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Deep Learning for Anomaly Detection: A Review

GUANSONG PANG and CHUNHUA SHEN, University of Adelaide

LONGBING CAO, University of Technology Sydney

ANTON VAN DEN HENGEL, University of Adelaide

Anomaly detection, a.k.a. outlier detection or novelty detection, has been a lasting yet active research area in

various research communities for several decades. There are still some unique problem complexities and chal-

lenges that require advanced approaches. In recent years, deep learning enabled anomaly detection, i.e., deep

anomaly detection, has emerged as a critical direction. This article surveys the research of deep anomaly detec-

tion with a comprehensive taxonomy, covering advancements in 3 high-level categories and 11 fine-grained

categories of the methods. We review their key intuitions, objective functions, underlying assumptions, ad-

vantages, and disadvantages and discuss how they address the aforementioned challenges. We further discuss

a set of possible future opportunities and new perspectives on addressing the challenges.

CCS Concepts: • Computing methodologies → Anomaly detection; Machine learning; Scene anom-

aly detection; Neural networks; • Security and privacy → Intrusion/anomaly detection and mal-

ware mitigation;

Additional Key Words and Phrases: Anomaly detection, deep learning, outlier detection, novelty detection,

one-class classification
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1 INTRODUCTION

Anomaly detection, a.k.a. outlier detection or novelty detection, is referred to as the process of
detecting data instances that significantly deviate from the majority of data instances. Anom-
aly detection has been an active research area for several decades, with early exploration dating
back as far as the 1960s [52]. Due to the increasing demand and applications in broad domains,
such as risk management, compliance, security, financial surveillance, health and medical risk, and
AI safety, anomaly detection plays increasingly important roles, highlighted in various commu-
nities including data mining, machine learning, computer vision, and statistics. In recent years,
deep learning has shown tremendous capabilities in learning expressive representations of com-
plex data such as high-dimensional data, temporal data, spatial data, and graph data, pushing the
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boundaries of different learning tasks. Deep learning for anomaly detection, deep anomaly detec-

tion for short, aim at learning feature representations or anomaly scores via neural networks for
the sake of anomaly detection. A large number of deep anomaly detection methods have been
introduced, demonstrating significantly better performance than conventional anomaly detection
on addressing challenging detection problems in a variety of real-world applications. This work
aims to provide a comprehensive review of this area. We first discuss the problem nature of anom-
aly detection and major largely unsolved challenges, then systematically review the current deep
methods and their capabilities in addressing these challenges, and finally presents a number of
future opportunities.

As a popular area, a number of studies [2, 4, 16, 28, 53, 62, 178] have been dedicated to the cate-
gorization and review of anomaly detection techniques. However, they all focus on conventional
anomaly detection methods only. One work closely related to ours is Reference [26]. It presents a
good summary of a number of real-world applications of deep anomaly detection, but only pro-
vides some very high-level outlines of selective categories of the techniques, from which it is
difficult, if not impossible, to gain the sense of the approaches taken by the current methods and
their underlying intuitions. By contrast, this review delineates the formulation of current deep de-
tection methods to gain key insights about their intuitions, inherent capabilities and weakness on
addressing some largely unsolved challenges in anomaly detection. This forms a deep understand-
ing of the problem nature and the state of the art, and brings about genuine open opportunities. It
also helps explain why we need deep anomaly detection.

In summary, this work makes the following five major contributions:

• Problem nature and challenges. We discuss some unique problem complexities underlying
anomaly detection and the resulting largely unsolved challenges.

• Categorization and formulation. We formulate the current deep anomaly detection methods
into three principled frameworks: deep learning for generic feature extraction, learning rep-
resentations of normality, and end-to-end anomaly score learning. A hierarchical taxonomy
is presented to categorize the methods based on 11 different modeling perspectives.

• Comprehensive literature review. We review a large number of relevant studies in leading
conferences and journals of several relevant communities, including machine learning, data
mining, computer vision and artificial intelligence, to present a comprehensive literature
review of the research progress. To provide an in-depth introduction, we delineate the basic
assumptions, objective functions, key intuitions and their capabilities in addressing some
of the aforementioned challenges by all categories of the methods.

• Future opportunities. We further discuss a set of possible future opportunities and their
implication to addressing relevant challenges.

• Source codes and datasets. We solicit a collection of publicly accessible source codes of nearly
all categories of methods and a large number of real-world datasets with real anomalies to
offer some empirical comparison benchmarks.

2 ANOMALY DETECTION: PROBLEM COMPLEXITIES AND CHALLENGES

Owing to the unique nature, anomaly detection presents distinct problem complexities from the
majority of analytical and learning problems and tasks. This section summarizes such intrinsic
complexities and unsolved detection challenges in complex anomaly data.

2.1 Major Problem Complexities

Unlike those problems and tasks on majority, regular or evident patterns, anomaly detection ad-
dresses minority, unpredictable/uncertain and rare events, leading to some unique problem com-
plexities to all (both deep and shallow) detection methods:
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• Unknownness. Anomalies are associated with many unknowns, e.g., instances with un-
known abrupt behaviors, data structures, and distributions. They remain unknown until
actually occur, such as novel terrorist attacks, fraud, and network intrusions.

• Heterogeneous anomaly classes. Anomalies are irregular, and thus, one class of anom-
alies may demonstrate completely different abnormal characteristics from another class of
anomalies. For example, in video surveillance, the abnormal events robbery, traffic accidents
and burglary are visually highly different.

• Rarity and class imbalance. Anomalies are typically rare data instances, contrasting to
normal instances that often account for an overwhelming proportion of the data. Therefore,
it is difficult, if not impossible, to collect a large amount of labeled abnormal instances.
This results in the unavailability of large-scale labeled data in most applications. The class
imbalance is also due to the fact that misclassification of anomalies is normally much more
costly than that of normal instances.

• Diverse types of anomaly. Three completely different types of anomaly have been ex-
plored [28]. Point anomalies are individual instances that are anomalous w.r.t. the majority
of other individual instances, e.g., the abnormal health indicators of a patient. Conditional

anomalies, a.k.a. contextual anomalies, also refer to individual anomalous instances but in a
specific context, i.e., data instances are anomalous in the specific context, otherwise normal.
The contexts can be highly different in real-world applications, e.g., sudden temperature
drop/increase in a particular temporal context, or rapid credit card transactions in unusual
spatial contexts. Group anomalies, a.k.a. collective anomalies, are a subset of data instances
anomalous as a whole w.r.t. the other data instances; the individual members of the col-
lective anomaly may not be anomalies, e.g., exceptionally dense subgraphs formed by fake
accounts in social network are anomalies as a collection, but the individual nodes in those
subgraphs can be as normal as real accounts.

2.2 Main Challenges Tackled by Deep Anomaly Detection

The above complex problem nature leads to a number of detection challenges. Some challenges,
such as scalability w.r.t. data size, have been well addressed in recent years, while the following
are largely unsolved, to which deep anomaly detection can play some essential roles.

• CH1: Low anomaly detection recall rate. Since anomalies are highly rare and heteroge-
neous, it is difficult to identify all of the anomalies. Many normal instances are wrongly re-
ported as anomalies while true yet sophisticated anomalies are missed. Although a plethora
of anomaly detection methods have been introduced over the years, the current state-of-
the-art methods, especially unsupervised methods (e.g., References [17, 84]), still often in-
cur high false positives on real-world datasets [20, 115]. How to reduce false positives and
enhance detection recall rates is one of the most important and yet difficult challenges,
particularly for the significant expense of failing to spotting anomalies.

• CH2: Anomaly detection in high-dimensional and/or not-independent data.

Anomalies often exhibit evident abnormal characteristics in a low-dimensional space yet
become hidden and unnoticeable in a high-dimensional space. High-dimensional anomaly
detection has been a long-standing problem [178]. Performing anomaly detection in a
reduced lower-dimensional space spanned by a small subset of original features or newly
constructed features is a straightforward solution, e.g., in subspace-based [70, 77, 84, 123]
and feature selection-based methods [12, 109, 111]. However, identifying intricate (e.g.,
high-order, nonlinear and heterogeneous) feature interactions and couplings [22] may be
essential in high-dimensional data, but it remains a major challenge for anomaly detection.
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Further, how to guarantee the new feature space preserved proper information for specific
detection methods is critical to downstream accurate anomaly detection, but it is chal-
lenging due to the aforementioned unknowns and heterogeneities of anomalies. Also, it is
challenging to detect anomalies from instances that may be dependent on each other such
as by temporal, spatial, graph-based and other interdependency relationships [2, 4, 22, 53].

• CH3: Data-efficient learning of normality/abnormality. Due to the difficulty and cost
of collecting large-scale labeled anomaly data, fully supervised anomaly detection is often
impractical as it assumes the availability of labeled training data with both normal and
anomaly classes. In the last decade, major research efforts have been focused on unsuper-

vised anomaly detection that does not require any labeled training data. However, unsuper-
vised methods do not have any prior knowledge of true anomalies. They rely heavily on
their assumption on the distribution of anomalies. However, it is often not difficult to col-
lect labeled normal data and some labeled anomaly data. In practice, it is often suggested to
leverage such readily accessible labeled data as much as possible [2]. Thus, utilizing those
labeled data to learn expressive representations of normality/abnormality is crucial for ac-
curate anomaly detection. Semi-supervised anomaly detection, which assumes a set of labeled
normal training data,1 is a research direction dedicated to this problem. Another research
line is weakly supervised anomaly detection that assumes we have some labels for anom-
aly classes yet the class labels are partial/incomplete (i.e., they do not span the entire set
of anomaly class), inexact (i.e., coarse-grained labels), or inaccurate (i.e., some given labels
can be incorrect). Two major challenges are how to learn expressive normality/abnormality
representations with a small amount of labeled anomaly data and how to learn detection
models that are generalized to novel anomalies uncovered by the given labeled anomaly
data.

• CH4: Noise-resilient anomaly detection. Many weakly/semi-supervised anomaly detec-
tion methods assume the labeled training data are clean, which can be vulnerable to noisy
instances that are mistakenly labeled as an opposite class label. In such cases, we may use
unsupervised methods instead, but this fails to utilize the genuine labeled data. Additionally,
there often exists large-scale anomaly-contaminated unlabeled data. Noise-resilient models
can leverage those unlabeled data for more accurate detection. Thus, the noise here can
be either mislabeled data or unlabeled anomalies. The main challenge is that the amount
of noises can differ significantly from datasets and noisy instances may be irregularly dis-
tributed in the data space.

• CH5: Detection of complex anomalies. Most of existing methods are for point anom-
alies, which cannot be used for conditional anomaly and group anomaly, since they exhibit
completely different behaviors from point anomalies. One main challenge here is to incor-
porate the concept of conditional/group anomalies into anomaly measures/models. Also,
current methods mainly focus on detect anomalies from single data sources, while many
applications require the detection of anomalies with multiple heterogeneous data sources,
e.g., multidimensional data, graph, image, text, and audio data. One main challenge is that
some anomalies can be detected only when considering two or more data sources.

• CH6: Anomaly explanation. In many safety-critical domains there may be some major
risks if anomaly detection models are directly used as black-box models. For example, the
rare data instances reported as anomalies may lead to possible algorithmic bias against the

1There have been some studies that refer the methods trained with purely normal training data to be unsupervised ap-

proach. However, this setting is different from the general sense of an unsupervised setting. To avoid unnecessary confu-

sion, following References [2, 28], these methods are referred to as semi-supervised methods hereafter.
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Table 1. Deep Learning Methods vs. Traditional Methods in Anomaly Detection

Method
End-to-end Tailored Representation Intricate Relation Heterogeneity

Optimization Learning Learning Handling

Traditional × × Weak Weak

Deep � � Strong Strong

Challenges CH1-6 CH1-6 CH1, CH2, CH3, CH5 CH3, CH5

minority groups presented in the data, such as under-represented groups in fraud detection
and crime detection systems. An effective approach to mitigate this type of risk is to have
anomaly explanation algorithms that provide straightforward clues about why a specific
data instance is identified as anomaly. Human experts can then look into and correct the
bias. Providing such explanation can be as important as detection accuracy in some applica-
tions. However, most anomaly detection studies focus on detection accuracy only, ignoring
the capability of providing explanation of the identified anomalies. To derive anomaly ex-
planation from specific detection methods is still a largely unsolved problem, especially
for complex models. Developing inherently interpretable anomaly detection models is also
crucial, but it remains a main challenge to well balance the model’s interpretability and
effectiveness.

Deep methods enable end-to-end optimization of the whole anomaly detection pipeline, and
they also enable the learning of representations specifically tailored for anomaly detection. These
two capabilities are crucial to tackle the above six challenges, but traditional methods do not have.
Particularly they help largely improve the utilization of labeled normal data or some labeled anom-
aly data regardless of the data type, reducing the need of large-scale labeled data as in fully super-
vised settings (CH2, CH3, CH4, and CH5). This subsequently results in more informed models and
thus better recall rate (CH1). For the anomaly explanation challenge, although deep methods are
often black-box models, they offer options to unify anomaly detection and explanation into single
frameworks, resulting in more genuine explanation of the anomalies spotted by specific models
(see Section 8.5). Deep methods also excel at learning intricate structures and relations from di-
verse types of data, such as high-dimensional data, image data, video data, graph data, and so on.
This capability is important to address various challenges, such as CH1, CH2, CH3, and CH5. Fur-
ther, they offer many effective and easy-to-use network architectures and principled frameworks
to seamlessly learn unified representations of heterogeneous data sources. This empowers the deep
models to tackle some key challenges such as CH3 and CH5. Although there are shallow methods
for handling those complex data, they are generally substantially weaker and less adaptive than
the deep methods. A summary of this discussion is presented in Table 1.

3 ADDRESSING THE CHALLENGES WITH DEEP ANOMALY DETECTION

3.1 Preliminaries

Deep neural networks leverage complex compositions of linear/non-linear functions that can be
represented by a computational graph to learn expressive representations [49]. Two basic building
blocks of deep learning are activation functions and layers. Activation functions determine the
output of computational graph nodes (i.e., neurons in neural networks) given some inputs. They
can be linear or non-linear functions. Some popular activation functions include linear, sigmoid,
tanh, Rectified Linear Unit (ReLU) and its variants. A layer in neural networks refers to a set of
neurons stacked in some forms. Commonly used layers include fully connected, convolutional
and pooling, and recurrent layers. These layers can be leveraged to build different popular neural
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Fig. 1. The proposed taxonomy of current deep anomaly detection techniques. The detection challenges that

each category of methods can address are also presented.

networks. For example, multilayer perceptron (MLP) networks are composed by fully connected
layers, convolutional neural networks (CNN) are featured by varying groups of convolutional and
pooling layers, and recurrent neural networks (RNN), e.g., vanilla RNN, gated recurrent units, and
long short term memory (LSTM), are built upon recurrent layers. See Reference [49] for detailed
introduction of these neural networks.

Given a dataset X = {x1, x2, . . . , xN } with xi ∈ RD , let Z ∈ RK (K � N ) be a representation
space, then deep anomaly detection aims at learning a feature representation mapping function
ϕ (·) : X �→ Z or an anomaly score learning function τ (·) : X �→ R in a way that anomalies can be
easily differentiated from the normal data instances in the space yielded by the ϕ or τ function,
where both ϕ and τ are a neural network-enabled mapping function with H ∈ N hidden layers
and their weight matrices Θ = {M1,M2, . . . ,MH }. In the case of learning the feature mapping ϕ (·),
an additional step is required to calculate the anomaly score of each data instance in the new
representation space, while τ (·) can directly infer the anomaly scores with raw data inputs. Larger
τ outputs indicate greater degree of being anomalous.

3.2 Categorization of Deep Anomaly Detection

To have a thorough understanding of the area, we introduce a hierarchical taxonomy to classify
deep anomaly detection methods into three main categories and 11 fine-grained categories from
the modeling perspective. An overview of the taxonomy of the methods is shown in Figure 1.
Specifically, deep anomaly detection consists of three conceptual paradigms: Deep Learning for

Feature Extraction, Learning Feature Representations of Normality, and End-to-end Anomaly Score

Learning.
The procedure of these three paradigms is presented in Figure 2. As shown in Figure 2(a),

deep learning and anomaly detection are fully separated in the first main category (Section 4),
so deep learning techniques are used as some independent feature extractors only. The two mod-
ules are dependent on each other in some form in the second main category (Section 5) presented

ACM Computing Surveys, Vol. 54, No. 2, Article 38. Publication date: March 2021.
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Fig. 2. Conceptual frameworks of three main deep anomaly detection approaches.

in Figure 2(b), with an objective of learning expressive representations of normality. This cate-
gory of methods can be further divided into two subcategories based on how the representations
are learned, i.e., whether using existing shallow anomaly measures (e.g., distance- and clustering-
based measures) to guide the learning or not. These two subcategories encompass seven fine-
grained categories of methods, with each category taking a different approach to formulate its
objective function. The two modules are fully unified in the third main category (Section 6) pre-
sented in Figure 2(c), in which the methods are dedicated to learning anomaly scores via neural
networks in an end-to-end fashion. This category is further broken down into four subcategories
based on the formulation of the anomaly scoring learning. In the following three sections we re-
view these three paradigms in detail.

4 DEEP LEARNING FOR FEATURE EXTRACTION

This category of methods aims at leveraging deep learning to extract low-dimensional feature rep-
resentations from high-dimensional and/or non-linearly separable data for downstream anomaly
detection. The feature extraction and the anomaly scoring are fully disjointed and independent
from each other. Thus, the deep learning components work purely as dimensionality reduction
only. Formally, the approach can be represented as

z = ϕ (x; Θ), (1)

where ϕ : X �→ Z is a deep neural network-based feature mapping function, with X ∈ RD , Z ∈
RK and normally D � K . An anomaly scoring method f that has no connection to the feature
mapping ϕ is then applied onto the new space to calculate anomaly scores.

Compared to the dimension reduction methods that are popular in anomaly detection, such as
principal component analysis [21, 140, 180] and random projection [80, 112, 123], deep learning
techniques have been demonstrating substantially better capability in extracting semantic-rich
features and non-linear feature relations [14, 49].

Assumptions. The feature representations extracted by deep learning models preserve the dis-
criminative information that helps separate anomalies from normal instances.

One research line is to directly uses popular pre-trained deep learning models, such as AlexNet
[75], VGG [143], and ResNet [58], to extract low-dimensional features. This line is explored in
anomaly detection in complex high-dimensional data such as image data and video data. One in-
teresting work of this line is the unmasking framework for online anomaly detection [66]. The
key idea is to iteratively train a binary classifier to separate one set of video frames from its sub-
sequent video frames in a sliding window, with the most discriminant features removed in each
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iteration step. This is analogous to an unmasking process. The framework assumes the first set of
video frames as normal and evaluates its separability from its subsequent video frames. Thus, the
training classification accuracy is expected to be high if the subsequent video frames are abnormal,
and low otherwise. Clearly the power of the unmasking framework relies heavily on the quality
of the features, so it is essential to have quality features to represent the video frames. The VGG
model pre-trained on the ILSVRC benchmark [134] is shown to be effective to extract expressive
appearance features for this purpose [66]. In Reference [88], the masking framework is formulated
as a two-sample test task to understand its theoretical foundation. They also show that using fea-
tures extracted from a dynamically updated sampling pool of video frames is found to improve
the performance of the framework. Additionally, similar to many other tasks, the feature repre-
sentations extracted from the deep models pre-trained on a source dataset can be transferred to
fine-tune anomaly detectors on a target dataset. As shown in Reference [6], one-class support vec-
tor machines (SVM) can be first initialized with the VGG models pre-trained on ILSVRC and then
fine-tuned to improve anomaly classification on the MNIST data [78]. Similarly, the ResNet mod-
els pre-trained on MNIST can empower abnormal event detection in various video surveillance
datasets [117, 176].

Another research line in this category is to explicitly train a deep feature extraction model rather
than a pre-trained model for the downstream anomaly scoring [44, 65, 163, 168]. Particularly, in
Reference [163], three separate autoencoder networks are trained to learn low-dimensional fea-
tures for respective appearance, motion, and appearance-motion joint representations for video
anomaly detection. An ensemble of three one-class SVMs is independently trained on each of
these learned feature representations to perform anomaly scoring. Similarly to Reference [163],
a linear one-class SVM is used to enable anomaly detection on low-dimensional representations
of high-dimensional tabular data yielded by deep belief networks [44]. Instead of one-class SVM,
unsupervised classification approaches are used in Reference [65] to enable anomaly scoring in the
projected space. Specially, they first cluster the low-dimensional features of video frames yielded
by convolutional autoencoders, and then treat the cluster labels as pseudo class labels to per-
form one-vs.-the-rest classification. The classification probabilities are used to define frame-wise
anomaly scores. Similar approaches can also be found in graph anomaly detection [168], in which
unsupervised clustering-based anomaly measures are used in the latent representation space to
calculate the abnormality of graph vertices or edges. To learn expressive representations of graph
vertices, the vertex representations are optimized by minimizing autoencoder-based reconstruc-
tion loss and pairwise distances of neighbored graph vertices, taking one-hot encoding of graph
vertices as input.

Advantages. The advantages of this approach are as follows. (i) A large number of state-of-the-
art (pre-trained) deep models and off-the-shelf anomaly detectors are readily available. (ii) Deep
feature extraction offers more powerful dimensionality reduction than popular linear methods.
(iii) It is easy-to-implement given the public availability of the deep models and detection methods.

Disadvantages. Their disadvantages are as follows. (i) The fully disjointed feature extraction
and anomaly scoring often lead to suboptimal anomaly scores. (ii) Pre-trained deep models are
typically limited to specific types of data.

Challenges Targeted. This category of methods projects high-dimensional/non-independent data
onto substantially lower-dimensional space, enabling existing anomaly detection methods to work
on simpler data space. The lower-dimensional space often helps reveal hidden anomalies and re-
duces false positives (CH2). However, it should be noted that these methods may not preserve
sufficient information for anomaly detection as the data projection is fully decoupled with anom-
aly detection. In addition, this approach allows us to leverage multiple types of features and learn
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semantic-rich detection models (e.g., various predefined image/video features in References [65,
66, 163]), which also helps reduce false positives (CH1).

5 LEARNING FEATURE REPRESENTATIONS OF NORMALITY

The methods in this category couple feature learning with anomaly scoring in some ways, rather
than fully decoupling these two modules as in the last section. These methods generally fall into
two groups: generic feature learning and anomaly measure-dependent feature learning.

5.1 Generic Normality Feature Learning

This category of methods learns the representations of data instances by optimizing a generic
feature learning objective function that is not primarily designed for anomaly detection, but the
learned representations can still empower the anomaly detection, since they are forced to capture
some key underlying data regularities. Formally, this framework can be represented as

{Θ∗,W∗} = arg min
Θ, W

∑
x∈X
�
(
ψ
(
ϕ (x; Θ); W

))
, (2)

sx = f (x,ϕΘ∗ ,ψW∗ ), (3)

where ϕ maps the original data onto the representation spaceZ, ψ parameterized by W is a sur-
rogate learning task that operates on the Z space and is dedicated to enforcing the learning of
underlying data regularities, � is a loss function relative to the underlying modeling approach, and
f is a scoring function that utilizes ϕ andψ to calculate the anomaly score s .

This approach include methods driven by several perspectives, including data reconstruction,
generative modeling, predictability modeling and self-supervised classification. Both predictability
modeling and self-supervised classification are built upon self-supervised learning approaches, but
they have different assumptions, advantages and flaws, and thus they are reviewed separately.

5.1.1 Autoencoders. This type of approach aims to learn some low-dimensional feature repre-
sentation space on which the given data instances can be well reconstructed. This is a widely used
technique for data compression or dimension reduction [61, 69, 150]. The heuristic for using this
technique in anomaly detection is that the learned feature representations are enforced to learn
important regularities of the data to minimize reconstruction errors; anomalies are difficult to be
reconstructed from the resulting representations and thus have large reconstruction errors.

Assumptions. Normal instances can be better restructured from compressed space than
anomalies.

Autoencoder (AE) networks are the commonly used techniques in this category. An AE is com-
posed of an encoding network and an decoding network. The encoder maps the original data onto
low-dimensional feature space, while the decoder attempts to recover the data from the projected
low-dimensional space. The parameters of these two networks are learned with a reconstruction
loss function. A bottleneck network architecture is often used to obtain low-dimensional represen-
tations than the original data, which forces the model to retain the information that is important
in reconstructing the data instances. To minimize the overall reconstruction error, the retained
information is required to be as much relevant as possible to the dominant instances, e.g., the nor-
mal instances. As a result, the data instances such as anomalies that deviate from the majority of
the data are poorly reconstructed. The data reconstruction error can therefore be directly used as
anomaly score. The basic formulation of this approach is given as follows:

z = ϕe (x; Θe ), x̂ = ϕd (z; Θd ), (4)

{Θ∗e ,Θ∗d } = arg min
Θe ,Θd

∑
x∈X

���x − ϕd

(
ϕe (x; Θe ); Θd

)���2
, (5)
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sx =
���x − ϕd

(
ϕe (x; Θ∗e ); Θ∗d

)���2
, (6)

where ϕe is the encoding network with the parameters Θe and ϕd is the decoding network with
the parameters Θd . The encoder and the decoder can share the same weight parameters to reduce
parameters and regularize the learning. sx is a reconstruction error-based anomaly score of x.

Several types of regularized autoencoders have been introduced to learn richer and more ex-
pressive feature representations [38, 95, 128, 153]. Particularly, sparse AE is trained in a way that
encourages sparsity in the activation units of the hidden layer, e.g., by keeping the top-K most
active units [95]. Denoising AE [153] aims at learning representations that are robust to small
variations by learning to reconstruct data from some predefined corrupted data instances rather
than original data. Contractive AE [128] takes a step further to learn feature representations that
are robust to small variations of the instances around their neighbors. This is achieved by adding
a penalty term based on the Frobenius norm of the Jacobian matrix of the encoder’s activations.
Variational AE [38] instead introduces regularization into the representation space by encoding
data instances using a prior distribution over the latent space, preventing overfitting and ensuring
some good properties of the learned space for enabling generation of meaningful data instances.

AEs are easy-to-implement and have straightforward intuitions in detecting anomalies. As a
result, they have been widely explored in the literature. Replicator neural network [57] is the
first piece of work in exploring the idea of data reconstruction to detect anomalies, with exper-
iments focused on static multidimensional/tabular data. The Replicator network is built upon a
feed-forward multi-layer perceptron with three hidden layers. It uses parameterized hyperbolic
tangent activation functions to obtain different activation levels for different input values, which
helps discretize the intermediate representations into some predefined bins. As a result, the hid-
den layers naturally cluster the data instances into a number of groups, enabling the detection
of clustered anomalies. After this work there have been a number of studies dedicated to further
enhance the performance of this approach. For instance, RandNet [29] further enhances the basic
AEs by learning an ensemble of AEs. In RandNet, a set of independent AEs are trained, with each
AE having some randomly selected constant dropout connections. An adaptive sampling strategy
is used by exponentially increasing the sample size of the mini-batches. RandNet is focused on
tabular data. The idea of autoencoder ensembles is extended to time series data in Reference [71].
Motivated by robust principal component analysis (RPCA), RDA [175] attempts to improve the
robustness of AEs by iteratively decomposing the original data into two subsets, normal instance
set and anomaly set. This is achieved by adding a sparsity penalty �1 or grouped penalty �2,1 into
its RPCA-alike objective function to regularize the coefficients of the anomaly set.

AEs are also widely leveraged to detect anomalies in data other than tabular data, such as se-
quence data [91], graph data [37], and image/video data [163]. In general, there are two types of
adaptions of AEs to those complex data. The most straightforward way is to follow the same pro-
cedure as the conventional use of AEs by adapting the network architecture to the type of input
data, such as CNN-AE [56, 172], LSTM-AE [96], Conv-LSTM-AE [92], and graph convolutional
network-AE [37]. This type of AEs embeds the encoder-decoder scheme into the full procedure of
these methods. Another type of AE-based approaches is to first use AEs to learn low-dimensional
representations of the complex data and then learn to predict these learned representations. The
learning of AEs and representation prediction is often two separate steps. These approaches are
different from the first type of approaches in that the prediction of representations are wrapped
around the low-dimensional representations yielded by AEs. For example, in Reference [91], de-
noising AE is combined with RNNs to learn normal patterns of multivariate sequence data, in
which a denoising AE with two hidden layers is first used to learn representations of multidimen-
sional data inputs in each time step and a RNN with a single hidden layer is then trained to predict
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the representations yielded by the denoising AE. A similar approach is also used for detecting
acoustic anomalies [97], in which a more complex RNN, bidirectional LSTMs, is used.

Advantages. The advantages of data reconstruction-based methods are as follows. (i) The idea
of AEs is straightforward and generic to different types of data. (ii) Different types of powerful AE
variants can be leveraged to perform anomaly detection.

Disadvantages. Their disadvantages are as follows. (i) The learned feature representations can
be biased by infrequent regularities and the presence of outliers or anomalies in the training data.
(ii) The objective function of the data reconstruction is designed for dimension reduction or data
compression, rather than anomaly detection. As a result, the resulting representations are a generic
summarization of underlying regularities, which are not optimized for detecting irregularities.

Challenges Targeted. Different types of neural network layers and architectures can be used
under the AE framework, allowing us to detect anomalies in high-dimensional data, as well as
non-independent data such as attributed graph data [37] and multivariate sequence data [91, 97]
(CH2). These methods may reduce false positives over traditional methods built upon handcrafted
features if the learned representations are more expressive (CH1). AEs are generally vulnerable to
data noise presented in the training data as they can be trained to remember those noise, leading
to severe overfitting and small reconstruction errors of anomalies. The idea of RPCA may be used
into AEs to train more robust detection models [175] (CH4).

5.1.2 Generative Adversarial Networks. GAN-based anomaly detection emerges quickly as one
popular deep anomaly detection approach after its early use in Reference [138]. This approach
generally aims to learn a latent feature space of a generative network G so that the latent space
well captures the normality underlying the given data. Some form of residual between the real
instance and the generated instance are then defined as anomaly score.

Assumption. Normal data instances can be better generated than anomalies from the latent fea-
ture space of the generative network in GANs.

One of the early methods is AnoGAN [138]. The key intuition is that, given any data instances
x, it aims to search for an instance z in the learned latent feature space of the generative networkG
so that the corresponding generated instanceG (z) and x are as similar as possible. Since the latent
space is enforced to capture the underlying distribution of training data, anomalies are expected
to be less likely to have highly similar generated counterparts than normal instances. Specifically,
a GAN is first trained with the following conventional objective:

min
G

max
D

V (D,G ) = Ex∼pX

[
logD (x)

]
+ Ez∼pZ

[
log
(
1 − D

(
G (z)
))]
, (7)

where G and D are respectively the generator and discriminator networks parameterized by ΘG

and ΘD (the parameters are omitted for brevity), and V is the value function of the two-player
minimax game. After that, for each x, to find its best z, two loss functions—residual loss and dis-
crimination loss—are used to guide the search. The residual loss is defined as

�R (x, zγ ) = ���x −G (zγ )���1
, (8)

while the discrimination loss is defined based on the feature matching technique [136]:

�fm (x, zγ ) = ���h(x) − h
(
G (zγ )

)���1
, (9)

where γ is the index of the search iteration step and h is a feature mapping from an intermediate
layer of the discriminator. The search starts with a randomly sampled z, followed by updating z

based on the gradients derived from the overall loss (1 − α )�R (x, zγ ) + α�fm (x, zγ ), where α is a
hyperparameter. Throughout this search process, the parameters of the trained GAN are fixed;
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the loss is only used to update the coefficients of z for the next iteration. The anomaly score is
accordingly defined upon the similarity between x and z obtained at the last step γ ∗:

sx = (1 − α )�R (x, zγ ∗ ) + α�fm (x, zγ ∗ ). (10)

One main issue with AnoGAN is the computational inefficiency in the iterative search of z. One
way to address this issue is to add an extra network that learns the mapping from data instances
onto the latent space, i.e., an inverse of the generator, resulting in methods like EBGAN [170]
and fast AnoGAN [137]. These two methods share the same spirit. Here we focus on EBGAN
that is built upon the bi-directional GAN (BiGAN) [39]. Particularly, BiGAN has an encoder E to
map x to z in the latent space and simultaneously learn the parameters of G, D and E. Instead of
discriminating x and G (z), BiGAN aims to discriminate the pair of instances (x,E (x)) from the
pair (G (z), z):

min
G,E

max
D

Ex∼pX

[
Ez∼pE ( · |x) log

[
D (x, z)

] ]
+ Ez∼pZ

[
Ex∼pG ( · |z)

[
log
(
1 − D (x, z)

)] ]
, (11)

After the training, inspired by Equation (10) in AnoGAN, EBGAN defines the anomaly score as:

sx = (1 − α )�G (x) + α�D (x), (12)

where �G (x) = ���x −G (E (x)
)���1

and �D (x) = ���h (x,E (x)
)
− h
(
G
(
E (x)
)
,E (x)

)���1
. This eliminates the

need to iteratively search z in AnoGAN. EBGAN is extended to a method called ALAD [171] by
adding two more discriminators, with one discriminator trying to discriminate the pair (x, x) from
(x,G (E (x))) and another one trying to discriminate the pair (z, z) from (z,E (G (z))).

GANomaly [3] further improves the generator over the previous work by changing the gener-
ator network to an encoder-decoder-encoder network and adding two more extra loss functions.

The generator can be conceptually represented as: x
GE−−→ z

GD−−−→ x̂
E−→ ẑ, in which G is a composi-

tion of the encoder GE and the decoder GD . In addition to the commonly used feature matching
loss:

�fm = Ex∼pX
���h(x) − h

(
G (x)

)���2
, (13)

the generator includes a contextual loss and an encoding loss to generate more realistic instances:

�con = Ex∼pX
���x −G (x)���1

, (14)

�enc = Ex∼pX
���GE (x) − E

(
G (x)

)���2
. (15)

The contextual loss in Equation (14) enforces the generator to consider the contextual information
of the input x when generating x̂. The encoding loss in Equation (15) helps the generator to learn
how to encode the features of the generated instances. The overall loss is then defined as

� = α�fm + β�con + γ �enc, (16)

where α , β , and γ are the hyperparameters to determine the weight of each individual loss. Since
the training data contains mainly normal instances, the encoders G and E are optimized toward
the encoding of normal instances, and thus, the anomaly score can be defined as

sx =
���GE (x) − E

(
G (x)

)���1
, (17)

in which sx is expected to be large if x is an anomaly.
There have been a number of other GANs introduced over the years such as Wasserstein GAN

[10] and Cycle GAN [177]. They may be used to further enhance the anomaly detection perfor-
mance of the above methods, such as replacing the standard GAN with Wasserstein GAN [137].
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Another relevant research line is to adversarially learn end-to-end one-class classification mod-
els, which is categorized into the end-to-end anomaly score learning framework and discussed in
Section 6.4.

Advantages. The advantages of these methods are as follows. (i) GANs have demonstrated supe-
rior capability in generating realistic instances, especially on image data, empowering the detec-
tion of abnormal instances that are poorly reconstructed from the latent space. (ii) A large number
of existing GAN-based models and theories [32] may be adapted for anomaly detection.

Disadvantages. Their disadvantages are as follows. (i) The training of GANs can suffer from
multiple problems, such as failure to converge and mode collapse [99], which leads to to large
difficulty in training GANs-based anomaly detection models. (ii) The generator network can be
misled and generates data instances out of the manifold of normal instances, especially when
the true distribution of the given dataset is complex or the training data contain unexpected
outliers. (iii) The GANs-based anomaly scores can be suboptimal, since they are built upon
the generator network with the objective designed for data synthesis rather than anomaly
detection.

Challenges Targeted. Similarly to AEs, GAN-based anomaly detection is able to detect high-
dimensional anomalies by examining the reconstruction from the learned low-dimensional latent
space (CH2). When the latent space preserves important anomaly discrimination information, it
helps improve detection accuracy over that in the original data space (CH1).

5.1.3 Predictability Modeling. Predictability modeling-based methods learn feature representa-
tions by predicting the current data instances using the representations of the previous instances
within a temporal window as the context. In this section data instances are referred to as individual
elements in a sequence, e.g., video frames in a video sequence. This technique is widely used for se-
quence representation learning and prediction [63, 82, 98, 146]. To achieve accurate predictions, the
representations are enforced to capture the temporal/sequential and recurrent dependence within
a given sequence length. Normal instances are normally adherent to such dependencies well and
can be well predicted, whereas anomalies often violate those dependencies and are unpredictable.
Therefore, the prediction errors can be used to define the anomaly scores.

Assumption. Normal instances are temporally more predictable than anomalies.
This research line is popular in video anomaly detection [1, 86, 167]. Video sequence involves

complex high-dimensional spatial-temporal features. Different constraints over appearance and
motion features are needed in the prediction objective function to ensure a faithful prediction
of video frames. This deep anomaly detection approach is initially explored in Reference [86].
Formally, given a video sequence with consecutive t frames x1, x2, . . . , xt , then the learning task
is to use all these frames to generate a future frame x̂t+1 so that x̂t+1 is as close as possible to the
ground truth xt+1. Its general objective function can be formulated as

α�pred

(
x̂t+1, xt+1

)
+ β�adv

(
x̂t+1

)
, (18)

where x̂t+1 = ψ
(
ϕ (x1, x2, . . . , xt ; Θ); W

)
, �pred is the frame prediction loss measured by mean

squared errors, �adv is an adversarial loss. The popular network architecture named U-Net [129]
is used to instantiate the ψ function for the frame generation. �pred is composed by a set of three
separate losses that respectively enforce the closeness between x̂t+1 and xt+1 in three key image
feature descriptors: intensity, gradient and optical flow. �adv is due to the the use of adversarial
training to enhance the image generation. After training, for a given video frame x, a normalized
Peak Signal-to-Noise Ratio [98] based on the prediction difference | |xi − x̂i | |2 is used to define
the anomaly score. Under the same framework, an additional autoencoder-based reconstruction
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network is added in Reference [167] to further refine the predicted frame quality, which helps to
enlarge the anomaly score difference between normal and abnormal frames.

Another research line in this direction is based on the autoregressive models [50] that assume
each element in a sequence is linearly dependent on the previous elements. The autoregressive
models are leveraged in Reference [1] to estimate the density of training samples in a latent space,
which helps avoid the assumption of a specific family of distributions. Specifically, given x and its
latent space representation z = ϕ (x; Θ), the autoregressive model factorizes p (z) as

p (z) =
K∏

j=1

p (zj |z1:j−1), (19)

where z1:j−1 = {z1, z2, . . . , zj−1}, p (zj |z1:j−1) represents the probability mass function of zj condi-
tioned on all the previous instances z1:j−1 and K is the dimensionality size of the latent space.
The objective in Reference [1] is to jointly learn an autoencoder and a density estimation net-
work ψ (z; W) equipped with autoregressive network layers. The overall loss can be represented
as

L = Ex

[���x − ϕd

(
ϕe (x; Θe ); Θd

)���2
− λ log

(
ψ (z; W)

)]
, (20)

where the first term is a reconstruction error measured by MSE while the second term is an autore-
gressive loss measured by the log-likelihood of the representation under an estimated conditional
probability density prior. Minimizing this loss enables the learning of the features that are common
and easily predictable. At the evaluation stage, the reconstruction error and the log-likelihood are
combined to define the anomaly score.

Advantages. The advantages of this category of methods are as follows. (i) A number of sequence
learning techniques can be adapted and incorporated into this approach. (ii) This approach enables
the learning of different types of temporal and spatial dependencies.

Disadvantages. Their disadvantages are as follows. (i) This approach is limited to anomaly detec-
tion in sequence data. (ii) The sequential predictions can be computationally expensive. (iii) The
learned representations may suboptimal for anomaly detection as its underlying objective is for
sequential predictions rather than anomaly detection.

Challenges Targeted. This approach is particularly designed to learn expressive temporally-
dependent low-dimensional representations, which helps address the false positives of anomaly
detection in high-dimensional and/or temporal datasets (CH1 and CH2). The prediction here is
conditioned on some elapsed temporal instances, so this category of methods is able to detect
temporal context-based conditional anomalies (CH5).

5.1.4 Self-supervised Classification. This approach learns representations of normality by
building self-supervised classification models and identifies instances that are inconsistent to the
classification models as anomalies. This approach is rooted in traditional methods based on cross-
feature analysis or feature models [64, 105, 149]. These shallow methods evaluate the normality
of data instances by their consistency to a set of predictive models, with each model learning to
predict one feature based on the rest of the other features. The consistency of a test instance can be
measured by the average prediction results [64], the log loss-based surprisal [105], or the majority
voting of binary decisions [149] given the classification/regression models across all features. Un-
like these studies that focus on tabular data and build the feature models using the original data,
deep consistency-based anomaly detection focuses on image data and builds the predictive mod-
els by using feature transformation-based augmented data. To effectively discriminate the trans-
formed instances, the classification models are enforced to learn features that are highly important
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to describe the underlying patterns of the instances presented in the training data. Therefore, nor-
mal instances generally have stronger agreements with the classification models.

Assumptions. Normal instances are more consistent to self-supervised classifiers than anomalies.
This approach is initially explored in Reference [48]. To build the predictive models, different

compositions of geometric transformation operations, including horizontal flipping, translations,
and rotations, is first applied to normal training images. A deep multi-class classification model is
trained on the augmented data, treating data instances with a specific transformation operation
comes from the same class, i.e., synthetic class. At inference, test instances are augmented
with each of transformation compositions, and their normality score is defined by an aggre-
gation of all softmax classification scores to the augmented test instance. Its loss function is
defined as

Lcons = CE
(
ψ
(
zTj

; W
)
, yTj

)
, (21)

where zTj
= ϕ
(
Tj (x); Θ

)
is a low-dimensional feature representation of instance x augmented

by the transformation operation type Tj , ψ is a multi-class classifier parameterized with W, yTj

is a one-hot encoding of the synthetic class for instances augmented using the transformation
operation Tj , and CE is a standard cross-entropy loss function.

By minimizing Equation (21), we obtain the representations that are optimized for the classifier
ψ . We then can apply the feature learner ϕ (·,Θ∗) and the classifierψ (·,W∗) to obtain a classifica-
tion score for each test instance augmented with a transformation operationTj . The classification
scores of each test instance w.r.t. different Tj are then aggregated to compute the anomaly score.
To achieve that, the classification scores conditioned on each Tj is assumed to follow a Dirichlet
distribution in Reference [48] to estimate the consistency of the test instance to the classifica-
tion model ψ ; a simple average of the classification scores associated with different Tj also works
well.

A semi-supervised setting, i.e., training data contain normal instances only, is assumed in Ref-
erence [48]. A similar idea is explored in the unsupervised setting in Reference [157], with the
transformation sets containing four transformation operations, i.e., rotation, flipping, shifting and
path re-arranging. Two key insights revealed in Reference [157] is that (i) the gradient magnitude
induced by normal instances is normally substantially larger than outliers during the training of
such self-supervised multi-class classification models; and (ii) the network updating direction is
also biased toward normal instances. As a result of these two properties, normal instances often
have stronger agreement with the classification model than anomalies. Three strategies of using
the classification scores to define the anomaly scores are evaluated, including average prediction
probability, maximum prediction probability, and negative entropy across all prediction probabil-
ities [157]. Their results show that the negative entropy-based anomaly scores perform generally
better than the other two strategies.

Advantages. The advantages of deep consistency-based methods are as follows. (i) They work
well in both the unsupervised and semi-supervised settings. (ii) Anomaly scoring is grounded by
some intrinsic properties of gradient magnitude and its updating.

Disadvantages. Their disadvantages are as follows. (i) The feature transformation operations
are often data dependent. The above transformation operations are applicable to image data only.
(ii) Although the classification model is trained in an end-to-end manner, the consistency-based
anomaly scores are derived upon the classification scores rather than an integrated module in the
optimization, and thus they may be suboptimal.

Challenges Targeted. The expressive low-dimensional representations of normality this approach
learns help detect anomalies better than in the original high-dimensional space (CH1 and CH2).
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Due to some intrinsic differences between anomalies and normal instances presented in the self-
supervised classifiers, this approach is also able to work in an unsupervised setting [157], demon-
strating good robustness to anomaly contamination in the training data (CH4).

5.2 Anomaly Measure-dependent Feature Learning

Anomaly measure-dependent feature learning aims at learning feature representations that are
specifically optimized for one particular existing anomaly measure. Formally, the framework for
this group of methods can be represented as

{Θ∗,W∗} = arg min
Θ, W

∑
x∈X
�
(
f
(
ϕ (x; Θ); W

))
, (22)

sx = f
(
ϕ (x; Θ∗); W∗

)
, (23)

where f is an existing anomaly scoring measure operating on the representation space. Note that
whether f may involve trainable parameters W or not is dependent on the anomaly measure used.
Different from the generic feature learning approach as in Equations (2) and (3) that calculates
anomaly scores based on some heuristics after obtaining the learned representations, this research
line incorporates an existing anomaly measure f into the feature learning objective function to
optimize the feature representations specifically for f . Below we review representation learning
specifically designed for three types of popular anomaly measures, including distance-based mea-
sure, one-class classification measure and clustering-based measure.

5.2.1 Distance-based Measure. Deep distance-based anomaly detection aims to learn feature
representations that are specifically optimized for a specific type of distance-based anomaly mea-
sures. Distance-based methods are straightforward and easy-to-implement. There have been a
number of effective distance-based anomaly measures introduced, e.g., DB outliers [72, 73], k-
nearest neighbor distance [125, 126], average k-nearest neighbor distance [9], relative distance
[173], and random nearest neighbor distance [116, 144]. One major limitation of these traditional
distance-based anomaly measures is that they fail to work effectively in high-dimensional data due
to the curse of dimensionality. Since deep distance-based anomaly detection techniques project
data onto low-dimensional space before applying the distance measures, it can well overcome this
limitation.

Assumption. Anomalies are distributed far from their closest neighbors while normal instances
are located in dense neighborhoods.

This approach is first explored in Reference [112], in which the random neighbor distance-based
anomaly measure [116, 144] is leveraged to drive the learning of low-dimensional representations
out of ultrahigh-dimensional data. The key idea is that the representations are optimized so that
the nearest neighbor distance of pseudo-labeled anomalies in random subsamples is substantially
larger than that of pseudo-labeled normal instances. The pseudo labels are generated by some off-
the-shelf anomaly detectors. Let S ∈ X be a subset of data instances randomly sampled from the
dataset X, A and N respectively be the pseudo-labeled anomaly and normal instance sets, with
X = A ∪N and ∅ = A ∩N , its loss function is built upon the hinge loss function [130]:

Lquery =
1

|X|
∑

x∈A,x′ ∈N
max

{
0,m + f (x′,S; Θ) − f (x,S; Θ)

}
, (24)

where m is a predefined constant for the margin between two distances yielded by f (x,S; Θ),
which is a random nearest neighbor distance function operated in the representation space:

f (x,S; Θ) = min
x′ ∈S

���ϕ (x; Θ),ϕ (x′; Θ)���2
. (25)
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Minimizing the loss in Equation (24) guarantees that the random nearest neighbor distance of
anomalies are at least m greater than that of normal instances in the ϕ-projected representation
space. At the evaluation stage, the random distance in Equation (25) is used directly to obtain the
anomaly score for each test instance. Following this approach, we might also derive similar repre-
sentation learning tailored for other distance-based measures by replacing Equation (25) with the
other measures, such as the k-nearest neighbor distance [126] or the average k-nearest neighbor
distance [9]. However, these measures are significantly more computationally costly than Equa-
tion (25). Thus, one major challenging for such adaptions would be the prohibitively high compu-
tational cost.

Compared to Reference [112] that requires to query the nearest neighbor distances in random
data subsets, inspired by Reference [19], a simpler idea explored in Reference [155] uses the dis-
tance between optimized representations and randomly projected representations of the same in-
stances to guide the representation learning. The objective of the method is as follows:

Θ∗ = arg min
Θ

∑
x∈X

f
(
ϕ (x; Θ),ϕ ′(x)

)
, (26)

where ϕ ′ is a random mapping function that is instantiated by the neural network used in ϕ with
fixed random weights and f is a measure of distance between the two representations of the same
data instance. As discussed in Reference [19], solving Equation (26) is equivalent to have a knowl-
edge distillation from a random neural network and helps learn the frequency of different un-
derlying patterns in the data. However, Equation (26) ignores the relative proximity between data
instances and is sensitive to the anomalies presented in the data. As shown in Reference [155], such
proximity information may be learned by a pretext task, in which we aim to predict the distance
between random instance pairs. A boosting process can also be used to iteratively filter potential
anomalies and build robust detection models. At the evaluation stage, f (ϕ (x; Θ∗),ϕ ′(x)) is used to
compute the anomaly scores.

Advantages. The advantages of this category of methods are as follows. (i) The distance-based
anomalies are straightforward and well defined with rich theoretical supports in the literature.
Thus, deep distance-based anomaly detection methods can be well grounded due to the strong
foundation built in previous relevant work. (ii) They work in low-dimensional representation
spaces and can effectively deal with high-dimensional data that traditional distance-based anomaly
measures fail. (iii) They are able to learn representations specifically tailored for themselves.

Disadvantages. Their disadvantages are as follows. (i) The extensive computation involved in
most of distance-based anomaly measures may be an obstacle to incorporate distance-based anom-
aly measures into the representation learning process. (ii) Their capabilities may be limited by the
inherent weaknesses of the distance-based anomaly measures.

Challenges Targeted. This approach is able to learn low-dimensional representations tailored for
existing distance-based anomaly measures, addressing the notorious curse of dimensionality in
distance-based detection [178] (CH1 and CH2). As shown in Reference [112], an adapted triplet
loss can be devised to utilize a few labeled anomaly examples to learn more effective normality
representations (CH3). Benefiting from pseudo anomaly labeling, the methods [112, 155] are also
robust to potential anomaly contamination and work effectively in the fully unsupervised setting
(CH4).

5.2.2 One-class Classification-based Measure. This category of methods aims to learn feature
representations customized to subsequent one-class classification-based anomaly detection. One-
class classification is referred to as the problem of learning a description of a set of data instances
to detect whether new instances conform to the training data or not. It is one of the most popular
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approaches for anomaly detection [101, 131, 139, 148]. Most one-class classification models are
inspired by SVM [31], such as the two widely used one-class models: one-class SVM (or v-SVC)
[139] and Support Vector Data Description (SVDD) [148]. One main research line here is to learn
representations that are specifically optimized for these traditional one-class classification mod-
els. This is the focus of this section. Another line is to learn an end-to-end adversarial one-class
classification model, which will be discussed in Section 6.4.

Assumption. All normal instances come from a single (abstract) class and can be summarized by
a compact model, to which anomalies do not conform.

There are a number of studies dedicated to combine one-class SVM with neural networks [27,
104, 161]. Conventional one-class SVM is to learn a hyperplane that maximize a margin between
training data instances and the origin. The key idea of deep one-class SVM is to learn the one-
class hyperplane from the neural network-enabled low-dimensional representation space rather
than the original input space. Let z = ϕ (x; Θ), then a generic formulation of the key ideas in
References [27, 104, 161] can be represented as

min
r,Θ,w

1

2
| |Θ| |2 + 1

vN

N∑
i=1

max
{
0, r −wᵀzi

}
− r , (27)

where r is the margin parameter, Θ are the parameters of a representation network, and wᵀz

(i.e., wᵀϕ (x; Θ)) replaces the original dot product
〈
w,Φ(x)

〉
that satisfiesk (xi , xj ) =

〈
Φ(xi ),Φ(xj )

〉
.

Here Φ is a Reproducing Kernel Hilbert Space associated mapping and k (·, ·) is a kernel function;
v is a hyperparameter that can be seen as an upper bound of the fraction of the anomalies in the
training data. Any instances that have r −wᵀzi > 0 can be reported as anomalies.

This formulation brings two main benefits: (i) it can leverage (pretrained) deep networks to learn
more expressive features for downstream anomaly detection, and (iii) it also helps remove the
computational expensive pairwise distance computation in the kernel function. As shown in [104,
161], the reconstruction loss in AEs can be added into Equation (27) to enhance the expressiveness
of representations z. As shown in Reference [124], many kernel functions can be approximated
with random Fourier features. Thus, before wᵀz, some form of random mapping h may be applied
to z to generate Fourier features, resulting in wᵀh(z), which may further improve one-class SVM
models. Another research line studies deep models for SVDD [132, 133]. SVDD aims to learn a
minimum hyperplane characterized by a center c and a radius r so that the sphere contains all
training data instances, i.e.,

min
r,c,ξ

r 2 +
1

vN

N∑
i=1

ξi , (28)

s.t. | |Φ(xi ) − c| |2 ≤ r 2 + ξi , ξi ≥ 0, ∀i . (29)

Similarly to deep one-class SVM, deep SVDD [132] also aims to leverage neural networks to map
data instances into the sphere of minimum volume, and then employs the hinge loss function to
guarantee the margin between the sphere center and the projected instances. The feature learning
and the SVDD objective can then be jointly trained by minimizing the following loss:

min
r,Θ

r 2 +
1

vN

N∑
i=1

max{0, | |ϕ (xi ; Θ) − c| |2 − r 2} + λ

2
| |Θ| |2. (30)

This assumes the training data contain a small proportion of anomaly contamination in the unsu-
pervised setting. In the semi-supervised setting, the loss function can be simplified as

min
Θ

1

N
| |ϕ (xi ; Θ) − c| |2 + λ

2
| |Θ| |2, (31)

ACM Computing Surveys, Vol. 54, No. 2, Article 38. Publication date: March 2021.



Deep Learning for Anomaly Detection: A Review 38:19

which directly minimizes the mean distance between the representations of training data instances
and the center c. Note that including c as trainable parameters in Equation (31) can lead to trivial
solutions. It is shown in Reference [132] that c can be fixed as the mean of the feature representa-
tions yielded by performing a single initial forward pass. Deep SVDD can also be further extended
to address another semi-supervised setting where a small number of both labeled normal instances
and anomalies are available [133]. The key idea is to minimize the distance of labeled normal in-
stances to the center while at the same time maximizing the distance of known anomalies to the

center. This can be achieved by adding
∑M

j=1

(
| |ϕ (x′j ; Θ) − c| |2

)yj
into Equation (31), where x′j is a

labeled instance, yj = +1 when it is a normal instance and yj = −1 otherwise.
Advantages. The advantages of this category of methods are as follows. (i) The one-class

classification-based anomalies are well studied in the literature and provides a strong founda-
tion of deep one-class classification-based methods. (ii) The representation learning and one-class
classification models can be unified to learn tailored and more optimal representations. (iii) They
free the users from manually choosing suitable kernel functions in traditional one-class models.

Disadvantages. Their disadvantages are as follows. (i) The one-class models may work ineffec-
tively in datasets with complex distributions within the normal class. (ii) The detection perfor-
mance is dependent on the one-class classification-based anomaly measures.

Challenges Targeted. This category of methods enhances detection accuracy by learning lower-
dimensional representation space optimized for one-class classification models (CH1 and CH2). A
small number of labeled normal and abnormal data can be leveraged by these methods [133] to
learn more effective one-class description models, which can not only detect known anomalies but
also novel classes of anomaly (CH3).

5.2.3 Clustering-based Measure. Deep clustering-based anomaly detection aims at learning
representations so that anomalies are clearly deviated from the clusters in the newly learned rep-
resentation space. The task of clustering and anomaly detection is naturally tied with each other,
so there have been a large number of studies dedicated to using clustering results to define anom-
alies, e.g., cluster size [67], distance to cluster centers [59], distance between cluster centers [68],
and cluster membership [141]. Gaussian mixture model-based anomaly detection [43, 94] is also
included into this category due to some of its intrinsic relations to clustering, e.g., the likelihood
fit in the Gaussian mixture model (GMM) corresponds to an aggregation of the distances of data
instances to the centers of the Gaussian clusters/components [2].

Assumptions. Normal instances have stronger adherence to clusters than anomalies.
Deep clustering, which aims to learn feature representations tailored for a specific clustering

algorithm, is the most critical component of this anomaly detection method. A number of stud-
ies have explored this problem in recent years [25, 36, 47, 151, 162, 165, 166]. The main motiva-
tion is due to the fact that the performance of clustering methods is highly dependent on the in-
put data. Learning feature representations specifically tailored for a clustering algorithm can well
guarantee its performance on different datasets [5]. In general, there are two key intuitions here:
(i) Good representations enables better clustering and good clustering results can provide effective
supervisory signals to representation learning, and (ii) representations that are optimized for one
clustering algorithm is not necessarily useful for other clustering algorithms due to the difference
of the underlying assumptions made by the clustering algorithms.

The deep clustering methods typically consist of two modules: performing clustering in the for-
ward pass and learning representations using the cluster assignment as pseudo class labels in the
backward pass. Its loss function is often the most critical part, which can be generally formulated as

α�clu

(
f
(
ϕ (x; Θ); W

)
,yx

)
+ β�aux (X), (32)
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where �clu is a clustering loss function, within which ϕ is the feature learner parameterized by Θ,
f is a clustering assignment function parameterized by W and yx represents pseudo class labels
yielded by the clustering; �aux is a non-clustering loss function used to enforce additional con-
strains on the learned representations; and α and β are two hyperparameters to control the impor-
tance of the two losses. �clu can be instantiated with a k-means loss [25, 162], a spectral clustering
loss [151, 166], an agglomerative clustering loss [165], or a GMM loss [36], enabling the representa-
tion learning for the targeted clustering algorithm. �aux is often instantiated with an autoencoder-
based reconstruction loss [47, 166] to learn robust and/or local structure preserved representations.

After the deep clustering, the cluster assignments in the resulting f function can then be utilized
to compute anomaly scores based on References [59, 67, 68, 141]. However, it should be noted that
the deep clustering may be biased by anomalies if the training data are anomaly contaminated.
Therefore, the above methods can be applied to the semi-supervised setting where the training
data are composed by normal instances only. In the unsupervised setting, some extra constrains
are required in �clu and/or �aux to eliminate the impact of potential anomalies.

The aforementioned deep clustering methods are focused on learning optimal clustering re-
sults. Although their clustering results are applicable to anomaly detection, the learned represen-
tations may not be able to well capture the abnormality of anomalies. It is important to utilize
clustering techniques to learn representations so that anomalies have clearly weaker adherence
to clusters than normal instances. Some promising results for this type of approach are shown in
References [83, 179], in which they aim to learn representations for a GMM-based model with the
representations optimized to highlight anomalies. The general formation of these two studies is
similar to Equation (32) with �clu and �aux respectively specified as a GMM loss and an autoencoder-
based reconstruction loss, but to learn deviated representations of anomalies, they concatenate
some handcrafted features based on the reconstruction errors with the learned features of the au-
toencoder to optimize the combined features together. Since the reconstruction error-based hand-
crafted features capture the data normality, the resulting representations are more optimal for
anomaly detection than that yielded by other deep clustering methods.

Advantages. The advantages of deep clustering-based methods are as follows. (i) A number of
deep clustering methods and theories can be utilized to support the effectiveness and theoreti-
cal foundation of anomaly detection. (ii) Compared to traditional clustering-based methods, deep
clustering-based methods learn specifically optimized representations that help spot the anomalies
easier than on the original data, especially when dealing with intricate datasets.

Disadvantages. Their disadvantages are as follows. (i) The performance of anomaly detection is
heavily dependent on the clustering results. (ii) The clustering process may be biased by contam-
inated anomalies in the training data, which in turn leads to less effective representations.

Challenges Targeted. The clustering-based anomaly measures are applied to newly learned
low-dimensional representations of data inputs; when the new representation space preserves
sufficient discrimination information, the deep methods can achieve better detection accuracy
than that in the original data space (CH1 and CH2). Some clustering algorithms are sensitive to
outliers, so the deep clustering and the subsequent anomaly detection can be largely misled when
the given data are contaminated by anomalies. Deep clustering using handcrafted features from
the reconstruction errors of autoencoders [179] may help learn more robust models w.r.t. the
contamination (CH4).

6 END-TO-END ANOMALY SCORE LEARNING

This research line aims at learning scalar anomaly scores in an end-to-end fashion. Compared to
anomaly measure-dependent feature learning, the anomaly scoring in this type of approach is not
dependent on existing anomaly measures; it has a neural network that directly learns the anomaly
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scores. Novel loss functions are often required to drive the anomaly scoring network. Formally,
this approach aims at learning an end-to-end anomaly score learning network: τ (·; Θ) : X �→ R.
The underlying framework can be represented as

Θ∗ = arg min
Θ

∑
x∈X
�
(
τ (x; Θ)

)
, (33)

sx = τ (x; Θ∗). (34)

Unlike those methods in Section 5.1 that use some sort of heuristics to calculate anomaly scores
after obtaining the learned representations, the methods in this category simultaneously learn
the feature representations and anomaly scores. This greatly optimizes the anomaly scores and/or
anomaly ranking. In this perspective they share some similarities as the methods in Section 5.2.
However, the anomaly measure-dependent feature learning methods are often limited by the inher-
ent disadvantages of the incorporated anomaly measures, whereas the methods here do not have
such weakness; they also represent two completely different directions of designing the models:
one focuses on how to synthesize existing anomaly measures and neural network models, while
another focuses on devising novel loss functions for direct anomaly score learning.

Below we review four main approaches in this category: ranking models, prior-driven models,
softmax likelihood models and end-to-end one-class classification models. The key to this frame-
work is to incorporate order or discriminative information into the anomaly scoring network.

6.1 Ranking Models

This group of methods aims to directly learn a ranking model, such that data instances can be
sorted based on an observable ordinal variable associated with the absolute/relative ordering rela-
tion of the abnormality. The anomaly scoring neural network is driven by the observable ordinal
variable.

Assumptions. There exists an observable ordinal variable that captures some data abnormality.
One research line of this approach is to devise ordinal regression-based loss functions to drive

the anomaly scoring neural network [114, 117]. In Reference [117], a self-trained deep ordinal
regression model is introduced to directly optimize the anomaly scores for unsupervised video
anomaly detection. Particularly, it assumes an observable ordinal variable y = {c1, c2} with c1 > c2,
let τ (x; Θ) = η(ϕ (x; Θt ); Θs ),A andN , respectively, be pseudo anomaly and normal instance sets
and G = A ∪N , then the objective function is formulated as

arg min
Θ

∑
x∈G
�
(
τ (x; Θ),yx

)
, (35)

where �(·, ·) is a MSE/MAE-based loss function and yx = c1,∀x ∈ A and yx = c2,∀x ∈ N . Here y
takes two scalar ordinal values only, so it is a two-class ordinal regression.

The end-to-end anomaly scoring network takes A and N as inputs and learns to optimize the
anomaly scores such that the data inputs of similar behaviors as those in A (N ) receive large
(small) scores as close c1 (c2) as possible, resulting in larger anomaly scores assigned to anoma-
lous frames than normal frames. Due to the superior capability of capturing appearance features
of image data, ResNet-50 [58] is used to specify the feature network ϕ, followed by the anomaly
scoring network η built with a fully connected two-layer neural network. η consists of a hidden
layer with 100 units and an output layer with a single linear unit. Similarly to Reference [112], A
andN are initialized by some existing anomaly measures. The anomaly scoring model is then iter-
atively updated and enhanced in a self-training manner. The MAE-based loss function is employed
in Equation (35) to reduce the negative effects brought by false pseudo labels in A and N .
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Different from Reference [117] that addresses an unsupervised setting, a weakly supervised
setting is assumed in References [114, 145]. A very small number of labeled anomalies, together
with large-scale unlabeled data, is assumed to be available during training in Reference [114]. To
leverage the known anomalies, the anomaly detection problem is formulated as a pairwise re-
lation prediction task. Specifically, a two-stream ordinal regression network is devised to learn
the relation of randomly sampled pairs of data instances, i.e., to discriminate whether the in-
stance pair contains two labeled anomalies, one labeled anomaly, or just unlabeled data instances.
Let A be the small labeled anomaly set, U be the large unlabeled dataset and X = A ∪U ,

P =
{
{xi , xj ,yxi xj

} | xi , xj ∈ X and yxi xj
∈ N

}
is first generated. Here P is a set of random in-

stance pairs with synthetic ordinal class labels, where y = {yxai xaj
,yxai xui

,yxui xuj
} is an ordinal

variable. The synthetic label yxai xui
means an ordinal value for any instance pairs with the in-

stances xai
and xui

respectively sampled from A andU . yxai xaj
> yxai xui

> yxui xuj
is predefined

such that the pairwise prediction task is equivalent to anomaly score learning. The method can
then be formally framed as

Θ∗ = arg min
Θ

1

|P |
∑

{xi ,xj ,yi j }∈P

����yxi xj
− τ
(
(xi , xj ); Θ

) ����, (36)

which is trainable in an end-to-end fashion. By minimizing Equation (36), the model is optimized
to learn larger anomaly scores for the pairs of two anomalies than the pairs with one anomaly or
none. At inference, each test instance is paired with instances fromA orU to obtain the anomaly
scores.

The weakly supervised setting in Reference [145] addresses frame-level video anomaly detec-
tion, but only video-level class labels are available during training, i.e., a video is normal or contains
abnormal frames somewhere—we do not know which specific frames are anomalies. A multiple
instance learning– (MIL) based ranking model is introduced in Reference [145] to harness the high-
level class labels to directly learn the anomaly score for each video segment (i.e., a small number
of consecutive video frames). Its key objective is to guarantee that the maximum anomaly score
for the segments in a video that contains anomalies somewhere is greater than the counterparts in
a normal video. To achieve this, each video is treated as a bag of instances in MIL, the videos that
contains anomalies are treated as positive bags, and the normal videos are treated as negative bags.
Each video segment is an instance in the bag. The ordering information of the anomaly scores is
enforced as a relative pairwise ranking order via the hinge loss function. The overall objective
function is defined as

arg min
Θ

∑
Bp,Bn ∈X

max

{
0, 1 − max

x∈Bp

τ (x; Θ) + max
x∈Bn

τ (x; Θ)

}

+ λ1

|Bp |∑
i=1

(
τ (xi ; Θ) − τ (xi+1; Θ)

)2
+ λ2

∑
x∈Bp

τ (x; Θ),

(37)

where x is a video segment, B contains a bag of video segments, and Bp and Bn , respectively, rep-
resents positive and negative bags. The first term is to guarantee the relative anomaly score order,
i.e., the anomaly score of the most abnormal video segment in the positive instance bag is greater
than that in the negative instance bag. The last two terms are extra optimization constraints, in
which the former enforces score smoothness between consecutive video segments while the latter
enforces anomaly sparsity, i.e., each video contains only a few abnormal segments.

Advantages. The advantages of deep ranking model-base methods are as follows. (i) The anomaly
scores can be optimized directly with adapted loss functions. (ii) They are generally free from the
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definitions of anomalies by imposing a weak assumption of the ordinal order between anomaly
and normal instances. (iii) This approach may build upon well-established ranking techniques and
theories from areas like learning to rank [85, 87, 158].

Disadvantages. Their disadvantages are as follows. (i) At least some form of labeled anomalies
are required in these methods, which may not be applicable to applications where such labeled
anomalies are not available. The method in Reference [117] is fully unsupervised and obtains
some promising performance but there is still a large gap compared to semi-supervised methods.
(ii) Since the models are exclusively fitted to detect the few labeled anomalies, they may not be able
to generalize to unseen anomalies that exhibit different abnormal features to the labeled anomalies.

Challenges Targeted: Using weak supervision such as pseudo labels or noisy class labels pro-
vide some important knowledge of suspicious anomalies, enabling the learning of more expres-
sive low-dimensional representation space and better detection accuracy (CH1 and CH2). The MIL
scheme [145] and the pairwise relation prediction [114] provide an easy way to incorporate coarse-
grained/limited anomaly labels to detection model learning (CH3). More importantly, the end-to-
end anomaly score learning offers straightforward anomaly explanation by backpropagating the
activation weights or the gradient of anomaly scores to locate the features that are responsible for
large anomaly scores [117] (CH6). In addition, the methods in Reference [114, 117] also work well
in data with anomaly contamination or noisy labels (CH4).

6.2 Prior-driven Models

This approach uses a prior distribution to encode and drive the anomaly score learning. Since
the anomaly scores are learned in an end-to-end manner, the prior may be imposed on either the
internal module or the learning output (i.e., anomaly scores) of the score learning function τ .

Assumptions. The imposed prior captures the underlying (ab)normality of the dataset.
The incorporation of the prior into the internal anomaly scoring function is exemplified by a

recent study on the Bayesian inverse reinforcement learning– (IRL) based method [107]. The key
intuition is that given an agent that takes a set of sequential data as input, the agent’s normal
behavior can be understood by its latent reward function, and thus a test sequence is identified as
anomaly if the agent assigns a low reward to the sequence. IRL approaches [102] are used to infer
the reward function. To learn the reward function more efficiently, a sample-based IRL approach is
used. Specifically, the IRL problem is formulated as the following posterior optimization problem:

max
Θ

Es∼S
[

logp (s|Θ) + logp (Θ)
]
, (38)

where p (s|Θ) = 1
Z

exp
( ∑

(o,a)∈s τΘ(o,a)
)
, τΘ(o,a) is a latent reward function parameterized by Θ,

(o,a) is a pair of state and action in the sequence s, Z represents the partition function that is the

integral of exp
( ∑

(o,a)∈s τΘ(o,a)
)

over all the sequences consistent with the underlying Markov

decision process dynamics, p (Θ) is a prior distribution of Θ, and S is a set of observed sequences.
Since the inverse of the reward yielded by τ is used as the anomaly score, maximizing Equation (38)
is equivalent to directly learning the anomaly scores.

At the training stage, a Gaussian prior distribution over the weight parameters of the reward
function learning network is assumed, i.e., Θ ∼ N (0,σ 2). The partition function Z is estimated
using a set of sequences generated by a sample-generating policy π ,

Z = Es∼π

⎡⎢⎢⎢⎢⎢⎣
∑

(o,a)∈s
τΘ(o,a)

⎤⎥⎥⎥⎥⎥⎦ . (39)

The policy π is also represented as a neural network. τ and π are alternatively optimized, i.e., to
optimize the reward function τ with a fixed policy π and to optimize π with the updated reward
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function τ . Note that τ is instantiated with a bootstrap neural network with multiple output heads
in Reference [107]; Equation (38) presents a simplified τ for brevity.

The idea of enforcing a prior on the anomaly scores is explored in Reference [115]. Motivated
by the extensive empirical results in Reference [74] that show the anomaly scores in a variety of
real-world datasets fits Gaussian distribution very well, the work uses a Gaussian prior to encode
the anomaly scores and enable the direct optimization of the scores. That is, it is assumed that
the anomaly scores of normal instances are clustered together while that of anomalies deviate far
away from this cluster. The prior is leveraged to define a loss function, called deviation loss, which
is built upon the well-known contrastive loss [55],

Ldev = (1 − yx) |dev (x) | + yx max
{
0,m − dev (x)

}
and dev (x) =

τ (x; Θ) − μb

σb
, (40)

where μb and σb are respectively the estimated mean and standard deviation of the priorN (μ,σ ),
yx = 1 if x is an anomaly and yx = 0 if x is a normal object, andm is equivalent to a Z-Score confi-
dence interval parameter. μb and σb are estimated using a set of values {r1, r2, . . . , rl } drawn from
N (μ,σ ) for each batch of instances to learn robust representations of normality and abnormality.

The detection model is driven by the deviation loss to push the anomaly scores of normal in-
stances as close as possible to μ while guaranteeing at leastm standard deviations between μ and
the anomaly scores of anomalies. When x is an anomaly and it has a negative dev (x), the loss
would be particularly large, resulting in large positive deviations for all anomalies. As a result, the
deviation loss is equivalent to enforcing a statistically significant deviation of the anomaly score of
the anomalies from that of normal instances in the upper tail. Further, this Gaussian prior-driven
loss also results in well interpretable anomaly scores, i.e., given any anomaly score τ (x), we can
use the Z-score confidence interval μ ± zpσ to explain the abnormality of the instance x. This is
an important and very practical property that existing methods do not have.

Advantages. The advantages of prior-driven models are as follows. (i) The anomaly scores can
be directly optimized w.r.t. a given prior. (ii) It provides a flexible framework for incorporating
different prior distributions into the anomaly score learning. Different Bayesian deep learning
techniques [156] may be adapted for anomaly detection. (iii) The prior can also result in more
interpretable anomaly scores than the other methods.

Disadvantages. Their disadvantages are as follows. (i) It is difficult, if not impossible, to design
a universally effective prior for different anomaly detection application scenarios. (ii) The models
may work less effectively if the prior does not fit the underlying distribution well.

Challenges Targeted: The prior empowers the models to learn informed low-dimensional rep-
resentations of different complex data such as high-dimensional data and sequential data (CH1
and CH2). By imposing a prior over anomaly scores, the deviation network method [115] shows
promising performance in leveraging a limited amount of labeled anomaly data to enhance the rep-
resentations of normality and abnormality, substantially boosting the detection recall (CH1 and
CH3). The detection models here are driven by a prior distribution w.r.t. anomaly scoring function
and work well in data with anomaly contamination in the training data (CH4).

6.3 Softmax Likelihood Models

This approach aims at learning anomaly scores by maximizing the likelihood of events in the
training data. Since anomaly and normal instances respectively correspond to rare and frequent
patterns, from the probabilistic perspective, normal instances are presumed to be high-probability
events whereas anomalies are prone to be low-probability events. Therefore, the negative of the
event likelihood can be naturally defined as anomaly score. Softmax likelihood models are shown
effective and efficient in achieving this goal via tools like noise contrastive estimation (NCE) [54].
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Assumptions. Anomalies and normal instances are respectively low- and high-probability events.
The idea of learning anomaly scores by directly modeling the event likelihood is introduced in

[30]. Particularly, the problem is framed as

Θ∗ = arg max
Θ

∑
x∈X

logp (x; Θ), (41)

where p (x; Θ) is the probability of the instance x (i.e., an event in the event space) with the pa-
rameters Θ to be learned. To easy the optimization, p (x; Θ) is modeled with a softmax function:

p (x; Θ) =
exp
(
τ (x; Θ)

)
∑

x∈X exp
(
τ (x; Θ)

) , (42)

where τ (x; Θ) is an anomaly scoring function designed to capture pairwise feature interactions:

τ (x; Θ) =
∑

i, j ∈{1,2, ...,K }
wi j zi zj , (43)

where zi is a low-dimensional embedding of the ith feature value of x in the representation space

Z,wi j is the weight added to the interaction and is a trainable parameter. Since
∑

x∈X exp
(
τ (x; Θ)

)
is a normalization term, learning the likelihood function p is equivalent to directly optimizing the
anomaly scoring function τ . The computation of this explicit normalization term is prohibitively
costly, the well-established NCE is used in Reference [30] to learn the following approximated
likelihood:

logp (d = 1|x; Θ) + log

k∑
j=1

p (d = 0|x′j ; Θ), (44)

where p (d = 1|x; Θ) =
exp

(
τ (x;Θ)

)
exp

(
τ (x;Θ)

)
+kQ (x′)

and p (d = 0|x′; Θ) = kQ (x′)

exp

(
τ (x;Θ)

)
+kQ (x′)

; for each instance

x, k noise samples x′
1, ...,k

∼ Q are generated from some synthetic known ‘noise’ distributionQ . In

Reference [30], a context-dependen method is used to generate the k negative samples by univari-
ate extrapolation of the observed instance x.

The method is primarily designed to detect anomalies in categorical data [30]. Motivated by this
application, a similar objective function is adapted to detect abnormal events in heterogeneous
attributed bipartite graphs [45]. The problem in Reference [45] is to detect anomalous paths that
span both partitions of the bipartite graph. Therefore, x in Equation (43) is a graph path containing
a set of heterogeneous graph nodes, with zi and zj be the representations of every pair of the
nodes in the path. To map attributed nodes into the representation spaceZ, multilayer perceptron
networks and autoencoders are respectively applied to the node features and the graph topology.

Advantages. The advantages of softmax model-based methods are as follows. (i) Different types
of interactions can be incorporated into the anomaly score learning process. (ii) The anomaly
scores are faithfully optimized w.r.t. the specific abnormal interactions we aim to capture.

Disadvantages. Their disadvantages are as follows. (i) The computation of the interactions can
be very costly when the number of features/elements in each data instance is large, i.e., we have
O (Dn ) time complexity per instance for nth order interactions of D features/elements. (ii) The
anomaly score learning is heavily dependent on the quality of the generation of negative samples.

Challenges Targeted: The formulation in this category of methods provides a promising way
to learn low-dimensional representations of datasets with heterogeneous data sources (CH2 and
CH5). The learned representations often capture more normality/abnormality information from
different data sources and thus enable better detection than traditional methods (CH1).
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6.4 End-to-end One-class Classification

This category of methods aims to train a one-class classifier that learns to discriminate whether
a given instance is normal or not in an end-to-end manner. Different from the methods in Sec-
tion 5.2.2, this approach does not rely on any existing one-class classification measures such as
one-class SVM or SVDD. This approach emerges mainly due to the marriage of GANs and the
concept of one-class classification, i.e., adversarially learned one-class classification. The key idea
is to learn a one-class discriminator of the normal instances so that it well discriminates those in-
stances from adversarially generated pseudo anomalies. This approach is also very different from
the GAN-based methods in Section 5.1.2 due to two key differences. First, the GAN-based meth-
ods aim to learn a generative distribution to maximally approximate the real data distribution,
achieving a generative model that well captures the normality of the training normal instances;
while the methods in this section aim to optimize a discriminative model to separate normal in-
stances from adversarially generated fringe instances. Second, the GAN-based methods define the
anomaly scores based on the residual between the real instances and the corresponding generated
instances, whereas the methods here directly use the discriminator to classify anomalies, i.e., the
discriminator D acts as τ in Equation (33). This section is separated from Sections 5.1.2 and 5.2.2
to highlight the above differences.

Assumptions. (i) Data instances that are approximated to anomalies can be effectively synthe-
sized. (ii) All normal instances can be summarized by a discriminative one-class model.

The idea of adversarially learned one-class (ALOCC) classification is first studied in Refer-
ence [135]. The key idea is to train two deep networks, with one network trained as the one-class
model to separate normal instances from anomalies while the other network trained to enhance
the normal instances and generate distorted outliers. The two networks are instantiated and opti-
mized through the GANs approach. The one-class model is built upon the discriminator network
and the generator network is based on a denoising AE [153]. The objective of the AE-empower
GAN is defined as

min
AE

max
D

V (D,G ) = Ex∼pX

[
logD (x)

]
+ Ex̂∼pX̂

[
log
(
1 − D

(
AE(x̂)

))]
, (45)

where pX̂ denotes a data distribution of X corrupted by a Gaussian noise, i.e., x̂ = x + n with

n ∼ N (0,σ 2I). This objective is jointly optimized with the following data construction error in
AE,

�ae = ‖x − AE(x̂)‖2. (46)

The intuition in Equation (45) is that AE can well reconstruct (and even enhance) normal in-
stances, but it can be confused by input outliers and consequently generates distorted outliers.
Through the minimax optimization, the discriminator D learns to better discriminate normal in-

stances from the outliers than using the original data instances. Thus, D
(
AE(x̂)

)
can be directly

used to detect anomalies. In Reference [135] the outliers are randomly drawn from some classes
other than the classes where the normal instances come from.

However, obtaining the reference outliers beyond the given training data as in Reference [135]
may be unavailable in many domains. Instead of taking random outliers from other datasets, we
can generate fringe data instances based on the given training data and use them as negative
reference instances to enable the training of the one-class discriminator. This idea is explored in
[103, 174]. One-class adversarial networks (OCAN) is introduced in Reference [174] to leverage the
idea of bad GANs [33] to generate fringe instances based on the distribution of the normal training
data. Unlike conventional generators in GANs, the generator network in bad GANs is trained to
generate data instances that are complementary, rather than matching, to the training data. The
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objective of the complement generator is as follows:

min
G
−H (pZ ) + Eẑ∼pZ logpX (ẑ)I[pX (ẑ) > ϵ] + ‖Eẑ∼pZh(ẑ) − Ez∼pXh(z)‖2, (47)

where H (·) is the entropy, I[·] is an indicator function, ϵ is a threshold hyperparameter, and h
is a feature mapping derived from an intermediate layer of the discriminator. The first two terms
are devised to generate low-density instances in the original feature space. However, it is compu-
tationally infeasible to obtain the probability distribution of the training data. Instead the density
estimationpX (ẑ) is approximated by the discriminator of a regular GAN. The last term is the widely
used feature matching loss that helps better generate data instances within the original data space.
The objective of the discriminator in OCAN is enhanced with an extra conditional entropy term
to enable the detection with high confidence:

max
D

Ex∼pX

[
logD (z)

]
+ Eẑ∼pZ

[
log
(
1 − D (ẑ)

)]
+ Ex∼pX

[
D (x) logD (x)

]
, (48)

In Reference [103], Fence GAN is introduced with the objective to generate data instances tightly
lying at the boundary of the distribution of the training data. This is achieved by introducing two
loss functions into the generator that enforce the generated instances to be evenly distributed
along a sphere boundary of the training data. Formally, the objective of the generator is defined as

min
G

Ez∼pZ

[
log

[���α − D (G (z)
) ���]

]
+ β

1

Ez∼pZ ‖G (z) − μ‖2
, (49)

where α ∈ (0, 1) is a hyperparameter used as a discrimination reference score for the generator to
generate the boundary instances and μ is the center of the generated data instances. The first term
is called encirclement loss that enforces the generated instances to have the same discrimination
score, ideally resulting in instances tightly enclosing the training data. The second term is called
dispersion loss that enforces the generated instances to evenly cover the whole boundary.

There have been some other methods introduced to effectively generate the reference instances.
For example, uniformly distributed instances can be generated to enforce the normal instances
to be distributed uniformly across the latent space [120]; an ensemble of generators is used in
Reference [89], with each generator synthesizing boundary instances for one specific cluster of
normal instances.

Advantages. The advantages of this category of methods is as follows. (i) Its anomaly clas-
sification model is adversarially optimized in an end-to-end fashion. (ii) It can be developed
and supported by the affluent techniques and theories of adversarial learning and one-class
classification.

Disadvantages. Their disadvantages are as follows. (i) It is difficult to guarantee that the gener-
ated reference instances well resemble the unknown anomalies. (ii) The instability of GANs may
lead to generated instances with diverse quality and consequently unstable anomaly classification
performance. This issue is recently studied in Reference [169], which shows that the performance
of this type of anomaly detectors can fluctuate drastically in different training steps. (iii) Its appli-
cations are limited to semi-supervised anomaly detection scenarios.

Challenges Targeted: The adversially learned one-class classifiers learn to generate realistic
fringe/boundary instances, enabling the learning of expressive low-dimensional normality rep-
resentations (CH1 and CH2).

7 ALGORITHMS AND DATASETS

7.1 Representative Algorithms

To gain a more in-depth understanding of methods in this area, in Table 2 we summarize some key
characteristics of representative algorithms from each category of methods. Since these methods
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Table 2. Key Characteristics of 30 Representative Algorithms

Method Ref. Sup. Objective DA DP PT Archit. Activation # layers Loss Data

OADA [65] (4) Semi Reconstruction Yes No No AE ReLU 3 MSE Video

Replicator [57] (5.1.1) Unsup. Reconstruction No No No AE Tanh 2 MSE Tabular

RandNet [29] (5.1.1) Unsup. Reconstruction No Yes Yes AE ReLU 3 MSE Tabular

RDA [175] (5.1.1) Semi Reconstruction No No No AE Sigmoid 2 MSE Tabular

UODA [91] (5.1.1) Semi Reconstruction No No Yes AE & RNN Sigmoid 4 MSE Sequence

AnoGAN [138] (5.1.2) Semi Generative No No No Conv. ReLU 4 MAE Image

EBGAN [170] (5.1.2) Semi Generative No No No Conv. & MLP ReLU/lReLU 3-4 GAN Image & Tabular

FFP [86] (5.1.3) Semi Predictive Yes No Yes Conv. ReLU 10 MAE/MSE Video

LSA [1] (5.1.3) Semi Predictive No No No Conv. lReLU 4-7 MSE & KL video

GT [48] (5.1.4) Semi Classification Yes Yes No Conv. ReLU 10-16 CE Image

E3Outlier [157] (5.1.4) Semi Classification Yes Yes No Conv. ReLU 10 CE Image

REPEN [112] (5.2.1) Unsup. Distance No No No MLP ReLU 1 Hinge Tabular

RDP [155] (5.2.1) Unsup. Distance No No No MLP lReLU 1 MSE Tabular

AE-1SVM [104] (5.2.2) Unsup. One-class No No No AE & Conv. Sigmoid 2-5 Hinge Tabular & image

DeepOC [161] (5.2.2) Semi One-class No No No 3D Conv. ReLU 5 Hinge Video

Deep SVDD [132] (5.2.2) Semi One-class No No Yes Conv. lReLU 3-4 Hinge Image

Deep SAD [133] (5.2.2) Semi One-class No No Yes Conv. & MLP lReLU 3-4 Hinge Image & Tabular

DEC [162] (5.2.3) Unsup. Clustering No Yes Yes MLP ReLU 4 KL Image & Tabular

DAGMM [179] (5.2.3) Unsup. Clustering No Yes No AE & MLP Tanh 4-6 Likelihood Tabular

SDOR [117] (6.1) Unsup. Anomaly scores No No Yes ResNet & MLP ReLU 50 + 2 MAE Video

PReNet [114] (6.1) Weak Anomaly scores Yes No No MLP ReLU 2-4 MAE Tabular

MIL [145] (6.1) Weak Anomaly scores No Yes Yes 3DConv. & MLP ReLU 18/34 + 3 Hinge Video

PUP [107] (6.2) Unsup. Anomaly scores No No No MLP ReLU 3 Likelihood Sequence

DevNet [115] (6.2) Weak Anomaly scores No No No MLP ReLU 2-4 Deviation Tabular

APE [30] (6.3) Unsup. Anomaly scores No No No MLP Sigmoid 3 Softmax Tabular

AEHE [45] (6.3) Unsup. Anomaly scores No No No AE & MLP ReLU 4 Softmax Graph

ALOCC [135] (6.4) Semi Anomaly scores Yes No No AE & CNN lReLU 5 GANs Image

OCAN [174] (6.4) Semi Anomaly scores No No Yes LSTM-AE & MLP ReLU 4 GANs Sequence

Fence GAN [103] (6.4) Semi Anomaly scores No Yes No Conv. & MLP lReLU/Sigmoid 4-5 GANs Image & Tabular

OCGAN [120] (6.4) Semi Anomaly scores No No No Conv. ReLU/Tanh 3 GANs Image

DA, DP, PT, and Archit. are short for data augmentation, dropout, pre-training, and architecture, respectively. # layers

account for all layers except the input layer. lReLU represents leaky ReLU.

are evaluated on diverse datasets, it is difficult to have an universal meta-analysis of their empirical
performance. Instead, some main observations w.r.t. the model design are summarized as follows:
(i) most methods operate in an unsupervised or semi-supervised mode; (ii) deep learning tricks like
data augmentation, dropout and pre-training are under-explored; (iii) the network architecture
used is not that deep, with a majority of the methods having no more than five network layers;
(iv) (leaky) ReLU is the most popular activation function; and (v) diverse backbone networks can
be used to handle different types of input data. The source code of most of these algorithms is
publicly accessible. We summarize those source codes in Table A1 in Appendix A to facilitate the
access.

7.2 Datasets with Real Anomalies

One main obstacle to the development of anomaly detection is the lack of real-world datasets
with real anomalies. Many studies (e.g., References [3, 48, 103, 132, 157, 170, 175]) evaluate the
performance of their presented methods on datasets converted from popular classification data for
this reason. This way may fail to reflect the performance of the methods in real-world anomaly
detection applications. We summarize a collection of 21 publicly available real-world datasets with
real anomalies in Table 3 to promote the performance evaluation on these datasets. The datasets
cover a wide range of popular application domains presented in a variety of data types. Only
large-scale and/or high-dimensional complex datasets are included here to provide challenging
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Table 3. 21 Publicly Accessible Real-world Datasets with Real Anomalies

Domain Data Size Dimension Anomaly (%) Type Reference

Intrusion detection KDD Cup 99 [13] 4,091-567,497 41 0.30%-7.70% Tabular [57, 103, 104, 179]

Intrusion detection UNSW-NB15 [100] 257,673 49 ≤9.71% Streaming [114, 115]

Excitement prediction KDD Cup 14 619,326 10 6.00% Tabular [114, 115]

Dropout prediction KDD Cup 15 35,091 27 0.10%-0.40% Sequence [91]

Malicious URLs detection URL [93] 2.4m 3.2m 33.04% Streaming [112]

Spam detection Webspam [160] 350,000 16.6m 39.61% Tabular/text [112]

Fraud detection Credit-card-fraud [34] 284,807 30 0.17% Streaming [114, 115, 174]

Vandal detection UMDWikipedia [76] 34,210 N/A 50.00% Sequence [174]

Mutant activity detection p53 Mutants [13] 16,772 5,408 0.48% Tabular [112]

Internet ads detection AD [13] 3,279 1,555 14.00% Tabular [112]

Disease detection Thyroid [13] 7,200 21 7.40% Tabular [114, 115, 133, 179]

Disease detection Arrhythmia [13] 452 279 14.60% Tabular [116, 133, 179]

Defect detection MVTec AD 5,354 N/A 35.26% Image [15]

Video surveillance UCSD Ped 1 [81] 14,000 frames N/A 28.6% Video [117, 161]

Video surveillance UCSD Ped 2 [81] 4,560 frames N/A 35.9% Video [117, 161]

Video surveillance UMN [106] 7,739 frames N/A 15.5%-18.1% Video [117]

Video surveillance Avenue [90] 30,652 frames N/A 12.46% Video [161]

Video surveillance ShanghaiTech Campus 317,398 frames N/A 5.38% Video [86]

Video surveillance UCF-Crime 1,900 videos (13.8m frames) N/A 13 crimes Video [145]

System log analysis HDFS Log [164] 11.2m N/A 2.90% Sequence [40]

System log analysis OpenStack log 1.3m N/A 7.00% Sequence [40]

testbeds for deep anomaly detection. In addition, a continuously updated collection of widely used
anomaly detection datasets (including some pre-processed datasets from Table 3) is available at
https://git.io/JTs93.

8 CONCLUSIONS AND FUTURE OPPORTUNITIES

In this work, we review 12 diverse modeling perspectives on harnessing deep learning techniques
for anomaly detection. We also discuss how these methods address some notorious anomaly detec-
tion challenges to demonstrate the importance of deep anomaly detection. Through such a review,
we identify some exciting opportunities as follows.

8.1 Exploring Anomaly-supervisory Signals

Informative supervisory signals are the key for deep anomaly detection to learn accurate anomaly
scores or expressive representations of normality/abnormality. While a wide range of unsuper-
vised or self-supervised supervisory signals have been explored, as discussed in Section 5.1, to
learn the representations, a key issue for these formulations is that their objective functions are
generic but not optimized specifically for anomaly detection. Anomaly measure-dependent feature
learning in Section 5.2 helps address this issue by imposing constraints derived from traditional
anomaly measures. However, these constraints can have some inherent limitations, e.g., implicit as-
sumptions in the anomaly measures. It is critical to explore new sources of anomaly-supervisory sig-

nals that lie beyond the widely used formulations such as data reconstruction and GANs, and have
weak assumptions on the anomaly distribution. Another possibility is to develop domain-driven

anomaly detection by leveraging domain knowledge [23] such as application-specific knowledge
of anomaly and/or expert rules as the supervision source.

8.2 Deep Weakly Supervised Anomaly Detection

Deep weakly supervised anomaly detection [114] aims at leveraging deep neural networks to
learn anomaly-informed detection models with some weakly supervised anomaly signals, e.g.,

ACM Computing Surveys, Vol. 54, No. 2, Article 38. Publication date: March 2021.

https://git.io/JTs93


38:30 G. Pang et al.

partially/inexactly/inaccurately labeled anomaly data. These labeled data provide important
knowledge of anomaly and can be a major driving force to lift detection recall rates [112, 114,
115, 145, 147]. One exciting opportunity is to utilize a small number of accurate labeled anomaly
examples to enhance detection models as they are often available in real-world applications,
e.g., some intrusions/frauds from deployed detection systems/end-users and verified by human
experts. However, since anomalies can be highly heterogeneous, there can be unknown/novel
anomalies that lie beyond the span set of the given anomaly examples. Thus, one important
direction here is unknown anomaly detection, in which we aim to build detection models that
are generalized from the limited labeled anomalies to unknown anomalies. Some recent studies
[113–115, 133] show that deep detection models are able to learn abnormality that lie beyond the
scope of the given anomaly examples. It would be important to further understand and explore the
extent of the generalizability and to develop models to further improve the accuracy performance.

To detect anomalies that belong to the same classes of the given anomaly examples can be as
important as the detection of novel/unknown anomalies. Thus, another important direction is to
develop data-efficient anomaly detection or few-shot anomaly detection, in which we aim at learning
highly expressive representations of the known anomaly classes given only limited anomaly ex-
amples [112, 114, 115, 152]. It should be noted that the limited anomaly examples may come from
different anomaly classes, and thus, exhibit completely different manifold/class features. This sce-
narios is fundamentally different from the general few-shot learning [159], in which the limited
examples are class-specific and assumed to share the same manifold/class structure. Additionally,
as shown in Table 2, the network architectures are mostly not as deep as that in other machine
learning tasks. This may be partially due to the limitation of the labeled training data size. It is
important to explore the possibility of leveraging those small labeled data to learn more power-
ful detection models with deeper architectures. Also, inexact or inaccurate (e.g., coarse-grained)
anomaly labels are often inexpensive to collect in some applications [145]; learning deep detection
models with this weak supervision is important in these scenarios.

8.3 Large-scale Normality Learning

Large-scale unsupervised/self-supervised representation learning has gained tremendous success
in enabling downstream learning tasks [35, 122]. This is particular important for learning tasks, in
which it is difficult to obtain sufficient labeled data, such as anomaly detection (see Section 2.1).
The goal is to first learn transferable pre-trained representation models from large-scale unlabeled
data in an unsupervised/self-supervised mode, and then fine-tune detection models in a semi-
supervised mode. The self-supervised classification-based methods in Section 5.1.3 may provide
some initial sources of supervision for the normality learning. However, precautions must be taken
to ensure that (i) the unlabeled data are free of anomaly contamination and/or (ii) the represen-
tation learning methods are robust w.r.t. possible anomaly contamination. This is because most
methods in Section 5 implicitly assume that the training data are clean and do not contain any
noise/anomaly instances. This robustness is important in both the pre-trained modeling and the
fine-tuning stage. Additionally, anomalies and datasets in different domains vary significantly, so
the large-scale normality learning may need to be domain/application specific.

8.4 Deep Detection of Complex Anomalies

Most deep anomaly detection methods focus on point anomalies, showing substantially better
performance than traditional methods. However, deep models for conditional/group anomalies
have been significantly less explored. Deep learning has superior capability in capturing complex
temporal/spatial dependence and learning representations of a set of unordered data points; it
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is important to explore whether deep learning could also gain similar success in detecting such
complex anomalies. Novel neural network layers or objectives functions may be required.

Similar to traditional methods, current deep anomaly detection mainly focus on single data
sources. Multimodal anomaly detection is a largely unexplored research area. It is difficult for tradi-
tional approaches to bridge the gap presented by those multimodal data. Deep learning has demon-
strated tremendous success in learning feature representations from different types of raw data for
anomaly detection [37, 65, 91, 112, 135]; it is also able to concatenate the representations from dif-
ferent data sources to learn unified representations [49], so deep approaches present important
opportunities of multimodal anomaly detection.

8.5 Interpretable and Actionable Deep Anomaly Detection

Current deep anomaly detection mainly focuses on the detection accuracy aspect. Interpretable

deep anomaly detection and actionable deep anomaly detection are essential for understanding
model decisions and results, mitigating any potential bias/risk against human users and enabling
decision-making actions. In recent years, there have been some studies [7, 8, 42, 142, 154] that
explore the anomaly explanation issues by searching for a subset of features that makes a re-
ported anomaly most abnormal. The abnormal feature selection methods [12, 110, 111] may also
be utilized for anomaly explanation purpose. The anomalous feature searching in these methods
is independent from the anomaly detection methods, and thus, may be used to provide expla-
nation of anomalies identified by any detection methods, including deep models. However, this
model-agnostic approach may render the explanation less useful, because they cannot provide a
genuine understanding of the mechanisms underlying specific detection models, resulting in weak
interpretability and actionability (e.g., quantifying the impact of detected anomalies and mitiga-
tion actions). Deep models with inherent capability to provide anomaly explanation is important,
such as Reference [117]. To achieve this, methods for deep model explanation [41] and actionable
knowledge discovery [23] could be explored with deep anomaly detection models.

8.6 Novel Applications and Settings

There have been some exciting emerging research applications and problem settings, into
which there could be some important opportunities of extending deep detection methods. First,
out-of-distribution (OOD) detection [60, 79, 127] is a closely related area, which detects data
instances that are drawn far away from the training distribution. This is an essential technique
to enable machine learning systems to deal with instances of novel classes in open-world envi-
ronments. OOD detection is also an anomaly detection task, but in OOD detection it is generally
assumed that fine-grained normal class labels are available during training, and we need to retain
the classification accuracy of these normal classes while performing accurate OOD detection.
Second, curiosity learning [18, 19, 118] aims at learning a bonus reward function in reinforcement
learning with sparse rewards. Particularly, reinforcement learning algorithms often fail to work
in an environment with very sparse rewards. Curiosity learning addresses this problem by
augmenting the environment with a bonus reward in addition to the original sparse rewards from
the environment. This bonus reward is defined typically based on the novelty or rarity of the
states, i.e., the agent receives large bonus rewards if it discovers novel/rare states. The novel/rare
states are concepts similar to anomalies. Therefore, it would be interesting to explore how deep
anomaly detection could be utilized to enhance this challenging reinforcement learning problem;
conversely, there can be opportunities to leverage curiosity learning techniques for anomaly de-
tection, such as the method in Reference [155]. Third, most shallow and deep models for anomaly
detection assume that the abnormality of data instances is independent and identically distributed
(IID), while the abnormality in real applications may suffer from some non-IID characteristics,
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e.g., the abnormality of different instances/features is interdependent and/or heterogeneous
[108]. For example, the abnormality of multiple synchronized disease symptoms is mutually
reinforced in early detection of diseases. This requires non-IID anomaly detection [108] that is
dedicated to learning such non-IID abnormality. This task is crucial in complex scenarios, e.g.,
where anomalies have only subtle deviations and are masked in the data space if not considering
these non-IID abnormality characteristics. Last, other interesting applications include detection
of adversarial examples [51, 119], anti-spoofing in biometric systems [46, 121], and early detection
of rare catastrophic events (e.g., financial crisis [24] and other black swan events [11]).
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