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Abstract—Piezoelectric energy harvesting (PEH), which con-
verts ambient motion, stress, and vibrations into usable elec-
tricity, may help combat battery issues in a growing number of
industrial and wearable Internet of things (IoTs). Recently, many
works have convincingly demonstrated that PEH can also act as
a self-powered sensor for detecting a wide range of machine
and human contexts. These developments suggest that the same
PEH hardware could be potentially used for simultaneous energy
harvesting and sensing (SEHS), offering a new design space for
low cost and low power IoT devices. Unfortunately, realization
of SEHS is challenging as the energy harvesting process distorts
the sensing signal. To achieve high quality sensing from PEH,
the state-of-the-art uses separate PEHs for sensing and energy
harvesting, which increases system complexity, form factor, and
cost. In this paper, we propose a novel SEHS architecture, which
combines energy harvesting and sensing in the same piece of
PEH, and minimizes distortion in the sensing signal by applying a
special filtering algorithm. We prototype the SEHS concept in the
form factor of a shoe, and evaluate its energy harvesting as well
as sensing performance with 20 subjects using gait recognition as
a case study. We demonstrate that the SEHS prototype harvests
up to 127% more energy and detects human gait with 8% higher
accuracy while consuming 35% less power compared to the state-
of-the-art.

Index Terms—Piezoelectric Energy Harvesting, Simultaneous
Energy Harvesting and Sensing, Context Detection from Energy
Harvesting, Gait Recognition

I. INTRODUCTION

Piezoelectric energy harvesting (PEH), which converts mo-
tion, stress, or vibration into usable electrical power, has
become an attractive solution to power many industrial sensor
nodes [1], [2]. The continuous improvement of PEH power
density combined with rapid advancements in low-power
electronics may soon bring PEH to wearable devices as well.
As a matter of fact, devices that can harvest energy from
human motion to charge a standby battery have already started
to appear in the market [3]–[6].

An interesting recent development confirms that PEH can
serve not only as a source of ambient power, but also as
a sensor for detecting a wide range of machine and human
contexts, such as measuring the air flow of heating and air
conditioning systems [7], detecting the activities of daily living
(ADL) [8], or even demodulating acoustic communications
[9]. These findings suggest that the same PEH hardware could
be potentially used for simultaneous energy harvesting and
sensing (SEHS), offering a new design space for low cost
and low power electronics for the rapidly growing Internet

of Things of market. PEH-based sensing is expected to be
more power-efficient than conventional sensor-based sensing
because it does not require power supply for its operation.
For example, a detailed power measurement study in [8]
reveals that use of PEH for ADL detection could reduce
79% of the overall system power consumption of conventional
accelerometer-based systems.

Unfortunately, realization of SEHS faces practical chal-
lenges arising from the interactions between the energy har-
vesting and sensing processes. In particular, when a capacitor
is used to store the harvested energy from the PEH hardware,
the dynamic states (stored energy) of the capacitor modifies
the current or AC voltage signal generated by the PEH. Since
context detection relies on the AC voltage signal of the PEH,
its modification degrades the sensing or context detection
performance of the PEH.

Most prior work on PEH-based sensing [10]–[12] only
considered the sensing circuit without implementing energy
harvesting and storage components, i.e., no capacitor was
included in the circuit to store the harvested energy. The
focus of these works was mainly to demonstrate that PEH
is capable of sensing many contexts. As such, these works
did not face the challenges involved in a true SEHS system.
Although energy harvesting and storage were implemented in
the PEH-based airflow sensing research [7], the authors used
two separate PEH hardware in their system. One PEH was
used for sensing only, and the other for energy harvesting
and storage only. Indeed, the authors of [7] admitted that the
sensing signal is damaged when the same PEH is used for
both energy harvesting and sensing, hence they used separate
PEH hardware to avoid the problem.

The focus of this paper is to devise solutions that enable
use of the same PEH hardware for both energy harvesting and
high quality sensing. In particular, we propose and demonstrate
that high quality sensing for SEHS is achievable by using
capacitor samples to filter out the impact of the capacitor on
the AC sensing signal. On the one hand, the outcome directly
reduces the cost and complexity of a SEHS system as separate
PEH elements are no longer required for energy harvesting and
sensing. On the other hand, when comparing with the state-of-
the-art, total energy harvesting capacity can be increased if two
PEHs are used, because both of them can harvest energy. On
the same token, context detection accuracy can be increased
when two PEHs are used, because both of them can act as



sensors providing multiple sensing signals.
The contributions of this paper can be summarized as

follows:
• We propose a novel SEHS architecture to achieve simul-

taneous energy harvesting and sensing using the same
PEH hardware. In this architecture, we minimize the
harmful effect of energy harvesting on the sensing signal
by applying a filtering algorithm to it.

• We design and implement a prototype of the proposed
SEHS architecture using two PEHs inside a shoe, where
each PEH simultaneously harvests energy as well as
senses the gait of the user. To the best of our knowledge,
this is the first implementation of SEHS reported in the
open literature.

• We evaluate the performance of the SEHS prototype
using 20 subjects. Our results demonstrate that the SEHS
prototype can harvest up to 127% more energy and detect
human gait with 8% higher accuracy compared to the
state-of-the-art.

• We carry out a detailed power measurement to confirm
that SEHS achieves the performance improvements while
actually consuming less system power.

The rest of the paper is organized as follows. Section II
presents the design of the proposed SEHS architecture includ-
ing the filtering algorithm for minimizing the harmful effect of
energy harvesting on information sensing. Prototyping of the
SEHS architecture and its evaluation using gait recognition as
a case study are described in Section III. Power measurements
to quantify the overhead of the proposed filtering algorithm
are presented in Section IV. We review the related works in
Section V before concluding the paper in Section VI.

II. SEHS DESIGN

In this section, we present the design of the proposed SEHS
architecture, illustrate the effect of energy harvesting on the
sensing signal, and explain the proposed filtering algorithm
to minimize the effect of energy harvesting on information
sensing. Let us first discuss the available design options for
energy harvesting and sensing with PEH before presenting our
own design.

A. Options for Energy Harvesting and Sensing with PEH

There are two potential architectures for energy harvesting
and sensing with PEH as illustrated in Figure 1.

• Separate PEHs (state-of-the-art): In this architecture,
one PEH hardware is used for energy harvesting and a
separate PEH is used for sensing. Therefore, this option
requires two PEHs to achieve both energy harvesting
and sensing. The main benefit of this approach is that
it completely avoids any interference between harvesting
and sensing. This architecture is the state-of-the-art and
adopted in [7], where the authors utilize one PEH to sense
the speed of airflow and the other to harvest the energy
generated from the vibrations caused by the airflow. In
general, however, this architecture is inherently inefficient
in the sense that it can harvest energy from only one of the
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Fig. 1: Alternative architectures for energy harvesting and
sensing with PEH: (a) State-of-the-art using separate PEHs
for energy harvesting and sensing [7], and (b) the proposed
SEHS architecture.

two deployed PEHs. Similarly, only one of the two PEHs
can be used for sensing, which wastes the opportunity to
improve context detection performance by fusing sensing
signals from both PEHs.

• SEHS architecture (the proposed approach): For a
given PEH, this architecture performs energy harvesting
and sensing at the same time. As such, it is subjected
to the so-called interference problem, i.e., the energy
harvesting may alter or distort the sensing signal, which
may ultimately reduce the context detection accuracy.
This approach, however, makes efficient use of PEH. For
example, it enables both energy harvesting and sensing
using a single PEH, which may be desirable for small
form factor IoT devices. On the other hand, if two PEHs
can be accommodated in the device, the proposed SEHS
architecture can double the total amount of harvested
energy compared to the state-of-the-art, which can harvest
energy from only one of the two PEHs. Since every
PEH is also capable of sensing, SEHS provides an
opportunity to fuse sensing signals from two PEHs to
potentially increase the accuracy of context detection. We
will quantify the benefits of SEHS later in the paper using
gait recognition as a case study.

B. Design of the Proposed SEHS

The aims of the SEHS design are to (1) store the harvested
energy, i.e., the rectified AC voltage generated by the PEH, in a
capacitor, and (2) read the same AC voltage for context sensing
using minimal power consumption. Unfortunately, reading
the PEH AC voltage requires some additional processing,
which would consume some power. Note that PEH generates
electric potential proportional to the applied strain [13] and
the polarization of the generated electricity corresponds to the
direction of the induced deformation, producing alternating
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Fig. 2: Circuit design of the proposed SEHS architecture

voltage (AC). PEH usually generates an open-circuit AC
voltage within minus decades volts to decades volts [14], while
the commonly used ADC (Analog-to-Digital Converter) can
only measure the non-negative voltage ranging from 0V to
5V. Consequently, the voltage signal cannot be acquired when
PEH output is directly connected to ADC. To address this
problem, most existing works utilize an amplifier [7], [15]
or voltage divide circuit [11], [12] to measure the AC voltage
using a single ADC channel, which consume several hundreds
of µW .

One of our design goals is to minimize the sensing related
power consumption. We achieve this by trading off voltage
divider with additional ADC channels, as ADC channels
consume very little power on the order of 1-2 microwatts
(see Section IV for measurements). Figure 2 shows the circuit
design of the proposed SEHS architecture. A matching resistor
is used to limit the peak amplitude of the AC voltage within the
ADC readable range. Instead of using a single ADC channel to
capture the whole AC waveform, we use two ADC channels,
i.e., point A (VA) and point B (VB), to measure the voltage
on the matching resistor. Since the two points are directly
connected to the output of PEH, the generated voltage, V ,
can be easily derived by subtracting the measured voltage
at point B from point A (both are non-negative values), i.e.,
V = VA − VB . The energy flows to the capacitor through a
full-bridge rectifier which is used to convert the AC voltage to
DC voltage. With this circuit, the proposed SEHS architecture
is able to collect the voltage signal and store the generated
energy by using the same piece of PEH hardware.

C. Effect of Energy Harvesting on Sensing

Unfortunately, when a capacitor is used to store the har-
vested energy, its dynamic states (stored energy) modifies
the current or AC voltage signal generated by the PEH.
To illustrate the effect of energy harvesting on AC voltage
reading, we collected some data when our circuit was used in
the shoe of a waking subject (see Section III-A for prototype
details). Figure 3 illustrates the waveform of the sampled AC
voltage signal as well as the capacitor voltage. Intuitively,
the peak-to-peak amplitude of the AC voltage should be
approximately identical, as the entire trace is extracted from
the same person while walking with a consistent style [16].
However, we can see that the peak-to-peak amplitude of the
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Fig. 3: The original AC voltage and capacitor voltage

AC voltage is actually increasing with time as the capacitor
voltage rises, i.e., more energy is being stored. The similar
phenomenon is also described in [7].

The observed effect of energy harvesting on AC voltage
in Figure 3 can be explained as follows. Using capacitor
theory [17], Figure 4 illustrates how the charging current
decreases while the capacitor is being charged. This theory
suggests that the current flow to the PEH is dropping when
energy is being harvested and stored in the capacitor. Note
that the PEH has a large internal resistance on the order of
MΩ [7], [18] and the output voltage is determined by the load
resistance as well as the internal resistance [18], [19]. With the
current flow decreased, the voltage on the internal resistance
of PEH is reduced. As a result, the amplitude of the output
voltage is increased, which explains the increasing peak-to-
peak amplitude of the AC voltage in Figure 3.

How to minimize the distortion of the sensing signal in a
SEHS architecture remains an open problem. Note that the
state-of-the-art in [7] did not actually solve this problem, but
instead used two separate PEHs to avoid this issue. In the
following subsection, we propose a filtering algorithm that
can minimize the distortion effect of energy harvesting on the
sensing signal.

D. Filtering Algorithm

Algorithm 1 shows the proposed filtering algorithm to
minimize the effect of capacitor charging on the AC voltage
readings. Note that the main effect is on the AC voltage
amplitude, where the amplitude continues to increase with
increasing capacitor voltage. The aim of the filtering algo-
rithm, therefore, is to prevent the increasing capacitor voltage
from lifting the AC voltage without destroying the pattern of
the signal. This is achieved by introducing a constant, V ∗, in
lines 4 and 6 in Algorithm 1. The output, V

′
(t), is the filtered

sensing signal.
The algorithm will work correctly, i.e., the filtered signal

will have the same pattern as the original signal, for any
positive values of V ∗. However, the larger the V ∗, the higher
the amplitude of the filtered signal, and vice versa. Figure 5
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Fig. 4: Charging current as a function of time. RC is the time
constant and I0 is the initial current when capacitor voltage is
0.

compares the waveform of the original AC voltage (blue) and
the filtered version (red) for different values of V ∗. We can
see that irrespective of the value chosen for V ∗, the filtered
signal matches well with the original signal, which can be
verified easily from visual inspection, as well as from the high
correlation values. Although, as predicted, the amplitude of
the filtered signal is affected by the choice of V ∗, we will
demonstrate that the sensing performance is not influenced in
Section III-E1.

The complexity of the filter is O(N) (N is the number of
samples), which suggests that it can be implemented without
significant computational burden. Note that the filter requires
the capacitor voltage (VC) as input, which can be easily
obtained using an additional ADC channel as shown in our
circuit design (Figure 2). Use of additional ADC channels
contribute minimal power consumption overhead as will be
demonstrated in our measurements in Section IV.

Algorithm 1: Proposed Filtering Algorithm
Input: VA(t), VB(t), VC(t), V ∗

Output: V
′

A(t), V
′

B(t), V
′
(t)

1 Main procedure:
2 for t = 1, 2, ..., N do
3 if VA(t) ≥ VC(t then
4 V

′

A(t) = VA(t)− VC(t) + V ∗;
5 else
6 V

′

A(t) = V ∗ ∗ (VA(t)/VC(t));
7 end
8 the same operation for VB(t);
9 obtain V

′

B(t);
10 V

′
(t) = V

′

A(t) - V
′

B(t);
11 end
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Fig. 5: Comparison of AC voltage with and without filtering.

III. GAIT RECOGNITION WITH SEHS

In this section, we evaluate the performance of the proposed
SEHS architecture using gait recognition as a case study.

A. SEHS Prototyping

Figure 6 shows the prototype we designed and implemented
in the form factor of a shoe to harvest energy during human
walking and detect the user gait at the same time using the
PEH voltage signal. To explore the potential performance
improvements compared to the state-of-the-art, the prototype
includes two PEHs from Piezo System [20] mounted on the
front and rear of the insole. AC voltages from the PEHs
are rectified by full-bridge diodes rectifier and charged into
two 1000µF electrolytic capacitors. The output voltage and
capacitor voltage are sampled by an Arduino 101 [21] board,
which is equipped with an Intel Curie microcontroller. A
sampling rate of 100Hz is used for data collection and the
sampled data is saved on a 4GB microSD connected to the
Arduino using a microSD shield. A nine volts battery powers
the whole system. To help users collect data, the prototype
contains three switches, one is to control the start and stop of
data collection and the other two for controlling the charging
and discharging of the two capacitors respectively. The entire
Arduino board is placed outside the shoe.

The Arduino 101 measures voltage between 0 and 5 volts
and provides 10 bits of resolution, i.e., 1024 different values.
The corresponding output voltages from the measurements,
therefore, are obtained as:

voltage =
5 ∗ADCmeasurement

1024
(1)

By measuring the capacitor voltage, we can calculate the
amount of the stored energy using the following equation:

E =
1

2
CV 2 (2)
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Fig. 6: The design and appearance of the SEHS prototype.

B. Data Collection

During the data acquisition stage, we create the dataset
by asking 20 healthy volunteers, including 16 males and
4 females1, to walk along the specified route as shown in
Figure 7(a). Each volunteer is asked to wear a shoe equipped
with the designed insole in their left foot and the data
collection module is attached to the ankle position as shown in
Figure 7(b). The participants are suggested to walk in his/her
normal walking style and speed. The data collection duration
is approximately 300 seconds and the subjects need to toggle
the switch to discharge the capacitors every 50 seconds. The
reason is that the accumulated voltage on the capacitor will
exceed 5V when walking for a certain period of time(around
55 seconds in our tests), so that it can not be measured. More
importantly, the high voltage may damage the ADC module
of the board.

C. Gait Recognition Methodology

Figure 8 illustrates the overall system model of gait recog-
nition using SEHS. An insole is equipped two PEHs to harvest

1Ethical approval for carrying out this experiment has been granted by the
corresponding organization (Approval Number HC15888).

(a) Experiment environment (b) Subject Walking

Fig. 7: Data collection setup

the energy as well as detect the gait of the wearer. The
generated AC voltage is rectified and the collected energy
flows to the capacitor. A filter, which uses the capacitor voltage
as an input, is used to minimize the interference of the energy
storage on the AC voltage signal. Thus, we have five different
options for gait recognition, the original signal from the front
PEH (option 1), the filtered signal from the front PEH (option
2), the original signal from the rear PEH (option 3), the
filtered signal from the rear PEH (option 4), and finally the
fused signal, which combines signals from both front and rear
(option 5). We will compute and compare gait recognition
accuracies for all these options.

We collect a time series of voltage signal of the PEHs
when subjects are walking, in which the signal follows a
cyclic pattern reflecting the gait of each subject. As shown
in Figure 3, there are two peaks within one gait cycle, which
indicate the heel strike and toe-off time of the foot respectively.
Firstly, the moving average function and a low pass filter with
the cutoff frequency of 10Hz are employed to eliminate out-
band interference. We then apply a band pass filter to detect
these peaks and the gait cycle is obtained by combining the
samples between two consecutive peaks together. Since the
walking pattern varies from different subjects, we tune the
lower and upper cutoff frequency of the band pass filter for
each subject ranging from 0.5Hz to 3Hz to enable an accurate
gait cycle segmentation.

After the peak detection and samples combination, gait
cycles with different time duration are available. Figure 9 plots
the distribution of the gait cycle duration of the 20 subjects
who are suggested to walk in their normal speed. It is clear that
the time duration of one gait cycle varies from 0.8s to 1.3s.
To deal with such variable walking speeds which may occur
among different subjects or one subject in different walking
scenarios, we perform the linear interpolation on the detected
gait cycles. According to the distribution of the gait cycle
length, the number of samples in one gait cycle ranges from 80
to 130 with the sampling rate of 100Hz. Thus, we interpolate
the gait cycles to equal length with 130 samples.

Accurate gait pattern extraction is the critical factor that
affects the gait recognition accuracy. In our experiment, volun-
teers were asked to walk in a square environment as shown in
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Figure 7(a) for several minutes, during which they experienced
decades of turnings and some short pauses. Obviously, the
detected gait cycles within these periods contain distorted gait
pattern. Therefore, it is requisite to omit these unusual cycles
to keep a high recognition accuracy.

We perform Dynamic Time Warping (DTW) function to
delete unusual cycles for each subject. In detail, the average
distance of all the gait cycles are computed firstly and treated
as the typical cycle. Then, the distance between each cycle
and the typical cycle is calculated. We detect and omit the
irregular cycles by a simple threshold method, i.e. if the DTW
distance of a detected cycle is higher than a predefined value,
it will be dropped. The DTW distance reflects the similarity
among a given cycle and the rest cycles of the subject. We
collect around 280 to 300 gait cycles for each subject. To
achieve a fair classification, we extract 250 gait cycles per
subject after performing irregular cycle deletion. In total, a
2x20x250 gait cycle dataset is created and utilized to evaluate
the performance of the proposed SEHS architecture and filter.

Motivated by the multi-sensor mechanism [22], we also
explore signal fusion methods to enhance the sensing per-
formance. Here, we investigate two signal fusion approaches,

i.e., concatenation and intersection. Assuming that we have
got two signals X , Y with the size of N . Without fusion, the
two signals can be used as information for a given sensing
application alone. When considering signal concatenation, we
fuse the two signals in the following way:

XY Con = [X1, X2, ..., XN , Y1, Y2, ..., YN ] (3)

While for signal intersection, the two gait cycles are com-
bined as:

XY Int = [X1, Y1, X2, Y2, ..., XN , YN ] (4)

We explore whether signal fusion can achieve better sensing
performance in Section III-E4.

To this end, the extracted gait cycles are ready for classifica-
tion. In this paper, we consider three classifiers: Support Vector
Machine (SVM) and K-Nearest Neighbor (KNN), and Sparse
Representation based Classification (SRC) [23], [24]. SVM
and KNN are two traditional classifiers with a wide range
of sensing applications like human activity recognition [11],
while SRC is an emerging classifier that has been proved to be
more robust to environmental noise in sensing tasks [16], [25].
The gait recognition accuracy of using different classifiers will
be compared in Section III-E3.

During classification, each gait cycle is regarded as a sample
or vector for training or testing. As SRC can be used as a
feature-less classifier, we use the time domain signals, i.e.
gait cycle vectors, for model training and testing. For SVM
and KNN, we first extract features for every gait cycle signal
and then deliver these features as the input to the classifier.
Referring to [11], we extract 22 features from both time
domain and frequency domain, such as Mean, Skewness, Q1,
Dominant frequency and many more, which have already been
demonstrated effective in recognition tasks.

D. Performance Metrics

In this section, we evaluate the performance of the proposed
SEHS architecture and filter based on the collected dataset
in the following five aspects. Firstly, we use the DTW dis-
tance to explore the effectiveness of the proposed filtering
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algorithm from the signal waveform aspect. Secondly, the
gait recognition accuracy with different system parameters,
such as sampling rate and classifier, is derived to evaluate the
performance of the filter and signal fusion. Thirdly, as gait
information has been widely studied for authentication in the
literatures [16], [26], [27], we also explore the performance of
the filter on the gait authentication system in terms of the equal
error rate. Afterwards, the comparison of the proposed SEHS
architecture with the separated PEH architecture is investigated
from both energy harvesting and sensing aspects. Finally, as
the filter requires capacitor voltage as input, we explore its
practicability by measuring the power overhead of sampling
the capacitor voltage.

We summarize the evaluation metrics used in this paper as
follows:

• Recognition accuracy: represents the percentage of cor-
rectly classified test samples, which is the main parameter
to assess the recognition system.

• False positive rate (FPR): indicates the probability that
an imposter is wrongly recognized as a legitimate user,
which reflects the security level of the authentication
system.

• False negative rate (FNR): indicates the probability that
a legitimate user is falsely rejected, which reflects the
user experience of the legitimate user.

• Equal error rate (EER): the EER is the location on a
DET (Decision Error Trade-off) curve where the FNR and
FPR are equal, which indicates the overall performance
of the authentication system.

• Amount of Energy per Step: to evaluate the perfor-
mance of energy harvesting, we computed the amount of
energy generated each step using the capacitor voltage.

E. Results

1) Filter Performance: Since gait cycles of the same person
are expected to be similar during a normal walk, such gait
similarity can be used to assess the performance of the
proposed filter algorithm. As energy harvesting distorts the AC
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sensing signals for gaits, we can expect that the gait similarity
for the original AC signal would be low, but would increase
when the filter is applied. For each subject and each PEH, we
computed gait similarity for a given trace of 250 gait cycles as
the average DTW (dynamic time warping) between all possible
pairs of gait cycles. For the original and the filtered signals,
Figure 10 compares gait similarity averaged over the two PEHs
for each of the 20 subjects. The gait similarity is reflected by
the DTW distance in the figure, where the lower the Y-axis
value, the higher the gait similarity. We can clearly see that the
gait similarities for the filtered signal are consistently higher
than those for the original signal. This provides evidence
that the proposed filtering algorithm has successfully reduced
signal distortions caused by energy harvesting.

As mentioned in Section II-D, the value of V ∗ used in our
filtering algorithm does not affect the correlation between the
original signal and the filtered signal, although the amplitude
of the filtered signal diverse We further explore the gait
recognition accuracy when choosing different values of V ∗.
As shown in Figure 11, all the four signals with and without
filtering produce almost the same gait recognition accuracy
with the value of V ∗ ranging from 0.5V to 4V. This proves
that the performance of the filtering algorithm is irrespective
of V ∗.

2) Gait Recognition Accuracy vs. Sampling Rates: For
different sampling rates, Figure 12 compares gait recognition
accuracies, i.e., the percentage of correctly classified test
samples, obtained with and without filtering for both PEHs
(PEHFront and PEHRear refer to the front and rear PEH
respectively) using the SRC classifier. It is clear that for
all sampling rates, filtering significantly improves the gait
recognition accuracy. For both signals, a minimum of 40
Hz is required to achieve high recognition accuracy. In the
subsequent analyses, we will therefore consider a sampling
rate of 40 Hz.

It is interesting to note that gait recognition accuracies
of the PEHFront and PEHRear signals are almost identical,
which indicates that both the signals contain significant gait
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Fig. 12: Recognition accuracy v.s. Sampling rate

TABLE I: Recognition accuracy v.s. classifiers

Classifier
Original signals Filtered signals

PEHFront PEHRear PEHFront PEHRear

KNN 54.3% 50.7% 62.9% 60.3%
SVM 66.7% 65.8% 74.4% 72.8%
SRC 76.28% 76.01% 85.56% 86.72%

information. As a result, it may be possible to increase the
gait recognition accuracy by fusing the signal from the front
with the one from the rear. Indeed, such fusion opportunities
are explored later in the section. Note that with the state-of-
the-art architecture, which uses one PEH for sensing and one
for energy harvesting, such fusion opportunities do not exist.

3) Gait Recognition Accuracy vs. Classifiers: In this sec-
tion, we evaluate the gait recognition performance of the filter
for different classifiers. The parameters in SVM and KNN are
tuned to provide the highest accuracy. For SVM classifier, we
choose quadratic kernel and the box constraint level is set to
5. For KNN classifier, the number of nearest neighbors is set
to 10. For each classifier, we perform 10-fold cross-validation
on the collected dataset and present the average recognition
accuracy.

Table I presents the gait recognition accuracy of the three
classification methods. We can clearly see that the filtered
signals outperform the original counterparts for all the three
classifiers. An accuracy improvement of 8% - 10% is achieved
when the filter is applied, which provides strong evidence that
the proposed filter is robust and effective across the choice
of classifiers. Our results also validate previous findings [28]–
[30] that SRC has superior context recognition capabilities
than many other classifiers. However, even the SRC struggles
to achieve a high gait recognition accuracy when the signal is
distorted by energy harvesting, it can be improved to 86% by
applying the proposed filter.

4) Improving Gait Recognition with Signal Fusion: As
mentioned earlier, the proposed SEHS architecture offers
signal fusion opportunity when two PEHs are used. In this
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TABLE II: Recognition accuracy with signal fusion

PEHFront PEHRear Intersection Concatenation
85.56% 86.72% 95.07% 95.85%

section, we quantify the benefits of such signal fusion in
improving the gait recognition accuracy. As explained in
Section III-C, we consider two signal fusion approaches:
concatenation and intersection. Table II compares the gait
recognition accuracy of using the signals obtained via the two
methods for SRC and 40 Hz sampling rate. It can be seen
that both fusion methods improve gait recognition accuracy
by about 10%. The reason is that the combined signal takes
advantage of the gait information from different positions in
the foot to build a more accurate gait model for each subject.

5) Improvement of Gait Authentication Performance: In
this section, we investigate the system performance when using
PEH signal to perform gait authentication. We consider the
scenario of passive attackers, which may be occurred when
the insole is worn by other people who attempt to access
the system. We conduct this experiment by dividing the 20
subjects into two groups (10 subjects in each group), in which
one group is set as imposters and the rest are genuine users.
Here the training and testing datasets are obtained from the
concatenated signal and SRC is chosen as the classifier. We
then reverse the roles and repeat the experiment.

The comparison of original signal and filtered signal is
presented with the Decision Error Trade-off (DET) curve as
shown in Figure 13. The DET curve is obtained by setting dif-
ferent confidence levels and then calculating the corresponding
FPRs and FNRs. The red dash line stands for the potential
points of EER. In the figure, the crossovers of the red dash
line and the FPR - FNR curve are the locations of EER. It
can be seen that the EER when using the original signal and
filtered signal is 14.5% and 5.7% respectively, which means
that out of 100 genuine users 6 are falsely rejected and out
of 100 attackers 6 are wrongly accepted in the best case.
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An improvement of 9% is achieved with the filtering. The
results reveal that the proposed filter not only improves the gait
recognition accuracy but also promote the system security as
well as the user experience in the gait authentication system.

The filtering algorithm is designed to minimize the ampli-
tude interference on the original signal, and its performance
on gait recognition has been demonstrated. Moreover, we can
expect that the performance is also potential for other sensing
applications, such as activity recognition, as Mean Amplitude
and Maximum Amplitude are high importance features for
classifying different activities as indicated in [11] (Table V).

6) Analysis of Harvested Energy: In SEHS, not only the
voltage signal is collected, but also the generated energy by
human waling is stored in the two capacitors. By measuring
the capacitor voltage, we can calculate the amount of generated
energy from different PEHs and subjects using Equation 2.

Figure 14 presents the capacitor voltage of one subject,
in which each stair corresponds to one gait cycle. The stair
suggests that the energy is only produced within a small time
slot, where the capacitor voltage climbs sharply, during each
gait cycle. The distribution of the average generated energy
per step of the 20 subjects from the two PEHs is shown in
Figure 15. It is apparent that the total amount of the harvested
energy varies with different people ranging from 109uJ/step
to 269uJ/step with an average of 164uJ/step. Assume that
people walk in 2Hz, i.e., one gait cycle each second, a power
output of 164uW is achieved by wearing the insole in one
foot, which is encouraging to extend the battery lifetime or
even replace the battery for wearable devices.

Compared to the separated PEH architecture where only
one PEH is capable to harvest energy, the proposed SEHS
architecture increases the amount of average generated en-
ergy.In detail, when using the front PEH for energy harvesting,
78% more energy is harvested in SHES, whereas up to 127%
more energy is harvested when the rear PEH is considered
as the energy harvester. From the sensing aspect, as the
SEHS enables two PEHs as the sensors for detecting the gait
information, the recognition accuracy is also promoted with
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signal fusion as discussed in Section III-E4.

IV. POWER CONSUMPTION MEASUREMENTS

In the previous sections, we have demonstrated the superior
performance of the proposed SEHS architecture in terms of
both energy harvesting and context detection. However, the
filter in our prototype requires the capacitor voltage samples
as an input, which is not used in the state-of-the-art. Con-
sequently, the power consumption overhead of sampling the
capacitor voltage should be measured to assess the practica-
bility of the filter. In fact, for each PEH, the proposed SEHS
architecture uses a total of three ADCs, which means a total
of six ADCs are used for a dual-PEH SEHS. Sensing power
consumption of SEHS therefore can be measured by simply
measuring the power consumption of sampling the ADCs. In
this section, we carry out these measurements first and then use
the measured power consumption data to compare the sensing
power consumption for SEHS against that of the state-of-the-
art.

A. Measurement setup

We select the Texas Instrument SensorTag as the target de-
vice, which is equipped with an ultra-low power ARM Cortex-
M3 MCU and 12-bits ADC. The SensorTag is running with the
Contiki 3.0 operating system. Figure 16 shows the experiment
setup, where a Tektronix TBS-1052B digital oscilloscope is
used to measure the current draw of the SensorTag. A 10Ω
resistor is connected in series between the SensorTag and a 3V
coin battery. We connect the probes of the oscilloscope across
the resistor, so that the current draw can be calculated using the
captured voltage and the resistance. We load three programs
for sampling one, three, and six ADC channels, respectively.

B. Power consumption analysis

Figure 17 illustrates the profiling of an ADC sampling event.
At the beginning, the MCU is in deep sleep mode. Once the
ADC sampling event is triggered, MCU wakes up and reads
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Fig. 16: Measurement setup

the value from ADC channels and then goes back to deep sleep
mode. We can observe that the total time of the three events
are almost equal (marked with red dashed line), while the
major difference comes from the time duration that the MCU
is turned on (marked with blue dashed line). Note that the
process of MCU turning on/off requires time, which refers to
the climbing and dropping stage in the profiling. As shown in
the figure, the MCU is turned on for 220µs, 270µs, and 320µs
when sampling one, three, and six ADC channels, respectively.

Table III presents the average power consumption data for
sampling at a rate of 40 Hz. The MCU On time denotes the
period when MCU is sampling ADC after turned on and the
total event time denotes the duration of the sampling event
including the preparation of the MCU. The data in the Power
column, which denotes the average power consumption for
the entire duration of the event, is directly obtained by using
the built-in function of the oscilloscope. We then calculate
the energy consumed during one single sampling event in the
following column. The last column shows the average power
consumption when duty-cycling is performed at a sampling
rate of 40Hz (note that the power consumption of MCU in
deep sleep mode was 6µW according to our measurement).
The first row of the last column represents power consumption
of the state-of-the-art architecture [7], which uses an amplifier
(which consumes 500µW ) with one ADC channel.

It can be seen that the average power consumption of the
state-of-the-art, where both MCU and amplifier are consid-
ered, is 29.43µW . A single-PEH SEHS requires three ADC
channels and consumes an average power of 18.12µW , which
reduces sensing power consumption by 38%. Even if we use a
dual-PEH SEHS for improved energy harvesting and context
detection performance, we can still reduce the average power
consumption by 35%. These results suggest that the proposed
SEHS not only achieves better system performance in terms of
energy harvesting and sensing, but also decreases the sensing
power consumption compared to the state-of-the-art.

Sampling one ADC 

Sampling three ADC

Sampling six ADC

220 us

270 us

600 us

320 us

Fig. 17: Profiling of ADC sampling (need to be replaced)

V. RELATED WORK

In general, most existing works on piezoelectric energy har-
vesting can be classified into two categories: energy harvesting
and context sensing. The basic principle is that piezoelectric
material can produce AC voltage when subjected to mechan-
ical stress due to the piezoelectric effect.

In terms of energy harvesting, vibration based [31]–[33]
and stress based [18], [34]–[36] mechanisms arouse many
research interests. In particular, Tolentino et al. designed a self-
sustained vehicular tracking system by absorbing energy from
vehicle motor vibrations via the PEH [31]. Huang et al. [18]
proposed a shoe based battery-free wearable sensing platform
where the power comes from the two feet when people are
walking. The designed PEH achieves a power output of 1-
2mW , which enables the operation of sensors, MCU and radio
with reasonable duty-cycling.

On the other hand, a variety of sensing applications are
enabled by PEH signal as the output AC voltage of the PEH
contains the signature of the context. In [10], a necklace
equipped with the PEH is designed to capture the throat
motions during eating. Using the AC voltage signal, different
types of food, such as water, sandwich and chips, can be
detected with good accuracy, thereby estimating the eating
habits of the user. In [9], the authors leverage the PEH as
a receiver for acoustic communication. The underlying idea
is that the PEH is able to capture the air vibrations caused
by the acoustic wave. By using the pattern of the generated
AC voltage, the transmitted information can be demodulated
through the proposed OOK method.

Interestingly, instead of using the AC voltage signal, re-
cent works [37], [38] explored the feasibility of using the



TABLE III: Average power consumption of sampling at 40 Hz

Event
Time(us)

Power(uW) Energy/Event(uJ) Average power(uW)
MCU On total event

One ADC 220 600 482 0.29 29.43
Three ADC 270 600 511 0.31 18.12
Six ADC 320 600 553 0.33 19.13

accumulated power signals, i.e. capacitor voltage, for sensing.
In [37], the energy generated by human daily activities are
stored in the capacitor. By using the capacitor voltage, five
common activities are recognized with good accuracy, while
the power consumption in sampling is reduced by 99% as
merely 0.2Hz sampling rate is required. Similarly, the authors
in [38] developed an energy-harvesting power meter archi-
tecture by utilizing the electromagnetic energy harvester. The
harvested energy from the power line is stored in a capacitor to
power and trigger the signal transmission of a wireless sensor
node once the capacitor voltage reaches a predefined threshold.
Using the signal receiving frequency, the power consumption
can be estimated.

Using the PEH for either energy harvesting or sensing
has been well investigated in the literature, but to achieve
simultaneous energy harvesting and sensing is not trivial.
Although the authors in [39] conceived the idea of simul-
taneous energy harvesting and sensing for unmanned aerial
vehicle (UAV) stability control, the combined performance
of harvesting and sensing was evaluated theoretically only.
Their practical experiments confined to energy harvesting and
gust alleviation separately. In [7], the authors implemented
the two functions in the airflow sensing system, while two
PEHs (one for energy harvesting and the other for sensing)
are exploited for separate tasks, which increases the system
complexity, form factor, and lowers the utilization efficiency
of PEH.

The concept of SEHS is quite similar to SWIPT (simul-
taneous wireless information and power transfer) in wireless
energy harvesting networks, where the RF signals are used for
delivering energy as well as for transporting information [40]–
[42]. To achieve SWIPT, the receiver architecture requires
modification as the power sensitivity for energy harvesting and
information reception is different. Thus, a variety of designs,
such as antenna-switching [41], time-switching [43], power-
splitting [44] and integrated architecture [45], are developed
to optimize the system performance.

VI. CONCLUSION

We have proposed SEHS, a novel architecture for simul-
taneous energy harvesting and sensing using the same piece
of PEH hardware. Compared to the state-of-the-art, which
uses two separate PEHs each dedicated to either energy
harvesting or sensing, the proposed SEHS architecture has
several benefits. For example, SEHS can also use two PEHs,
but each hardware can be exploited for both energy harvesting
and sensing. Thus, SEHS can harvest twice as much energy

with potential for increased sensing accuracy due to generating
two distinct sensing signals from two PEHs. Taking gait
recognition as a case study, we developed an insole-based
prototype of SEHS to harvest energy as well as detecting the
user gait. Based on the experimental data from 20 subjects, we
have demonstrated that the SEHS prototype can harvest up to
127% more energy and detect human gait with 10% higher
accuracy compared to the state-of-the-art. A detailed power
measurement confirms that SEHS achieves these performance
improvements while actually consuming less power.
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