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Abstract
A container vessel carries containers of various characteristics, in terms of size, 
weight, and contents. The cargo load of a container vessel, being subjected to a set 
of operational conditions and restrictions regarding ship stability and safety, is a fun-
damental element in decision-making when a shipping line provides logistics ser-
vices to clients. This study presents a constraint programming-based model for the 
capacity planning of a container vessel under various operational conditions. The 
proposed model generates base solutions and is complemented with a rich scenario-
based analysis that utilizes real-life ship data of a container vessel operated by a 
liner shipping company with a significant market presence. Solutions obtained from 
the model provide insights on containership capacity planning with differing settings 
and search strategies. Recommendations to container carriers, regarding improved 
capacity planning, are the highlights of the study.

Keywords  Capacity planning · Cargo-mix profiles · Stowage planning · Container 
vessels · Constraint programming

1  Introduction

The container shipping industry has exhibited a rapid growth trend in container vol-
umes for the past 30 years (UNCTAD 2020). To meet the growing demand for cargo 
transportation services, carriers are deploying larger container vessels. Their use 
allows carriers to enjoy scale economies, thus lowering their unit (slot) costs. (Merk 
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2018; Ge et al. 2019; UNCTAD 2020). As competition in the industry intensifies, it 
is pertinent for these carriers to seek additional ways to increase revenue while fur-
ther reducing cost (Glave et al. 2014). Perunovic and Vidic-Perunovic (2011) have 
previously suggested that carriers ought to re-examine their existing processes to 
lower operating costs via improved efficiency while providing better services to their 
clients. In its most basic form, revenue accrued from a shipping service along a route 
is closely correlated with the number of containers carried on a vessel over its entire 
voyage (Christensen and Pacino 2017; Helo et al. 2018). Since cargo load planning 
directly affects the profitability of a voyage, one promising avenue to increasing a 
carrier’s competitiveness is to strive for better load planning, so that more containers 
could be carried on the vessel (Wu 2014). A vessel capacity planning study facili-
tates selective deployment of vessels that will meet the capacity demand on a route 
consisting of specified ports to visit. This study also assists carriers to select the 
ports that are to be visited on an itinerary sailed by a said vessel. The assessment of 
vessel capacity provides invaluable information that helps the carrier to better utilize 
the twenty-foot equivalent unit (TEU) capacity of a vessel and maximize the poten-
tial revenue.

In container shipping, vessels are deployed in service networks according to a 
published schedule. Itineraries are characterized by port rotations where ships call at 
predetermined ports along fixed routes. Each port presents a unique cargo mix that 
varies in container size (i.e., 20 ft, 40 ft, high cube, etc.), weight, and type [general, 
reefer, dangerous goods, and out-of-gauge (OOG)]. For a given capacity, the ship 
operator has to decide how many of each container type to load at each port in order 
to maximize capacity utilization of the overall, round service. The placement of the 
loaded containers will pose another important deliberation as it affects the balance 
of the ship at sea. The right stowing pattern will also minimize the need for con-
tainer re-stows, increasing efficiency and reducing cost.

Our study begins with the construction of a capacity planning tool based on con-
straint programming (CP) for maximizing cargo load capacity of a container vessel. 
CP models are said to work well with problems that contain complex constraints 
of special structures, compared with existing optimization methods (Bockmayr and 
Hooker 2005). A carrier faces a predefined cargo mix specific to the trade routes that 
it undertakes. The model considers an array of parameters that characterize cargo 
weight and container size distributions. When dealing with the problem of vessel 
space utilization, the model takes into account both the soft and the hard constraints, 
such as physical stowing conditions, logical stacking rules, ship stability and stress, 
cargo mix1, and re-stows. Using the proposed planning tool, the carrier can vary the 
ratios of cargo type (i.e., 20 ft against 40 ft containers; normal cargo against special 
cargo such as reefers and OOGs) and configurations of container weight classes that 
are representative of their respective trade routes to achieve better cargo load perfor-
mances, such as smaller number of re-stows, higher space utilization (congruent to 

1  The cargo mix excludes dangerous cargo as demand for the transportation of dangerous cargoes occurs 
in an ad hoc manner, which cannot be predicted in advance. Such containers are handled on a case-by-
case basis.
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more load capacity), and lower proportion of cargo placed in slots that are outside 
of crane reach. Next, the IBM ILOG CP Optimizer is used to solve the CP model 
and evaluate two search strategies that contribute to the domain reductions and the 
constraint propagations in different aspects. Real industry data, including vessel and 
cargo profiles for specific trade routes, are obtained from a carrier with a significant 
market presence. The data are used to test run the model on the various settings 
related to container and cargo mix. An empirical analysis is conducted to examine 
how different combinations of factors may influence the cargo load capacity of a 
container vessel and minimize the number of empty slots, the number of re-stows, 
or the number of TEUs located in bays that are outside the predetermined working 
regions of quay cranes. Sensitivity analyses would allow a carrier to gain strategic 
insights in the configuration of cargo profiles via selective port visits to maximize 
the carrying capacity of a vessel. For itineraries that consist of a prespecified set of 
ports that must be called, the analysis on ship capacity allows the carrier to deploy 
best-suited vessels that meet the demands.

This study aims to make theoretical and practical contributions in the develop-
ment of capacity planning models and their applications. Increasing ship sizes, 
coupled with shrinking profit margins, pinpoints the importance of cargo selection 
decisions at ports along the sailing itinerary, and the efficient positioning of these 
cargoes on the vessel will boost the utilization of cargo load capacity in the overall 
voyage. The study extends the knowledge frontier by examining the potential use of 
a CP-based model approach to find promising solutions.

From a practical perspective, the construction of an efficient capacity planning 
model will help to automate the manual and tedious process of capacity planning 
that many shipping companies are facing. At present, there is no existing software 
package dedicated to estimating cargo load capacity, to the best of our knowledge. 
Several commercial packages such as StowMan (developed by NAVIS, https://​www.​
navis.​com/) and CASP (developed by Total Soft Bank, http://​www.​tsb.​co.​kr/​en/) are 
available for stowage planning. However, stowage planning for a ship needs to be 
specific to the ship profile for precise calculations of ship stability. This means that, 
whenever a container is positioned at a slot, the stowage planning package software 
should reflect the dynamics that mirror the stability conditions of the ship. Further-
more, stowage planning packages are concerned with how containers are stacked 
and stowed logically and safely onboard the vessel. While a ship’s cargo capacity 
is indicated on its tonnage certificate, the actual carrying capacity is affected by 
container slotting. Our study proposes a capacity planning tool that quantifies the 
amount of cargo that can be carried on a ship. By simplifying ship stability calcula-
tions, the model is generalized and made applicable to a range of container ships of 
different hull structures or size. The objective is to provide directives to ship man-
agement on capacity planning, rather than coming up with precise calculation of 
ship stability for container slot allocations for cargo operations on individual ships.

The rest of the paper is organized in the following fashion: Section “Literature 
review” presents a literature review in the related areas of capacity planning, cargo-
mix problems, and stowage planning. Section “Methodology” defines the problem 
and describes the modeling methodology. Section “Empirical case study” introduces 
the CP model. The “Conclusion” section presents a case study on capacity planning. 

https://www.navis.com/
https://www.navis.com/
http://www.tsb.co.kr/en/
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Through the case study, we illustrate the process of constructing and running a 
capacity planning model that seeks to maximize the cargo load capacity for a prede-
fined cargo-mix. The CP solutions and insights gained are then be used to identify a 
final solution of capacity planning. Section 6 summarizes the findings and concludes 
the study with suggestions for further research.

2 � Literature review

The cargo load capacity planning problem has become more complex following the 
emergence of bigger vessels with higher TEU capacities. As highlighted in Allianz 
Global Corporate & Specialty (2019), the growing vessel size gives rise to a grow-
ing need for operational research in this area of vessel usage optimization. While 
the revenue of shipping operations is positively associated with the amount of 
TEUs carried on each service, the efficiency of a cargo load capacity plan varies, 
with solutions pursued through different approaches and search algorithms. Cur-
rently, such approaches fall under three broad categories: combinatorial optimiza-
tion, mathematical programming, and constraint programming. A pioneering work 
is found in Wilson and Roach (1999) where the authors introduced combinatorial 
optimization as an approach to break down the optimization of the entire vessel into 
blocks in each bay. In their model, the branch-and-bound search technique was first 
used to assign slots to a block. A tabu search algorithm was subsequently run to 
assign containers to slots within individual blocks, which is a blocked cargo space. 
A block (or a blocked cargo space) refers to a set of slots belonging to a section of 
a single hatch lid. This blocked cargo space has the effect of reducing crane move-
ments and hatch-lid movements predicted during planning. This research approach 
has inspired researchers to adopt a model decomposition approach. Ting and Tzeng 
(2004) and Kos and Zenzerovic (2004) both approached the cargo load capacity 
optimization problem through mathematical programming. The models were similar 
in terms of selecting of parameters and constraints, but differed in their objective 
functions. Specifically, Ting and Tzeng (2004) focused on maximizing the number 
of TEUs allocated to an outbound ship, whereas Kos and Zenzerović (2004) maxi-
mized revenue while considering the different profit margins of the different cargo 
types. While the two studies presented mathematical models offering effective solu-
tions to optimize vessel utilization, both had unfortunately failed to incorporate sta-
bility and dangerous cargo class constraints into their models. Later, Delgado et al. 
(2012) proposed a CP approach that took most of vessel physical constraints into 
consideration. Their study adopted high-fidelity modeling, where the analysis is 
dedicated to ship profiles of interest. However, the authors neglected 45 ft containers 
and other cargo type constraints. Delgado et al., therefore, opened up many avenues 
of extension of the CP approach to take into account the aforementioned areas.

Closely related to the capacity planning problem is the cargo-mix problem that 
aims to find the cargo composition needed to maximize a vessel’s revenue or space 
utilization on a given service. In solving a cargo-mix problem, researchers (for 
examples, see Delgado 2013; Parreño 2016; Christensen et al. 2019) have bifurcated 
into deterministic optimization and stochastic optimization. As the term implies, 
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deterministic optimization is used when there is no uncertainty in the amount of 
cargo flows at each port pair. On the other hand, stochastic optimization is used 
when cargo flows are uncertain. Table 1 lists some of the most significant works in 
this area.

The stowage planning problem has a similar thrust to the cargo load capacity 
planning problem. The stowage planning problem aims to find the load configura-
tions that best match the cargo to be loaded at the current port and the specifications 
of the particular vessel, while also making sure that vessel capacity could be fully 
utilized in subsequent port calls of the itinerary. The purpose of stowage planning is 
to facilitate efficient discharging and loading operations at the ports while meeting 
the demand for cargo carrying capacity from one port to another and ensuring the 
navigational safety requirement of the ship (i.e., ship stability). Under the umbrella 
of stowage planning problems, researchers have examined the topic of block stow-
age involving the positioning of a set of cargoes into an area of the vessel and of 
the terminal (i.e., load sequencing from yard to vessel, focusing on stowing cargo 
on the vessel). Methodologies can be broadly classified as mathematical program-
ming, search-based heuristics, and rule-based heuristics (Table 2). Ambrosino et al. 
(2006, 2009) proposed a three-phase heuristic approach to construct a stowage plan. 
The first phase finds an optimal solution of subsets of bays related to independent 
portions of the ship; the second phase applies a binary linear programming model to 
optimally solve multiple (i.e., the number of destinations) single-destination stow-
age plans with limited ship stability conditions (i.e., a trial stowage plan), and the 
third phase aplpies a tabu-search-based heuristic to efficiently find an improved 
stowage plan based on the union of solutions of the second phase. The authors also 
developed a prototype system visualizing stowage plans. Prior to this, Delgado 
(2013) demonstrated the practicality of the proposed model for block stowage and 
cargo slotting by implementing it in a stowage planning package. Ambrosino and 
Sciomachen (2018) studied a stowage planning problem that focuses on hazardous 
containers. The authors categorize containers into nine classes according to inter-
national regulations and provide a rule-based heuristic to assign hazardous contain-
ers together with dry containers. Chou and Fang (2021) incorporated knowledge of 
domain experts to construct practical stowage plans from general stowage plans of 
a ship to meet the requirement of various ship stability measures (e.g., metacentric 
height, trim, heel, bending moment, etc.). Chao and Lin (2021) introduced class-
based master bay plans in which the proposed mathematical model has a structure 
of multicommodity network, with the objective of minimizing re-stows, allowing 
the allocation of ship slots to containers of different lengths. Recently, Larsen and 

Table 1   Cargo-mix problem

Deterministic optimization Stochastic optimization

Block stowage: positioning a 
set of cargo into a region of 
a vessel

Christensen and Pacino (2017) and Delgado 
(2013)

Christensen et al. (2019)

Cargo-slot assignment Parreño et al. (2016) and Delgado (2013) Christensen et al. (2019)
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Pacino (2021) published benchmark instances for stowage planning with practical 
data on vessels and ship stability measures to further promote the stowage planning 
research.

In summary, the stowage planning problem deals with the loading of cargo for the 
given load lists of the ports, whereas the cargo-mix problem concerns itself with the 
cargo load capacity for various cargo mixes. Nevertheless, the two problems have 
the same constraints for stowing cargo on a vessel. Helo et al. (2018) demonstrated 
the importance of fundamental components, such as cargo profiles (cargo mix) and 
cargo systems (vessel physical structure), in determining the cargo load capacity of 
a vessel and the necessity of considering such components in stowage planning.

3 � Methodology

This section introduces a set of practical conditions and requirements, exerting an 
impact on the cargo load capacity of a container vessel. Subsequently, a CP-based 
model is developed to determine the cargo load capacity taking into consideration 
the stacking restrictions of 20 ft and 40 ft containers, weight and height limits, reefer 
cargo positions, weight balance of the ship, etc. These requirements will be elabo-
rated on in the subsequent subsections.

3.1 � Problem definition

This study aims to address the inefficient use of load capacity in cargo vessels due 
to inferior cargo mix presented at selected loading ports.2 To do so, we will need to 
emulate the way an actual planner goes about drawing up a cargo loading plan that 
fulfills an array of objectives, such as maximizing cargo load, minimizing re-stows, 
etc., while taking into account all the conditions affecting cargo load capacity. These 
conditions can range from trade/route, physical stacking, logical stacking, vessel 
balance, and cargo type to re-stowing issues.

As part of the load planning process, the type of containers that should be placed 
in each of the individual slots of a ship must be determined. Clearly, this will depend 
on the cargo-mix profile of the specific trade route. As depicted in Fig. 1, the con-
tainer weight should be balanced for safety reasons. According to the Verified Gross 
Mass (VGM) guidelines3 of the International Maritime Organization (IMO), a con-
tainer will no longer be allowed to be loaded on vessels unless its VGM has been 
provided by the shipper to the ocean carrier, and/or port terminal representatives, 
prior to the load list cut-off date. The new guideline was adopted by the IMO to 
increase maritime safety and reduce the risks to cargo, containers, and all those 

2  By inferior cargo mix, we refer to cargo size and weight that do not optimize the capacity of the vessel.
3  VGM guidelines require the mandatory verification of the gross mass of packed containers to ensure 
the safety of ships, seafarers, and shore-side workers from any discrepancy between the declared gross 
mass and the actual gross mass of a packed container. We refer readers to https://​www.​imo.​org/​en/​
OurWo​rk/​Safety/​Pages/​Verif​icati​on-​of-​the-​gross-​mass.​aspx.

https://www.imo.org/en/OurWork/Safety/Pages/Verification-of-the-gross-mass.aspx
https://www.imo.org/en/OurWork/Safety/Pages/Verification-of-the-gross-mass.aspx
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involved in container transport throughout the supply chain. In addition, contain-
ers that need to be offloaded in an earlier port should be placed on top to minimize 
unnecessary and costly handling in the process known as re-stows. As a vessel has 
limited capacity, the carrier will have to decide on the number and type of contain-
ers to be loaded at each port of call, to maximize the carrying capacity and revenue 
of the voyage, subject to the structural design and safety characteristics of the ship.

3.2 � Modeling

A capacity planning CP model is formulated with the objective to maximize ves-
sel space utilization. Owing to the complexity of our constraints, the CP is chosen 
to address the issue of capacity utilization maximization, subject to the constraints 
of container stowing onboard. Constraints were divided into two main categories, 
namely hard constraints and soft constraints. Hard constraints relate to weight and 
height stacking restrictions, allocations to reefer slots, and lashing regulations that 
must be adhered to. Soft constraints, instead, relate to ship stability, with cargo 
weight balance included in the model. The implementation of the soft constraints 
is linked to the objective function, and they are taken into consideration during the 
solution search process of the problem (Pacino 2012; Delgado 2013; Delgado et al. 
2012; Parreño et al. 2016; Christensen and Pacino 2017; Christensen et al. 2019). 
Penalties for not meeting the soft constraints are laid out in the objectives and soft 
constraints, i.e., maximizing the use of slot space, minimizing the re-stows, mini-
mizing container stacking at predetermined “out of crane working range,” etc.; 
(subsection 3.3 describes the objectives and constraints in depth). In practice, there 
are other constraints such as shear force and torsion that should also be taken into 
account, in additional to the hard and soft constraints laid out in VGM guidelines. 

Fig. 1   Part of bay views of a container vessel
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The model applies the operational constraints instead of calculating the precise 
mechanical dynamics.

3.3 � CP model

This subsection describes the proposed CP model for the capacity planning problem.

3.3.1 � Notations

Parameters for container slots

i The index for ship bay, i ∈ I (refer to Fig. 2). I = Ibow ∪ Istern where Ibow ∩ Istern = � . Ibow is the 
set of ship bays belonging to the bow side of the ship and Istern is the set of ship bays belong-
ing to the stern side of the ship

j The index for tier, j ∈ J (refer to Fig. 2)
k The index for row, k ∈ K (refer to Fig. 2)
p The port of visiting, p ∈ P

slotijk The container slot identified by ship bay i  , tier j and row k

slot
(R)

ijk
The index for each container slot, which is reefer compatible, of ship bay i  , tier j and row k

h
p

ijk
The container height located at slotijk in port p

w
p

ijk
The weight class of the container located at slotijk in port p . It is represented by an integer 

number such as 1, 2,…, 6. where smaller number indicates a lighter container class
cnt The unique container identification (ID), cnt ∈ CNT

cnt(R) The unique container ID for reefers, cnt(R) ∈ CNT
(R)

stackik The stack identified by the two indexes of ship bay i  and row k
stack(CI)

r
The stack that is out of crane intensity region, r ∈ R

Fig. 2   Detailed view on bay, row, and tier numbering system (Sciomachen and Tanfani 2007)
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Parameters for container stacking

rep
(

stackik
)

The number of containers that need to be re-stowed at stackik in port p 
as determined by the count of the number of positive integers ( xod

ijk
 ) 

with the port d > p for every pair of slots at the stack (refer to Fig. 7)
cp
(

stack(CI)
r

)

The number of containers that need to be discharged at stack(CI)
r

 in port 
p as determined by the count of the number of positive integers ( xod

ijk
 ) 

with the port d = p at the stack (refer to Fig. 7)
limw

(

stackik
)

The weight limit of stackik
limh

(

stackik
)

The height limit of stackik
slt(cnt) The slot position ( slotijk ) where cnt is located. It can be slot(R)

ijk
 for cnt(R)

As can be seen in Fig. 2, the indexing convention for ship bays is dependent on the ship 
profiles. Although the numbering for above deck and below deck is separated, the num-
bering for tiers is only even numbers. The numbering for rows starts from inner of the 
ship bay to outer of the ship bay and progresses in a zig-zag fashion. The modeling in 
this study applies the same numbering styles.

3.3.2 � Decision variables

To devise a complete and optimized container loading plan, the decision variables are 
defined to represent each and every slot on the vessel, as shown in Fig. 2. Each decision 
variable in the solution is assigned a unique container ID, which is the container to be 
allocated to the specific container slot.

xod
ijk

The container ID assigned at ship bay i  , tier j , and row k , where its port of origin and port of desti-
nation are o and d , respectively. It is represented by a positive integer
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The objective function (1) is made up of three terms. The first term represents the 
number of empty TEU slots on the ship. Since the revenue derived from a shipping 
service is directly related to the number of TEUs carried on the vessel, minimization 
of the number of empty TEU slots will maximize profits from the shipping service. 
The second term relates to the number of re-stows. Re-stows occur when containers 
with planned discharge at the current port are located or stored below containers 
that are only scheduled to be discharged at a later port in the vessel’s itinerary. Such 
a situation leads to containers not scheduled for discharge at the current port being 
discharged as well in the process, and then reloaded back onto the vessel as a re-
stow. By minimizing the number of re-stows, the time needed for container vessels 
to remain berthed for cargo handling operations can be reduced. This helps to cut 
cost and increase profits of a shipping service. The third term in the objective func-
tion relates to the number of TEUs located in bays that are not covered by cranes, 
which depends on the crane intensity (CI) at the specific cargo handling operation.4 
The amount of time a ship remains at berth will be shorter with higher quay crane 
intensity, ceteris paribus. Since there is a minimum required distance between quay 
cranes (Low et al. 2011), there will be regions of bays that each quay crane generally 
covers and regions that are uncovered. Containers that are positioned at the uncov-
ered bays (i.e., out of the predetermined quay crane working region) give rise to 
inefficiencies when quay cranes are required to be redeployed or shifted to continue 
their work. As an illustration, the crane (or cranes) that are adjacent will need to 
be shifted to give space to the crane that is handling the containers. In addition, an 
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4  The quay crane intensity is an estimation of the number of cranes used to handle a vessel. It is calcu-
lated by dividing the total number of container moves by the number of moves the longest crane will 
perform (Pacino 2018).
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imbalanced distribution of container re-stows will also result in some quay cranes 
finishing their work ahead of other cranes. The under-optimized work distribution 
leads to time wastage and increased cost for shipping companies.

Constraints that are identified to be crucial are hard constraints (2)–(6), and they 
define boundaries that the model solution must meet. Soft constraints (7)–(10), on 
the other hand, are helpful in enhancing the effectiveness of the solution, but they 
are not mandatory. More specifically, constraint (2) shows the stacking requirements 
that each container must meet to be placed on top of another container. Since the 
index numbering for tiers is only represented in even numbers (Fig. 2), the consecu-
tive tiers are j − 2 and j instead of j − 1 and j . Constraint (3) is based on the stack 
restrictions that each stack of containers below and above deck must not exceed the 
defined limit (based on ship characteristics). Constraint (4) gives the stack height 
limits such that each and every column of the containers below and above deck must 
not be over the defined limit (based on ship structure). Constraint (5) imposes the 
condition that reefer cargo type must be placed at reefer points (mostly above deck). 
A reefer container cannot be located at a slot without an electric plug, but a general 
container could be possibly placed at a reefer slot if available. Constraint (6) is the 
lashing constraints that require containers stacked on top to be lighter than those 
under them. Horizontal balance constraint (7) ensures that the weights on the left 
and right of the ship are generally balanced so that the ship does not tilt to either 
side (Fig. 3). Indexes for rows (k) on the left of the ship are even, while rows ( k ) 
on the right of the ship are odd. The index number for rows increases from inner 
to outer of the ship bay in a zig-zag pattern. Front and back balance constraint (8) 
ensures that the weights in the front and back of the ship are generally balanced 
such that the weight will not affect the trim of the ship (Fig. 4). Bays on a ship are 
numbered sequentially from bow to stern. The other ship stability constraints are 
reflected in (9)–(10). Constraint (9) is imposed to ensure that the weight of all the 
cargo is spread out equally throughout the vessel and does not concentrate at a cer-
tain bay (Fig. 5). Constraint (10) ensures that the front and right (left) of the ship 
is generally balanced with the back and left (right) of the ship (Fig. 6). Constraints 
(7)–(10), corresponding to Figs.  3–6 respectively, conceptualize the ship stability 

Fig. 3   Illustrated descriptions of 
horizontal balance for constraint 
(7)
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measures such as metacentric height, trim, list, bending moment, shear force, and 
torsion (Pacino 2012; Delgado 2013; Delgado et al. 2012; Parreño et al. 2016).

4 � Empirical case study

With the world becoming progressively fast-paced, there is a need for loading plans 
to be generated more quickly to keep the shipping business profitable (Lee et  al. 
2014). Coupled with the increasingly competitive business environment, there is an 
urgent necessity for carriers to develop the capabilities to furnish load plans that 
are backed by mathematical computations to guarantee that profits are maximized 

Fig. 4   Illustrated descriptions of 
the front and back balance for 
constraint (8)

Fig. 5   Illustrated description of overall balance for constraint (9)
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(Glave et al. 2014). At present, the capacity planning is typically done using a man-
ual container positioning process with a computerized planning package, which gen-
erally takes hours to be completed. The resulting loading plan is highly subjective as 
it differs substantially among planners according to their judgment and experience. 
Considering that load planning is an extremely tedious process to be completed 
manually, it will be useful to devise a support tool to speed up the process of load 
planning and to ensure that vessel capacity is maximized.

The subsequent empirical case study looks into the contemporary issue of capac-
ity planning at a liner shipping company. The purpose is to achieve maximum vessel 
utilization via an optimized cargo intake while ensuring that navigational constraints 
are not breached in all of its shipping services. The data on vessel and cargo profiles 
for a specific trade route, obtained from a carrier with a significant market presence, 
help with understanding bay structures, checking stacking restrictions on ships, and 
generating cargo demand at ports.

4.1 � Design of experiment

The proposed model exemplifies a variety of scenarios by experimenting over a 
range of parameters characterizing the cargo profiles and examining how cargo load 
capacity will be affected when these parameter values are changed. The sample ship 
profile used in the experiment is a container ship registered and sailing under the 
flag of Singapore. The ship possesses a gross tonnage of 151,015 and deadweight of 
150,166. The length overall (LOA) is 368.5 m, and the beam is 51 m, along with 86 
bays and a container capacity of 13,892 TEUs. In the series of experiments run, a set 
of 12 ship bays, excluding (standard) middle portion ones but including bays with 
reefer points, was extracted from a ship profile of 86 bays.

Fig. 6   Illustrated description of overall balance for constraints (10)
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The basic setting of the experiment is as follows: The ship visits three ports to 
discharge and load containers where one to two quay cranes are randomly gener-
ated from a uniform distribution at each port. The ratio of the number of 20  ft 
containers to 40  ft containers is set to one to one, and the percentage of reefer 
containers among them is 10% with a uniform distribution. Each size of container 
falls into six weight classes (empty, light, medium, heavy, extra heavy, and dou-
ble extra heavy). We followed industry practices in defining weight classes. For 
the 20 ft containers, the weights of the empty, light, medium, heavy, extra heavy, 
and double extra heavy are less than 2.5 tons, between 2.5 and 8 tons, between 
8 and 16 tons, between 16 and 24 tons, between 24 and 31 tons, and between 31 
and 48 tons, respectively. For 40 ft containers, the corresponding weights of the 
empty, light, medium, heavy, extra heavy, and double extra heavy will be less 
than 4.5 tons, between 4.5 and 12 tons, between 12 and 18 tons, between 18 and 
24 tons, between 24 and 32 tons, and between 32 and 54 tons, respectively. Uni-
formly equal probabilities are applied at each weight class for generating contain-
ers. Since this experiment only uses a limited number of ship bays that can be 
covered by one to two quay cranes, it will not be meaningful to measure crane 
intensity.

In this series of experiments, factors that shipping companies can control 
based on their shipping plan are identified and adjusted to improve cargo load 
capacity for their specific trade routes. The performance outcomes are evaluated 
on two dimensions, namely the number of TEU capacity utilized and the number 
of TEU re-stowed. As explained earlier, the number of TEU capacity utilized is 
clearly an important criterion as it directly determines the revenue that can be 
earned on a voyage. The number of TEU re-stowed indicates the level of inef-
ficiency arising from unnecessary container movements. Figure 7 shows the way 
that the number of TEU re-stows are tabulated in this model. Suppose that the 
ship arrives at port 3 and the containers are stacked as in Fig. 7. The containers 
destined for port 3 should be discharged. In stack X, containers C21 and C31 need 
to be re-stowed to discharge container C41. After discharging container C41, the 
two containers are likely to be returned to the bay. In stack Y, the container C22 
is located in between the containers that are to be discharged at the current port 3. 
The container C22 is singled out for re-stow. The same applies to the stack Z. As 

Fig. 7   Counting of re-stows
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the destination of containers C13 and C23 is port 4, these containers also need to 
be re-stowed to allow the discharge of containers C33 and C43.

The last component of the objective function, i.e., the number of TEUs located 
in bays that are not covered by cranes, is excluded from the set of performance 
measures because we are considering a diminished ship profile for this set of experi-
ments. Hence, it would not be feasible to consider quay crane intensity in the form-
ing of regions covered by quay cranes.

Two different search strategies were applied in the proposed model: the depth-
first search strategy and the multipoint strategy5 (Russell and Norvig 2003). The 
proposed model is implemented in Java API of IBM ILOG CP Optimizer 12.8, and 
the experiments are run on a computer of 64-bit operating systems with central pro-
cessing unit (CPU) 1.6 GHz and 1.6 GB memory. Five runs are conducted for each 
experimental setting, and the average outcomes (i.e., performance measure) for ran-
domness of probabilistic parameters are recorded.

4.2 � Constraint programming solutions and discussion

4.2.1 � Configurations of container sizes

Different ship services and routes encounter different cargo profiles that vary in their 
distributions of container sizes. For instance, a shipping service from Asia to Europe 
generally has a higher percentage of 40 ft and OOG cargo compared with a shipping 
service from Asia to America. In this subsection, the effect of various ratios of 20 ft 
and 40 ft containers on the performance measures, namely the percentage of empty 
slots and the number of re-stows, is discussed.

As the percentage of 20 ft containers increases from 50% to 90% with a cor-
responding decrease in the percentage of 40 ft containers from 50% to 10%, the 
percentage of empty slots decreases under the two search strategies. The multi-
point search strategy reported a reduction in empty slots by an average of 0.18% 
for every 10% reduction of 40  ft containers, while with the depth-first search 
strategy empty slots decreased by an average of 0.19% under the same condition 
(Figs. 8 and 9). Comparing the search strategies, the multipoint search strategy 

5  The depth-first search strategy is a tree search algorithm such that each instantiation of a decision vari-
able can be thought of as a branch in a search tree. The optimizer works on the subtree of one branch 
until it has found a solution or has proven that there is no solution in that subtree. The optimizer will not 
move to work on another section of the tree until the current one has been fully explored. For compu-
tational efficiency, the termination criterion for the solution search process will be set to the maximum 
number of branches. The number of branches generating is limited to 100,000 for the two search strate-
gies. On the other hand, the multipoint search strategy creates a set of solutions using the search points 
and combines the solutions in the set to produce better solutions. The multipoint search strategy is typi-
cally known to be more diversified than depth-first, but it does not necessarily prove the optimality or the 
inexistence of a solution. This experiment utilizes 50 random search points. The rest of the settings for 
the two search strategies follow the default configurations of the IBM ILOG CP Optimizer (IBM Docu-
mentation 2016). It is typically known that the multipoint search strategy is more efficient, but the depth-
first search strategy provides better solutions. The experiment adopts the two search strategies as they 
could represent the effectiveness and efficiency of searching solutions (Russell and Norvig 2003).
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gives a percentage of empty slots that is 18.6% higher than that of the depth-first 
search strategy across the ratios of 40 ft containers considered in the experiment 
runs. 

The findings can be explained by the fact that the opportunity of filling up 
the empty slots is expected to decrease when the percentage of 40 ft containers 
increases. Given that every slot capacity can either accommodate two 20 ft con-
tainers or one 40 ft container, the chances that a single slot is going to be occu-
pied by only one 20 ft container instead of two 20 ft containers are higher when 
the percentage of 40 ft containers increases (or the percentage of 20 ft contain-
ers decreases). Once a single 20  ft container occupies a slot, a 40  ft container 
cannot be located above the 20 ft container. Vice versa, a higher percentage of 
20 ft containers relative to that of the 40 ft containers would contribute to higher 
cargo load capacity.

On the contrary, there is no noticeable trend on the number of re-stows vis-
à-vis the percentage breakdown between the two types of containers. This 
is because re-stows are more likely to occur as a result of the visiting ports 
sequence instead of the configurations of container sizes. Nevertheless, the 
depth-first search strategy is found to provide solutions that are significantly bet-
ter (i.e., 99.5% lower) compared with the multipoint search strategy if the per-
formance is measured by the number of re-stows.

Fig. 8   Percentage of empty slots (left) and the number of re-stows (right) under different configurations 
of container sizes—the multipoint search strategy

Fig. 9   Percentage of empty slots (left) and the number of re-stows (right) under different configurations 
of container sizes—the depth-first search strategy
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4.2.2 � Configurations of weight classes

Other than container sizes, weight distribution of cargo profile also differs among 
trade routes. This experiment proceeds to consider six weight classes for each size 
of container and examines the effect of the various distributions of weight classes on 
number of empty slots onboard and the number of re-stows required. To this end, a 
uniform distribution is employed. This assigns equal probabilities across all weight 
classes when containers are generated in the simulation experiments. Other gener-
ated weight classes are discretized and bounded between 1 and 6, with the smaller 
number indicating the lighter class. More specifically, “Gaussian (Light)” applies 
the normally distributed random probabilities with mean of 2.33, while “Gaussian 
(Medium)” and “Gaussian (Heavy)” are normally distributed with means of 3.5 and 
4.67, respectively. The standard deviations are taken to be 3 in all these “Gaussian” 
distributions. Note that the generated numbers are discretized by rounding them up 
to exactly correspond to the weight classes.

Having Gaussian weight distributions is helpful in reducing the percentage of 
empty slots under the depth-first search strategy. However, the same observation 
does not apply to the multipoint search strategy. Figure 11 shows a possible reduc-
tion in empty slots that is nearly 13% when taking the biased generation of con-
tainers in place of the equal probability-based generation on weight classes (even 
though the marginal reduction is rather insignificant at an average of 0.33%).

Fig. 10   Percentage of empty slots (left) and the number of re-stows (right) under configurations of con-
tainer weight classes—the multipoint search strategy

Fig. 11   Percentage of empty slots (left) and the number of re-stows (right) under different configurations 
of container weight classes—the depth-first search strategy
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On the other hand, the number of re-stows increases when the weight class 
is biased towards heavier containers under the multipoint search strategy, or 
towards a certain weight class under the depth-first search strategy (Fig.  10). 
Compared with the equal-probability-based generation, the biased generation 
of weight classes approximated by a Gaussian distribution produces a 44.3% 
increase in number of re-stows on average under the multipoint search strategy. 
Particularly, when a higher proportion of heavier weight class containers is gen-
erated, the number of re-stows increases by 8.2%. There will be higher chances 
of a larger number of re-stows when heavier containers are planned to be loaded 
onto the vessel as the proposed model stacks containers by considering not only 
the sequence of visiting ports but also weight classes. In relation to the latter, 
the lashing regulations require heavier containers to be placed below lighter 
ones. Meanwhile, the depth-first search strategy is able to provide solutions that 
have minimal or no re-stows (Fig. 11).

4.2.3 � Configurations of reefer containers

While reefer containers must be loaded in the reefer slots with electricity plugs 
that control the temperatures, the general containers can also be loaded in reefer 
slots if they are available. In the experiments that follow, the percentage of reefer 
containers among the generated containers will be varied between 0% and 40% to 
examine the effect of these proportions on the percentage of empty slots and the 
number of re-stows.

When the proportion of reefer containers increases from 0% to 30%, the per-
centage of empty slots and the number of re-stows decrease under both search 
strategies. The increased proportion of reefer containers is seen to exert a posi-
tive reduction of the solution space as the reefer slots are limited. Once the reefer 
slots are fully occupied, a search strategy will be left with the task of finding 
the positions for the remaining dry containers. Such segregation helps the search 
algorithms to find better solutions, thereby lowering the percentage of empty 
slots and the number of re-stows required at the same time. However, when the 
proportion of reefer containers becomes very high (i.e., 0.4 and above), reefer 
containers need to be randomly abandoned due to slot limitations. The multipoint 
search algorithm produces container position allocations that result in the number 
of empty slots increasing by 38.1% and the number of re-stows increasing by 1.64 
times on average (Fig. 12).

On the other hand, the depth-first search strategy is able to reduce the per-
centages of empty slots over the entire range of the percentage of reefer contain-
ers. However, the marginal reductions progressively decrease from 10% to 1% as 
the percentages of reefer containers increase (Fig. 13). Especially in the case of 
the number of re-stows, the depth-first search strategy provides noticeably bet-
ter solutions, compared with the multipoint search strategy. Congruent with the 
existing literature on algorithms, it is found that the depth-first search strategy 
is able to find better solutions than the multipoint search strategy even though it 
requires longer response time.
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5 � Conclusions

This study presents an initial stage of research on cargo load capacity planning with 
the ultimate goal of developing a load planning software. In the foreseeable future, 
the carrier involved in this study will further develop this cargo load capacity plan-
ning to devise a capacity sharing plan in a ship among its alliance members. The 
plan would allocate a certain percentage of the ship space to alliance members based 
on the carrier’s prior knowledge of the shipping network. For the route that (par-
tially) overlaps, the carrier can use some of the ship space to carry cargo on the 
overlapped part of the sailing itinerary. Even though the space allocation is prede-
termined, the space occupancy levels can still be flexibly adjusted during the opera-
tions. Apart from achieving a better distributed space allocation to alliance mem-
bers, a well-prepared cargo load capacity plan will potentially improve the efficiency 
of the shipping logistics business.

In its current form, the model proposed here provides a low-fidelity, but gen-
eralized, view of cargo load capacity without being tied down by the exact speci-
fications of the ship profile. For management purposes, these solutions are often 
sufficient for decision-makers who do not desire the technical details. Although 
the complete model was not used in this experiment, our cargo load capacity 
model offers realistic applications, and their solutions provide a good-enough 

Fig. 12   Percentage of empty slots (left) and the number of re-stows (right) under different configurations 
of reefer container quantity—the multipoint search strategy

Fig. 13   Percentage of empty slots (left) and the number of re-stows (right) under different configurations 
of reefer container quantity—the depth-first search strategy
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feel on the loading capacity helpful for fleet planning. It should be noted that, by 
excluding only the middle portion of the vessel, which is a standard portion, the 
main shape of the vessel is preserved in the experiment, despite the vessel profile 
being scaled down. Other main characteristics of the vessel profile, such as the 
number of slots in a tier, height and weight of a stack, stacks above (and below) 
deck, and slot types (general or reefers), are also duly considered in the experi-
ment. While the optimal solution search was limited to some extent, the study 
presents a local optimal solution with a significant number of possible solutions 
that can be evaluated to achieve the local optimal solution.

The base model, together with the experiments conducted, illustrates the 
importance of capacity planning and sets the groundwork for further research in 
this area. Prior to this study, a systematic and consistent comparison of different 
capacity planning decisions has not been possible, due to the strong element of 
subjectivity when loading plans are drawn up by different planners that elude a 
readily available common base of comparison.

In summary, results from the study show that higher percentage of 20 ft con-
tainers would contribute to higher cargo load capacity and fewer re-stows simul-
taneously. On the other hand, a weight-class biased distribution affects the two 
performance measures differently. While a Gaussian weight-class distribution 
is helpful in reducing the percentage of empty slots especially under the depth-
first search strategy, the number of re-stows also increases when the weight class 
is biased toward a certain weight class, or the heavier containers. We note that, 
while the industry trend is towards 40 ft containers, given that the effort to handle 
a 40 ft container appears to be quite similar to that of a 20 ft container, the actual 
cost of handling a 40  ft container is higher considering the larger numbers of 
empty slots and re-stows. This should be reflected in the pricing of the container 
handling charges. With regard to the container types, an increase in the propor-
tion of reefer containers is beneficial in lowering both the percentage of empty 
slots and the number of re-stows under the two search strategies if the proportion 
of reefers is below 30%. However, beyond that threshold, a higher percentage of 
reefer containers could induce random abandonment of these containers due to 
the space limitation, giving rise to a higher percentage of empty slots.

Being exploratory in nature, this study is admittedly not without its shortcom-
ings. The current model is implemented as a simplistic three-port problem that 
considers empty-slot rate, re-stows, and crane intensity violations. Only one ship 
profile was considered in the construction of the base model and the running of 
the experiments. Due to its complexity, the model presents solutions under a lim-
ited computational budget. The other shortcomings can be more easily addressed. 
Firstly, several constraints related to ship stability and stress, such as trim, bend-
ing moment, and shearing force, etc., influenced by a ship’s hull structures require 
detailed consideration of the entire vessel profile (Pacino 2012; Delgado 2013; 
Delgado et al. 2012; Parreño et al. 2016). As these are too complex to model by 
the CP Optimizer, the model in this study has formulated these constraints using 
a generalized formula. While such formulations may not be entirely reflective of 
the real-life restrictions computed by commercial stowage planning packages, 
these constraints could be overcome with integration with commercial packages 
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to allow for complex constraints to be accurately reflected in the solution search 
process.

Going forward, more work should be conducted to further improve the complete-
ness of the model and decrease the computational effort for industry practicality. 
One avenue in which the realism of the current model could be improved is by con-
sidering other industry practices such as the use of different types of vessels, lash-
ing requirements for specific vessel types, and the carrying of dangerous cargoes 
(in particular, to include constraints that account for dangerous cargo that must be 
stored away from other cargo, highly flammable goods that must be stored away 
from light, under deck, and away from sources of heat, etc.). Another avenue is to 
run more experiments using cargo profiles from other trade routes and other vessels 
of different hull structures. This would allow for a broader understanding of cargo 
load capacity planning in the global service network of an international carrier. To 
reduce the computational time and required runtime memory usage of the model, 
Gent et  al. (2006) have recommended the implementation of symmetry breaking 
and implied constraints in combinatorial CP models similar to those in this study. 
The design of constraints and the ordering of constraints together with the imple-
mentation of high-quality filtering algorithms could also be explored as possible 
approaches to improve the efficiency of the solution search process of the CP model 
(Régin 2004). Effectively, this should facilitate a reduction of the required search 
space during the run of the model and directly improve the efficiency of the model 
itself in finding the optimal solution.

The development of the capacity planning model will also allow running of 
experiments with different parameters that may have been impractical (if not, impos-
sible) in the past owing to a time-consuming and labor-intensive but subjective plan-
ning process. In the future, there is a possibility that emerging technologies (includ-
ing artificial intelligence and machine learning) may be applied to automatically 
generate or identify the ship profiles that are similar to a new ship or a new shipping 
network. Instead of optimizing cargo load capacity, an alternative approach could 
be to leverage on the planners’ experiences or identify stacking rules to predict the 
cargo load capacity along a new network.
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