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ARXIV 1

Beyond Triplet Loss: Person Re-identification with
Fine-grained Difference-aware Pairwise Loss

Cheng Yan*, Guansong Pang*, Xiao Bai, Jun Zhou, Lin Gu

Abstract—Person Re-IDentification (ReID) aims at re-
identifying persons from different viewpoints across multiple
cameras. Capturing the fine-grained appearance differences is
often the key to accurate person ReID, because many iden-
tities can be differentiated only when looking into these fine-
grained differences. However, most state-of-the-art person ReID
approaches, typically driven by a triplet loss, fail to effectively
learn the fine-grained features as they are focused more on
differentiating large appearance differences. To address this issue,
we introduce a novel pairwise loss function that enables ReID
models to learn the fine-grained features by adaptively enforcing
an exponential penalization on the images of small differences and
a bounded penalization on the images of large differences. The
proposed loss is generic and can be used as a plugin to replace
the triplet loss to significantly enhance different types of state-
of-the-art approaches. Experimental results on four benchmark
datasets show that the proposed loss substantially outperforms a
number of popular loss functions by large margins; and it also
enables significantly improved data efficiency.

Index Terms—Person Re-Identification, Fine-grained Differ-
ence, Representation Learning, Triplet Loss, Pairwise Loss

I. INTRODUCTION

Person re-identification (ReID), aiming at re-identifying
people from viewpoints across multiple cameras, is a critical
computer vision task due to its crucial applications in video
surveillance, multi-camera tracking and forensic search. Al-
though person ReID has attracted extensive research attentions
in recent years, one largely unsolved challenge is how to
effectively capture the fine-grained appearance differences of
different persons. This problem is crucial to person ReID,
because in real-world ReID applications images of different
identities can often be differentiated only when looking into
these fine-grained differences. This issue manifests itself in
popular person ReID benchmarks such as CUHK03 [1], Mar-
ket1501 [2] and DukeMTMC [3]. To provide a straightfor-
ward illustration, we explore and visualize the distribution
of average pairwise distances on these datasets. The results
are shown in Figure 1. It is clear that inter-person distances1

(i.e., distance between an image pair of different persons) can
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1 Images of each person are normally treated as samples from an individual

class; so class and person/identity are used interchangeable in this study.

be rather small due to fine-grained differences between these
images, e.g., the demonstrated CUHK03 anchor image and the
negative sample at the right bottom in the first row in Figure 1
have only small differences in the bags and glasses the two
persons carry. On the other hand, intra-person distances (i.e.,
distance between an image pair of the same person) can be
large due to the fine-grained differences, e.g., the background
object in the positive sample at the left bottom in the first row
of Figure 1. Consequently, the identified persons may contain a
large number of false positive errors. Similar results can also
be observed in the Market1501 [2] and DukeMTMCC [3].
Therefore, the ability to capture those fine-grained appearance
differences is the key to accurate person ReID.

Inspired by the tremendous success of deep learning, many
methods [4], [5], [6] have been introduced to learn deep
expressive representations for person ReID and achieved state-
of-the-art performance. Typically, most of these methods [7],
[8], [4], [9], [5], [10], [11], [12], [6], [13], [14], [15], [16],
[17], [18], [19], [20] employ a triplet loss [7], [5], [13] or
its combination of a classification loss [10], [11], [12] as the
driving force to extract relevant features. Under this generic
framework, several approaches have been developed to learn
semantically-rich and/or local features, such as the global
feature-based approach [14], [15], data augmentation-based
approach [6], [13] and striping approach [21], [10].

Fig. 1. Distribution of average distances between an anchor image and other
images from the same person or different persons. Many image pairs have
small inter-person distances in popular ReID benchmarks (see Table I in
Section V for detailed statistics). The distances are calculated using features
extracted from ResNet50.

However, the triplet loss, which enforces that inter-person
distances are larger than intra-person distances by a predefined
margin, is less effective in learning the fine-grained differences
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ARXIV 2

due to two main reasons: (i) as shown in Figure 2, the triplet
loss function is dominated by infinitely increasing penalization
on large differences between images of the same identity; (ii) it
does not enforce sufficient penalization on the images of small
differences. For example, triple loss enforces no penalization
on the small intra-person differences and imposes a linearly
increased penalization on the small inter-person differences.
As a result, the triplet loss can only capture the high-level
similarities and differences, and thus, it is ineffective in scenes
where the fine-grained differences are the key to person ReID.

To address the aforementioned issues, we propose a novel
fine-grained difference-aware (FIDI) loss for person ReID.
This fine-grained difference-aware property refers to the ca-
pability of our loss in adaptively penalizing small inter-person
or intra-person appearance differences. Particularly, the FIDI
loss enforces an exponentially large penalization on images of
those fine-grained differences while at the same time imposing
a bounded penalization on their counterparts, i.e., images of
large inter-person or intra-person differences. The exponential
penalization drives the model to be sensitive to small dif-
ferences, while the bounded penalization effectively reduces
the bias towards large differences. The resulting models can
balance expressive features learned from both large and small
differences. Additionally, due to the fine-grained difference-
aware property, our loss can also leverage the training data
more efficiently than the triplet loss.

A number of studies [9], [22], [12] have dedicated to
exploring loss functions other than the triplet loss function
for more effective and/or efficient person ReID. Contrastive
loss [23] is a well-known pairwise loss that learns features
for face recognition or re-identification. However, it has sim-
ilar weaknesses as the triplet loss. Additionally, the single
predefined hard margin in these losses also makes it hard
to adaptively penalize distance distributions within different
person identities.Quadruplet loss [9] equips a quadruplet deep
network with quadruplet inputs to replace the triplet loss.
However, it is limited to specific network structures and is
hard to be extended. Batch-hard triplet loss [22], [12] is
another widely used person ReID loss that optimizes the
margin between the most dissimilar intra-person distance and
the most similar inter-person distance in each batch. The batch-
hard operation is also explored to improve the contrastive loss
for the ReID task [10]. The recently proposed circle Loss [24]
combines the triplet loss with a softmax cross-entropy loss
and re-weights each similarity to highlight the less-optimized
similarity scores. However, although its batch-wise loss helps
regularize the feature learning, it is built upon the triplet loss
and thus exhibits similar behaviors in handling the fine-grained
feature issues.

In summary, this paper makes the following four main
contributions.

• We reveal that the widely-used triplet loss function,
arguably currently the most popular ReID loss, has in-
herent difficulties in handling fine-grained appearance
differences. This loss is ineffective in challenging ReID
cases where different identities can be only distinguished
by the fine-grained differences.

• We introduce a novel pairwise relationship-based loss
function, termed fine-grained difference-aware (FIDI)
loss. This FIDI loss enforces exponentially large penal-
ization on small appearance differences while at the same
time imposing bounded penalization on large differences.
As a result, the FIDI-enabled models can effectively learn
expressive features from both large and small appearance
differences.

• The fine-grained difference-aware property also empow-
ers the FIDI loss to harness the image samples more
effectively and is thus substantially more data-efficient
than the triplet loss.

• We demonstrate that the FIDI loss can be used as a plugin
to replace the triplet loss and work effectively in different
types of state-of-the-art approaches.

Experimental results on four benchmark datasets show that
the FIDI loss substantially improves the triplet loss by a large
margin, e.g., typically 10%-20% improvement in effectiveness.
We also show the FIDI loss based models can also largely
outperform state-of-the-art vehicle ReID models.

The rest of our paper is organized as follows: In Section II,
we review the related works for person ReID. Then we provide
corresponding research background and discuss relevant loss
functions for person ReID in Section III. Section IV intro-
duces the proposed FIDI loss function. Experimental results,
visualization and ablation studies are presented in Section V.
Finally, the conclusions are given in Section VI.

II. RELATED WORK

Many studies [8], [25] learn feature representations for
person ReID by fine-tuning convolutional networks with a
classification loss. Different approaches have been introduced
to further improve the performance, including data augmenta-
tion, striping, and global feature approaches. In this section,
we review three types of person ReID approaches.

A. Data Augmentation-based Approach

Data augmentation is an effective way to improve the feature
learning capacity for CNN. There are generative adversarial
networks (GANs) [6], [13], pose estimation [14], [15], random
erasing [26] in this category.

GAN based approaches use GAN to generate more data
for training. Mask or pose guided frameworks obtain the
semantic information from pose estimation or segmentation
models. These methods use other networks to generate image
to increase the number of input images or improve the mask
of input for augmentation. However, the benefit comes from
the help of other networks with extra semantic information.
By contrast, random erasing randomly selects a rectangle
region and assigns random values either on image [26] or
CNN feature maps [10]. Among these data augmentation-
based methods, random erasing is arguably the simplest yet
highly effective method without extra computation cost.

B. Striping-based Approach

Striping based methods aim at enforcing the learner to pay
more attention to different parts of the identities by combining
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striping local features. Part based networks are widely adopted
in these methods [25], [21], [10] to separate feature maps into
several parts. They build multi-branch neural networks to learn
local features in each of the predefined parts of the identities
with one-branch network dedicated to one part, and then they
concatenate these features to perform ReID during inference.

PCB [21] is the first part-based deep learning methods for
person re-identification. It replaces the original global pooling
layer with a spatial conventional pooling layer to separate
the last convolution into several pieces of column vectors for
independent pooling, in which each part refers to a body part
of person. These feature then are concatenated for final feature
learning. To further improve the accuracy, both global feature
and part-based local feature are learned and used [27], [10].
The added features often result in accuracy improvement.

Though these striping methods are often the best performers
on different benchmark datasets, they often involve more
network parameters and expensive computation than single-
branch network-based methods.

C. Global Feature-based Approach

Global feature-based approach focuses on a single network
structure as the backbone to learn global identity features.
These methods work on the sampling process [28], [29], loss
design [22] or learning process [12]. Among them, the loss
function is very crucial for feature learning and most relevant
to our work.

The combination of classification loss and ranking loss such
as triplet loss is one of the most widely-used loss functions for
person ReID [7], [8], [4], [9], [5]. The triplet loss often works
better than contrastive loss, since the triplet inputs provides
a better guarantee of the distance margin than the pairwise
contrastive loss. However, the triplet constraint is loose in the
sense that it ignores the triplets when the predefined margin is
met. The triplet loss is also cumbersome as the triplet sample
space is often excessively large for large-scale data. A few
studies attempt to address these issues for person ReID. One
such example is a quadruplet loss with quadruplet network [9],
but it is limited to specific network structures. Circle loss
[24] is another closely related work that re-weights each
similarity to highlight the less-optimized similarity scores,
but the weighting factors are defined in a self-paced manner
and need more calculation. Other methods [22], [12] avoid
the explicit generation of hard triplet samples. Instead they
work with batch-wise hard triplet loss, which optimizes the
margin between the most dissimilar intra-person distance and
the most similar inter-person distance in each batch. This en-
hanced triplet loss becomes more sensitive to small appearance
differences than the basic triplet loss. However, its inherent
penalization mechanism does not change.

III. RESEARCH BACKGROUND

This section introduces person re-identification problem and
a widely-used state-of-the-art frameworks to illustrate how our
proposed loss could be plugged in.

A. Problem Formulation

In a person ReID system, let X = {xi, yi}Ni=1 be a set of
N training samples, where xi is an image sample and yi is
its identity/class label. The person ReID algorithm learns a
mapping function φ : X 7→ F which projects the original data
points X to a new feature space F . This space F should shrink
the intra-person distance while push the inter-person distance
as large as possible. Given a query image q and φ, the ReID
algorithm first computes this distance between φ(q) and every
image φ(x) from a gallery image set G, and then returns the
images that have the smallest distance. It should be noted that,
for the sake of real-world applications, the gallery image set
and the training image set have no overlapping, i.e., the query
person does not appear in the training set. Therefore, is is also
regarded as a zero-shot problem. This largely distinguishes
person ReID from general image retrieval tasks.

B. Triplet Loss-based Approach

The triplet loss is a widely-used loss function which takes
a collection of triplet samples to learn feature representations
space where the inter-class distances are greater than intra-
class distances by at least a predefined margin m. A triplet
is composed of three samples xa, xp and xn, where xa is
an anchor sample. xp is a positive sample that comes from
the same person as xa, while xn is a negative sample taken
from an identity different from that of the anchor. The generic
triplet loss (TL) is given as follows:

Ltl = [d(za, zp)− d(za, zn) +m]+, (1)

where z = φ(x) denotes the learnt feature representation of
x. d(·, ·) is the distance of two samples. m is a predefined
margin and [·]+ represents max(·, 0). Contrastive loss can be
regarded as a special case of triplet loss where d(za, zn) +m
is 0 for similar pairs and d(za, zp) is 0 for dissimilar pairs.
Convolutional networks are often employed to instantiate the φ
function. The triplet loss is the key ingredient here, but Eqn.(1)
requires the high-quality triplets as input. An advanced triplet
loss, termed batch triplet loss (BTL) that is widely-used in
person ReID, incorporates hard triplet mining into the loss
calculation in each batch [7], [4], [9], [5]. BTL is defined as
follows:

Lbtl = [ max
p=1...Bp

d(za, zp)− min
n=1...Bn

d(za, zn) +m]+, (2)

where maxp=1...Bp d(za, zp) represents the maximum distance
between anchor and all Bp positive samples in a batch.
minn=1...Bn d(za, zn) represents the minimum distance be-
tween anchor and all Bp negative samples in the batch.

To complement the triplet-based local features, a classi-
fication loss is used in recent methods [27], [10], [12] to
work together with the triplet loss for a global constraint in
the optimization. This helps learn class-level global features
effectively. The classification loss is defined as:

Lcla =

N∑
i=1

E(zᵀiW,yi), (3)
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Fine-grained Difference-aware Pairwise Loss
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Fig. 2. An overview of the fine-grained difference-aware pairwise loss-based framework. It consists of a deep CNN-based network backbone, our proposed
FIDI loss and a classification loss. This framework is exactly the same as the widely-used triplet loss-based framework except that the triplet loss is replaced
with our FIDI loss. The network backbone can be various CNN architectures. Unlike the triplet loss that neglects small appearance differences due to the
potential dominance of unbounded penalization on images of large intra-person differences, our FIDI loss can effectively capture the fine-grained intra-
person/inter-person appearance differences, e.g., image pairs having small appearance difference as in the red boxes above. We achieve this by enforcing
exponentially large penalization on images of small differences and bounded penalization on images of large differences.

where E(·) is the cross entropy loss. W is the weight matrix
to map zi to classification labels xi encoded as one-hot vector
yi in the output layer. This classification loss is added in
the output classification layer. A batch normalization layer is
normally employed between the triplet loss-enabled feature
layer and the output layer to speed up training and stabilize
the performance.

This framework works effectively in different benchmark
datasets. Recent advances incorporate data augmentation or
striping strategies [27], [10] to achieve new state-of-the-art
performance. However, the triplet loss, either Ltl or Lbtl,
fails to learn expressive features from fine-grained differences.
This is because: (i) the triplet loss is not sensitive to small
differences, i.e., it enforces no penalization on small intra-
person differences or small penalization on small inter-person
differences; (ii) the loss grows linear infinitely w.r.t. the
increasing intra-person distances and has no upper bound. As
a result, the optimization may be dominated by large intra-
person differences.

IV. FINE-GRAINED DIFFERENCE-AWARE (FIDI) LOSS

This section introduces our fine-grained difference-aware
(FIDI) loss to address the bottleneck issue with the triplet
loss.

A. The Proposed Framework

Our proposed framework aims to leverage the capability of
the FIDI loss in capturing fine-grained differences to learn
well discriminative and generalized features for the person
ReID task. Specifically, as shown in Figure 2, our framework
is composed of three modules: deep convolutional network-
based feature mapping, the FIDI loss and the classification
loss. We use exactly the same framework as the triplet loss

approach except that the triplet loss is replaced with our FIDI
loss. Note that we use this setting to facilitate a straightforward
comparison with triplet loss-based approaches in our empirical
studies. As discussed in Section V-D3, The FIDI loss could
also improve other frameworks.

The procedure of our framework is as follows. It first uses
a convolutional neural network to map image data into a
low-dimensional space. Compared to quadruplet loss [9], here
this backbone network is not limited to any specific deep
convolutional network structures. Then the proposed FIDI loss
enforces a pairwise constraint to the projected features by
applying exponentially increasing penalization to small differ-
ences and bounded loss to large differences. This enables the
learner to adaptively capture the fine-grained differences while
enforce a desired margin between the feature representations
of different identities. Finally, we use a batch normalization
layer and a fully connected layer without bias as the classifier,
which is optimized using the cross entropy loss in Eqn.(3).

Particularly, the FIDI loss is built upon relative entropy [30],
a measure of the distance between two distributions. Let K be
a known distribution of training image pairs, i.e., the ground
truth identity labels, and U be an unknown distribution we aim
to learn, then the FIDI loss is defined as follows:

Lfidi = D(U||K) +D(K||U), (4)

where

D(U||K) =
∑
pij∈P

upij log
αupij

(α− 1)upij + kpij
, (5)

where pij = {xi,xj} is a pair of image samples and P is
a collection of image pairs; kpij ∈ K and kpij = 1 if the
image pair xi and xj are from the same identity, and kpij =
0 otherwise; upij is taken from an unknown distribution U ,
which is the distribution of feature level relationship of image
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(a) Probability (b) Loss (k = 0) (c) Loss (k = 1)

Fig. 3. (a) Exponential vs. sigmoid distance-to-probability functions, (b) Loss w.r.t. inter-person distance and (c) Loss w.r.t. intra-person distance. One desired
property of exponential distribution based distance-to-probability function is that its probability is exponentially sensitive to changes within a small distance.
As shown in (b) and (c), our loss function exponentially punishes the similar/dissimilar pairs that have small distance whle imposing bounded loss to large
distances.

pairs in P; and α > 1 is a parameter to control the scale of
Lfidi. Since K is the supervised information and is known a
priori, our target is to learn upij ∈ U such that the distribution
U is close to K as much as possible.

The original relative entropy is one of the most popular and
effective losses used in different learning tasks. However, it
could not effectively reflect the true distance between distri-
butions in our task due to the asymmetric and the lack of fine-
grained difference-aware characteristic. Our Lfidi enhances it
to achieve the following two main advantages:
• Our loss is a symmetric metric with a desired inter-class

margin.
• Our loss enforces fine-grained difference-aware penal-

ization on small differences and bounded loss on large
differences

B. Exponential Loss on Images of Fine-grained Differences

One key ingredient in Eqn.(4) is the distance-to-probability
function η that maps the distance in the representation space,
d(zi, zj), to the probability distribution U , i.e., upij =
η(d(zi, zj)). In FIDI loss, we introduce an exponential
distribution-based distance-to-probability function η to effec-
tively penalize hard samples. Particularly, η is defined as
follows:

upij = e−βd(zi,zj), (6)

where β is a parameter to control the scale of the probability
distribution. We have upij → 0 with increasing pairwise
distance, and upij → 1 in the opposite.

We use the exponential distribution-based η because it is
more sensitive and imposes more meaningful penalization on
small differences compared to the commonly-used sigmoid
function 1

1+e−d
or its advanced variant 1

1+e−βd
[4], [31], [29],

where d denotes the pairwise distance and the parameter β
controls the scale of the distribution shape.

Specifically, as shown in Figure 3(a), the exponential distri-
bution shape is significantly more sensitive to the distance than
the sigmoid distribution shape, especially when the pairwise
distance is small. As a result, as shown in Figure 3(b-c),
the exponential distribution based η results in exponentially

varying relative entropy loss w.r.t. both the intra- and inter-
person distances, whereas the sigmoid distribution-based loss
applies rather conservative penalization in such cases.

One main benefit brought by the exponentially sensitive
penalization is the capability in learning the fine-grained differ-
ence of the image pairs. Specifically, as shown in Figure 3(b),
for image pairs that come from different persons but with
small distances, the FIDI loss applies penalization inversely
exponential to the distance and applies nearly zero loss to the
pairs that have large inter-person distance; by contrast, the
triplet loss may enforce no penalization on image pairs which
have very small inter-person distance. In a similar sense, as
shown in Figure 3(c), for image pairs that come from the same
person, no penalization is enforced by the triplet loss on the
image pairs that have small intra-person distance; by contrast,
the FIDI loss also applies exponential penalization to such
cases.

The resulting FIDI loss-based model effectively learns fine-
grained feature representations that are significantly improved
over the triplet loss. The fine-grained difference-aware ability
also enables the FIDI loss-based model to leverage the labeled
data substantially more efficiently than its counterpart, result-
ing in more data-efficient learning.

C. Bounded Loss on Images of Large Differences

Unlike triplet loss that has an infinitely linearly increasing
penalization w.r.t. images of large appearance differences,
the FIDI loss has a bounded loss on the large differences,
which effectively prevents the dominance of images of large
differences in the optimization. Specifically, the bounded loss
of the FIDI loss can be provided as follows.

lim
u→0

Lfidi = 0, when k = 0;

lim
u→0

Lfidi = log
α

(α− 1)
, when k = 1.

(7)

This states that for image pairs from different identities, i.e.,
k = 0, we have a lower loss bound of zero with u approaching
to zero. Recall that the pairwise distance increases as u→ 0.
In other words, similar to the triplet loss, the FIDI loss does
not penalize the image pairs if they are from different identities
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with a large distance in the new space. On the other hand, for
image pairs from the same identity, while the triplet loss has
an infinitely increasing loss, the FIDI loss imposes an upper
loss bound of log α

(α−1) w.r.t. increasing intra-person distance.
This upper bound is controlled by the hyperparameter α and
can be easily tuned during training.

As shown in Figure 3(c), the punishment of triplet loss
can be very large, given image pairs with very large intra-
person distances. This hinders the triplet loss to learn the
fine-grained differences from image pairs that have small intra-
person distances. By contrast, the FIDI loss treats these sam-
ples equally and enforces a bounded penalization, preventing
the domination of the large appearance differences over the
counterpart small differences.

D. Symmetric Metric with a Desired Margin

Different from the original relative entropy that is asymmet-
ric, our loss in Eqn.(4) is symmetric, as it is easy to see that
we get the same results when switching upij and kpij . This
characteristic eases the optimization of the feature learning
and also helps learn more meaningful features.

Although the FIDI loss does not explicitly define a margin
between intra- and inter-person image pairs as in the triplet
loss, the FIDI loss can still achieve some implicit margins.
This is because Eqn. (4) enforces the substantially small intra-
person distances while at the same time encourages large inter-
person distances, resulting in some implicit margins between
intra- and inter-person image pairs. However, the margins are
not directly predefined as in the triplet loss, but they are
controlled by the parameter β in Eqn. (6).

V. EXPERIMENTS

A. Datasets

We evaluate the performance on four widely used per-
son ReID datasets, including Market1501 [2], DukeMTMC-
ReID [3], CUHK03-D and CUHK03-L [1], and two vehicle
datasets, VeRi-776 [32] and VehicleID [33].

Market1501 is a large person ReID dataset containing
12,936 images from 751 identities in the training data, and
3,368 query images and 19,732 gallery images from 750
identities in the testing data. These images were captured from
6 different camera viewpoints with manual bounding boxes.
There are about 17 images for each identity.

DukeMTMC-ReID is a subset of DukeMTMC [34] for
person ReID. The images are cropped by hand-drawn bound-
ing boxes. The data was taken from 8 cameras of 1,404
identities with respective 16,522, 2,228 and 17,661 images
in the training, query and gallery sets.

CUHK03-D and CUHK03-L contain the same image set
with 14,096 images from 1,467 identities captured from two
cameras in CUHK campus, but their identity-bounding box
were created by different methods. CUHK03-D used pedes-
trian detectors to create the bounding boxes while that of
CUHK03-L was manually labeled. The pedestrian detector-
based method is more challenging than the manually labeled
one since the former is less accurate.

C
U

H
K

0
3

M
a
rk

et
1
5
0
1

D
u

k
eM

T
M

C

View-II

View-I

View-I

View-II

View-I

View-II

ID-I ID-II ID-III ID-IV ID-V ID-VI ID-VII

Fig. 4. Images from three person reid datasets. We give two images from a
same person with different views. There are many hard/easy examples from
different/same person in these datasets. For example, the images of ID-I and
ID-II in View-II look very similar. However, the images of same person of
ID-IV and ID-VII in different views look very different. These datasets also
contain many images with occlusion.

VeRi-776 is a vehicle dataset in which all the images were
captured in natural and unconstrained traffic environment.
It contains about 50,000 images of 776 vehicles across 20
surveillance cameras with different orientations. This dataset
is widely used in vehicles re-identification tasks because each
image is captured from 2 to 18 viewpoints with different
illuminations and resolutions. These images are also labeled
with bounding boxes over the whole vehicle body.

VehicleID is a large-scale vehicle dataset that contains
221,763 images with 26,267 vehicles. All the images were
captured from multiple surveillance cameras with no overlap-
ping. There are three test subsets with different sizes and we
use the largest test set which contains 20,038 images of 2,400
vehicles.

Note that the person/vehicle identities in the training and
testing sets have no overlapping in all the used datasets. An
image example is given in Figure. 4, in which we give two
images from the same person with different views. There are
many hard/easy examples from different/same person in these
datasets. For example, the images of ID-I and ID-II in View-II
look very similar and the images of same person of ID-IV and
ID-VII in different views look very different. These datasets
also contain many images with occlusion.

B. Evaluation Protocol

Following the standard protocol in [31], [29], [21], [35],
[36], we use Cumulated Matching Characteristics (CMC) and
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mean average precision (mAP) to evaluate the performance
on all datasets. We report the cumulated matching accuracy
at rank 1 (R-1 for short) and the mAP value of the retrieval
performance. Specifically, for all queries, we compute

R1 =

Q∑
q=1

r1/Q, (8)

where Q is the number of queries and r1 is defined as

r1 =

{
1, the first top-ranked sample is the query identity
0, otherwise,

(9)
The mean average precision (mAP) is defined as

mAP =

Q∑
q=1

AveP (q)/Q, (10)

where AveP (q) is the average precision (AP) for a given query
q.

Note that all the reported results here do not involve re-
ranking which may be used as an extra step to further improve
the accuracy.

C. Understanding the Resulting Feature Representations

We aim to understand the effectiveness of feature represen-
tations by looking into the fidelity and the saliency map of
learned features.

1) Fidelity of Feature Representations: The feature repre-
sentations fidelity measures how faithful the obtained feature
represents the expectation, i.e. intra-person distances should be
larger than inter-person distances. To efficiently evaluate this
type of fidelity, we consider the number of erroneous cases
where (i) anchor images have smaller inter-person distances
than the their maximal intra-person distances, termed Error-I,
or (ii) anchor images have larger intra-person distances than
their minimal inter-person distances, termed Error-II. We count
these two types of erroneous cases using feature representa-
tions of four different methods, including pre-trained features
extracted from a pre-trained ResNet502 (PF) and features
obtained by fine-tuning ResNet50 using respectively batch-
hard constrastive loss (BCL), batch-hard triplet loss (BTL) and
our proposed loss (FIDI). The statistics of erroneous cases on
three person ReID benchmarks are reported in Table I.

It is clear from Table I that pre-trained features would
result in a large number of erroneous cases, especially the
Error-I cases. This indicates that most images of difference
identities exhibit large similar appearance in both training
and testing data, leading to small inter-person distances. The
datasets also contain some Error-II cases that may be seen
as outliers, because intra-person distances is rarely larger
than minimal inter-person distances. To address these issues,
models should be able to effectively learn the small appearance
differences while prevent the impact of the outlying cases.
After fine-tuning the models using either BCL, BTL or FIDI,

2https://github.com/kaiminghe/deep-residual-networks

the number of erroneous cases is significantly reduced in both
training and testing data. In training data, BCL and BTL
perform very well in enforcing intra-person distances to be
smaller than inter-person distances, often achieving smaller
error rates than FIDI. However, they perform significantly
less effective than FIDI in the testing data, especially on
the Error-I measure. This may indicate that both BCL and
BTL overfit the training data rather than capturing the fine-
grained appearance differences to distinguish the inter-person
images. By contrast, with exponentially large penalization,
FIDI enforces the models to learn any possible fine-grained
appearance differences in the training data. Since the fine-
grained differences are typically very difficult to learn, for
some cases, even for humans, FIDI does not perform as well
as BCL and BTL in the training data. However, its capability
of discriminating the fine-grained differences pays off in the
testing data.

2) Attention Maps: We further examine the resulting at-
tention maps of our loss and the competing loss functions.
We focus on comparing our FIDI loss to the BTL loss,
because BTL is generally more effective and is much more
widely-used than BCL in person ReID. Specifically, these
two losses are plugged into one of the best ReID models,
Baseline [12]. The attention maps are then obtained by apply-
ing the Grad-CAM visualization method [37] with Baseline
to create pix-wise gradient visualizations. The attention maps
on the last output feature maps are shown on Figure 5. The
BTL-enabled Baseline highlights single discriminative parts
only, which may correspond to the parts that have large
appearance differences to other images. In contrast, our FIDI
loss-enabled Baseline can effectively attend to diverse large
and small discriminative parts in different cases, e.g., shoes
and heads in identity images taken different angles, different
accessories and occluded identities. For example, in the 1st
row in Figure 5, despite different angles and identities, our
method can consistently pay attention to both small (shoes
and heads) and large (the main body dress) discriminate parts,
while the competing method focuses on a small discriminative
region of the main body only. This demonstrates that the BTL
loss-based models can be dominated and swayed by large
appearance differences. Therefore, their attention is normally
on single highly discriminative parts. In contrast, our loss can
effectively drive the ReID models to pay attention on different
body parts by enforcing the importance of distinguishing fine-
grained differences.

3) Summary of Comparison: Overall, by enforcing expo-
nentially large penalization on images of small appearance
differences and bounded penalization on images of large
differences, our FIDI pairwise loss brings in two major benefits
compared to existing widely-used pairwise and triplet losses.
First, the FIDI-enabled models can effectively capture fined-
grained appearance differences, where the competing methods
fail. This significantly improves the feature representations as
demonstrated by significantly small errors in testing data in
Table I. Second, as illustrated in Figure 5, our loss effectively
pushes the ReID models to attend to diverse discriminative
parts since fine-grained differences may appear in different
body parts. This is important for distinguishing different
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TABLE I
AVERAGE ERRONEOUS DISTANCE CASES OVER ALL IMAGES OF EACH DATASET IN FOUR FEATURE SPACES. ERROR-I REFERS TO THE AVERAGE NUMBER

OF ANCHOR IMAGES WHICH HAVE SMALLER INTER-PERSON DISTANCES THAN THEIR MAXIMAL INTRA-PERSON DISTANCES, WHILE ERROR-II IS THE
AVERAGE NUMBER OF ANCHOR IMAGES WHICH HAVE LARGER INTRA-PERSON DISTANCES THAN THEIR MINIMAL INTER-PERSON DISTANCES. PF REFERS

TO PRE-TRAINED FEATURES EXTRACTED FROM A PRE-TRAINED RESNET50. BCL, BTL AND FIDI ARE FEATURE SPACES RESULTED BY FINE-TUNING
RESNET50 USING RESPECTIVELY BATCH-HARD CONSTRASTIVE LOSS, BATCH-HARD TRIPLET LOSS AND OUR PROPOSED LOSS. THE AVERAGE NUMBER

OF IMAGES PER IDENTITY IS 9.6 IN CUHK03, 17 IN MARKET1501 AND 23 IN DUKEMTMC. THE BEST RESULTS ARE BOLDFACED IN EACH GROUP.

Data Method
CUHK03 Market1501 DukeMTMC

9.6 images/ID 17 images/ID 23 images/ID
Error-I Error-II Error-I Error-II Error-I Error-II

Training Data

PF 4316 7 9596 15 13677 19
BCL 0.008 0.010 1.977 0.397 6.360 4.420
BTL 0.005 0.008 1.905 0.295 3.310 3.655
FIDI 0.252 0.023 2.072 0.261 3.721 1.807

Testing Data

PF 2973 7.617 11687 506.7 13258 24.15
BCL 85.06 6.600 276.3 19.18 925.7 20.89
BTL 95.11 6.611 261.5 18.36 910.6 20.61
FIDI 45.02 6.310 229.1 16.50 819.3 19.54

OriginalBaselineOurs OriginalBaselineOurs

DukeMTMC CUHK03-D

Fig. 5. Visualization of attention maps of our FIDI loss-enabled model (Ours)
and the batch-hard triplet loss-enabled model (Baseline). Our method learns
diverse important attention, but Baseline only focuses on small discriminative
parts. The diverse attention maps from Ours span over the whole person rather
than some local areas in Baseline.

identities with some similar appearances, e.g., in dress, shoes
and/or accessories. Models embodied with our loss would
enjoy above two factors that are critical to accurate person
ReID.

D. Enabling Different Type of Person ReID Models in Real-
world Datasets

To have a comprehensive evaluation on real-world datasets,
the FIDI loss is used to replace the batch-hard triplet loss
in three types of recent state-of-the-art approaches, including

data augmentation, global feature and striping approaches.
Specifically, we choose the best performer(s) in each type of
these approaches and them simply replace the triplet loss with
our proposed FIDI loss, with all the other modules unchanged.
The batch size and the number of identities in each batch are
respectively set to 128 and 8 by default. The hyperparameters
α and β in the FIDI loss are tuned via cross validation for
each data set.

1) Enabling Data Augmentation Methods: This sec-
tion compares our loss to several data augmentation-based
methods, including GAN-based methods [38], [13] and
segmentation-based masking methods [14], [39]. Note that,
these methods employ other networks to generate images to
obtain semantic information, which brings extra computational
consumption. Baseline1 [12] without data augmentation, i.e.,
random erasing, is the best performer. Therefore we plugged
the FIDI loss into this method. Note that Baseline1 contains
a center loss and we discard this loss in our Baseline1 model
by replacing the triplet loss with our FIDI.

The comparison results are shown in the second row in
Table II. Although Baseline1 has significantly outperformed
all the other competing methods in this category, the FIDI loss-
enabled Baseline1 can still consistently beat the original Base-
line1 in both mAP and R-1 across all the four datasets. Particu-
larly, the improvement is significantly larger on the challenging
datasets than the relatively easy ones, e.g., the improvement
can be as large as 20.9%-21.3% in mAP and 22.1%-22.7%
in R-1 on the two CUHK03 datasets whereas it is 2.7%-3.4%
in mAP and 0.7%-1.3% in R-1 on Market1501/DukeMTMC.
This demonstrates that the FIDI loss-enabled Baseline1 not
only inherits the superior capability as in the original Baseline1
but also leverages the fine-grained difference-aware ability of
the FIDI loss to learn extra discriminative information from the
hard samples. This is especially true for the two challenging
CUHK03 datasets in which we have much less images and
the triplet loss-based models become overfitting (see Table I
for detail).

2) Enabling Global Feature-based Methods: We then ex-
amine the plugging of the FIDI loss into the global feature-
based methods. There are seven methods for comparison,
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TABLE II
MAP AND R-1 OF DIFFERENT METHODS ON FOUR BENCHMARK DATASETS. BCL AND BTL RESPECTIVELY DENOTE BATCH CONTRASTIVE LOSS AND

BATCH TRIPLET LOSS. THE BEST PERFORMANCE PER GROUP IS BOLDFACED.

Type Methods Market1501 DukeMTMC CUHK03-D CUHK03-L
mAP R-1 mAP R-1 mAP R-1 mAP R-1

Data
Augumentation

SPReID [14] 81.3 92.5 71.0 84.4 - - - -
Camstyle [13] 68.7 88.1 53.5 75.3 - - - -
PN-GAN [38] 72.6 89.4 53.2 73.6 - - - -
SVDNet [39] 62.1 82.3 56.8 76.7 37.3 41.5 37.8 40.9
Baseline1 (BTL) [12] 82.3 93.5 71.0 84.9 52.5 54.2 55.3 56.3
Baseline1 (FIDI) 84.5 94.2 73.4 86.0 63.5 66.1 67.1 69.1

Global
Feature

TriNet [22] 69.1 84.9 - - - - - -
AWTL [40] 75.7 89.5 63.4 79.8 - - - -
AOS [28] 70.4 86.4 62.1 79.1 43.3 47.1 - -
GSRW [41] 82.5 92.7 66.4 80.7 - - - -
Mancs [29] 82.3 93.1 71.8 84.9 60.5 65.5 63.9 69.0
BCL [42] 67.6 86.4 58.6 78.2 - - - -
CL [24] 84.9 94.2 - - - - - -
Baseline2 (BTL)[12] 85.9 94.5 76.4 86.4 58.2 60.5 60.2 62.1
Baseline2 (BCL) 84.0 92.3 74.5 83.6 60.5 63.3 64.9 66.4
Baseline2 (FIDI) 86.8 94.5 77.5 88.1 69.1 72.1 73.2 75.0

Striping

AlignedReID [43] 77.7 90.6 67.4 81.2 - - - -
MLFN [11] 70.4 86.4 62.1 79.1 47.8 52.8 49.2 54.7
PCB [21] 77.4 92.3 65.3 81.9 53.2 59.7 - -
IANet [44] 83.1 94.4 73.4 87.1 - - - -
PL-Net [45] 69.3 88.2 - - - - - -
MCG [46] 78.3 92.6 69.4 84.7 - - 55.3 61.7
BDB [10] 84.3 94.2 72.1 86.8 69.3 72.8 71.7 73.6
BDB (FIDI) 85.2 94.8 74.5 88.6 71.7 74.5 73.8 76.9
MGN [27] 86.9 95.7 78.4 88.7 66.0 66.8 67.4 68.0
MGN (FIDI) 86.9 95.4 79.8 89.7 73.0 76.1 76.3 78.9

including TriNet [22], AWTL [40], AOS [28], GSRW [41],
Mancs [29], BCL [42] and Baseline2 [12]. These methods
only employ simple single branch structure for training, which
have less parameters to learn. All methods have only one
pipeline with the basic ResNet50 as the backbone and use
the feature representations obtained after global pooling. Note
that, Baseline2 [12] is the Baseline1 with random erasing data
augmentation. We also discard the centre loss and replace the
triplet loss by our FIDI loss. We not only report the results of
BCL [42] but also the results of Baseline2 (BCL), which is
the Baseline2 [12] with BTL function being replaced by the
BCL function from [42].

The results are given in the third row in Table II. It is clear
that the FIDI loss-enabled Baseline2 consistently enhances
the best performer in this group of methods, the original
Baseline2, with significant improvement on the two CUHK03
datasets by 18.8%-20.3% in mAP and 19.2%-20.9% in R-
1. This is because the FIDI loss-enabled Baseline2 can still
gain the full benefits brought by a bag of different tricks used
in Baseline2 while at the same time significantly improving
Baseline2 when the datasets become more challenging.

3) Enabling Striping-based Methods: Lastly the FIDI loss
is evaluated with the stripe-based methods, including some
recent promising methods BDB [10] and MGN [27]3. These
methods are typically much more difficult to train and are
computationally expensive than the other methods, because

3DSA [47] also achieves state-of-the-art results on CUHK03-D and
CUHK03-L datasets, but we cannot plug our loss into it since its source
code is not available.

they involve multi-branch complex network structures. Since
there is no consistent superiority of MGN and BDB over each
other, we plug our FIDI loss into both methods.

The results are shown in the last row in Table II. We
can see that the performance of both BDB and MGN is
substantially improved in nearly all cases on the four datasets.
Particularly, the FIDI loss consistently enhances BDB in both
mAP and R-1 across all cases, especially lifting its mAP
performance by 1.1% on Market1501, 4.2% on DukeMTM,
3.4% on CUHK03-D and 3.7% on CUHK03-L. The FIDI loss
significantly improves MGN by 10.1%-13.2% in mAP and
13.9%-16.0% in R-1 on the two complex CUHK03 datasets.
The FIDI loss-enabled MGN only works comparably well to,
or less effectively than, the original MGN on Market1501.
This may be due to that Market1501 is a simple and small
dataset while MGN is a model with very complex architecture.
Therefore, training MGN with our FIDI loss may lead to
overfitting on this dataset.

4) Summary of Comparison: Overall, three main observa-
tions can be drawn across all the comparisons in Table II.
First, our FIDI loss consistently and substantially improves
all three types of recently proposed triplet loss-based state-of-
the-art methods by a large margin on DukeMTMC and the
two CUHK03 datasets. It is especially true on the complex
CUHK03 datasets where the plugin of the FIDI loss typically
results in 10%-20% improvement in both mAP and R-1, but
the FIDI loss may not have clear advantages over the triplet
loss on simple and/or small datasets such as Market1501.
Second, by using the FIDI loss, simple models can perform
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Fig. 6. mAP results on four datasets with varying percentage of training data.
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Fig. 7. R1 results on four datasets with varying percentage of training data.

substantially better than the complex models that use the
triplet loss, e.g., ‘Baseline2 (FIDI)’ vs. BDB on Market1051,
DukeMTMC and CUHK03-L. Third, the superiority of the
FIDI loss sets new state-of-the-art results on DukeMTM,
CUHK03-D and CUHK03-L, achieving 3.1%-7.2% improve-
ment in mAP and 2.3%-4.6% improvement in R-1 over the
prior best performance on the last two datasets.

E. Enhancing Data Efficiency

This section evaluates the data efficiency of the FIDI loss-
enabled models. To do this, we reduce the training data by
randomly removing 25% identities each step. The mAP results
are given in Figure 6 and Figure 7.

It is clear that the FIDI loss-enabled models outperform
their corresponding counterparts in all the training data settings
across the four datasets, with substantial improvement in most
cases. The performance of the proposed loss on the easy
datasets Market1501 and DukeMTMC is mainly due to its
shared key similar properties as the triplet loss, e.g., having
an inter-class margin, while the superiority of our loss on the
challenging datasets CUHK03-D and CUHK03-L is due to its
fine-grained difference-aware capability and the bounded loss
for easy samples. It is very impressive that even when three
FIDI loss-enabled models use 25% less training data, they still
can perform substantially better than the same models that use
the triplet loss by a margin of at least 7.3% on CUHK03-D and
CUHK03-L. This indicates that when handling challenging
data, using a fine-grained difference-aware loss function is

a much more cost-effective way than increasing the training
data.

F. Beyond Person ReID: Enabling Vehicle ReID

To further evaluate the capability of our proposed loss,
we evaluate the performance of the Baseline2 (FIDI) on two
vehicle ReID datasets, VeRi-776 [32] and VehicleID [33].

1) Comparison with State-of-the-art Vehicle ReID Methods:
We compare our method with 11 state-of-the-art vehicle ReID
methods, including S-CNN [48], AAVER [49], VAMI [50],
PROVID [18], MSVR [51], FDA-NET [52], OIFE [53],
RAM [54], FACT [32], P-R [55] and Baseline2 [12]. The P-
R and Baseline2 are more recent methods that have better
performance than others.

The results are shown on Table III. We can see from the
results that the Baseline2 (FIDI) outperforms most vehicle
ReID methods by a large margin. Compared to Baseline2,
our method achieves 1.3% - 2.6% improvement on mAP and
and 0.6% - 0.7% improvement on R-1. This demonstrates that
the proposed FIDI loss can effectively generalize from person
ReID to vehicle ReID.

2) Visualization of Ranking Results: To provide a more
straightforward illustration of the effectiveness, we present a
set of visual image ranking results for vehicle ReID on VeRi-
766 in Figure 8. We only show the results of Baseline2 (FIDI)
and Baseline2 [12] because Baseline2 has better performance
than all the other competing methods. As shown in Figure 8,
with the increase of returned images, the accuracy of Baseline2
decreases. For example, the 15-th and 20-th returned images of
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TABLE III
MAP AND R-1 PERFORMANCE ON VEHICLE REID DATASETS.

Methods VeRi-776 VehicleID
mAP R-1 R-1 R-5

S-CNN [48] 58.3 83.5 - -
AAVER [49] 66.4 90.2 63.5 85.6
VAMI [50] 50.1 77.0 - -

PROVID [18] 53.4 81.6 - -
MSVR [51] 49.3 88.6 63.0 73.1

FDA-NET [52] 55.5 84.3 55.5 74.7
OIFE [53] 51.4 92.4 67.0 82.9
RAM [54] 61.5 88.6 67.7 84.5
FACT [32] 27.8 61.4 - -
P-R [55] 74.3 94.3 74.2 86.4

Baseline2 [12] 75.7 95.2 77.5 91.0
Baseline2 (FIDI) 77.6 95.7 78.5 91.9

Baseline2 in the 2nd row are highly similar to the query image
but they are actually different vehicles. This happens because
Baseline2 fails to distinguish the fine grained appearance
differences in the front of the vehicles. In contrast, Baseline2
(FIDI) can effectively capture the fined-grained differences
and thus is able to return the images of the same vehicles
taken from different viewpoints rather than the vehicles that
are different from the query vehicle but share large similar
appearance.

Query

Ours

Baseline

Ours

Baseline

1st 5th 10th 15th 20th

Ours

Baseline

Fig. 8. Exemplar Ranking Results from Our Model, Baseline2 (FIDI), and
the Original Baseline2.

G. Implication for Parameter Tuning

The two hyperparameters α and β, which respectively
control the loss bound for easy samples and the sensitivity of
the FIDI loss w.r.t. the pairwise distance, can be well tuned via

cross validation. This section aims at providing some starting
points of the parameter tuning based on our empirical results.
Here α = 1.05 and β = 0.5 are used by default and we vary
one parameter with the other one fixed to examine its impact
on the performance. Due to the page limit, we only present
the mAP results of Baseline2 (FIDI) in Figure 9.

Fig. 9. mAP results w.r.t α and β in the FIDI loss

In general, FIDI is not sensitive to α unless it is too large.
When the α is set to a small value, the punishment on images
of small differences reduces, which decreases the final perfor-
mance. On the right panel, we can see that it is beneficial to set
a large β for challenging datasets CUHK03-D and CUHK03-
L since in such cases our loss becomes more sensitive to
the pairwise distance. Our loss imposes exponentially larger
penalization on images of small differences that results in
performance improvement. On the other hand, a relatively
small β is more plausible for handling easier datasets like
Market1501 and DukeMTM.

VI. CONCLUSIONS

This paper introduces a novel loss function called fine-
grained difference-aware (FIDI) pairwise loss for the person
ReID task. The FIDI loss not only ensures a similar inter-class
margin as the triplet loss, but more importantly, also effectively
penalizes images of both fine-grained and large appearance
differences, especially on images of fine-grained differences.
This delivers a significant improvement of three types of recent
state-of-the-art ReID models in terms of both effectiveness and
data efficiency. The improvement is particularly remarkable on
complex datasets on which most current methods fail to work
effectively. Also, our FIDI loss is simple and can replace the
triplet loss as a plugin. All these characteristics make the FIDI
loss a substantially more effective alternative to the widely-
used triplet loss. We are performing large-scale studies to
examine the applicability of replacing the triplet loss with the
FIDI loss in other critical computer vision tasks.
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