where Centroid may perform less effectively.

Searching for neighborhoods in a k-d tree is important to CenKNN’s classification
efficiency. Finding K nearest neighbors in a k-d tree has time complexity O(K ·
log N) providing that the size of the training dataset N is sufficiently large compared
to data dimensionality, i.e., the number of classes l or the k value in the k-d tree.
Otherwise, the computational complexity of the k-d tree search is expected to increase
exponentially with data dimensionality (Bentley 1975). N � 2k was suggested to be
a general rule to ensure k-d tree search efficiency (Bentley 1975). In such cases, the
classification time of CenKNN is definitely dominated by the test document projection
as O

(
l · Cenavg · T evoc

)
(i.e., test document projection’s time complexity) is far larger

than O(K ·log N). Also, O
(
l · Cenavg · T evoc

)
is far smaller than KNN’s classification

time complexity O(N · T ravg · T evoc). Our experiments show that CenKNN is at least
two orders of magnitude faster than KNN when performing classification on large-
scale corpora (e.g., 100,000 training documents) with no more than 10 classes. Our
experiments also show that even when there are cases slightly breaking the general rule
for the k-d tree search efficiency,CenKNN can still obtain very preferable classification
efficiency. For example, our experiments also show that CenKNN can still run more
than 50 times faster than KNN on corpora with 100,000 training documents and 20
classes. This is because although the k-d tree neighborhood search takes a bit of time
in these contexts, it is still relatively small comparing to the test document projection
time in CenKNN or document similarity calculation time in KNN. Therefore, CenKNN
will obtain its typical classification efficiency when it is applied to corpora with large
numbers (e.g., hundreds of thousands) of documents and a small number of classes
(say no more than 20 classes). Such application scenarios are not uncommon in a
wide range of domains such as large-scale spam detection, sentiment classification,
news organization, social media user classification, web page organization and blog
classification.

123

622 G. Pang et al.

In comparison to SVM and its variant, CenKNN is more resilient to imbalanced
corpora. CenKNN is preferable to SVM when dealing with text data with highly skewed
class distributions, say, the skew ratio is larger than 100, and a small number of classes,
as is the case on spam detection, news filtering and news event tracking. Also, the
computational complexity of CenKNN is far smaller than SVM. CenKNN can run up
to orders of magnitude faster than SVM. Note that SVM obtains the best classification
accuracy on large balanced corpora (e.g., DMOZ10), though at cost in execution time.
CenSVM can substantially reduce SVM’s execution time, but it still normally performs
less efficiently than CenKNN, and sometimes is about four times slower. CenSVM
normally has quite similar classification accuracy as CenKNN, but occasionally it is
really poor. Comparing to CenKNN, CenSVM requires much more attention on stability
or parameter tuning.

5 Conclusions and future work

We proposed the method CenKNN, which combined a class-centroid-based dimension
reduction method (i.e., CentroidDR) with the k-d tree search method. In particular,
by integrating the strengths of the classifiers Centroid and KNN,CenKNN becomes an
efficient non-linear text classifier that possesses good robustness to imbalanced class
distributions and noisy or irrelevant term features. In terms of efficiency, compared to
the expensive computation time of KNN and SVM, CenKNN has linear computation
complexity in terms of the number of training and test documents, which is comparable
to Centroid and Rocchio, and so it can scale up well with data size. Although CenKNN
is simple and works on a significantly lower-dimensional space, it is able to obtain
substantially greater accuracy than KNN and its variants on a range of corpora, and
perform substantially better than two scalable classification algorithms (i.e., Centroid,
Rocchio). SVM is a better choice for large balanced corpora in terms of classification
accuracy (recall that it is at the expense of longer execution time), while CenKNN
is preferable to SVM when dealing with highly imbalanced corpora (e.g., the skew
ratio is larger than 100) with a small number of classes in terms of both accuracy and
efficiency. The situation changes when SVM works on centroid-based data space, but
its stability or parameter setting requires further investigation. These results have been
illustrated by a series of experiments conducted on a diverse range of corpora.

Throughout all our experiments, the only parameter K in CenKNN was 10 by
default, yet CenKNN could obtain consistent superior performance on a variety of
corpora. This indicates that CenKNN is able to eliminate the issue of choosing an
appropriate value for K in KNN text classification.

We are interested in improving CenKNN to handle sub-clusters and/or a large num-
ber of classes, e.g., through the use of hierarchical classification and class hierarchy.
Since KNN performs well in multi-label text classification tasks, we also plan to extend
our work to multi-label text classification.

Acknowledgments We thank the anonymous reviewers whose constructive comments helped improve
the paper substantially. We also wish to thank Dr. Alexander B. Zwart for his helpful comments on refining
this paper. This paper’s revision was partly conducted when Guansong Pang was a visiting student in the
Web Sciences Center at the University of Electronic Science and Technology of China. He would like to

123

CenKNN: a scalable and effective text classifier 623

thank his supervisor Prof. Mingsheng Shang in the Web Sciences Center for the support on this work. This
work was supported in part by the National Natural Science Foundation of China under Grant No. 61070061
and No.61202271, and by the National Social Science Foundation of China under Grant No. 13CGL130.

References

Achlioptas D (2003) Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J
Comput Syst Sci 66(4):671–687

Aggarwal CC, Zhai C (2012) A survey of text classification algorithms. Mining text data. Springer, New
York

Batista GE, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine
learning training data. ACM SIGKDD Explor Newslett 6(1):20–29

Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM
18(9):509–517

Bingham E, Mannila H (2001) Random projection in dimensionality reduction: applications to image and
text data. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 245–250 (2001)

Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol
(TIST) 2(3):27

Chen Y, Hung Y, Yen T, Fuh C (2007) Fast and versatile algorithm for nearest neighbor search based on a
lower bound tree. Pattern Recognit 40(2):360–375

Cunningham P, Delany SJ (2007) k-Nearest neighbour classifiers. Dublin: Technical Report UCD-CSI-
2007-4

Du L, Buntine W, Jin H (2010) A segmented topic model based on the two-parameter Poisson–Dirichlet
process. Mach Learn 81(1):5–19

Du L, Buntine W, Jin H, Chen C (2012) Sequential latent Dirichlet allocation. Knowl Inf Syst 31(3):475–503
Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach

Learn Res 3:1289–1305
Guan H, Zhou J, Guo M (2009) A class-feature-centroid classifier for text categorization. In: Proceedings

of the 18th international conference on World Wide Web, pp. 201–210 (2009)
Guo G, Wang H, Bell D, Bi Y, Greer K (2006) Using kNN model for automatic text categorization. Soft

Comput 10(5):423–430
Han EH, Karypis G (2000) Centroid-based document classification: analysis and experimental results. In:

Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery,
pp. 116–123 (2000)

Han E, Karypis G, Kumar V (2001) Text categorization using weight adjusted k-nearest neighbor classifi-
cation. In: Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 53–65

Han X, Li S, Shen Z (2012) A k-NN method for large scale hierarchical text classification at LSHTC3. In:
Third Pascal Challenge on Large Scale Hierarchical Text classification (2012)

He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
Jagadish HV, Ooi BC, Tan K, Yu C, Zhang R (2005) iDistance: an adaptive B+-tree based indexing method

for nearest neighbor search. ACM Trans Database Syst (TODS) 30(2):364–397
Jiang S, Pang G, Wu M, Kuang L (2012) An improved K-nearest-neighbor algorithm for text categorization.

Expert Syst Appl 39(1):1503–1509
Joachims T (1996) A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization.

In: Proceedings of the 14th International Conference on Machine Learning, pp. 143–151 (1996)
Joachims T (1998) Text categorization with support vector machines: Learning with many relevant features.

In: Proceedings of the 10th European Conference on Machine Learning, pp. 137–142
Joachims T (2001) A statistical learning learning model of text classification for support vector machines.

In: Proceedings of the 24th annual international ACM SIGIR conference on research and development
in information retrieval, pp. 128–136 (2001)

Katayama N, Satoh S (1997) The SR-tree: an index structure for high-dimensional nearest neighbor queries.
ACM SIGMOD Rec 26:369–380

Kim H, Howland P, Park H (2005) Dimension reduction in text classification with support vector machines.
J Mach Learn Res 6:37–53

123

624 G. Pang et al.

Kosmopoulos A, Gaussier E, Paliouras G, Aseervatham S (2010) The ECIR 2010 large scale hierarchical
classification workshop. ACM SIGIR Forum 44(1):23–32

Lam W, Han Y (2003) Automatic textual document categorization based on generalized instance sets and
a metamodel. IEEE Trans Pattern Anal Mach Intell 25(5):628–633

Lan M, Tan CL, Su J, Lu Y (2009) Supervised and traditional term weighting methods for automatic text
categorization. IEEE Trans Pattern Anal Mach Intell 31(4):721–735

Lin J, Gunopulos D (2003) Dimensionality reduction by random projection and latent semantic indexing.
In: Proceedings of SDM’2003 Workshop on Text Mining Workshop (2003)

Liu T, Chen Z, Zhang B, Ma W, Wu G (2004) Improving text classification using local latent semantic
indexing. In: Proceedings of the 4th IEEE International Conference on Data Mining, pp. 162–169 (2004)

Mani I, Zhang I (2003) kNN approach to unbalanced data distributions: a case study involving information
extraction. In: Proceedings of ICML’2003 Workshop on Learning from Imbalanced Datasets (2003)

Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University
Press, Cambridge

Miao Y., Qiu X. Hierarchical centroid-based classifier for large scale text classification. In: First Pascal
Challenge on Large Scale Hierarchical Text classification (2009).

Moore AW, Hall T (1990) Efficient memory-based learning for robot control. Doctoral dissertation, Uni-
versity of Cambridge (1990)

Pang G, Jiang S (2013) A generalized cluster centroid based classifier for text categorization. Inf Process
Manag 49(2):576–586

Pang G, Jiang S, Chen D (2013) A simple integration of social relationship and text data for identifying
potential customers in microblogging. Advanced data mining and applications. Springer, Berlin

Papadimitriou CH, Tamaki H, Raghavan P, Vempala S (1998) Latent semantic indexing: a probabilistic
analysis. In: Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART symposium on principles of
database systems, pp. 159–168 (1998)

Salton G, Wong A, Yang C (1975) A vector space model for automatic indexing. Commun ACM 18(11):613–
620

Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv (CSUR)
34(1):1–47

Sun JT, Chen Z, Zeng HJ, Lu YC, Shi CY, Ma WY (2004) Supervised latent semantic indexing for document
categorization. In: Proceedings of the 4th IEEE International Conference on Data Mining, pp. 535–538
(2004)

Sun Y, Wong AK, Kamel MS (2009) Classification of imbalanced data: a review. Int J Pattern Recog Artif
Intell 23(4):687–719

Tan S (2005) Neighbor-weighted k-nearest neighbor for unbalanced text corpus. Expert Syst Appl
28(4):667–671

Tan S (2006) An effective refinement strategy for KNN text classifier. Expert Syst Appl 30(2):290–298
Tan S, Cheng X (2007) An effective approach to enhance centroid classifier for text categorization. In:

Proceedings of the 11th European conference on Principles and Practice of Knowledge Discovery in
Databases, pp. 581–588 (2007)

Tang L, Liu H (2005) Bias analysis in text classification for highly skewed data. In: Proceedings of the 5th
IEEE International Conference on Data Mining, pp. 781–784 (2005)

Vilalta R, Achari M, Eick CF (2003) Class decomposition via clustering: a new framework for low-variance
classifiers. In: Proceedings of the 3rd IEEE International Conference on Data Mining, pp. 673–676 (2003)

Wan CH, Lee LH, Rajkumar R, Isa D (2012) A hybrid text classification approach with low depen-
dency on parameter by integrating K-nearest neighbor and support vector machine. Expert Syst Appl
39(15):11880–11888

Wang X, Zhao H, Lu B (2011) Enhance k-nearest neighbour algorithm for large-scale multi-labeled hierar-
chical classification. In: Second Pascal Challenge on Large Scale Hierarchical Text classification (2011)

Wang X, Zhao H, Lu B (2013) A Meta-Top-down Method for Large-scale Hierarchical Classification. IEEE
Trans Knowl Data Eng, 99 (2013). doi:10.1109/TKDE.2013.30

Wettschereck D, Aha DW, Mohri T (1997) A review and empirical evaluation of feature weighting methods
for a class of lazy learning algorithms. Artif Intell Rev 11(1–5):273–314

Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, Mclachlan GJ, Ng A, Liu B, Yu PS (2008)
Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37

123

http://dx.doi.org/10.1109/TKDE.2013.30

CenKNN: a scalable and effective text classifier 625

Yang Y (1994) Expert network: effective and efficient learning from human decisions in text categorization
and retrieval. In: Proceedings of the 17th annual international ACM SIGIR conference on research and
development in information retrieval, pp. 13–22 (1994)

Yang Y, Ault T, Pierce T, Lattimer CW (2000) Improving text categorization methods for event tracking.
In: Proceedings of the 23rd annual international ACM SIGIR conference on research and development
in information retrieval, pp. 65–72

Yang H, King I (2009) Sprinkled latent semantic indexing for text classification with background knowledge.
Lect Notes Comput Sci 5507:53–60

Yang Y, Liu X (1999) A re-examination of text categorization methods. In: Proceedings of the 22nd annual
international ACM SIGIR conference on research and development in information retrieval, pp. 42–49

Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization. In: Proceedings
of the 14th International Conference on Machine Learning, pp. 412–420

Zhang M, Zhou Z (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit
40(7):2038–2048

123

	CenKNN: A scalable and effective text classifier
	Citation

	CenKNN: a scalable and effective text classifier
	Abstract
	1 Introduction
	2 Related work
	2.1 Existing text classification algorithms
	2.2 Previous work on improving KNN

	3 Proposed scalable and effective text classifier
	3.1 Proposed dimension reduction method: CentroidDR
	3.2 Proposed text classifier: CenKNN

	4 Experimental results and comparisons
	4.1 Experimental settings
	4.2 Datasets and performance metrics
	4.3 Classification performance
	4.4 Scalability examination
	4.5 Sensitivity examination over different K values and number of classes
	4.6 Comparison with SVM and its variant
	4.7 Discussion

	5 Conclusions and future work
	Acknowledgments
	References

