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ABSTRACT
Transparent solar cell is an emerging solar energy harvesting
technology that allows us to see through these cells. This
revolutionary discovery is creating unique opportunities to
turn any mobile device screen into solar energy harvester. In
this paper, we consider the possibility of using such energy
harvesting screens as a sensor to detect hand gestures. As
different gestures impact the incident light on the screen
in a different way, they are expected to create unique en-
ergy generation patterns for the transparent solar cell. Our
goal is to recognize gestures by detecting these solar energy
patterns. A key uncertainty we face with transparent solar
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cell is that, to provide transparency, they cannot harvest
from the visible spectra, which may lead to weaker energy
patterns for the gestures. To study gesture recognition feasi-
bility of transparent solar cell, we develop a 1cmx1cm organic
see-through solar cell which provides high level of content
visibility when placed on mobile phone screen. We then use
the output current of the organic cell as the source signal
for gesture pattern recognition using machine learning. Ex-
perimental results demonstrate that we can detect five hand
gestures with average accuracies of 95%. We also compare
gesture recognition accuracies of our prototype organic cell
with those obtained from a conventional ceramic opaque
solar cell, which reveals that organic solar cell can recognize
some of these gestures almost as good as the opaque cells.

KEYWORDS
Gesture Recognition; Transparent Solar Cell; Solar Energy
Harvesting
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1 INTRODUCTION
Researchers have recently discovered a way to build transpar-
ent or "see-through" solar cells [1, 2] from organic materials.
These cells absorb and harvest energy from infrared and
ultraviolet lights, but let the visible lights pass through so we
can see through them like a clear glass. This phenomenal dis-
covery in solar cell technology is set to create a multitude of
new applications not dreamt of before. Integrating transpar-
ent solar cells into sunglasses [3], windows [4–6], and smart-
watch screens [7] introduces energy harvesting capability to
the devices, without impairing their original functionality.
In the context of a mobile phone, Figure 1 demonstrates the
see-through capability of a 1cmx1cm organic solar cell that
we developed in our photovoltaic research laboratory.

Inspired by its potential use as energy harvesting screens
of mobile devices, in this paper, we seek to use such screens
as a natural light sensor to recognize hand gestures. In recent
years, integrating gesture recognition to consumer electronic
has raised much attention, as it is one of the most important
ways for human to interact with anyone and anything [8, 9].
To achieve this, a wide range of modalities, such as RF signal
(e.g., Wi-Fi) [10], sound wave [11], visible light [12], motion
sensor [13], and image (e.g., camera) [14], have been explored
and demonstrated. However, unlike solar cells that provide
extra power, these systems actually dissipate energy from
the device.
Although a recent work has demonstrated the potential

of conventional opaque silicon-based solar cells for gesture
recognition [15], it is not certain whether the same could be
achieved with transparent cells. Transparency means that
the absorption efficiency of the solar cell in the visible light
band is significantly lower compared to opaque cells. The
lower absorption rate results in weaker responsiveness to
the visible light. Moreover, [15] differentiates only three
gestures based on the number of times the user repeats a
basic hand movement, which is basically recognition of one
gesture but with different counts. This requires the user
to remember the hand movement counts to ensure correct
gesture is communicated. Thus, whether the transparent
solar cells can be exploited to perform user-friendly gesture
recognition remains unclear and unexplored.

In this paper, our goal is to investigate the gesture recog-
nition feasibility of transparent solar cells. We achieved this
by developing a transparent solar cell in our lab, using it
to collect its energy (current) generation data for different
hand gestures, and then detecting patterns using machine
learning. Our findings suggest that transparent solar cells are

(a)  (b)

(a) 

Figure 1: Demonstration of see-through effect of trans-
parent solar cell. The 1cmx1cm organic solar cell pro-
totype developed in our lab is placed on a iPhone 7
smartphone screen displaying the text "Hello Word".

indeed capable of detecting hand gestures. The contributions
of this paper can be summarized as follows:

• We experimentally demonstrate gesture recognition
feasibility of organic transparent solar cells. We show
that five hand gestures can be recognized with average
accuracy of 95% by training typical machine learning
classification algorithms, such as Support Vector Ma-
chine (SVM) and K Nearest Neighbor (KNN). To the
best of our knowledge, this is the first gesture recogni-
tion study involving transparent solar cell.

• Our analysis reveals that the most informative ges-
ture recognizing features of solar cell voltage are very
simple — the maximum, the minimum, and the range
(maximum minus minimum). This suggests that ges-
ture recognition for solar cells can be realized with
minimal additional complexity and power consump-
tion.

• We compare gesture recognition performance of or-
ganic transparent solar cell against that of conven-
tional silicon-based opaque solar cell. Our experiments
reveal that the organic solar cell can recognize some
of these gestures almost as good as the opaque cell.

The rest of the paper is organized as follows. Section 2
presents the transparent solar cell prototype developed in our
laboratory and used in our gesture recognition experiments.
Performance evaluation of gesture recognition is presented
in Section 3. We review related works in Section 4 before
concluding the paper in Section 5.

2 TRANSPARENT SOLAR CELL
PROTOTYPE

Solar cells, opaque or transparent, convert energy from the
incident light into photocurrent based on the photovoltaic
effect [16]. The photocurrent is the main signal to be used
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(a)  (b)

(a) 

Figure 2: Effect of placing a transparent solar cell on
a iPhone 7 smartphone screen that displays (a) a foot-
ball match video, and (b) a still image.
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Figure 3: Absorption spectra of a conventional silicon
solar cell (opaque) and our organic solar cell (transpar-
ent) within visible light band.

for gesture recognition. However, given a light condition,
the amount of current is proportional to the absorption rate
of the solar cell. Since transparent solar cells do not absorb
a large fraction of the visible light, they are expected to
produce less photocurrent hence weaker signals for gesture
recognition.

To experimentally study gesture recognition capability of
transparent solar cells, we have manufactured a 1cmx1cm
organic solar cell with an average visual transmittance (AVT)
of 35%1. Figure 1 and Figure 2 illustrate the see-through effect
of the cell by placing it on a iPhone 7 smartphone screen
while displaying different types of contents, i.e., text ("Hello
World"), a soccer match video, and a landscape image. We

1Details of the material used as well as the manufacturing and characteriza-
tion of the prototype are available from [4, 5].

Solar 
Panel

ADC V1
voltage
reading

Solar
Panel

V2
voltage
reading

blockage

ADC

(a) Without blockage (b) With blockage

Figure 4: Illustration of SNR difference measurement.

can see that irrespective of the content of the screen, we can
see through the cell and detect the displayed content.
Such transparency is obtained at the cost of losing some

opportunities to absorb energy from visible light. Next, we
study the effect of transparency on solar cell absorption ef-
ficiency. Within the visible light spectrum, i.e., wavelength
ranging from 370 nm to 740nm, Figure 3 compares the light
absorption rate of our transparent solar cell prototype against
a conventional ceramic-based opaque cell. It can be observed
that the opaque solar cell achieves nearly 100% absorption
efficiency over the entire wavelength range, while the trans-
parent cell absorbs only ∼30%.

The lower absorption of visible lightwould result inweaker
responsiveness to light change for the transparent solar cell
compared to a conventional opaque cell. To demonstrate
this, as shown in Figure 4, we utilize an analog-to-digital-
converter (ADC) to measure the solar cell outputs when
there is no blockage (refers toV1) and when we cast a shadow
over them (refers to V2). Then, we calculate the signal-to-
noise-ratio (SNR) differences between the blockage-free and
blocked scenarios as 20 log2(V1/V2) decibels. We find that
the transparent and the opaque cells exhibit SNR differences
of 21dB and 29dB, respectively, between the blocked and
blockage-free scenarios. The focus of our study is to ana-
lyze the effect of this significantly weaker responsiveness
to light change on the gesture recognition performance of
transparent solar cells.

3 PERFORMANCE EVALUATION
The proposed framework for realizing dual functionality of
both energy harvesting and gesture recognition using a trans-
parent solar cell on a mobile device screen is illustrated in
Figure 5. A mobile device integrated with a transparent solar
panel is able to harvest energy from ambient light at anytime,
where the harvested energy can be utilized as a power supply
to extend battery life. When the user gives a gesture input,
the generated photocurrent can also be acquired to identify
user command using typical machine learning pipeline and
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Figure 5: Proposed framework for realizing dual functionality of both energy harvesting and gesture recognition
using a transparent solar cell on a mobile device screen.
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Figure 6: (a) Circuit design for solar cell voltage data collection, (b) Experiment setup for opaque cell, and (c)
Experiment setup for transparent cell.

Table 1: Solar cell parameters.

Solar cell Material Current PCE1 AVT Sizedensity
Opaque Silicon 35mA/cm2 17% - 10*5cm

Transparent Organic 13.82mA/cm2 6.1% 35% 1*1cm
1 PCE refers to power conversion efficiency.

control the device, such as taking a picture or increasing
music volume.
Next, we evaluate gesture recognition accuracies of our

organic transparent solar cell and benchmark them against
those obtained from a conventional ceramic opaque cell.
Table 1 compares the parameters of these two solar cells. We
first present the experimental design for data collection, then
the methodology used for gesture recognition, and finally
the results and their analyses.

3.1 Experiment Design and Data
Collection

Figure 6(a) shows circuit design for data collection from
the solar cells. A 50 kΩ resistor is cascaded to the solar
cell to obtain the voltage across the resistor, which exhibits
the same pattern with the photoccurrent generated by the
solar cell. We implement the circuit design on an Arduino
Uno platform where an analog-to-digital converter (ADC)
samples the voltage at 500Hz and saves the data on a 4GB
microSD. The opaque cell can be readily connected to the
Arduino as shown in Figure 6(b). In contrast, the transparent
solar cell prototype must be accessed from the specialized
equipment as shown in Figure 6(c). For each solar cell, one
subject is invited to perform five different hand gestures, as
shown in Figure 7. Each gesture is repeated for a total of
100 times, but spread over two different sessions to avoid
fatigue. The data were collected inside the lab with two light
intensity levels, i.e., 500 lux for both opaque and transparent
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CloseOpen LeftRight Up UpDown WaveVertical

Figure 7: Illustrations of the 5 hand gestures conducted over the solar cells. CloseOpen refers to switching the
hand state between palm and fist. LeftRight, Up, and UpDown represent palm movement in different directions.
WaveVertical places the palm vertically over the solar cell and then swipes it.

Table 2: Features extracted for gesture recognition.

Feature Abbreviation Description
Mean MEAN the central value of a window of samples.
Standard deviation STD the square root of the variance.
Maximum MAX the maximum value in a window of samples.
Minimum MIN the minimum value in a window of samples.
Range RANGE the difference between the maximum and the minimum values in a window of samples.

Ti
m
e-
do

m
ai
n Inter Quartile Range IQR the difference between the upper (third) quartile and the lower (first) quartile of the window

of samples; also measures the dispersion of the signal samples over the window.
Absolute Mean AbsMean average of absolute values.
Coefficient of Varia-
tion

CV ratio of standard deviation and mean times 100; measure of signal dispersion.

Skewness SKEW measure of asymmetry of the probability distribution of the window of samples.
Kurtosis KURT measure of peakedness of the probability distribution of the window of samples.
Absolute Area AbsArea the area under the absolute values of the signal samples. It is the sum of absolute values of

the signal samples over the window.
Root Mean Square RMS the square root of the mean square of the samples over the window.
Mean Absolute Devi-
ation

MAD the average of the absolute deviations.

Quartiles:
1st Quartile Q1
2nd Quartile Q2 measures the overall distribution of the signal samples over the window.
3rd Quartile Q3

Fr
eq
ue
nc
y-
do

m
ai
n Frequency Domain

Maximum
FDMax the maximum value of the magnitude of FFT coefficients.

Frequency Domain
Mean

FDMean the mean value of the magnitude of FFT coefficients (power spectrum mean).

Dominant Frequency Dominant the frequency with maximum magnitude after FFT.
Dominant Frequency
Ratio

DomFreqRatio it is calculated as the ratio of highest magnitude FFT coefficient to sum of magnitude of all
FFT coefficients.

Frequency Domain
Energy

FDEnergy it is a measure of total energy in all frequencies. It is calculated as the sum of the squared
discrete FFT component magnitudes.

Frequency Domain
Entropy

FDEntropy it captures the inpurity in the measured data. It is calculated as the information entropy of
the normalized values of FFT coefficient magnitude.

solar cells and 2600 lux for the transparent solar cell only
(using a lamp to increase light strength).

3.2 Gesture Recognition Methodology
The collected data contains time series of voltage samples. We
use 1-sec windows with 50% overlap to split the time series

into individual gesture instances, where each instance con-
sists of 500 consecutive voltage samples. For each instance,
we extract a set of 22 typical statistical features [17] as shown
in Table 2. Therefore, each gesture instance is converted to
a corresponding feature vector of 22 elements. To ensure a
balanced dataset for unbiased training and classification, for
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Figure 8: Solar cell voltage output for different gestures. The 5-sec signal contains voltage data from the same
gesture repeated back-to-back. The gray area represents the gesture duration.

each gesture, we randomly select 250 feature vectors. This
process yields a dataset of 3 × 250 × 5 feature vectors.
The training and classification are completed using the

well-known machine learning platform called Weka [18].
We compare the performance of four well-known classifiers,
SVM, KNN, Decision Tree (DT), and Random Forest (RF). We
use the CVParameterSelection algorithm in Weka to tune the
classifier parameters for the maximum performance. For DT,
the confidence factor (C) and minimum number of instances
(M) are set to 35% and 2, respectively. For KNN, the number of
nearest neighbors is set to 10. For RF, the number of iterations
(I) is set to 100. For SVM, we choose the quadratic kernel
and configure the box constraint to 5. For each classifier, we
perform 10-fold cross-validation and present the average
recognition accuracy.

3.3 Gesture Recognition Results
Figure 8 shows the solar cell voltage output for different
gestures. As expected, the signal strength of the transparent
solar cell is severely diminished compared to conventional
opaque cell. This is a direct consequence of achieving trans-
parency, which must avoid absorbing visible lights. However,

despite the diminished voltage (energy) output, the trans-
parent solar cell is still capable of exhibiting distinguishing
temporal patterns for different gestures, which can be ex-
ploited for gesture recognition.
Table 3 presents the gesture recognition accuracy of the

two solar cells for different classifiers, under light intensity
of 500 lux. As expected, achieving transparency in the solar
cell trades off gesture recognition accuracy (due to lower
SNR change), which is reflected across all the classifiers. It is
however surprising to see that even with the transparent so-
lar cell with good visibility (see Figures 1 and 2 ), we can still
recognize hand gestures with 92-95% accuracy depending
on the classifier. We also notice that RF performs the best
for both solar cells.
Next, using RF, we examine the confusion matrix to in-

vestigate whether transparency makes it more difficult to
recognize some gestures than others. Figure 9 and Figure 10
compare the confusion matrix for the opaque solar cell and
the transparent solar cell, respectively. We find that for two
gestures, Up and WaveVertical, the transparent cell performs
almost as good as the opaque one while the other gestures
perform poorly. This finding highlights that, by properly
designing the gestures, transparent solar cells can be used as

Session: Internet of Wireless Things WiNTECH’18, November 2, 2018, New Delhi, India

84



99.2%

0.4%

0.0%

0.0%

0.4%

1.2%

97.6%

0.0%

0.0%

1.2%

0.0%

0.4%

99.2%

0.4%

0.0%

0.0%

0.4%

0.0%

99.6%

0.0%

0.0%

1.2%

0.0%

0.0%

98.8%

CloseOpen LeftRight Up UpDown WaveVertical

CloseOpen

LeftRight

Up

UpDown

WaveVertical

Figure 9: Confusion matrix of gesture recognition us-
ing the opaque cell for Random Forest classifier.

Table 3: Gesture Recognition Accuracy.

Classifier
Solar Cell Type

Opaque Transparent

KNN 96.80% 93.52%

Decision Tree 97.76% 92.48%

SVM 94.6% 92.3%

Random Forest 98.88% 94.96%

effectively as conventional opaque solar cells for ubiquitous
gesture recognition in future smart environments.

3.4 Impact of Light Intensity
To study the impact of light intensity on gesture recognition
accuracy, we collected data under two light intensity levels,
500 lux (corresponds to normal office environment) and 2600
lux (corresponds to a cloudy day). We find that the trans-
parent solar cell achieves accuracies of 94.96% and 94.52%
under 500 lux and 2600 lux, respectively. Since such accuracy
difference should be within the error margin, we can expect
transparent solar cells to accurately detect gestures under
typical light intensity levels.

3.5 Identifying the Most Informative
Features

The previous results are obtained by using all the 22 features
shown in Table 2. In this section, we investigate which of
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Figure 10: Confusionmatrix of gesture recognition us-
ing the transparent cell for Random Forest classifier.
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Figure 11: Information gain of the 22 extracted fea-
tures.

these 22 features are the most critical for solar cell based ges-
ture recognition. Figure 11 presents the ranked information
gain of the 22 features extracted from the gesture instances
of the transparent solar cell. We can observe that different
features indeed have varying importance for gesture recogni-
tion. For example, features ’MAX’ (the maximum value in a
gesture instance), ’MIN’ (the minimum value in a gesture in-
stance), and ’RANG’ (the difference between maximum value
and minimum value) exhibit significantly higher information
gain compared to the rest. Feartures such as ’CV’ (coefficient
of variation) and ’DomFreqRatio’ (the maximum spectral
component of the Fourier transform of the signal) seem use-
less for solar cells to identify the 5 hand gestures. Therefore,
based on the ranked information gain, we select the best
n(n = 1, 2, .., 22) features and obtain their corresponding
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Figure 12: Gesture recognition accuracy of the trans-
parent solar cell for RF as a function of the number
of features used from top of the ranked list based on
their information gains.

recognition accuracies, as presented in Figure 12. Indeed, we
can see that 90% recognition accuracy can be achieved by
using only three features, MAX, MIN, and RANG.

4 RELATEDWORK
We first review existing research in gesture recognition us-
ing various modalities. As solar panels are basically energy
harvesters, we also review the literature, which focuses on
novel uses of energy harvesters for sensing human actions.

4.1 Gesture Recognition
Gesture recognition has been extensively investigated us-
ing a wide range of sensors, such as depth camera [14, 19],
accelerometer [13, 20], RF transceiver [10, 21, 22], micro-
phone [11, 23], as well as photodiodes [12, 24–27]. Although
excellent gesture recognition accuracy is achieved using such
approaches, some limitations impair their practical use. For
example, vision based system usually incur heavy computa-
tion cost and encounter privacy concerns that arise from the
sensitive camera data [28, 29]. Furthermore, additional power
budget resulted from the use of sensors (e.g., accelerometer
and microphone) impedes its application especially in low-
power devices. In contrast, employing solar cells for gesture
recognition not only eliminates sensor-consumed energy
but also provides inexhaustible power supply to the IoT de-
vice. Since both solar cells and light sensor-based gesture
recognition rely on visible light, particularly, we next review
existing light sensor based works as they share the same
modality with solar cell based method, i.e., ambient light.
Exploiting the visible light for gesture recognition has

received many interests in recent years. A number of Visible
Light Sensing (VLS) based systems, such as StarLight [27],

LiSense [26], LiGest [24], and GestureLite [12], have been
proposed to either recognize hand gestures within a small
range or reconstruct the whole body posture in a room space.
The basic principle of these works is that the shadows of
different postures under light are distinct. To detect and track
the shadow, these systems deploy an array of photodiodes
(usually in dozens) on the floor. Some of them also require
multiple light sources and the control of the light (i.e., ceil-
ing LEDs) [25–27]. Using the shadow information, different
gestures can be recognized or a 3D skeleton posture can be
reconstructed in real-time.

The use of photodiodes, however, exhibits two drawbacks.
First, photodiodes require an external power supply, which
consumes hundreds of uW power. The power consumption
is much higher when dozens of photodiodes are used. Sec-
ond, photodiodes suffer the saturation issue [12, 26, 27], i.e.,
have a limited response range in terms of light intensity.
More specifically, under a bright environment, e.g., direct
sunlight, photodiode output is almost stable and no longer
reflects the surrounding light intensity. Different from the
photodiodes based systems, our work leverages the solar cell
as the light sensor to detect hand gestures, which naturally
eliminates the above-mentioned two limitations of photo-
diodes. Moreover, the original functionality of solar cells
definitely introduces extra benefit, i.e., harvesting energy
from the environment to supplement the system power.

4.2 Human Sensing using Energy
Harvesters

Although there are many types of energy harvesters, re-
searchers have mainly used kinetic and solar energy har-
vesters for detecting various human activities.

4.2.1 Kinetic Energy Harvesting based Sensing. Kinetic en-
ergy harvesters convert mechanical energy into electrical
current. By scavenging energy from wind, machine vibra-
tions, or human daily activities, existing works have demon-
strated the capability to extend battery lifetime of ubiquitous
electronic devices [30]. Most recently, many works have in-
vestigated the feasibility of using kinetic energy harvester
for energy-efficient context sensing. A wide range of appli-
cations, such as acoustic communication [31] and human-
centered sensing like activity recognition [32], human identi-
fication [33], transportation mode detection [34], and airflow
monitoring [35], have been studied and demonstrated.
The underlying idea is that energy signals from the en-

ergy harvester directly reflect the surrounding context. For
example, an insole embedded with a kinetic energy harvester
can generate energy from human steps [32]. By analyzing
the patterns of the energy signal, different activities such as
walking, jogging, and upstairs can be differentiated. Similarly,
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when putting a vibration energy harvester to the outlets of
the air conditioning system, speed of the airflow can be es-
timated based on the time and frequency domain features
extracted from the generated energy signal [35].

4.2.2 Solar Energy Harvesting based Sensing. Based on the
principle that solar cell current reflects the surrounding light
strength, sensing applications like indoor positioning [36],
course-grained localization [37], as well as gesture recogni-
tion [15], have been proposed by regarding the solar cell as
an alternative light sensor.
In [36], the authors presented the LuxTrace, a wearable

solar cell based indoor positioning system. In the prototype,
solar cells are attached to the shoulder of the user, which
not only harvest energy from the ambient indoor light, but
also detect the received light strength (RLS). By utilizing the
RLS, a trained model is exploited to estimate the relative
distance between the user’s location and the light sources.
In [37], SunSpot has been proposed to find the location of a
solar-powered home to a small region of interest, given the
energy harvesting information. The key insight is that every
location on Earth has a unique solar signature, like a unique
sunrise, sunset time. Thus, with the energy data from the
solar cell, the proposed system is able to infer a location’s
longitude and latitude separately, based on the sunlight map.
The most relevant work is [15], in which the authors uti-

lized an opaque solar cell to identify three hand gestures.
Our work differs from it in two aspects. First, we utilize the
transparent solar cell that has lower absorption rate in the
visible light band. How this characteristic will affect the ges-
ture recognition performance is unknown in prior. Second,
although the authors claimed that three gestures (Swipe, Two
Taps, and Four Taps) are differentiated, their system actually
works because the counts (i.e., the number of repetitions
of a basic gesture) of the gestures are different. Our work
demonstrated that fine-grained gestures can be identified
using the transparent solar cell.

5 CONCLUSION AND FUTUREWORK
We have conducted a world first experiment to study the
gesture recognition capability of transparent solar cells. Our
study has revealed several interesting findings. As expected,
achieving transparency in solar cells trades off their gesture
recognition capability in general. It is however surprising
that transparent solar cells with good visibility (35% AVT)
can still recognize hand gestures with 92-95% accuracy de-
pending on the classifier. It is even more surprising that with
proper designing of the gestures, transparent solar cells have
the capability to recognize hand gestures almost as good as
conventional opaque solar cells. Finally, transparent solar
cells can achieve these gesture recognition accuracies by
extracting only three simple features, the max, the min, and

the range of the solar cell voltage output. These findings sug-
gest that transparent solars cells could be potentially used
for gesture-based control of many solar-powered objects in
future smart environments.

This is a preliminary study to gain some basic understand-
ing of the gesture recognition capability of transparent solar
cells. Our plan for future work is as follows:

• As solar cells are deemed to be effective when the light
strength is strong, whether they can be utilized for gesture
recognition under extremely dark environment, such as
dim living room or cinema, should be investigated.

• Since the output current of the solar cell is sensitive to the
incident light strength, the movement of people nearby
or a sudden change of light intensity might introduce
interference to the gesture recognition process, which
should be quantified and analyzed.

• The prototype used in our study has an AVT of 35%. For
different application scenarios, the AVT values may vary.
Therefore, gesture recognition accuracy as a function of
AVT should be evaluated.

• In our current work, we usedmachine learning for gesture
recognition, which revealed that some gestures are harder
to recognize compared to others. In our previous work
involving WiFi-based gesture recognition (WiGest) [22],
we found that highly distinguishable gestures or family
of gestures could be constructed based on some primi-
tives, such as increasing signal strength, decreasing signal
strength and so on. It would be an interesting future work
to investigate the existence of similar primitives for the
solar cell output and use them to design highly accurate
gesture recognition algorithms. Such primitive-based ges-
ture recognition will also eliminate the need for training,
which will help ubiquitous adoption of such systems in
future smart environments.

• In contrast to opaque solar cells, transparent cells can
harvest energy from top layer as well as bottom layer.
Although we motivated the use of transparent solar cells
on the screens of mobile devices, we have not analyzed
the impact of backlight (i.e., screen brightness) on ges-
ture recognition. Further experiment should be conducted
once the cells can be integrated to smartphone screen.
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