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ABSTRACT
We design a system, SolarGest, which can recognize hand
gestures near a solar-powered device by analyzing the pat-
terns of the photocurrent. SolarGest is based on the obser-
vation that each gesture interferes with incident light rays
on the solar panel in a unique way, leaving its distinguish-
able signature in harvested photocurrent. Using solar energy
harvesting laws, we develop a model to optimize design and
usage of SolarGest. To further improve the robustness of
SolarGest under non-deterministic operating conditions, we
combine dynamic time warping with Z-score transformation
in a signal processing pipeline to pre-process each gesture
waveform before it is analyzed for classification. We evaluate
SolarGest with both conventional opaque solar cells as well
as emerging see-through transparent cells. Our experiments
with 6,960 gesture samples for 6 different gestures reveal
that even with transparent cells, SolarGest can detect 96% of
the gestures while consuming 44% less power compared to
light sensor based systems.
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Figure 1: Illustration of a transparent solar powered
smartwatch with solar-based gesture recognition.

1 INTRODUCTION
1.1 Motivation
As all types of devices around us become smart and capable
of taking input from us, we need to explore more natural
ways to interact with them. There is a growing trend to in-
tegrate gesture recognition to consumer electronics [1, 2],
because it is one of the most natural ways for human to
communicate with anyone or anything. Given the diversity
of devices, many of which would be powered by small bat-
teries, we need gesture systems that work with any device
and consume zero energy in addition to the normal device
operation. By using solar panels, we can achieve these two
goals simultaneously, i.e., any device fitted with solar pan-
els for energy harvesting can also recognize gestures. Since
solar energy harvesting responds to any form of light, So-
larGest can find applications both indoor and outdoor. For
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example, users can purchase from solar-powered vending
machines, configure solar-powered garden lights, or operate
solar-powered calculators by simply using gestures.

There is a new development in solar technology, transpar-
ent solar cells [3, 4], whichmakes solar panelsmore attractive
for mobile devices. Made from novel organic materials, trans-
parent cells absorb and harvest energy from infrared and
ultraviolet lights, but let the visible lights pass through so we
can see through the solar panel like a clear glass. With the
discovery of transparent cells, solar panels now can be fitted
to the entire device body, including on top of the screen,
to harvest more energy. Figure 1 illustrates how a transpar-
ent solar cell fitted on the screen of a smart watch can be
used for the dual purpose of energy harvesting and gesture
recognition.

1.2 Limitations of Existing Work
There is a growing trend in exploring gesture systems for con-
sumer devices using a variety of sensors and modalities, such
as WiFi (electromagnetic) [5–7], camera (image) [8, 9], mi-
crophone (acoustic) [10, 11], accelerometer (motion) [12, 13],
and light sensor (ambient light) [14–18]. Some of them, such
as WiFi and accelerometer, are more ubiquitous than others
and most of them can achieve high gesture accuracies up to
98%. However, none of them harvest, but consume energy.
Work on solar-based gesture is rare with the exception of a
recent work by Varshney et al. [19] that has experimentally
demonstrated the feasibility of gesture recognition with a
specific silicon-based opaque solar cell. The findings from
the preliminary work in [19] open the door for ubiquitous
solar-based gesture recognition for future Internet of Things
(IoT), but it is limited in following ways.

First, [19] differentiates only three gestures based on the
number of times the user repeats a basic hand movement,
which is basically recognition of one gesture but with differ-
ent counts. Although this method can be easily implemented
using a simple threshold-based algorithm with a counter, it
requires the user to remember the hand movement counts
to ensure correct gesture is communicated.

The second limitation is lack of a theoretical model to sim-
ulate solar gesture recognition under different parameters.
For example, we do not know how to analyze gesture recog-
nition performance of solar cells as a function of lighting
condition, efficiency and form factor of the solar cell, user
hand size, and proximity of hand to the solar panel. With-
out a simulation model, design optimization of user-friendly
solar gesture systems can be exhausting as one has to ex-
perimentally estimate the performance of the system for a
large combination of parameter values. For example, how
transparency of a solar cell may affect gesture recognition
performance cannot be studied without first acquiring a se-
ries of transparent solar cells of specific properties, which can

be very expensive, limiting the possibility of future research
in the area to explore new algorithms.

1.3 Proposed Methodology
We propose SolarGest, which detects user-friendly gestures
of arbitrary design. It is based on the observation that any
hand gesture interferes with incident light rays on the solar
panel in a uniqueway, leaving its distinguishable signature in
harvested photocurrent’s time series data. By delegating the
learning and detection responsibilities to machine learning,
we can focus on designing user-friendly gestures beyond the
simple counting-based gestures.
We observe that any influence from hand gesture on the

photocurrent is governed by solar energy harvesting laws,
which can provide a quantitative estimation of the generated
photocurrent given the intensities and incident angles of
ambient lights, and the form factor as well as the energy
harvesting density of the solar panel. Hand gestures change
the volumes and angles of incident lights in a specific pattern,
which can be explained using basic geometry. Combining
solar energy harvesting law with geometry, we propose a
model to simulate photocurrent waveforms produced by ar-
bitrary hand gestures. A key utility of the model is that the
future designers of SolarGest system can estimate gesture
recognition performance of different types of solar cells for
arbitrary gestures under different lighting environments be-
fore committing to costly experiments. Actual experiments
can be done sparingly only for fine tuning the system.

1.4 Contributions
In realizing SolarGest, we faced several challenges. Ourmodel
revealed that both duration and amplitude of the waveform
can vary significantly from sample to sample for the same
gesture due to variations in a number of hardware, environ-
mental and user parameters such as solar cell form factor,
intensity of ambient light, hand size, hand angle, speed of
hand motion, and proximity of hand to the solar panel. These
variations make it challenging to train classifiers for accurate
detection of specific gestures. We designed a combination of
dynamic time warping (DTW) and Z-score transformation
to pre-process all gesture waveforms to reduce these varia-
tions before they are used by the classifier. As a result of this,
we were able to achieve high gesture recognition accuracy
even with basic machine learning. Validating the model was
another challenge, especially for the emerging transparent
solar cells, which are currently not available off-the-shelf.
Key contributions of this paper can be summarized as

follows:
• Using solar energy harvesting laws, we develop a model
to simulate photocurrent waveforms produced by arbi-
trary hand gestures in both vertical and horizontal planes
relative to the solar panel. The model allows us to analyze
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Figure 2: (a) Illustration of incident angle. (b) 3D geometricmodel of SolarGest. (c) 2D geometric analysis of vertical
movement. (d) 2D geometric analysis of horizontal movement.

gesture recognition performance of solar cells as a func-
tion of important parameters such as lighting condition,
efficiency and form factor of the solar cell, user hand size,
and proximity of hand to the solar panel. Using practical
examples, we illustrate how the model can be used to
optimize design and usage of SolarGest (Section 2).

• We propose a general machine learning framework to de-
tect any type of gestures. By combining discrete wavelet
transform (DWT), dynamic time warping (DTW), and Z-
score transformation, we design an end-to-end signal pro-
cessing pipeline to protect SolarGest performance against
variations in operating conditions (Section 3).

• Using organic material, we developed two transparent
solar cells of different levels of transparency and energy
harvesting density in our photovoltaic lab. We conduct
real experiments with both silicon-based opaque solar
panels as well as see-through organic solar cells. With
6,960 gesture samples collected for six user-friendly ges-
tures under different light conditions, we validate our
model and demonstrate that even for transparent cells,
SolarGest can detect gestures with an accuracy of 96%,
which is comparable to that achieved with light sensors
(Section 4).

• Finally, we experimentally demonstrate that SolarGest
consumes 44% less power compared to systems that detect
gestures using light sensors (Section 5).

2 SOLAR GESTURE SIMULATOR
Using fundamentals of solar energy harvesting and simple
geometrical arguments, we derive a model to simulate pho-
tocurrent waveforms produced by hand gestures containing
arbitrary hand movements in both vertical and horizontal

planes relative to the solar panel. The model allows us to
study the impact of different system parameters such as
lighting condition, efficiency and form factor of the solar
cell, etc., on the photocurrent waveform. Using numerical
experiments, we illustrate the utility of the model in terms of
predicting gesture recognition accuracy and optimizing the
design and usage of solar-based gesture recognition systems.

2.1 Modeling Solar Gestures
Due to photovoltaic effect [20], solar cells convert incident
light energy into electrical current (photocurrent). The amount
of photocurrent generated is a function of the form factor of
the solar cell and its current density, i.e., the amount of pho-
tocurrent generated per unit area (e.g.,mA/cm2), which is a
measure of solar energy harvesting efficiency and depends
on the light intensity of the operating environment. To fairly
compare the efficiency of different solar cells, current den-
sity is typically reported under a standard lighting condition,
named Global Standard Spectrum (AM1.5g) [21, 22]. Then,
the standard current density J ∗SC is obtained as [23]:

J ∗SC =
q

hc0

∫ ∞

0
a(λ)I (λ)λdλ (1)

where q is the elementary charge, c0 is the speed of light in
free space, and h is the Planck’s constant. Symbol λ refers
to the wavelength of incident light. a(λ) and I (λ) represent
the solar cell absorption efficiency and light intensity at
wavelength λ, respectively. Due to the linear relationship
between current density and light intensity [24], one can
calculate current density JSC (mA/cm2) at any light intensity
I by,

JSC =
I

I ∗
J ∗SC (2)
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Figure 3: (a) Simulated recognition accuracy versus
light intensity for different energy harvesting ef-
ficiency. (b) Simulated recognition accuracy versus
proximity for different hand size.

where I ∗(= 100mW /cm2) is the light radiance power under
Global Standard Spectrum (AM1.5g). Then, using Lambert’s
cos(θ )-law [25], generated photocurrent J , is obtained as

J =

∫ π /2

0
S · JSC · cos(θ )dθ (3)

where S is the form factor of the solar cell and θ is the in-
cident angle, i.e., the angle between light beam and surface
normal (see Figure 2(a)). Light from different sources, like
sun, fluorescent lamp and LED, can have a different spectral
irradiance profile, resulting in different amount of photocur-
rent even under the same light intensity. Although we derive
themodel based on AM1.5g, which is specifically for sunlight,
it is applicable to other irradiance spectrum as gestures are
differentiated due to their unique patterns, rather than the
absolute values. This will be further validated in Figure 13,
which confirms that gesture patterns collected under fluo-
rescent light are consistent with the modeled counterparts.
To model solar photocurrent under hand gestures, we

present a 3D geometric model, as shown in Figure 2(b), in
which human hand and solar cell are modeled as round sur-
faces with radius RH and RS , respectively. As many IoT de-
vices have small form factors [26], in this paper, we consider
the case where solar cell is smaller than hand size (e.g., Lunar
Watch [27]), i.e., RS < RH (note that the model can be easily
extended RS > RH

1). The solar cell is assumed to be placed
on a horizontal surface and a hand performs different ges-
tures in a parallel plane above it. During a gesture, we define
the minimum distance between the solar cell and hand as
proximity, denoted by P , and define the vertical movement
space as displacement, denoted byD. Since RS < RH , only the
light rays with incident angles larger than a certain threshold
(θth) can hit the solar cell.

1In this case, the inner part of the solar cell, a circle with radius RH , will
be affected by hand movement, but the residual area will generate steady
photocurrent during a gesture. Thus, total photocurrent would be obtained
as the sum of current from the two parts.

Figure 2(c) and (d) show the longitudinal section of the
3D model, in which solar cell and hand are represented by
two line segments with lengths 2RS and 2RH , respectively.
The green area indicates the angular space in which light
can be absorbed by the solar cell, while the light in gray
area is blocked. In fact, a gesture is comprised of a time
series of hand positions. Given the initial hand position,
moving direction and speed of hand movement, one can
calculate hand positions at any successive points in time.
Taking Up gesture as an example, if the initial distance (at
time zero) between hand and solar cell is d and the hand
moves in a constant speed v , at time t , the distance between
hand and solar cell becomes d +vt . Thus, the corresponding
threshold angles θth1(t) and θth2(t) for the two absorption
angular spaces are

θth1(t) = θth2(t) = arctan(
RH − RS
d +vt

) (4)

Since only light beams from the two green areas can be
absorbed, the photocurrent J (t) can be calculated as

J (t) =

∫ π /2

θth1(t )
S · JSC · cos(θ )dθ +

∫ π /2

θth2(t )
S · JSC · cos(θ )dθ

(5)
From Eq.5, the complete gesture waveform can be obtained
by generating photocurrent values at successive points in
time, i.e., (J (t1), J (t2), ..., J (tn)), where J (t1) and J (tn) repre-
sent the start and end of the gesture, respectively. Finally,
presence of noise can be easily modeled by adding a noise
term to each sample as (J (t1) + ϵ, J (t2) + ϵ, ..., J (tn) + ϵ).

2.2 Estimating Recognition Performance
Using the equations derived in Section 2.1, our model is able
to simulate gestures under various conditions, such as vary-
ing light intensity, proximity, as well as energy harvesting
efficiency (J ∗SC ). For the same gesture, we can also generate
many synthetic samples by simulating human imperfection,
such slight variations in speed, proximity, displacement, etc.,
or hand size variations of a family of users. These simulated
gesture samples, on the one hand, can be used by future
researchers to explore and compare different gesture recog-
nition algorithms. On the other hand, solar-powered IoT
designers can use these synthetic gesture samples to analyze
and optimize various design tradeoffs. Next, we simulate 5
different gestures: Up, Down, UpDown, DownUp, LeftRight
(see Figure 13), and utilize the gesture recognition framework
proposed in Section 3 to illustrate such trade-off analysis us-
ing numerical experiments.

For all numerical experiments, we set the following default
parameter values: RH = 6cm, RS = 2cm, D = 12cm and P =
3cm. Solar cell current density J ∗SC under the Global Standard
Spectrum (AM1.5g) is set to 7mA/cm2 and the average speed
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of a gesture is set to 20cm/s . The light intensity is set to
5000 lux. By randomly varying the speed of hand motion
and proximity, we generate 100 random samples for each of
the five gestures.

Figure 3(a) plots simulated recognition accuracy as a func-
tion of light intensity, for three different solar energy har-
vesting efficiencies or different transparency levels. Here T1
and T2 denote transparent solar cells and S1 denotes opaque
cell (see details of our solar cell prototyping in Section 4.1).
We can observe that, solar cells with different transparency
levels require different lighting conditions to achieve a target
gesture recognition accuracy. For example, to achieve 90%
accuracy in relatively dim lighting environment (50 lux), we
must use a less transparent cell (27mA/cm2), but a highly
transparent cell (7mA/cm2) can be used for improved visi-
bility if the typical operating environment is well lit (200
lux).
Another interesting observation from Figure 3(a) is that,

according to our model, transparent solar cells (both T1 and
T2) are predicted to recognize hand gestures with very high
accuracy (close to 100%) just like the opaque cells (S1) as long
as the light intensity is higher than 400 lux. Given that many
indoor and even very cloudy outdoor environments enjoy
light intensities above 400 lux, this numerical experiment
suggests that use of transparent solar cells will not have
any negative effect on gesture recognition for typical use
scenarios of future transparent solar-powered IoTs. Indeed,
our practical experiments in Section 4 with both opaque and
transparent solar cells will validate this finding.

For different hand sizes, Figure 3(b) plots simulated recog-
nition accuracy as a function of gesture proximity. The re-
sults indicate that, to achieve a certain recognition accuracy,
users with smaller hand size should perform gestures closer
to the solar panel, compared to those with larger hand size.
Such numerical experiments can be used by solar-powered
IoT manufacturers to release gesture guidelines for different
hand sizes, which would help all users of the product to enjoy
high gesture recognition accuracies.

3 RECOGNITION FRAMEWORK
Figure 4 illustrates the system architecture and workflow of
SolarGest. During a hand gesture near it, a solar-powered
device captures time-series of photocurrent and delivers the
data to a gesture recognition system, which could be located
on an edge device, such as smartphone, laptop, or home hub
(note that such edge-based processing will ensure that la-
tency is minimal), using low-power communications like
backscatter or BLE. The gesture recognition system detects
the gesture and either sends that information back to the
originating device if local control in the device is involved, or
communicates with other IoT devices based on the desired
action from the gesture. Recognition accuracy is the key per-
formance measure for the gesture recognition system. We
propose a machine learning based gesture recognition frame-
work that trains a classifier with specific features extracted
from the photocurrent time series of the gesture. Before ex-
tracting features, we pass the signal through a processing
pipeline to deal with a number of issues that may cause
high classification errors. Signal processing and classifica-
tion details of our proposed gesture recognition framework
are presented next.

3.1 Signal Processing
The signal processing pipeline deals with three specific issues.
First, it removes noise contained in photocurrent signal using
discrete wavelet transform (DWT). Then, the boundaries of
the gesture are detected using a segmentation algorithm.
Finally, a signal alignment module applies a combination of
dynamic time warping (DTW) and Z-score transformation
on the segmented signal to address specific alignment issues
that are caused by variations in operating conditions, such
as hand motion speed, lighting conditions etc.

3.1.1 Denoising. Rawphotocurrent signals are noisy as shown
in the bottom row of Figure 13. The fast Fourier transform
(FFT) graphs in Figure 5(a) reveal that there is a 50Hz noise
when the signal is collected indoor under a ceiling light pow-
ered by 50Hz AC current, but such noise is absent when
measured outdoor under the sun. In addition, due to the mi-
nor imperfections in micro-controller of Arduino, Gaussian
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Figure 5: (a) FFT analysis of photocurrent signals col-
lected under indoor fluorescent light (up) and outdoor
natural light (bottom), (b) CDFs of gesture duration.

noise also exists in the photocurrent signal. Earlier works
[14] have found that discrete wavelet transform (DWT) can
effectively capture both temporal and frequency informa-
tion, thereby filtering noise from both time and frequency
domain [28]. Unlike FFT that decomposes a signal in equal
resolution over the whole frequency span, DWT is able to
resolve a signal in various resolutions at different frequency
range. More specifically, DWT hierarchically decomposes
a signal and provides detail coefficients and approximation
coefficients at each level. The key insight to denoise signal
using DWT is to modify the detail coefficients based on
thresholding strategies. Specifically, we divide the denoising
procedure into three steps.
First, SolarGest decomposes the photocurrent signal to

level 5. The intuition to choose level 5 is based on the sam-
pling rate. Since we sample data in 500Hz, the highest fre-
quency contained in the signal is 250 Hz due to the Nyquist
Theorem. As observed from Figure 5(a), the gesture fre-
quency is actually less than around 5Hz. During DWT de-
composition, the frequency span at each level is half of the
level before it. Thus, at level 5, the frequency range is [0,
250/25]Hz, i.e., [0, 7.8] Hz, which covers the gesture fre-
quency. Second, a soft thresholding scheme is applied to the
detail coefficients at level 5, which shrinks both positive and
negative coefficients towards zero. The threshold is adap-
tively computed using the principle of Stein’s Unbiased Risk
Estimate (SURE) [29]. Finally, inverse DWT is applied to
the altered detail coefficients and unmodified approximation
coefficients to reconstruct the denoised signal. Due to space
limitation, theory of DWT is not provided and readers can
refer to [28, 30] for more details.

3.1.2 Gesture Segmentation. After denoising, the next step
is to segment exact gestures from the time-series of signal.
To help detect the start and stop of a gesture, like many
other gestures recognition systems [5, 14, 15, 31], SolarGest
requires users to take a short pause before and after a gesture.
To detect the start and end of a gesture, previous works either
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Figure 6: Segmentation performance. The green dots
represent the detected start points and the red squares
represent the detected end points.
use a preamble scheme [5] or a threshold-based method (i.e.,
a start is detected once the value is higher than a predefined
threshold and an end is detected when the values fall below
the threshold) [14, 15]. However, the former requires users
to perform an additional gesture every time, which is not
user-friendly. The threshold-based method does not work
if the amplitude before and after a gesture is different (e.g.,
Up and Down shown in Figure 11). Thus, we proposed a new
segmentation algorithm, which can accurately detect the
plateau periods (i.e., pauses) before and after a gesture.
Specifically, we apply a sliding temporal window on the

denoised signal. A gesture start is detected if the following
two conditions hold: (1) the standard deviation of the samples
in current window is lower than a pre-defined threshold
stdThr ; (2) the difference between the last sample in current
window and the mean of all the samples in the window is
higher than a thresholdmeanThr. The first condition ensures
that the current window is in a plateau, while the second
condition determines that a gesture starts right after a pause.
Thus, the last sample in current window is regarded as a
gesture start. The same principle is utilized to detect the end
of a gesture and consecutive samples between start and end
are extracted as a gesture.
To minimize the probability of falsely extracting an un-

occurred gesture, we further apply a gesture length con-
straint based on our experimental data. Figure 5(b) presents
the CDFs of gesture durations when three subjects perform
6 different gestures. We can observe that around 90% ges-
tures are completed within 1s. Therefore, we apply a length
constraint which ensures gestures less than 0.2s or greater
than 1.4s are discarded. meanThr and stdThr are optimized
through trial-and-error procedure and the values used in our
work is 0.5 and 0.25 respectively.

Figure 6 illustrates the gesture segmentation result, where
the green dots represent the start points and red squares
represent the end points. Note that during a data collection
session, the user always keeps his/her hand within the oper-
ating region thus avoiding any transition effects, i.e., a slightly
descending/ascending signal caused by entering/leaving the
operating region. With the proposed segmentation algo-
rithm, SolarGest successfully identifies 96% of gestures in
our dataset while incurring no false positives.
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Figure 7: The impact of different parameters on gesture profile. In each graph, only a specific parameter varies
and the rest are in default value.

0.2 0.4 0.6 0.8 10

146

148

150

152

154

Ar
du

in
o 

R
ea

di
ng

0.2 0.4 0.6 0.8 10
‐2

‐1

0

1

2

N
or

m
al

iz
ed

 A
m

pl
itu

de

0.2 0.4 0.6 0.8 10
‐2

‐1

0

1

2

N
or

m
al

iz
ed

 A
m

pl
itu

de

Time (s)
(c) After Z-score
and DTW

Time (s) Time (s)
(b) After Z-score
transformation

(a) Two detected
LeftRight gestures
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3.1.3 Signal Alignment. Using our simulator presented in
Section 2, we have identified specific alignment issues for
gesture waveforms. We first explain these issues, followed
by the techniques we have used to address them.
Figure 7 studies the impact of 8 practical parameters, i.e.,

device parameters such as solar cell form factor and effi-
ciency, environment parameters such as light intensity and
size, as well as gesture parameters such as speed, hand an-
gle, proximity, and displacement, on the gesture profiles. In
each graph, only a specific parameter varies and the rest
are set to default values as presented in Section 2.2. It can
be observed that each parameter indeed affects the gesture
waveform and the impact can be categorized into temporal
variation (variation in waveform duration) and amplitude
variation. Specifically, different gesture speeds and displace-
ments lead to varying gesture durations, making the same
gestures mismatched in time dimension. Other parameters,
such as light intensity and hand angle (refers to the angle
between hand and horizontal plane, as shown in Figure 2(c)),
result in amplitude shifts.
We apply Z-score transformation to align gesture ampli-

tudes and dynamic time warping (DTW) to align gestures in
time dimension. We illustrate the alignment process in Fig-
ure 8, which plots two detected signals of LeftRight gesture.
We can see that there is an amplitude shift between the two
signals as well as a mismatch between the peak-to-peak time
difference. These mismatch effects may stem from variations
in gesture proximity, light intensity, speed of hand motion,
and so on.
We first apply Z-score transformation, which is known

to be an effective function to make multiple signal with dif-
ferent amplitudes comparable [32]. After transformation,

distribution of the signal follows the normal distribution (i.e.,
mean 0 and standard deviation 1). Figure 8(b) illustrates the
waveforms after Z-score, in which we can see their ampli-
tudes are converted to the same scale between [-2,2] and
look very similar. After Z-score transformation, we can still
observe the temporal misalignment issue. DTW has been
successfully applied to various applications such as speech
recognition [33] and activity recognition [34] to cope with
such temporal mismatch. Thus, we apply DTW to gesture
signals after Z-score transformation. The performance is
shown in Figure 8(c), from which we can see that the two
signals almost overlap. With signal alignment, SolarGest is
able to minimize the impact of parameters that cannot be
avoided in practical use due to human imperfection.

3.2 Feature Selection and Classification
After signal processing, SolarGest extracts features from
each detected gesture window and use them as the input for
classification. In our system, two feature sets are considered
and compared:

• Statistical features: include 22 typical time and frequency
domain features, such as MEAN, STD, IQR, SKEW, KURT,
Q2, DominantFrequency, that have been widely used in
human-related sensing [35].

• DWT coefficients: As mentioned before, DWT decom-
poses a signal and provides detail coefficients at multiple
levels. Using these coefficients, DWT can perfectly recon-
struct the original signal. Employing such DWT detail co-
efficients as features in classification has been extensively
demonstrated in a wide range of human sensing applica-
tions [5, 31, 36, 37]. Motivated by these applications, we
extract DWT detail coefficients as another feature set.

Before applying DWT for feature extraction, we utilize
spline interpolation to ensure that each detected gesture
window has the same length of 512. The reasons for harmo-
nizing the window lengths are three folds. First, classifiers
require the same number of features for each gesture during
training and classification. To obtain the same number of
detail coefficients for each gesture, DWT requires detected
gesture windows to have the identical length. Second, as
DWT decimates the signal length by half at each level, it is
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Figure 9: (a) Effect of placing the two transparent solar
cells T1 and T2 on an iPhone 7 screen that displays the
text ‘Hello Word’. (b) The silicon based solar cell S1.

efficiently calculated when the length of each gesture signal
is a power of 2. We have measured the time duration of the
six gestures and found that 90% of them can be completed
within 1s. Due to the sampling rate of 500Hz, we therefore
interpolate each gesture to 512 samples.
Then, we perform 5 level DWT decomposition on each

gesture and extract the detail coefficients in the 5th level as
the features. The reason to choose level 5 is explained in Sec-
tion 3.1.1. Regarding the selection of wavelet, five different
wavelets are considered including: Haar(haar), Daubechies1(db1),
Daubechies2(db2), Daubechies4(db4), and Coiflet2(coif2). Al-
though Daubechies4 and Haar have shown good perfor-
mance for Wi-Fi [31] and light sensor based [14] systems, we
will investigate the effect of wavelet selection on solar-based
gesture recognition in the evaluation section.
After feature extraction, machine learning classifiers are

trained to recognize different gestures. In our system, we
implemented four typical classifiers that are widely used
for gesture recognition including: SVM, KNN, Decision Tree
(DT), and Random Forest (RF). For DT, the confidence factor
(C) and minimum number of instances (M) are set to 35% and
2, respectively. For KNN, the number of nearest neighbors is
set to 10 and the distance is weighted. For RF, the number
of iterations (I) is set to 100. For SVM, we choose the cu-
bic kernel. The performance comparison between different
classifiers will be given in the following section.

4 PERFORMANCE EVALUATION
We use real solar panels, both opaque and transparent, to
evaluate our solar-based gesture recognition framework as
well as qualitatively validate the simulation model derived
in Section 2.

4.1 Solar Cell Prototype
As shown in Figure 9, in our advanced photovoltaic labo-
ratory, we prototyped three different solar cells, a 10x5cm
silicon-based opaque solar cell (S1) and two 1x1cm transpar-
ent solar cells (referred to as T1 and T2) which were made
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Figure 10: Absorption spectra of the three solar cells
S1, T1, and T2 within visible light band.

from the same organic material (PBDB-T: ITIC) but with dif-
ferent transparencies (T1 20.2% and T2 35.3%) and thickness
(T1 143nm and T2 53nm). To demonstrate the ‘see-through’
property of the transparent solar cells, we placed them on the
screen of an iPhone7. As shown in Figure 9(a), we can clearly
see the displayed ‘Hello World’ context through both T1 and
T2, but T2 provides a better ‘see-through’ performance as
it has a higher transparency to allow more visible light to
pass through. In terms of the energy harvesting efficiency,
T1 and T2 provide current densities of 13.82mA/cm2 and
6.85mA/cm2, respectively. More details of our transparent
solar cell prototypes are available in [38].

In Figure 10, we plot the absorption efficiency of the three
solar cells in the visible light band. We can notice that the
opaque solar cell S1 achieves nearly 100% absorption effi-
ciency over the entire wavelength range, whereas, the ab-
sorption rate of T1 and T2 is only 50% and 30%, respectively,
on average. As discussed in our theoretical model in Sec-
tion 2.2 and will be verified in the following evaluation, the
energy harvesting efficiency (i.e., the transparency) will af-
fect recognition performance.

4.2 Gesture Data Collection
Using our prototype solar cells, we have collected a com-
prehensive gesture dataset for the performance evaluation
of our proposed solar gesture recognition framework.2. For
data collection, we connect the solar cells to an Arduino Uno
board as shown in Figure 12. The output of the solar cell is
sampled by the Arduino via the onboard ADC at 500Hz and
saved in the microSD card. For comparison purpose, we also
collected the photocurrent signal from two different light
sensors, TI OPT101 andHoneywell SD3410, which are widely
used in ambient light based gesture recognition systems [16–
18, 39]. Figure 12 illustrates our data collection setup at an
indoor environment, which is conducted in our photovoltaic

2Ethical approval for carrying out this experiment has been granted by the
corresponding organization.
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Figure 11: Illustrations of the 6 hand gestures conducted over the solar cells. The figures in the second row show
the photocurrent profile collected under the 6 gestures.
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Figure 12: Data collection setup.

research lab due to the special (and bulky) tools required to
connect the transparent cell output to the Arduino.
During data collection, we have considered many differ-

ent settings, including: (1) three solar cells with different
energy harvesting efficiencies/transparencies; (2) five light
intensity levels for indoor and outdoor combined (i.e., 800
lux and 2600 lux for transparent solar cells only under in-
door lab environment; 10 lux, 50 lux, 800 lux, 2600 lux and
70k lux for the opaque solar cell under different scenarios
including indoor and sunny outdoor); (3) six hand gestures
as introduced in Figure 11; (4) threes subjects to perform
the gestures; and (5) scenarios with/without human inter-
ference to investigate the robustness of SolarGest against
interference (data collected using the two transparent solar
cells only). Specifically, the human interference is introduced
by asking one subject to walk around in a half circle with
radius of 30cm when another subject is performing gestures.
As suggested by [40], light incident angles have little impact
on the gesture recognition accuracy. Thus, we consider the
case where light source is located at the top of the solar cell.

Table 1 summarizes the considered experiment settings. In
total, our data collection includes ten sessions (i.e., 2 transpar-
ent solar cell × 2 light intensities × 2 interference conditions

Table 1: Experiment setting.
Parameter Option Value

Solar cell 3
transparent solar cell: T1, T2
opaque solar cell: S1

Light intensity 4 10lux,50lux,800lux,2600lux,70klux
Interference 2 with, without

Gesture 6
Down, DownUp, FlipPalm,
LeftRight, Up, UpDown

Subject 3 1 male, 2 female
Photodiode 2 TI OPT101, Honeywell SD3410

+ 1 opaque solar cell × 5 light intensities). In each of the ses-
sion, subjects were asked to perform each of the 6 gestures
40 times. To avoid human fatigue, there was two minutes
break between each session. The entire data was collected
over five days. In total, we created a dataset consisting of
8 × 3 × 6 × 40 + 5 × 1 × 6 × 40=6960 gestures.

4.3 Simulated vs. Real Waveforms
Figure 13 compares simulated gesture waveforms (top row)
against actual waveforms (bottom row) collected from pro-
totype transparent solar cells for 5 different gestures (note
that FlipPalm is not captured in our model). It is clear that
even though we model hand and solar cell as circles, the
gesture signals simulated by our model are very similar to
those generated by real solar cells in terms of signal features
and patterns. This demonstrates that our model can be an ef-
fective tool to study gesture performance of next generation
solar cells under a variety of scenarios.

4.4 Gesture Recognition Performance
In this subsection, we evaluate the performance of our ges-
ture recognition framework in terms of different system
design choice and practical environmental factors. In addi-
tion, we also compare the performance of SolarGest with
that of light sensor based approaches. We use recognition
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Figure 13: Comparison of simulated gesture signal with the signal generated by solar cells.

Table 2: Recognition accuracy given different trans-
parencies and classifiers.

Solar Cell Classifier

KNN Decision Tree SVM Random Forest

T1 96.1% 94.1% 95.1% 95.9%

T2 95.6% 93.0% 94.5% 95.2%

accuracy, which represents the percentage of gestures that
are correctly recognized by the classifier, as the metric. For
each individual test, we perform 10-fold cross-validation and
present the average recognition accuracy. The training and
classification are implemented in Matlab.

Comment 22:Sampling Rate. First, we investigate the min-
imum required sampling rate for SolarGest, as it directly
affects the system power consumption. To achieve this, we
down-sample the original 500Hz data to different sampling
rates. Then, we apply the entire signal precessing and ges-
ture recognition pipeline to each sampling rate. From Fig-
ure 14(a) we can observe that although both segmentation
and gesture recognition accuracies improve with increasing
sampling rate at the beginning, performance stabilizes at 50
Hz. Therefore, we will consider a sampling rate of 50 Hz in
the subsequent analyses.

Performance of transparent solar cells: Using DWT coeffi-
cients as features, Table 2 presents average classification
accuracies of the two transparent solar cells for the dataset
obtained from all three subjects under 800 lux and 2600 lux
indoor lighting with and without human interference. We
can see that, despite being transparent with limited energy
harvesting capacities compared to existing opaque cells, both
T1 and T2 prototypes achieved very high accuracies under

all four typical classifiers. This finding directly validates our
earlier simulation-based predictions in Section 2.2, which
indicated that transparency will not reduce gesture recog-
nition capability of solar cells in environments illuminated
above 400 lux. Figure 14(b) - (c) show the confusion matrices
of solar cell T1 and T2, respectively, which suggest that some
gestures, e.g., FlipPalm and UpDown, are still likely to be
confused with others as their patterns look very similar.

Effect of Features: Figure 15(a) compares accuracies when
KNN is trained with different feature sets. As shown, DWT
wavelets achieve approximately 98% of accuracy compares to
that of only 87% for the statistical feature set. A more detailed
wavelet analysis in Figure 15(b) reveals that Daubechies2
gives the highest accuracy for our solar cell based gesture
recognition system, although Haar was reported to be the
best wavelet for light sensor based gesture recognition [14].

Effect of environment factors: First, we test five light intensity
levels that correspond to common conditions, 10 lux-dark
room, 50 lux-living room, 800 lux-office, 2600 lux-cloudy, and
70k lux-sunny. Transparent solar cells are tested under 800
lux and 2600 lux only due to the sensitivity to environment
(e.g., humidity), while the opaque solar cell is tested under
all the five conditions. Figure 15(c) presents the recognition
accuracy of the three solar cells under the five intensity lev-
els. We can observe that, for the same solar cell, higher light
intensity ensures a higher recognition accuracy, although
the improvement is minor. This indicates that for common
environment, SolarGest is able to achieve superior and con-
sistent performance. We can notice that S1 obtains higher
accuracy compared to T1 and T2 at 800 lux and 2600 lux. The
reason is that the energy harvesting efficiency as well as the
form factor of S1 is larger than that of T1 and T2.
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Figure 14: (a) Recognition accuracy given different sampling rates; Confusion matrix of (b) T1 and (c) T2.
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Figure 15: Recognition accuracy given (a) different wavelets; (b) different feature sets; and (c) light intensity.

To assess the limit of SolarGest, we create an extremely
dark environment (i.e., 10 lux) by turning off all lights in a
dark room except a laptop screen. We find that, with our cur-
rent prototype (Arduino UNO), the collected signal always
remains zero, making it impossible to detect any gesture.
The reason is that the resolution of Arduino ADC (10bit) is
not enough to capture the minor changes in photocurrent.
However, we found that dark environment problem can be
solved by using either a high resolution ADC (e.g., 16bit) or
amplifying the current. We implemented an amplification
circuit and tested two amplification factors: 32× and 64×.
The results show that, with both amplification levels, gesture
accuracy reaches to around 94%.

Second, we investigate the robustness of SolarGest against
ambient human interference in Figure 16(a). We can see that
human walking near the solar panel introduces some fluctu-
ations in the signals. To investigate the impact of such signal
interference on gesture accuracy, Figure 16(b) plots accuracy
with without human interference, which shows that inter-
ference reduced accuracy by only 1.5% and SolarGest still
achieved 96% recognition accuracy.

Third, we investigate the gesture recognition performance
when subjected global light intensity changes (e.g., walking
from indoor to outdoor or sunlight is blocked by cloud during

a gesture). We conduct the experiment using the simulator
presented in Section 2. Specifically, we train the model us-
ing gestures simulated under stable light intensity, while
test using the distorted gestures (simulated by switching
the light intensity in different levels and frequencies) only.
Our results indicate that when light intensity changes very
fast (e.g., >50Hz), the accuracy is not affected, while almost
half of the distorted gestures are wrongly recognized when
intensity switching rate is low (e.g., 2Hz). However, as sug-
gested in [40], such low dynamic global light change can be
effectively filtered out by subtracting it.

Performance under Unseen Scenarios. We consider two un-
seen cases. First, we train the classifier using the data col-
lected under one light intensity and test it by the data col-
lected under another light intensity. The performance of
training and testing with the same light intensity, i.e., seen
scenario, is also obtained. From Figure 17(a), we can see that
SolarGest still achieves 88% accuracy even in unseen light-
ning environment case. Second, we train the classifier using
the data collected from two subjects and test it on the remain-
ing one. The results in Figure 17(b) indicate that SolarGest
is robust to subject difference. Although the accuracy suf-
fers from a significant drop when training with subject1 and
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Figure 16: (a) Comparison of raw signals with and
without interference. (b) Impact of interference on
recognition accuracy.

Table 3: Performance comparison between light sen-
sors and solar cells.

Metric OPT101 SD3410 SolarGest(T1) SolarGest(T2)

Segmentation Accuracy 70.2% 84.3% 96.2% 96.1%

Recognition Accuracy 55.2% 89.9% 96.1% 95.6%

subject2, but testing with subject3, SolarGest achieve 93%
accuracy on average for unseen users. As a result, training
on a large number of subjects may not be necessary.

Comparison with light sensor based systems. Figure 18 com-
pares the signal traces from solar cell T1 and two light sensor
collected at the same time, where we can observe that signal
traces from light sensors are noisier. As a result, by using the
signal from solar cell, the system can perfectly detect all the
ten gestures, whereas, both of the two light sensors can only
detect eight of the ten gestures. Table 3 compares the overall
performance of light sensors and transparent solar cells in
terms of both segmentation and recognition accuracies. We
can notice that solar cells achieve 12% to 26% higher segmen-
tation accuracies and at least 5% better gesture recognition
accuracy compared to light sensors. These results demon-
strated that, for gesture recognition, even transparent solar
cells are no worse off than light sensors.

5 POWER MEASUREMENTS
In this section, we investigate the power saving advantage of
SolarGest against conventional light sensor based systems.
As shown in Figure 4, the power consumption of SolarGest
comes from two parts: MCU sampling and data transmission.
In contrast, light sensor based systems consumes additional
energy in powering the light sensors. In the following, we
perform a conservative comparison which assumes that only
one sensor is required for light sensor based systems (current
works require a array of sensors [14, 15]).

MCU Power Measurement: since both solar cell and
light sensor are sampled by analog-to-digital converter (ADC),
we conducted an experiment to measure the power con-
sumption in ADC sampling. We select the Texas Instrument
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Figure 17: Recognition accuracy on (a) unseen lighting
environment, (b) unseen user.
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Figure 18: Segmentation performance comparison us-
ing signals from (a) solar cell T1, (b) photodiode
OPT101, and (c) SD3410, under gesture FlipPalm. The
green dots represent the detected start points and the
red squares represent the detected end points.

SensorTag as the target device, which is equipped with an
ultra-low power ARM CortexM3 MCU. The SensorTag is
running with the Contiki operating system. As discussed
in Figure 14(a), to achieve over 95% of accuracy, a sampling
rate of 50Hz is required by SolarGest. Thus, we duty-cycled
the MCU at 50Hz for sampling and applied an oscilloscope
to measure the average power consumption of SensorTag
during the sampling. According to our measurement, the
system consumes 20.28µW in sampling the signal at 50Hz.

Light sensor PowerMeasurement: in addition, we also
measure the power consumed by the light sensor itself. We
consider two light sensors, namely TI OPT 101 and Hon-
eywell SD 3410, that are widely used in the literature [16–
18, 39]. In particular, we measured the power consumption
of the sensors under different light intensities (assuming
normal operation scenarios), as the datasheet only gives the
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Figure 19: Light sensor power measurement setup.

power consumption when the sensor is operated in dark en-
vironment. Figure 19 illustrates the measurement setup. To
minimize the effect of ambient light, we conduct the experi-
ment in a box with one side open. A smartphone is placed
on top of the box and its Flash is used as the light source.
We create an aperture with a radius of 1cm on the top of the
box and place the light sensor right below the aperture to
ensure 0◦ of light incident angle. The light sensor is powered
by a 3V battery and a multimeter is used to measure the
current. Figure 20 presents the power consumption of the
two light sensors under different light intensities. We can ob-
serve that the power consumption is not constant. When the
light intensity is lower than 100 lux, the power consumption
increases linearly with light intensity. Once the light inten-
sity is higher than 100 lux, the energy consumption becomes
stable. Since the light intensity of normal environment is
usually higher than 100 lux, e.g., 200-800 lux for office envi-
ronment, it means that, without duty-cycling (sensor always
turn on), OPT101 and SD3410 consumes around 650uW and
730uW, respectively. With 50 Hz duty-cycle, the power con-
sumption reduces to 39.78 µW and 42.18µW , respectively. In
addition, our results is consistent with the datasheet when
light intensity is 0 [41]. In contrast, solar cell is passive and
does not require any external power.

Overall System Power Saving: Now, we analyze the
overall system power consumption. Considering 50Hz sam-
pling rate and a duty-cycled system, Table 4 compares the
power consumption of SolarGest and light sensor (i.e., photo-
diode) based system. Note that the photodiodes are assumed
to operate in photoconductive mode, which requires external
power supply, in order to provide faster response rate [42].
The recent advancement in Wi-Fi backscattering has demon-
strated that 1 Mbps data rate can be achieved with only 14.5
µW power consumption [43]. Given a sampling frequency
of 50Hz, SolarGest has 100 Bytes data (2 Bytes for each 12-
Bits ADC reading) to be transmitted per second. Thus, it
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Figure 20: Power consumption of light sensors with
different light intensities.

Table 4: Power consumption comparison.

Sensor Power Consumption (uW) Savings
MCU Sensor Backscatter BLE

Solar Cell 20.28 0 0.023 31.11

OPT101 20.28 39.78 0.023 31.11 66.2%/43.6%

SD3410 20.28 42.18 0.023 31.11 67.5%/45.1%

means that 0.023 µW 3 is required for backscattering-based
data transmission. Overall, the power consumption of So-
larGest will be around 20.3 µW , while the consumption of
light sensor based system is about 60.1 µW . Thus, SolarGest
is able to save over 66% of the energy. In a more general case
where BLE is used for communication, 31.11µW power is
required for the data transmission (100 Bytes per second)
based on our measurement (using TI SensorTag as the target
platform.). In this case, the overall system power consump-
tion for SolarGest and the two light sensors based system
increase to 51.39 µW , 91.17 µW , and 93.57 µW , respectively.
But SolarGest still saves at least 44% of the energy compares
to light sensor based systems. Furthermore, current light
sensor based systems implement an array of light sensors
(e.g., 9 in [15] and 36 in [14]), which definitely incur much
higher power consumption.

6 RELATEDWORK
6.1 Gesture Recognition
Gesture recognition has been extensively investigated in
the literature. Vision based gesture recognition leverages
a camera or depth sensor to detect gestures [8, 9]. Motion
sensor-based approach exploits accelerometers and gyro-
scopes to track human body/hand movement [12, 13]. RF
signal based gesture recognition systems utilize informations
extracted from the RF signal, such as RSS [5, 44], CSI [6], and
Doppler shift [7] to recognize different gestures. Acoustic
3Pbackscatter = (100 ∗ 8)/1000000 ∗ 14.5µW = 0.023µW .



signal based method operates by leveraging Doppler shift
of the reflected sound waves caused by gestures [10, 11].
The underlying principle of light sensor based approach is
that different gestures leave distinct shadows that can be
captured by an array of photodiodes [14–18, 40].

Although such systems achieve excellent gesture recogni-
tion accuracy, they actually suffer from some limitations. For
example, vision based systems usually incur heavy compu-
tation cost and encounter privacy concerns that arise from
the sensitive camera data [6, 45]. Moreover, these systems
suffer from high energy consumption due to the use of var-
ious sensors, like accelerometer, depth sensor, and micro-
phone, which impedes the aim of ubiquitous and perpetual
gesture recognition. In contrast, SolarGest utilizes the en-
ergy harvesting signal for gesture recognition, which not
only eliminates sensor-consumed energy but also provides
inexhaustible power supply to the IoT device.

6.2 Solar Energy Harvesting based Sensing
Based on the principle that solar energy harvesting signal
can be a reflection of the environment light intensity, re-
searchers also utilize the solar cell as a light indicator to
perform indoor positioning [46]. In addition, coarse-grained
asset localization is achieved by analyzing the harvested
energy patterns of a solar panel [47]. A recent work [40]
employed an array of photodiodes around a smartwatch for
the dual-use of solar energy harvesting as well as gesture
recognition. Compared to [40], a key advantage of SolarGest
is that it can be seamlessly integrated to the smartwatch
screen without impacting its appearance.

In terms of solar cell based gesture recognition, the most
relevant work is [19], in which the authors utilized an opaque
solar cell to identify three hand gestures. However, SolarGest
differs in three aspects. First, [19] differentiates three ges-
tures, Swipe, Two Taps, and Four Taps, based on repetitions
of a basic gesture, while SolarGest recognizes gestures baed
on their unique patterns. Second, since transparent solar
cell has much lower energy harvesting efficiency compared
to the opaque counterpart, its gesture recognition capabil-
ity was hitherto untested. We demonstrated their gesture
recognition potential by prototyping transparent cells and
performing practical experiments with them. Third, we devel-
oped a theoretical model to investigate the effect of different
practical parameters in a solar based gesture recognition
system and conducted a comprehensive experiment study to
evaluate the gesture recognition performance with different
solar cell transparencies and light intensities.

7 CONCLUSION
We have proposed SolarGest, a solar-based gesture recogni-
tion system for ubiquitous solar-powered IoTs. Using solar

energy harvesting fundamentals and geometric analysis, we
derived a model that accurately simulates arbitrary hand
gestures and enables estimation of gesture recognition per-
formance under various conditions. Employing real solar
cells, both opaque and transparent, we have demonstrated
that our system can detect six gestures with 96% accuracy
under typical use scenarios while consuming 44% less power
compared to light sensor based approach. Although we moti-
vated the use case of transparent solar cells on the screens of
mobile devices, we have not analyzed the impact of backlight
on gesture recognition. Transparent solar cells are still at
early stages of research and as such we do not have access to
commercially available cells complete with development kits
for integrating to IoT development platforms. However, such
experiments can be conducted in the near future as soon
as transparent cells become commercially available at low
cost. When such opportunities arrive, we intend to extend
our simulator with capabilities to analyze impact of incident
lights from both sides of a transparent solar cell.
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