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ABSTRACT

Automated hate speech detection is an important tool in combating the spread of hate speech, par-
ticularly in social media. Numerous methods have been developed for the task, including a recent
proliferation of deep-learning based approaches. A variety of datasets have also been developed,
exemplifying various manifestations of the hate-speech detection problem. We present here a large-
scale empirical comparison of deep and shallow hate-speech detection methods, mediated through
the three most commonly used datasets. Our goal is to illuminate progress in the area, and identify
strengths and weaknesses in the current state-of-the-art. We particularly focus our analysis on mea-
sures of practical performance, including detection accuracy, computational efficiency, capability in
using pre-trained models, and domain generalization. In doing so we aim to provide guidance as to
the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research
directions.

1 Introduction

Social media has experienced incredible growth over the last decade, both in its scale and importance as a form of
communication. The nature of social media means that anyone can post anything they desire, putting forward any
position, whether it is enlightening, repugnant or anywhere between. Depending on the forum, such posts can be
visible to many millions of people. Different forums have different definitions of inappropriate content and different
processes for identifying it, but the scale of the medium means that automated methods are an important part of this
task. Hate-speech is an important aspect of this inappropriate content.

Hate-speech is a subjective and complex term with no single definition, however. Irrespective of the definition of the
term or the problem, it is clear that automated methods for detecting hate-speech are necessary in some circumstances.
In such cases it is critical that the methods employed are accurate, effective, and efficient.

A variety of methods have been explored for the hate speech detection task, including traditional classifiers [15, 29,
37,50], deep learning-based classifiers [1,6,7], or the combination of both approaches [6,33]. Classifiers like support
vector machines (SVM), extreme gradient boosting (XGB), and multi-layer perceptrons (MLP) are commonly used
in this task, which typically require vector representations of the text data. Bag of words models are commonly used,
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together with TF-IDF (term frequency - inverse document frequency) [2,45]. With the progress in deep learning-based
embeddings, tools such as word2vec [32], Glove [39], FastText [8,24], and transformer-based methods [13,17,47,47]
have been applied to obtain more expressive representations. Both traditional and deep classifiers can be applied to
these embedding-based representations pre-trained using the representation learning tools. This substantially increases
the pool of methods for hate speech detection, resulting in a large set of possible hate speech detection solutions with
different applicability in diverse real-world application contexts.

On the other hand, there have been a number of dataset benchmarks introduced and released for the evaluation of the
performance of these methods, such as Davidson [15], Founta [19] and Twitter Sentiment Analysis (TSA)2. These
datasets differ largely from each other in terms of the classes of hatred texts (e.g., sexists, racists, abusive, and offen-
sive tweets), data collection and labeling methods, and data distribution, representing the challenges and application
demands from different perspectives.

To provide insightful application guidelines, in this paper we aim to provide a thorough empirical evaluation and com-
parison of different types of hate speech detection methods on these datasets. Through this evaluation study, we answer
the following four key questions in hate speech detection through. i) How is the effectiveness of different popular de-
tection models on diverse hate speech datasets? This is important because practitioners who have different application
contexts often need to choose from the large pool of detectors. ii) Are there any specific models that achieve generally
more desired performance than the other models (in terms of both detection accuracy and efficiency)? Both accuracy
and efficiency are crucial since handling those massive online text data in a timely manner requires a computationally
scalable and accurate detectors. iii) How effective do popular pre-training methods work with detection models? Pre-
training methods have been playing a major role in driving the development of many machine learning and natural
language processing areas [10, 46], including hate speech detection. It is thus important to evaluate the effectiveness
of combining different pre-training and hate speech detectors. iv) How is the generalizability of detection models in
tackling domain shifts? This question is included because, due to the diversity in the classes of hate speech, ways of
expressing hatred texts, and difference across languages, cross-domain hate speech detection has been emerging as
one of the most important problems [18, 43]. To our best knowledge, there is no such comprehensive empirical eval-
uation. The most related work are [6, 14]. Badjatiya et al. [6] presents an empirical comparison of multiple classifiers
(including both traditional and deep classifiers) for detecting hatred tweets, but it focuses on the detection accuracy
on on a single benchmark dataset of 16K tweets. Corazza et al. [14] exclusively focuses on empirical evaluation of
identifying hate speech across different languages. Our work significantly complements these two studies in both of
depth and breadth of the empirical evaluation.

To summarize, this work makes the following two major contributions.

• This paper presents a large-scale empirical evaluation of hate speech detection methods to provide insights
into their detection accuracy, computational efficiency, capability in using pre-trained models, and domain
generalizability, offering important guidelines for their deployment in real-world applications. As far as we
know, this is the first work dedicated to performing such a comparative study to investigate these questions.

• We perform a comprehensive evaluation study that involves 14 shallow/deep classification-based hate speech
detectors, which are empowered by different word representation methods ranging from TF-IDF, Glove-based
word embeddings to advanced transformers. To have an in-depth analysis of the performance in diverse
application contexts, these detectors are evaluated on three large and publicly available hate speech detection
benchmarks that contain different types of hatred tweet classes from different data sources. All codes are
made publicly available at GitHub3.

This paper is organized as follows. We present a brief review of hate speech approaches in Section 2, followed by
our evaluation approach in Section 3 and a series of our empirical evaluation results in Section 4. Lastly, the work is
concluded in Section 5.

2 Hate Speech Detection Approaches

Many methods have been introduced for hate speech detection [18, 52]. In this work we categorize them into
three groups, including traditional (shallow) classification methods, word embedding-based deep methods, and
transformers-based deep methods. We have a brief review of these methods in this section, and perform compre-
hensive empirical evaluation of them in the next section.

2 https://datahack.analyticsvidhya.com/contest/practice-problem-twitter-sentiment-analysis/?utm_
source=av_blog&utm_medium=practice_blog_text_classification#DiscussTab

3 https://github.com/jmjmalik22/Hate-Speech-Detection
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2.1 Shallow Methods

By shallow detection methods, we refer to hate speech detectors that use traditional word representation methods to
encode words and apply shallow classifiers to perform the detection. Various types of such feature representations,
such as TF-IDF [2, 45] and n-grams [9, 11, 15, 36], have demonstrated good performance, when combined with state-
of-art traditional classification models [9, 22, 27, 31, 43]. Additionally, clustering-based word representation methods
[16, 36, 49, 51, 53, 55] have also been a popular method that can present the texts in lower dimensions. To capture the
underlying sentiments in the texts, sentiment lexicon and the embedded polarity’s degree are found to be helpful when
modeling the texts for hate speech detection [9, 9, 15, 16, 21, 36]. Other semantics, such as part of speech and other
relevant linguistic features [9, 11, 15, 21, 55], as well as word dependency (e.g., ‘we versus them’) [11, 55] can also be
important to have more accurate detection of offensive texts.

In terms of classification models, support vector machines (SVM) is one of the most popular methods used in hate
speech detection [6,11,15,22,31,49,53,53]. Other popular classifiers for this task include naive Bayes [11,15,27,31,
53], logistic regression [15, 27, 50], random forest [15, 53], and gradient boosting decision tree models [3, 26, 42].

2.2 Deep Learning Methods

Deep learning methods refer to deep neural network-based hate speech detectors. The input data to these neural
networks can be in any form of feature encoding, including traditional methods like TF-IDF and recently emerged word
embedding or pre-training methods. The latter approach is generally more effective than the former approach, because
it helps avoid traditional feature engineering or feature construction methods. It instead learns feature representations
from the presented texts. Some popular deep neural network architectures include convolutional neural networks
(CNN), long short term memory (LSTM) and bi-directional LSTM (Bi-LSTM) [6,16,20,38]. In hate speech detection,
CNN models learns compositional features of words or character s [6, 20, 38], where LSTM models are used for
learning the words that have a long-range dependency of the characters [6, 16].

2.2.1 Word Embeddings-based Methods

Word embedding techniques leverage distributed representations of words to learn their vectorized representations to
enable downstream text mining tasks [24,28,32,39]. The resulting embeddings allow the words with similar meaning
to have similar representations in a vector space. There have been many word embeddings methods introduced over
the years, such as word2vec [32], Glove [39], and FastText [8, 24]. One key intuition behind these models is that the
word-word co-occurrence probabilities have the potential for encoding some form of semantic meaning between the
words. Readers are referred to [10] for detailed review of these embedding methods.

Word embedding models have been widely used to enable hate speech detection and other relevant tasks, such as
sentiment analysis, in a large number of studies [4, 20, 23, 33, 33, 35, 40, 44, 50, 54]. The learned word embeddings
can be combined with traditional classifiers [6, 54], or deep neural network-based classifiers, such as recurrent neural
networks (RNN) [4, 44], gated recurrent units (GRU) [33], LSTM [35], and CNN [20]. The word embedding models
help capture semantic and syntactic word relations for detecting hatred tweets, empowering impressive detection
accuracy on different datasets.

2.2.2 Transformers-based Methods

The above models rely on the usage of LSTM, Bi-LSTM, and CNN, along with the combination of Glove or other
classical word embedding technique, which obtain quite successful performance but they are often not as accurate as
the modern transformers-based embedding techniques [5], such as Small BERT [47], BERT [17], ELECTRA [13],
and AlBERT [47]. Readers can refer to [46] for detailed introduction of the transformer models. The transformers
can be effectively combined with CNN, LSTM, multi-layer perceptrons (MLP), or Bi-LSTM [14,30], and they enable
remarkable performance across hate speech detection datasets in different languages, such as datasets in French,
English and Arabic [30], in Italian, English and German [14], or in English, Hindi and German [41].

3 Our Approach for Comparative Study

We aim at answering the following four key questions in hate speech detection through our comparative study.

• Q1: How is the effectiveness of different popular detection models on different hate speech datasets?
• Q2: Are there any specific models that achieve generally more desired performance than the other models (in

terms of both detection accuracy and efficiency)?
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• Q3: How effective do popular pre-training methods work with detection models?

• Q4: How is the generalizability of detection models in tackling domain shifts?

To this end, we perform large-scale empirical evaluation of a large set of shallow and deep methods on three publicly
available popular dataset benchmarks.

3.1 Datasets

Three widely-used datasets, including Davidson [15], Founta [19] and Twitter Sentiment Analysis (TSA)4, are
adopted in our experiments. Note that it has been observed that in respect to privacy concerns, the data only con-
stitute of text sentences and the category they belong to. The details of the users are kept hidden according to policy
of different websites like Twitter5. An introduction to each of the datasets is presented below, with its key statistics
summarized in Table 1.

Davidson [15] is collected starting with the hate speech lexicon that contains different words and phrases identified
by various internet users as hate speech. By using the Twitter API, its authors then search for tweets containing terms
from the lexicon, resulting in a set of 85.4 million tweets from 33,458 Twitter users. From this corpus, a random set
of 25k tweets is sampled and then manually coded by CrowdFlower (CF) workers. Workers are asked to label each
tweet as one of three categories Offensive, Hate, Neither hate speech no offensive.

Table 1: Datasets and their key statistics
Dataset Class and Statistics

Davidson

Offensive – 19,190 (77.4%)
Hate - 1,430 (5.8 %)
Neither - 4,163 (16.80%)
Total ∼ 25k

Founta

None - 53851(53.8 %)
Hate - 4,965 (4.96 %)
Abusive - 27,150 (27.15 %)
Spam - 14,030 (14.03%)
Total ∼ 100k

TSA
Not Racist/Sexist - 29,720 (92.99%)
Racist/Sexist – 2,242 (7.01 %)
Total ∼ 32k

Founta is recently published in [19], which contains around 100k human annotated tweets with about 27% being
abusive, 14% being spam, and 5% being hate speech. The data was completed in different rounds. In the first round,
annotators divided the tweets into three classes normal, spam and inappropriate. Thereafter, annotators were explained
to further reclassify the tweets of the category inappropriate. The final version of the dataset includes four classes –
normal, spam, hate, and abusive.

Twitter Sentiment Analysis (TSA) is released by Analytic Vidhya6 on the competition - Twitter Sentiment Analysis7.
The dataset is composed by about 32K tweets, and contains only two classes namely ‘Not Racist and Not Sexist’ and
‘Racist and Sexist’

3.2 Detection Models

We consider three types of detection methods base on how they perform word embeddings, as the feature representation
is the key to hate speech detection.

Traditional Classifiers. This type of methods comprises of applying state-of-the-art shallow classifiers – Support
Vector Machine (SVM), extreme gradient boosting (XGB), and multi-layer perceptrons (MLP) – on top of the TF-
IDF-based word representations. Particularly, the TF-IDF algorithm is a statistical method to measure the relevancy

4 https://datahack.analyticsvidhya.com/contest/practice-problem-twitter-sentiment-analysis/?utm_
source=av_blog&utm_medium=practice_blog_text_classification#DiscussTab

5 https://developer.twitter.com/en/developer-terms/agreement-and-policy
6 https://datahack.analyticsvidhya.com/contest/practice-problem-twitter-sentiment-analysis/?utm_

source=av_blog&utm_medium=practice_blog_text_classification#DiscussTab
7 https://www.kaggle.com/dv1453/twitter-sentiment-analysis-analytics-vidya
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of a word in a document in a collection of the documents. The TF-IDF-based vector embeddings are then used with
one of the traditional classifiers [6].

Deep Models with Glove Embeddings. This approach uses the Glove-based embedding model with deep classifiers
using CNN, MLP or Bi-LSTM-based network architecture. The classifier is trained with cross-entropy loss.

Deep Models with Transformers-based Pretraining. This approach is focused upon the transformer models, in-
cluding Small BERT [47], BERT [17], ELECTRA [13], and AlBERT [47], with each in combination with CNN and
MLP separately. BERT and other Transformer encoder architectures have been successful on a variety of tasks in NLP
(natural language processing). They compute vector-space representations of natural language that are suitable for use
in deep learning models. The BERT family of models uses the Transformer encoder architecture to process each token
of input text in the full context of all tokens before and after. The classifier is also trained with cross-entropy loss.

All these together result in 14 popular/state-of-the-art models in this study, including three TF-IDF-based traditional
classifiers, three Glove-based models, and eight transformer-based models.

3.3 Implementation Details

We present the implementation details from three consecutive steps, including embedding, detection model, and opti-
mization.

Embedding. A sentence of length n can be represented as w1, w2....wn where each word can be represented as a real
valued vector. For word embedding, we deploy TF-IDF, the pre-trained GloVe embedding of Tweets, or transformers-
based embedding. In TF-IDF, each tweet is represented by a vector with a dimensionality size of the dictionary (a
collection of unique words across all training tweets) size, in which each entry is denoted by the multiplication of the
frequency (TF) and inverse document frequency (IDF) of a specific term (word). This simple embedding method is
used in three traditional classifiers: SVM, XGB and MLP. Note that due to extensive computation it takes, we limited
the dictionary size to maximum 10k in our experiments.

Glove is generally a log-bilinear model with a weighted least-squares objective. The main intuition underlying the
model is the simple observation that the common word-word co-occurrence patterns have the potential for encoding
some form of semantic. The advantage of this model is that we can leverage massive datasets with billions of words
that one may not have access to, to capture word meanings in a statistically robust manner. In our implementation,
we use pre-trained GloVe word vectors with a dimensionality size of 100. This Glove-based embedding layer is
subsequently connected to CNN, MLP, or Bi-LSTM to train deep classifiers.

The BERT family of models have similar advantages as Glove, but can produce more meaningful word embeddings.
In our experiment, we utilize the pre-trained BERT models available on TensorFlow Hub8, which allows us to eas-
ily integrate BERT in our implementation. Four different types of transformer-based embedding models are used,
including

• BERT9, which is pre-trained on a large corpus of text, and then fine-tuned for specific tasks [17].

• Small BERT10, which is an instance of the original BERT architecture with a smaller number L of layers
(i.e., residual blocks) combined with a smaller hidden size H and a matching smaller number A of attention
heads [47]. Small BERTs have the same general architecture but fewer and/or smaller Transformer blocks,
enabling a good trade-off between speed, size and quality.

• ALBERT11, which is “A Lite” version of BERT with greatly reduced number of parameters [47]. ALBERT
computes dense vector representations for natural language by using a deep neural network with the trans-
former architecture.

• ELECTRA12, which is a BERT-like model that is pre-trained as a discriminator in a set-up resembling a
generative adversarial network (GAN) [13].

Similar to [5, 5, 30, 48], the BER models are subsequently connected to a CNN/MLP architecture to train the deep
detectors.

8 https://www.tensorflow.org/hub
9 bert en uncased L-12 H-768 A-12/3 at https://tfhub.dev/google/collections/bert/1
10 small bert/bert en uncased L-2 H-12 A-2/1 at https://tfhub.dev/google/collections/bert/1
11 albert en base/2 at https://tfhub.dev/google/albert_base/3
12 google/electra small/2 at https://tfhub.dev/google/collections/electra/1
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Figure 1: CNN Architecture used in this study

Network Architecture. In this section we introduce the implementation of each model in our study. More specifically,
we use SVM with linear kernel and XGB with default parameters as in the Scikit-learn library13.

For MLP, its architecture consists of one dense layer, a dropout layer with the probability of 0.1, and one classification
layer. For the CNN architecture, as shown in Figure 1, it consists of two CNN layer with filter size of 32 and 64,
respectively. The output from the last CNN layers is fed to a maxpooling layer, followed by a dense layer with 256
neurons and a dropout layer with the probability of 0.1, before feeding to the last output layer.

In Bi-directional LSTM that is used in the Glove-based model, it is composed of Glove Embedding Layer (dimen-
sion=100), followed by Bi-LSTM with recurrent dropout of a probability equal to 0.2, a Global Max pooling layer of
one dimension, a Batch Normalistaion layer. It is then followed by the combination of dropout layer with a probability
of 0.5 and a dense layer with the relu activation, and lastly a softmax classification layer to predict the the classes. The
complete architecture is shown in Figure 2.

Optimization. SVM and XGB are trained with the recommended settings in Scikit-learn. The neural network-based
classifiers are trained with a batch size of 32, 128 or 256 for 10-25 epochs. Adam optimizer is used with a learning
rate of 2e-5. As input for transformer embedding, we tokenize each tweet with the BERT tokenizer. It contains invalid
characters removal, punctuation splitting, and lowercasing the words. Based on the original BERT, we split words to
sub word units using WordPiece tokenization. As tweets are short texts, we set the maximum sequence length to 64
and in any shorter or longer length case it is padded with zero values or truncated to the maximum length. We use the
cross entropy loss function and the Adam optimizer to optimize the models.

All experiments are performed using a Google co-laboratory tool which is a free research tool with a Tesla K80 GPU
and 12G RAM and Kaggle environment.

3.4 Performance Evaluation Metrics

Per-class Metric. The results of different methods are measured based on Precision, Recall and F1 score [12] defined
as below:
13 https://scikit-learn.org/
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Figure 2: Bi-LSTM Network Architecture used in this study

• Precision pi - Precision is the fraction of true positive examples among the examples that the model classified
as positive for a specific class.

• Recall ri- Recall is the fraction of examples classified as positive among the total number of positive examples
per class.

• F1 score - F1 score can be defined as the harmonic mean of precision and recall: F1 = 2 pi.ri
(pi+ri)

.

Evaluation Metric. For the overall performance, we consider both of macro F1 score and weighted average F1 score
of the classification results, as the data is highly imbalanced in the three data sets in Table 1.

• Macro F1 score calculates the mean of the F1 scores across all classes: Macro F1 = 1
C

∑i=C
i=1 F1i, where C

is the number of classes and F1i is the F1 score of class i. It considers all classes equally.
• Weighted F1 score, on the other hand, considers the individual weight of each class [25], and is defined as
Weighted F1 = 1

N

∑i=N
i=1 F1iNi, where N =

∑i=N
i=1 Ni and Ni is the sample size of class i.

4 Experimental Results & Analysis

4.1 Q1: Effectiveness of Different Models on Popular Benchmarks

The macro and weighted average results of all 14 hate speech detection models on three popular benchmarks are shown
in Table 2. Below we discuss the results on each dataset.

Results on the Davidson Dataset. In terms of macro F1 score, it can be observed that Glove embedding is better than
TF-IDF in predicting hate speech more accurately. The results obtained by Glove embedding with CNN and Bi-LSTM
are similar to the highest score obtained by TF-IDF embeddings with XGB. with just a percent difference. This high
score was almost touched twice by the glove embedding. The TF-iDF-based MLP and SVM models obtain similarly
good performance as the Glove-based MLP model. In terms of weighted average F1 score, it can be found that XGB
with TF-IDF produced very competitive results, which is more effective than all Glove-based models.

Compared to the TF-IDF- and Glove-based models, the transformers-based models achieve a significant increase
in both metrics, achieving the best macro F1 score of 0.76 and the best weighted average F1 score of 0.91. More
specifically, in terms of macro F1, all the transformers models outperforms every single model in combination with
TF-IDF or Glove by a large margin. These results demonstrate that the transformers are able to perform better on

7
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both large and small classes, especially the small classes (i.e., the hate class), when compared to Glove and TF-IDF.
Small BERT is less effective than TF-IDF-based XGB in weighted average F1 score, indicating that Small BERT
underperforms XGB on the large class (i.e., the offensive class). Overall, BERT-based CNN and Electra-based MLP
turn out to be the best performers in this dataset.

Results on the Founta Dataset. The Founta dataset is more diversified than the other two datasets. Therefore, the
accuracy results within the models vary more compared to the other two datasets. Interestingly, the TF-IDF-based
models are generally more effective than the Glove-based models. In terms of macro average, TF-IDF-based SVM
obtains some very good results with an F1 score of 0.64, outperforming all Glove-based models and performing
comparably well to some transformers-based models. Nevertheless, transformer embeddings in this case enable the
most superior results to other embeddings. BERT, ALBERT and ELECTRA (with CNN) prove to be much successful
than other models.

Similar to the results on Davidson, the TF-IDF-based XGB outperforms the other combination with SVM and MLP
in weighted average F1, obtaining an F1 score of 0.78 which also the second highest F1 score among all the models.
Transformers-based models come with the best results. Particularly, the Bert and Al-BERT models dominate the other
models with F1 score reaching to 0.79 in both CNN and MLP, followed by ELECTRA at 0.78 with MLP.

Results on the TSA Dataset. The results on the TSA dataset are much better than on the other two datasets, which
may be due to the reason of less classes and more training samples presented for each class (see Table 1). The results in
terms of the macro F1 show similar performance as in previous datasets, with transformers embeddings performing far
better than the other two embeddings, achieving a macro F1 score as high as 0.90. On this dataset, the TF-IDF-based
XGB is not as successful as the TF-IDF-based MLP that achieves the macro F1 score of 0.81. The TF-IDF-based
MLP also outperforms all Glove-based models. In transformer embeddings, BERT (with CNN/MLP) and Al-BERT
(with CNN) perform far better than other embeddings with the F1 score of 0.90, followed by Electra, with an F1 score
of 0.89 (CNN, MLP).

The weighted average score results are very different from the macro average.The TF-IDF-based MLP and XGB
obtain the best results with the F1 score of 0.95 and 0.96, respectively. In terms of Glove embedding, the BI-LSTM
model performs similarly well to the TF-IDF-based MLP, and outperforms the CNN/MLP model. The transformers-
based models are more effective, with the results obtained by BERT, Al-BERT and ELECTRA achieving an F1 score
of 0.97/0.98. Small BERT and ALBERT (with ML) is slightly less effective compared to other transformers-based
models.

4.2 Q2: Superiority of Specific Models in both Accuracy and Efficiency

Accuracy. As shown in Table 2, the Glove and TF-IDF models do not have consistently superior performance over
each other. It is interesting that the TF-IDF-based XGB is able to perform better or on par, compared to the results
obtained by Glove-based neural network models. Similar to out study, it was also observed in [4] that XGB was able
to obtain better results compared to Glove-based deep models [1].

The use of Bidirectional LSTM is quite successful in our experiments and obtains good results across three datasets.
This indicates that Bi-LSTM is successful in recognizing the underlying relationships in a set of data better than most
of the other models except transformers.

In terms of transformers embedding, the use of BERT, ELECTRA and Al-BERT provide the best results in all three
datasets, showing quite consistently superior performance over the competing models. The higher accuracy of the
transformer embeddings can also be bound in other studies [34], in which the base version of BERT was used in
combination with CNN and LSTM networks.

Computational Efficiency. In order to measure the computational time of the models during, we consider the time
each model takes to complete one epoch. The computational time for the models are shown in Figure 3. It is observed
that while the accuracy provided by the transformers are higher than the other embeddings, but it does require much
more time to train on the dataset. It is found that AI-BERT is the most time consuming model among the transformers,
followed by the BERT model in all there dataset we have tested. Note that Bi-LSTM in combination with Glove is
significantly more costly than Glove-based CNN and MLP models, which also takes much larger time to train than
Electra and Small-BERT. Small BERT is the most efficient model among all the transformers due to the less amount
of dataset it is trained on compared to other transformer embedding.

Overall, Electra-based MLP models seem to be the most practical method that can normally achieve the best classifi-
cation accuracy while at the same time being sufficiently computational efficient.
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Table 2: Macro and weighted average F1 score performance. The best performance is highlighted in red, while the
second best is in blue.

Embedding Model
Macro Weighted Avg.

P R F1 P R F1

Results on the Davidson Dataset

TF-IDF
TF-IDF + SVM 0.69 0.64 0.66 0.86 0.87 0.86
TF-IDF + XGB 0.74 0.69 0.70 0.89 0.90 0.90
TF- IDF + MLP 0.68 0.63 0.66 0.85 0.86 0.85

Glove
Glove + CNN 0.66 0.73 0.69 0.88 0.85 0.86
Glove + MLP 0.72 0.61 0.65 0.85 0.86 0.85
Glove + Bi-LSTM 0.67 0.75 0.69 0.88 0.84 0.86

Transformers

Small BERT + CNN 0.72 0.82 0.75 0.91 0.85 0.87
Small BERT + MLP 0.71 0.81 0.74 0.91 0.85 0.87
BERT + CNN 0.78 0.75 0.76 0.91 0.91 0.91
BERT + MLP 0.75 0.72 0.74 0.90 0.90 0.90
Al-BERT + CNN 0.76 0.69 0.72 0.89 0.90 0.90
Al-BERT + MLP 0.77 0.72 0.74 0.90 0.91 0.90
ELECTRA + CNN 0.75 0.75 0.75 0.91 0.91 0.91
ELECTRA + MLP 0.75 0.76 0.76 0.91 0.91 0.91

Results on the Founta Dataset

TF-IDF
TF-IDF + SVM 0.63 0.71 0.64 0.80 0.73 0.75
TF- IDF + XGB 0.74 0.59 0.62 0.79 0.80 0.78
TF- IDF + MLP 0.64 0.61 0.62 0.75 0.76 0.76

Glove
Glove + CNN 0.58 0.54 0.52 0.73 0.70 0.69
Glove + MLP 0.59 0.61 0.59 0.74 0.72 0.73
Glove + Bi-LSTM 0.63 0.65 0.63 0.77 0.75 0.76

Transformers

Small BERT + CNN 0.63 0.71 0.65 0.80 0.73 0.75
Small BERT + MLP 0.64 0.71 0.66 0.79 0.74 0.76
BERT + CNN 0.68 0.67 0.67 0.79 0.79 0.79
BERT + MLP 0.68 0.67 0.68 0.79 0.79 0.79
Al-BERT + CNN 0.68 0.68 0.68 0.79 0.79 0.79
Al-BERT + MLP 0.68 0.67 0.67 0.79 0.79 0.79
ELECTRA + CNN 0.65 0.73 0.66 0.80 0.73 0.75
ELECTRA + MLP 0.66 0.73 0.68 0.81 0.76 0.78

Results on the TSA Dataset

TF-IDF
TF-IDF + SVM 0.85 0.72 0.77 0.91 0.92 0.91
TF- IDF + XGB 0.70 0.99 0.76 0.98 0.95 0.96
TF- IDF + MLP 0.84 0.78 0.81 0.95 0.95 0.95

Glove
Glove + CNN 0.74 0.81 0.77 0.94 0.93 0.94
Glove + MLP 0.74 0.81 0.77 0.94 0.93 0.94
Glove + Bi-LSTM 0.78 0.84 0.80 0.95 0.94 0.95

Transformers

Small BERT + CNN 0.84 0.83 0.84 0.96 0.96 0.96
Small BERT + MLP 0.82 0.82 0.82 0.95 0.95 0.95
BERT + CNN 0.93 0.88 0.90 0.98 0.98 0.98
BERT + MLP 0.93 0.87 0.90 0.97 0.98 0.97
Al-BERT + CNN 0.91 0.9 0.90 0.97 0.97 0.97
Al-BERT + MLP 0.86 0.84 0.85 0.96 0.96 0.96
ELECTRA + CNN 0.90 0.87 0.89 0.97 0.97 0.97
ELECTRA + MLP 0.90 0.87 0.89 0.97 0.97 0.97
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Figure 3: Computational time of the models per epoch measured in ms

4.3 Q3: Pre-training in Deep Hate Speech Detection Models

This section discusses how large-scale pre-training helps the subsequent hate speech detection. There are two types
of pre-training models used in our study: including the Glove-based models and transformers-based models. Glove
is pre-trained on Twitter with 2B tweets, 27B tokens, a vocabulary of size 1.2M, and 100 dimensions. Transformers
are pre-trained on the Wikipedia and BooksCorpus. TF-IDF-based models can be treated as non-pre-trained models.
As shown in Table 2, the pre-trained models (e.g., Glove-based MLP and transformers-based MLP) perform generally
better than the plain models (e.g., TF-IDF-based MLP) on the three datasets. The transformers-based pre-training is
typically much better than the TF-IDF-based MLP models.

Compared to Glove-based pre-training, different transformers-based pre-training methods perform consistently better
across all three datasets in both macro F1 and weighted average F1 measures. This applies to both CNN and MLP-
based classifiers.

4.4 Q4. Cross-domain Hate Speech Detection

In this section, we investigate the effectiveness of different models in generalizing from one domain to another domain
to detect hate speech. The domain difference is mainly due to the source of the datasets. One problem here is that the
three datasets have different sets of classes. To tackle this issue, we remove less relevant classes and focus on detecting
hatred tweets. The resulting datasets are shown in Table 3.

We then perform three sets of cross-domain experiments, with each model trained on the training data of one of the
three datasets and evaluated on the test data of the other two datasets, i.e., one dataset is used as source domain,
while the other two datasets are used as target domain. In addition, we also present the results on the test data of
source domain dataset to serve as baseline performance. The three cross-domain scenarios are illustrated in Figure
4. In this experiment, we focus on models that obtain very good performance in Table 2 as less effective models in
non-cross-domain settings are expected to perform poorly in cross-domain settings.

10



A PREPRINT - FEBRUARY 22, 2022

Table 3: Datasets for Cross-domain Experiments
Dataset Details

Davidson
Hate- 1430 (34.05 %)
Neither - 4163 (65.95%)
Total ∼ 5.5k

Founta
None- 52885 (62.3 %)
Hate (Combination- Hate- 4965 & Abusive - 27150 - (37.7 %) )
Total ∼ 85k

TSA
Neither (Not Racist/Sexist) - 29720 (92.99%)
Hate (Racist/Sexist) – 2242 (7.01%)
Total ∼ 32k

Results in Scenario 1. The experiment scenario 1 is to train models on Davidson and test models on the other two
datasets. The results are presented in Table 4. Compared to the results on the test data of the source domain dataset
Davidson, the cross-domain performance drops significantly on both Founta and TSA, especially on Founta where
all Glove and transformers models obtain F1 score at around 0.5 to 0.6 in both macro F1 and weighted average F1

scores. The performance on TSA gets better for most of the models, particularly on the weighted average results.
This indicates the the non-hatred tweets in TSA share some common features with that in Davidson, resulting in good
performance on the nen-hatred tweet classification and thus good weighted average F1 performance.

In the case when the testing is performed on the Davidson dataset, Electra-based CNN models outperform the other
models and obtain the best accuracy of 0.94, followed by that of other transformer embeddings. Glove models are also
good at the accuracy but not as accurate compared to transformers embeddings. In terms of weighted average score,
the best obtained is for Electra with CNN, achieving an F1 score of 0.95, followed by other transformed embeddings.
Glove-based CNN models provide the score notably equal to Small BERT-based models. Note that the results here are
different from that in Table 2, as the datasets are reduced and typically become simpler datasets.

Table 4: Scenario 1: Cross-domain experimental results with the Davidson dataset as the source domain dataset.

Embedding Model
Macro Weighted Avg.

P R F1 P R F1

Testing - Davidson

Glove
Glove + CNN 0.90 0.90 0.90 0.92 0.92 0.92
Glove + MLP 0.84 0.84 0.84 0.88 0.88 0.88

Transformers

Small BERT + CNN 0.89 0.90 0.90 0.92 0.92 0.92
Small BERT + MLP 0.90 0.90 0.90 0.92 0.92 0.92
ELECTRA + CNN 0.93 0.93 0.93 0.94 0.94 0.94
ELECTRA + MLP 0.95 0.93 0.94 0.96 0.96 0.95

Testing - Founta

Glove
Glove + CNN 0.55 0.54 0.54 0.57 0.59 0.57
Glove + MLP 0.50 0.50 0.49 0.53 0.57 0.54

Transformers

Small BERT + CNN 0.51 0.51 0.50 0.54 0.55 0.54
Small BERT + MLP 0.51 0.51 0.50 0.54 0.55 0.54
ELECTRA + CNN 0.49 0.49 0.49 0.52 0.55 0.53
ELECTRA + MLP 0.49 0.49 0.49 0.52 0.55 0.53

Testing - TSA

Glove
Glove + CNN 0.49 0.46 0.46 0.87 0.73 0.79
Glove + MLP 0.50 0.49 0.46 0.87 0.70 0.77

Transformers

Small BERT + CNN 0.55 0.60 0.56 0.89 0.83 0.85
Small BERT + MLP 0.55 0.59 0.56 0.89 0.85 0.87
ELECTRA + CNN 0.61 0.56 0.58 0.89 0.91 0.90
ELECTRA + MLP 0.63 0.56 0.58 0.89 0.92 0.90

Results in Scenario 2. The experiment scenario 2 trains models on the Founta dataset and evaluates them on the other
two datasets, with the results on the Founta test set as baseline. The results are presented in Table 5. The models
generalize poorly from Founta to Davidson, which is similar to the results of generalizing from Davidson to Founta.
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Figure 4: Three scenarios of cross-domain experiments

However, it is interesting that on testing our models on Davidson dataset, transformer embeddings enable really good
results, with macro average F1 leading to 0.81 and weighted average F1 leading to 0.85, when they are used with
MLP-based models.

On the Founta Dataset, we achieve excellent performance for all models since there is no domain shift in this case.
Here the transformer embeddings provide better results than Glove models with accuracy reaching to 0.93 in macro
average and 0.93-0.94 in weighted average for Electra and Small Bert. Glove models also achieve good accuracy with
0.90-0.91.

On the experiments on the TSA dataset, transformer embeddings obtain an accuracy reaching to 0.49-0.50 for Small
Bert and Electra for macro average. For weighted average, the accuracy is noted by 0.86 for Electra, Outperforming
Glove models with 0.68 and 0.75.
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Table 5: Scenario 2: Cross-domain experimental results with the Founta dataset as the source domain.

Embedding Model
Macro Weighted Avg.

P R F1 P R F1

Testing - Davidson

Glove
Glove + CNN 0.55 0.56 0.55 0.66 0.60 0.62
Glove + MLP 0.49 0.49 0.48 0.6 0.58 0.59

Transformers

Small BERT + CNN 0.76 0.80 0.77 0.83 0.81 0.82
Small BERT + MLP 0.79 0.83 0.81 0.86 0.84 0.85
ELECTRA + CNN 0.80 0.83 0.80 0.86 0.85 0.85
ELECTRA + MLP 0.80 0.85 0.81 0.87 0.84 0.85

Testing - Founta

Glove
Glove + CNN 0.91 0.91 0.91 0.92 0.92 0.92
Glove + MLP 0.90 0.90 0.90 0.91 0.91 0.91

Transformers

Small BERT + CNN 0.93 0.93 0.93 0.93 0.93 0.93
Small BERT + MLP 0.93 0.93 0.93 0.93 0.93 0.93
ELECTRA + CNN 0.94 0.93 0.93 0.94 0.94 0.94
ELECTRA + MLP 0.93 0.93 0.93 0.94 0.94 0.94

Testing - TSA

Glove
Glove + CNN 0.50 0.50 0.42 0.88 0.57 0.68
Glove + MLP 0.49 0.48 0.45 0.87 0.67 0.75

Transformers

Small BERT + CNN 0.51 0.51 0.49 0.87 0.78 0.82
Small BERT + MLP 0.50 0.51 0.49 0.87 0.76 0.81
ELECTRA + CNN 0.50 0.50 0.50 0.87 0.85 0.86
ELECTRA + MLP 0.50 0.50 0.50 0.87 0.86 0.86

Results in Scenario 3. Here the models are trained on the TSA dataset and evaluated on the other two datasets. The
results are shown in Table 6.

When the testing is performed on the Davidson dataset, transformer embeddings are quite better than Glove models.
Small Bert with CNN can obtain macro F1 score of 0.61, followed by its combination with MLP at 0.60. Glove
models obtain the least accuracy at 0.45/0.43. In terms of weighted average score, Small BERT with CNN is still the
best performer, achieving an F1 score of 0.73, followed by Small BERT with MLP that obtains a score of 0.72. Electra
is the second best with accuracy ranging in 0.70 and 0.71. Glove lags behind with accuracy at 0.61/0.62.

In case of the Founta data, the pattern in accuracy is similar to that in Scenario 1. The best performance here is only
0.47 in macro F1 score and 0.54 in weighted average F1 score, both of which are achieved by Small BERT-based MLP
models. Glove-based models obtain quite comparative performance to the transformers-based models in this case.

When the testing is performed on TSA dataset, the results get much better across the models, as they are trained on
the TSA training data. For the macro average measure, the highest accuracy is shared between Small Bert and Electra
with accuracy ranging between 0.86 t0 0.88. Glove provides the best accuracy of 0.75 in combination with MLP. For
the weighted average measure, the highest accuracy is also achieved by transformer embeddings-based models, with
the performance between 0.96-0.97. Glove models come next with the accuracy of 0.90 and 0.94 with CNN and MLP,
respectively.

Overall Observations. The transformers-based methods generally perform better than the Glove-based methods. The
transformers enable the downstream detectors to obtain not only good performance in detecting non-hatred tweets
across all three settings (as indicated by the performance in weighted average F1 score) but also impressive perfor-
mance on detecting hatred tweets in some of the scenarios, such as Scenario 2 where Founta is the source domain
while the Davidson data is the target domain in Table 5. It is interesting that the cross-domain performance is not
reversible in our results. For example, transformers-based methods work well when transferring knowledge from the
Founta data to the Davidson data in Table 5, but they work poorly in the reverse case in Table 4. This may be because
that the Founta data is much larger than the Davidson data, containing knowledge of a broader hate speech scope (i.e.,
hate and abusive tweets) than Davidson (i.e., hate class only). As a result, the Founta data may contain hate speech
knowledge relevant to that of Davidson, but the hatred tweets in the Davidson data may be not generalizable to that in
Founta. This explains the different result patterns on Davidson and Founta in Tables 4 and 5.
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Table 6: Scenario 3: Cross-domain experimental results with the TSA dataset as the source domain.

Embedding Model
Macro Weighted Avg.

P R F1 P R F1

Testing - Davidson

Glove
Glove + CNN 0.45 0.48 0.45 0.58 0.67 0.61
Glove + MLP 0.45 0.49 0.43 0.58 0.71 0.62

Transformers

Small BERT + CNN 0.70 0.6 0.61 0.74 0.77 0.73
Small BERT + MLP 0.67 0.59 0.60 0.72 0.76 0.72
ELECTRA + CNN 0.67 0.57 0.57 0.72 0.76 0.71
ELECTRA + MLP 0.75 0.56 0.55 0.76 0.77 0.70

Testing - Founta

Glove
Glove + CNN 0.48 0.49 0.47 0.51 0.55 0.52
Glove + MLP 0.52 0.50 0.43 0.55 0.61 0.51

Transformers

Small BERT + CNN 0.53 0.51 0.45 0.55 0.61 0.53
Small BERT + MLP 0.53 0.51 0.47 0.55 0.51 0.54
ELECTRA + CNN 0.50 0.50 0.43 0.53 0.61 0.51
ELECTRA + MLP 0.51 0.50 0.42 0.54 0.62 0.50

Testing - TSA

Glove
Glove + CNN 0.66 0.84 0.71 0.94 0.88 0.90
Glove + MLP 0.73 0.78 0.75 0.94 0.93 0.94

Transformers

Small BERT + CNN 0.85 0.86 0.86 0.96 0.96 0.96
Small BERT + MLP 0.86 0.88 0.87 0.97 0.96 0.96
ELECTRA + CNN 0.88 0.87 0.88 0.97 0.97 0.97
ELECTRA + MLP 0.91 0.85 0.88 0.97 0.97 0.97

TSA explicitly focuses on racist and sexism tweets, which is different from the other two datasets. As a result, it is
difficult to adapt relevant knowledge from the other two datasets to the hate speech detection on TSA, as shown in
Tables 4 and 5. Further, the models, including the transformers-based methods, also fail to adapt relevant knowledge
from TSA to Davidson and Founta, indicating nearly no shared knowledge of hatred tweets between TSA and the
other two datasets.

5 Conclusions and Discussions

This paper presents a large-scale empirical evaluation of 14 shallow and deep models for hate speech detection on
three commonly-used benchmarks of different data characteristics. This is to provide important insights into their
detection accuracy, computational efficiency, capability in using pre-trained models, and domain generalizability for
their deployment in real-world applications. Our conclusions based on the empirical results above are as follows.

• Detection accuracy. As shown in Table 2, the combination of BERT, ELECTRA and Al-BERT and neural
network-based classifiers perform consistently better than the other methods on the three benchmarks, espe-
cially in macro F1 score. It is interesting that TF-IDF-enabled shallow classifiers (e.g., TF-IDF + XGB) can
outperform Glove-enabled deep classifiers on most datasets.

• Computational efficiency. In terms of computational cost, transformers-enabled classifiers are a lot more
costly than the other models, as illustrated in Figure 3. AI-BERT is the most time consuming model among
the transformers, followed by the BERT model. Small BERT is the most efficient transformer model in our
task. Deep classifiers like Bi-LSTM is also computationally costly. When considering both accuracy and
efficiency, Electra-based MLP models seem to be the most practical method, which achieves among the best
classification accuracy while being sufficiently computationally efficient.

• Capability in using pre-trained models. As transformers are pre-trained on significantly larger corpora than
Glove, they learn embedding space with richer semantics, empowering significantly better detection perfor-
mance. This can be observed by the performance difference of having the same MLP-based classifier trained
upon respective TF-IDF, Glove, and transformers-based representations, as shown in Table 2. However, it
does not mean that the larger the pre-trained models are, the better performance we would obtain. For ex-
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ample, the ELECTRA transformer can normally perform better than, or on par with, the larger transformer
BERT on a number of cases in Table 1.

• Domain generalizability. Benefiting from the large-scale pre-training, 5 and 6, both Glove and transformers
learn generalizable pre-trained embeddings, as shown in Tables 4. Again, due to the larger corpora used and
the greater model capacity, the transformers-enabled classifiers gain more stronger cross-domain generaliza-
tion ability than the same Glove-based classifiers. It is interesting that the cross-domain performance may be
not reversible due to the difference in the data size and the types of hatred classes covered in the source and
target domains.

Although the transformers-based hate speech detectors show promising performance, they are still weak in terms of
macro F1 performance (e.g., the best performer gains a macro F1 of 0.68 on the Founta dataset and 0.90 on the TSA
dataset), indicating the great difficulty in achieving high precision and recall rates of identifying the minority hatred
tweets from the massive tweets. Another major challenge lies at domain generalization ability. It is difficult to collect
a dataset that well covers all possible properties of hate speech in social media, which may lead to a domain difference
between the source data that the detectors are trained on and the target data that the detectors are applied to. Thus,
it is important for the detectors to have good domain generalization ability in practice. However, as shown in our
results, there is still a large gap between the same-domain performance and the cross-domain performance. These two
challenges present some important opportunities to further promote the development and deployment of hate speech
detection techniques.
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