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Abstract. This study examines the impact of coronavirus disease 2019 (COVID-19) test accuracy (i.e., 
sensitivity and specificity) on the progression of the pandemic under two scenarios of limited and unlimited 
test capacity. We extend the classic susceptible–exposed–infectious–recovered model to incorporate test 
accuracy and compare the progression of the pandemic under various sensitivities and specificities. We find 
that high-sensitivity tests effectively reduce the total number of infections only with sufficient testing capacity. 
Nevertheless, with limited test capacity and a relatively high cross-infection rate, the total number of infected 
cases may increase when sensitivity is above a certain threshold. Despite the potential for higher sensitivity 
tests to identify more infected individuals, more false positive cases occur, which wastes limited testing 
capacity, slowing down the detection of infected cases. Our findings reveal that improving test sensitivity alone 
does not always lead to effective pandemic control, indicating that policymakers should balance the trade-off 
between high sensitivity and high false positive rates when designing containment measures for infectious 
diseases, such as COVID-19, particularly when navigating limited test capacity.  
 
Keywords: COVID-19, test sensitivity, test specificity, infections 
 
Introduction 
Coronavirus disease 2019 (COVID-19) broke out 
in late2019 and spread globally within weeks with 
more than99.7 million confirmed cases and 2.1 
million deaths worldwide as of January 26, 2021. 
One of the major challenges of pandemic 
containment is effective and efficient detection of 
infected individuals. Currently, various tests are 
used to detect COVID-19, and the real-time reverse 
transcription–polymerase chain reaction (RT-PCR) 
assay is one of the most widely adopted (Sidiq et 
al.2020). As with all medical tests, test accuracy is 
a crucial determinant of effective COVID-
19detection (Winichakoon et al.2020). Two key 
measures of test accuracy, sensitivity and 
specificity, are defined by the probabilities of 
infected and noninfected individuals being 
correctly classified. Ideally, tests with both high 
sensitivity and specificity are preferred. However, 
sensitivity is typically inversely associated with 
specificity. That is, a high-sensitivity test may 
adversely lead to more noninfected individuals 
mis-classified as positive (i.e., false positives). By 
contrast, ahigh-specificity test can result in more 
infected individuals being undetected (i.e., false 
negatives). In the context of COVID-19, false 

negatives are highly undesirable as they lead to 
undetected cases. High-sensitivity tests are, thus, 
acclaimed as one of the approaches toward 
effective control of the pandemic. Since the 
outbreak of COVID-19, substantial efforts have 
been made to improve test sensitivity (Han et 
al.2020,Wyllie et al.2020). However, the downside 
of high sensitivity would be more false positives 
that cause unnecessary quarantine and contact 
tracing and result in a waste of limited public 
resources, preventing those in need from receiving 
essential healthcare services. Furthermore, false 
positive individuals are then exposed to cross-
infection risk in centralized quarantine facilities 
(Jing and Li2020, Kirk-Bayley et al. 2020, 
Wangetal.2020), leading to additional infections in 
healthy individuals. Unnecessary quarantine also 
causes psychological and economic burdens. 
Nonetheless, limited research is developed to 
understand and balance the trade-offs between 
sensitivity and specificity for disease control. The 
analysis of the trade-offs is further complicated by 
different characteristics of the disease at different 
stages of transmission, government control 
policies, and the availability of healthcare 
resources. 
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This study aims to examine the impact of COVID-19
test sensitivity and specificity on various outcomes (e.g.,
total detected cases and total infected patients) and trans-
mission patterns. We develop an epidemic model based
on the classic susceptible–exposed–infectious–recovered
(SEIR) model (Hethcote 2000) to capture underlying
transmission dynamics and estimate COVID-19 progres-
sion. Our results provide a thorough understanding and
important insights on the impact of test sensitivity and
specificity on infectious disease control, particularly when
societies gradually open upwith large-scale testing.

In the remainder of this paper, we first introduce the
study methods—in particular, the study materials and
our modified SEIR model as well as the parameters
estimation approach. In what follows, we show the
results on performance of the model and the impact of
test sensitivity under various scenarios. Finally, we
discuss the findings and provide our conclusions
regarding the implications of the findings of the study.

Research Methodology and SEIR Model
Our study is based on the progression of COVID-19 in
Singapore. Pandemic data were collected from the
daily case reports published by the Ministry of Health
(MOH), Singapore.

Background and Study Population
As the main transportation hub and one of the most
popular travel destinations in Southeast Asia, Singa-
pore identified more than 59,000 cases as of January 26,
2021. On February 17, 2020, Singapore implemented a
stay home notice (SHN) of 14 days for residents and
long-term pass holders returning to Singapore from
mainland China, which was extended to all world trav-
elers on March 21, 2020. Individuals were barred from
leaving their residences during the SHN and were
required to be tested before the end of the SHN. On
April 3, 2020, a nationwide partial blockade called cir-
cuit breaker (CB) was announced to curb the spread of
COVID-19 in Singapore, compelling the closure of non-
essential workplaces from April 7, 2020. On May 19,
2020, the Multi-Ministry Taskforce announced that Sin-
gapore would exit CB by June 1 and resume its activ-
ities safely following a three-phase plan—namely, safe
reopening (phase 1), safe transition (phase 2), and safe
nation (phase 3). The first phase began on June 2, 2020.
Economic activities that did not pose a high risk of
transmission were gradually reopened, whereas social,
economic, and recreational activities of higher risk
remained closed. The second stage began on June 19,
2020, allowing social gatherings of up to five people.
Phase 3 was initiated on December 28, 2020, after which
the limit on group size for the social gathering was
increased to eight.

In Singapore, infected cases are classified into three
groups: imported cases, migrant workers residing in
dormitories, and community cases. Imported cases
refer to infected individuals who enter Singapore
regardless of nationality. Given the entry policies
mentioned in the previous paragraph, most imported
cases did not affect local transmission. Migrant work-
ers live in purpose-built or factory-converted dormito-
ries that are located far from local residences and
rather isolated from the community. Thus, the trans-
mission pattern in this cohort differs from that of com-
munity cases. In addition, as dormitory cohorts are
predominantly young and have no major comorbid-
ities, their risk of serious complications and death is
lower than that of the general population (David
2020). By January 24, 2021, none of the 29 death cases
in Singapore are from dormitories. Hence, in this
paper, we specifically focus on analyzing the disease
transmission in the community in Singapore.

Data
The COVID-19–related statistics are publicly reported by
MOH on a daily basis, including the number of daily
detected cases and deaths. Because we only consider
community transmission, data from March 29, 2020
(whenMOH started to report dormitory and community
cases separately) to January 24, 2021, are included. Data
in the last two weeks are used for the out-of-sample test,
and the rest are used as the training data to estimate
model parameters. The projection error is characterized
by mean absolute percentage error (MAPE).

SEIR Model
We extend the classic SEIR model (Hethcote 2000) to
capture the impact of test sensitivity and specificity on
the evolution of the COVID-19 pandemic. Figure 1
presents the main structure of the proposed model.
The compartments in our model are listed as follows:

• Susceptible (S): The general populace that is suscep-
tible to the disease and has not been infected.

• Exposed (E): Individuals who are infected and
within the incubation period (asymptomatic).

• Infected (I): Individuals who are infected and have
developed symptoms.

• Recovered (R): Individuals who have recovered
from the disease, including those in the late stage of the
disease who are not infectious.

•Death (D): Individuals who died from the disease.
• Susceptible in test (ST)/Infected in test (IT): Suscepti-

ble/infected individuals who seek COVID-19 tests.
• Community quarantined (CQ)/Hospital quarantined

(HQ): Individuals who are infected and quarantined in
community/hospital units.

• False positive and quarantined (FPQ): Individuals
who are not infected but are identified as positive and
quarantined in the community.

Cheng et al.: Test Accuracy and Effective Control of the COVID-19 Pandemic
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The FPQ compartment is included to capture the neg-
ative effect of false positive test outcomes. We also intro-
duce two pseudocompartments, ST and IT, to capture
the effect of COVID-19 tests at different disease stages.
These components allow us to model all the possible out-
comes of the tests—namely, true negatives, false posi-
tives, true positives, and false negatives. The CQ and HQ
compartments are added to capture the paths of detected
patients. Before elaborating on the dynamics of the
model, we first discuss the assumptions of the model.

1. The entire population that has not been infected is
susceptible to the virus. Currently, there is no evidence
showing that any subgroup of people is immune to the
virus. This assumption is also made in other studies
modeling the pandemic (Giordano et al. 2020, Kuchar-
ski et al. 2020, Li et al. 2020, Zou et al. 2020).

2. All infected individuals are contagious, including
those who are in the incubation period. Various reports
confirm that patients in the incubation period can
transmit the virus to others (Liu et al. 2020a, Rothe et al.
2020). Hence, we consider both compartments E and I
as sources of transmission in our model.

3. It is well-recognized that some infected patients can
recover without any treatment (Das 2020, Xu et al. 2020).

4. Only patients admitted to hospitals may die
because of the infection. Patients with severe symp-
toms are quarantined in hospitals and receive suppor-
tive treatment. This assumption is consistent with the
circumstances in Singapore, wherein all deaths in com-
munity cases are from hospitalized cases. However, the
model can easily be extended to allow patients in other
compartments to move to the death compartment to fit
the situations in other countries or regions.

5. Recovered patients are immune to the virus. As of
the writing of this paper, there are very few reinfected
cases. This assumption is also commonly assumed in
the literature to avoid overfitting (Giordano et al. 2020,
Kucharski et al. 2020, Zou et al. 2020).

6. Patients who are mistakenly identified as having
COVID-19 infection are initially quarantined in the com-
munity. Because, in reality, such individuals are not
infected, they typically do not exhibit severe symptoms.
Given the scarcity of healthcare resources, theywould not
be quarantined in hospitals. Such policies are observed in
Singapore andmany other countries and regions.

7. Patients quarantined in the community would not
be transferred to hospitals. That is, infected patients
with mild symptoms do not develop severe deteriora-
tion. Recent research suggests that patients who develop
severe COVID-19 symptoms have a different interferon
response (Hadjadj et al. 2020, Lee and Shin 2020), which
is a component of innate immunity. Thus, mild infections
rarely deteriorate to severe cases. A similar assumption
is also made in the literature (Li et al. 2020).

The dynamics of our model are next discussed in
detail. The susceptible cohort can contact exposed and/
or infected individuals, thus becoming exposed. On the
other hand, susceptible individuals might develop
COVID-19–like symptoms and seek a COVID-19 test,
thus entering the ST compartment. Because the test is
not perfectly accurate, some non–COVID-19 cases
might be misidentified as infected (i.e., false positives)
and would subsequently be subject to community quar-
antine. To differentiate this cohort from true positives,
false positive individuals enter the FPQ compartment
instead of CQ. In quarantine facilities, false positive
cases can be infected from exposure to infected patients;
thus, some of them could become true infections and
might enter compartments CQ or HQ if their health
conditions deteriorate. The rest of the uninfected indi-
viduals who are correctly identified return to the sus-
ceptible compartment. Exposed individuals gradually
pass the incubation period and enter the infected com-
partment. A proportion of infected patients might seek
COVID-19 tests (compartment IT in Figure 1). Similarly,
they might be mistakenly identified as uninfected (i.e.,

Figure 1. (Color online) Flow Diagram
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false negatives) and, consequently, return to the com-
munity. True positives would be quarantined in either
community facilities or hospitals, depending on their
health conditions, thus entering compartments CQ or
HQ. All of the patients in CQ would gradually recover
following our assumption tailored to the Singapore
context. A proportion of HQ individuals with severe
conditions might die from the infection, whereas the
rest will eventually recover.

Table 1 summarizes the parameters in our model.
Particularly, two parameters vary with time t. The
parameter γ(t) measures the impact of the govern-
ment response to disease transmission. When the gov-
ernment implements intervention policies, such as
social distancing, the infection rate is controlled to a
lower level than the basic infection rate. When the epi-
demic is controlled at an acceptable level, the govern-
ment gradually lifts the imposed restrictions, and the
infection rate increases again. We model this factor as
an arctangent function along with an exponential cor-
rection introduced by Li et al. (2020):

γ(t) � 2
π
arctan − ra(t− ta)

20

[ ]
+ 1+mj exp −(t− tj)2

2σ2j

[ ]
,

where ra is the rate of action that measures the strength
of the governmental policies and ta captures the median
days of action. The last term of this equation models
the jump resulting from lifting restrictions, in which
mj represents the magnitude of the jump, tj indicates

the time of the peak, and σj controls the rate of the
resurgence.

We use pd(t) to characterize the mortality risk. Because
of the increasing test capacity over time, more mild
cases could be identified. Along with improved quality
of medical care, the mortality risk decreases over time.
We specify pd(t) as follows:

pd(t) � pd0
2
π
arctan − t · rdde

20

( )
+ 1

[ ]
,

where pd0 represents the initial mortality risk and rdde
captures the rate of decay in COVID-19–related mor-
tality risk. Note that the lower bound of the mortality
function is zero, indicating that the mortality risk
could decrease close to zero as better treatment and a
vaccine become available.

The system dynamics are characterized by the fol-
lowing differential equations:

dS(t)
dt

� rb 1−pci(t)[ ]
FPQ(t)−αγ(t)pi(t)S(t)− rtptspfp 1−pi(t)[ ]

S(t),
dE(t)
dt

�αγ(t)pi(t)S(t)− riE(t),
dI(t)
dt

� riE(t)− rtptiptpI(t)− rri(1−ptiptp)I(t),
dFPQ(t)

dt
� rtptspfp 1−pi(t)[ ]

S(t)−βpci(t)FPQ(t)− rb 1−pci(t)[ ]
FPQ(t),

dCQ(t)
dt

� βpci(t)(1−ph)FPQ(t)+ rtptiptp(1−ph)I(t)− rriCQ(t),
dHQ(t)

dt
� βpciphFPQ(t)+ rtptiptpphI(t)− rrh 1−pd(t)

[ ]
HQ(t)− rdpd(t)HQ(t),

dRt
dt

� rri(1−ptiptp)I(t)+ rriCQ(t)+ rrh 1−pd(t)
[ ]

HQ(t),
dD(t)
dt

� rdpd(t)HQ(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table 1. Model Parameters

Parameter Explanation Default value

α Basic infection rate
β Cross-infection rate in quarantine facilities
γ(t) Government response factor
pd(t) Mortality risk
pi(t) The probability that a susceptible individual contacts an infected patient
pci(t) The risk of cross-infection in community quarantine facilities
ra Rate of governmental action
ta Median days of governmental action
mj Magnitude of resurgence
tj Peak time of resurgence
σj Rate of resurgence
pd0 Initial mortality risk
rdde Rate of decay in mortality risk
rt Rate of test log2=2
rb Rate of false positive patients passing the test log2=(3=(1− pfp))
ri Rate of infections leaving incubation phrase log2=5
rri Rate of recovery out of hospital log2=10
rrh Rate of recovery in hospital log2=15
rd Rate of death
pfp False positive rate (1− specificity) 0.024
ptp True positive rate (sensitivity) 0.843
pts Proportion of individuals in S being tested
pti Proportion of symptomatic individuals in I being tested
ph Proportion of detected cases being quarantined in hospital 0.15

Cheng et al.: Test Accuracy and Effective Control of the COVID-19 Pandemic
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where

pci(t) � CQ(t)
FPQ(t)+CQ(t) ,

pi(t) �E(t)+ I(t)
N(t) ,

and

N(t) � S(t) + E(t) + I(t) + R(t):

Parameter Calibration and Estimation
We calibrate our model parameters using both the
data collected in Singapore and the following vali-
dated values from the literature:

• rt is defined as log2=Tt, where Tt is the median
duration of the test, and we set Tt � 2 days in accord-
ance with Li et al. (2020).

• ri is defined as log2=Ti, where Ti is the median
duration of the incubation phase, and we set Ti � 5
days in accordance with Lauer et al. (2020).

• rri is defined as log2=Tri, where Tri is the median
time of recovery without hospital care, and we set Tri �
10 days in accordance with Li et al. (2020).

• rrh is defined as log2=Trh, where Trh is the median
time of recovery in the hospital, and we set Trh � 15
days in accordance with Liu et al. (2020b) and Cao et al.
(2020).

• pfp and ptp were set as 0.024 and 0.843, following
the meta-analysis by Bastos et al. (2020).

•We set ph � 15% in accordance with Li et al. (2020).
Other parameters are estimated by minimizing the

following MAPE of daily detected cases and mortality
using the training data set:

l(u) � ∑T
t�1

wt[log (ÂCt + c) − log (ACt + c)]2

+ λ
∑T
t�1

wt[log (D̂t + c) − log (Dt + c)]2,

where ÂCt and ACt represent predicted and actual
cumulative detected cases, excluding deaths, respec-
tively. We use u to denote all the unknown parame-
ters we need to learn from data. We add a constant c
to ensure numerical stability, and wt is the weight on
the observation at time t. Because errors in recent
epochs have a more significant impact on future evo-
lution than errors in the early stage, wt is increasing in
t. In the work by Li et al. (2020), wt is set as t. How-
ever, for any linear weight function wt, the data at
early days would have little impact on the parameter
fitting when the time window is large as in our case.
Therefore, in our study, we set wt � log (t+ 1). We also
test the case that wt � t, and the results are consistent
with what we report in the paper. The parameter λ is
the weight of the deaths in the objective function.
Given the initial states, ÂCt and D̂t can be character-
ized as functions of the parameter u. Note that some
of the initial states, E0, I0,R0, are also unobservable.
They are included in the parameter set u. The estima-
tion problem is solved by the trust region method.

Projection Results and Impact Analysis
In this section, we first present the pandemic projec-
tion from our model as a validation of the proposed
model. We then conduct counterfactual analyses to
investigate the impact of COVID-19 test accuracy on
different outcomes by varying the two accuracy
parameters ptp and pfp.

Model Validation
The parameters are estimated using data from March
29, 2020, to January 10, 2021, containing 288 successive
observations. The data in the following two weeks
are used for the out-of-sample test. Figure 2 presents
the projected number of cumulative detected cases
and deaths in our model against the actual values. By
incorporating detected cases and deaths separately in
the objective function, our model exhibits a nice fit

Figure 2. (Color online) Projections of the ProposedModel in Singapore

Cheng et al.: Test Accuracy and Effective Control of the COVID-19 Pandemic
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with relatively small MAPEs. The in- and out-of-sam-
ple MAPEs are summarized in Table 2.

Impact of Test Sensitivity and Specificity
In the counterfactual analyses, we simulate the disease
progression using our model with previously estimated
parameters under varying levels of sensitivity and spe-
cificity. We consider two key outcomes: the total num-
bers of infected and detected cases. The number of
infected cases represents the scale of the pandemic. The
number of detected cases, including both true and false
positives, reflects the burden on public healthcare
resources as all the detected cases should be quaran-
tined. While containing the spread of the pandemic,
unnecessary waste should be reduced, and overutiliza-
tion of healthcare resources should be avoided, which
might also lead to negative outcomes and create bar-
riers for patients in need of healthcare resources.
Besides these two key factors, other outcome measure-
ments in specific scenarios are also monitored. For
example, we report the total number of hospitalization
days (i.e., the number of days that all hospitalized
patients stay in hospitals) to capture consumption of
hospital resources.

Varying Sensitivity and Specificity. There is a wide
range of reported values for sensitivity and specificity
of the RT-PCR test in the literature. We adopt the
commonly used method introduced by Littenberg
and Moses (1993) to characterize the inverse relation-
ship between sensitivity and specificity from reported
numbers:

Sensitivity � 1
1 + 1

eb=(1−a)· Specificity
1 − Specificity

( )(1+a)=(1−a) ,
where a and b are parameters associated with the test.
As shown by Littenberg and Moses (1993), the param-
eters can be estimated from empirical data via linear
regression. We use pairwise values of sensitivity and
specificity of the RT-PCR test summarized in (Bastos
et al. 2020) to learn a and b, which are estimated as a �
−0:15 and b � 4.18. Figure 3 shows the estimated sum-
mary receiver operating characteristic curve from
which we generate a set of sensitivity–specificity pairs
and investigate their impact on the pandemic.

Scenario with Unlimited Test Capacity. We first exam-
ine the impact of test sensitivity (and specificity) on
pandemic control and resource consumption in the
case of unlimited test capacity. We run our model simu-
lation from March 29, 2020, to January 24, 2021—302
days in total. Figure 4 presents the total numbers of
infected cases, detected cases, and detected infections
(true positives) with sensitivity varying from 0.5 to 0.99.

We observe that the total number of infected cases
decreases as sensitivity increases. Because a high-sensitivity
test detects more infected patients, subsequently, fewer

Table 2. MAPE of the Projections

Sample Detected cases Deaths

In sample, % 1.53 3.09
Out of sample, % 1.08 1.84
Total, % 1.51 3.03

Figure 3. (Color online) Receiver Operating Characteristic
Curve Fitted fromData

Note. The dots represent the actual data points reported in literature,
and the line is the fitted receiver operating characteristic curve.

Figure 4. (Color online) The Impact of Test Accuracy on
Total Cases

Notes. The solid line corresponds to the total number of detected
cases, the dashed line to the total number of truly infected cases, and
the dash-dot line to the total number of detected infections being
identified. The right y-axis represents the population prevalence cor-
responding to the left y-axis.

Cheng et al.: Test Accuracy and Effective Control of the COVID-19 Pandemic
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susceptible individuals are exposed to and infected by
the virus. The total number of hospitalizations and the
total number of deaths exhibit trends similar to those
of the total number of infected cases for the same rea-
son. These results are shown in Figures A.1 and A.2.
We also observe that the total number of detected
infections decreases as sensitivity increases. In this
case, although increasing sensitivity detects a larger
proportion of infected patients, the decreasing effect on
the number of infected cases dominates.

The total number of detected cases first decreases as
sensitivity increases. When sensitivity is higher than a
certain level (approximately 0.85), the total number of
detected cases begins to rise as sensitivity further
increases. As discussed in the previous paragraph, a
test with higher sensitivity can help control the spread
of the disease and reduce the total number of infections,

whereas higher sensitivity produces lower specificity,
resulting in additional false positive cases being quar-
antined. When sensitivity is too high (i.e., approxi-
mately 0.85), the increase in false positives dominates
the reduction in the number of infected cases, leading
to an increase in the number of the total detected cases.
This is further confirmed by the trends in the total
numbers of false positives and negatives under differ-
ent sensitivity levels in Figure 5. Increasing sensitivity
leads to more infected cases being detected (fewer false
negatives) and also more uninfected people being
quarantined (more false positives). The total number
of falsely identified cases results in a U-shaped curve
against sensitivity.

To investigate the impact of test accuracy on the
transmission pattern, we plot daily cases (e.g., daily
detected and infected cases) under different values of
sensitivity in Figure 6. Note that a second-wave trans-
mission began in early June, which corresponds to
phase 3 reopening in Singapore. As is discussed later,
different sensitivity levels exhibit different impacts on
the two waves.

In terms of daily infected cases (Figure 6(a)), a
high-sensitivity test effectively controls the disease
transmission in the first wave. With such early con-
tainment, the second wave is significantly mild. Nota-
bly, for daily detected cases (Figure 6(b)), the impact
of sensitivity on the two waves of disease spread dif-
fers. In the first wave, the number of daily detected
cases at the beginning of the pandemic is high with a
high-sensitivity test because of more individuals test-
ing positive. Although this results in high demand on
quarantine facilities in the first wave, most infected
patients are identified and quarantined, and the pan-
demic can be effectively controlled. However, as sen-
sitivity becomes too high (e.g., 0.99), the number of
daily detected cases in the second wave would
increase because of more false positives.

We further analyze the workload of quarantine and
hospital facilities under different levels of sensitivity.

Figure 5. (Color online) The Impact of Test Accuracy on
Total Errors

Note. The dashed line corresponds to the total number of false nega-
tives, the dash-dot line to the total number of false positives, and the
solid line to the total number of falsely identified cases.

Figure 6. (Color online) The Impact of Test Accuracy on Daily Cases
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Figure 7. (Color online) The Impact of Test Accuracy on Active Cases

Figure 8. (Color online) The Impact of Test Accuracy on the Pandemic Under a Test Capacity Constraint with a Daily Test
Capacity of 400
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Notably, increasing test sensitivity results in different
implications on the workloads of quarantine and hos-
pital facilities. In Figure 7, the workload of quarantine
facilities might substantially increase because of a large
number of false positives if the test sensitivity is too
high. In terms of daily active hospitalizations, sensitiv-
ity level does not affect much initially. However, after
reopening, lower sensitivity would generally result in
more active cases because of less effective containment
during the first wave, leading to increasing infected
cases and hospitalizations in the second wave.

Scenario with Limited Test Capacity. Our base model
assumes that enough test kits are available to handle
daily test demand. This is the case in Singapore, wherein
sufficient test kits are in place as of May 2020. However,
in most situations, particularly during the early stage of

the pandemic, testing capacity is limited. Hence, it is cru-
cial to analyze the transmission pattern under different
capacity constraints to provide broader implications. We
extend our model by imposing a daily test capacity con-
straint. If the number of individuals demanding a test
exceeds capacity, the excess demand is delayed to the
next day and so on. In this case, the quarantined cohort
also requires daily tests to enable healthcare workers to
decide whether an infected patient has recovered and
can be discharged from a quarantine facility. Those who
recover from the disease as well as those with false posi-
tive cases can be blocked in quarantine facilities if there
is no access to test kits. The test kits are assigned in
accordance with three policies: symptomatic priority
(SP), quarantined priority (QP), and uniform assignment
(UA). The SP policy prioritizes tests for symptomatic
patients (i.e., among patients in ST and IT compartments),

Figure 9. (Color online) The Impact of Test Accuracy on the Pandemic Under a Test Capacity Constraint with a Daily Test
Capacity of 600
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subsequently assigning the remaining capacity to quaran-
tined patients (i.e., patients in FPQ, CQ, and HQ compart-
ments). The QP policy inversely prioritizes test kits com-
pared with the SP policy. As a benchmark, the UA policy
allocates test kits to all demands with equal probability.
We examine the results under three levels of daily test
capacities: 400, 600, and 800. We simulate disease trans-
mission for a one-year period and stop the simulation
whenever the number of exposed and infected patients
falls to 10 or fewer. The main results are presented in Fig-
ures 8–10.

We find that, if test capacity is low, the impact of sen-
sitivity on the total number of infected cases is no longer
monotone under UA and QP policies (subfigures (b) in
Figures 8–10). When sensitivity exceeds 0.9, the number of
infected cases gradually increases as sensitivity increases.

This simulation study reveals that a high-sensitivity test
might lead to an inferior disease control under UA or QP
policies under limited test capacity. We also notice that,
under the SP policy, the number of infected cases remains
a decreasing trend, and this policy dominates the other
two in all the other metrics (subfigures (a), (c), and (d) in
Figures 8–10). Therefore, our results illustrate a promising
policy that government should consider adopting: using
high-sensitivity test kits and prioritizing individuals with
symptoms.

Scenario with a High Cross-Infection Rate. The cross-
infection rate estimated in our model is very small
(β � 0:001). Nonetheless, cross-infection is one of the
main concerns regarding the pandemic in other countries
(Gan et al. 2020, Zheng et al. 2020, Zhou et al. 2020).

Figure 10. (Color online) The Impact of Test Accuracy on the Pandemic Under a Test Capacity Constraint with a Daily Test
Capacity of 800
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Thus, we further investigate the impact of test sensitivity
with limited test capacity under a relatively higher cross-
infection rate. Particularly, we set the cross-infection rate
β � 0:1 and repeat the previous analysis.

As shown in Figure 11, we find that, even under the
SP policy, the total number of infected cases no longer
decreases as sensitivity increases. More healthy indi-
viduals are quarantined and cross-infected in the
quarantine facilities because of the high false positive
rate associated with high sensitivity. High sensitivity
coupled with a high cross-infection rate may fail to
control the pandemic, resulting in more infected cases.
Moreover, the SP policy does not dominate the UA
policy in terms of the total infected cases when test
sensitivity is extremely high (i.e., above 0.98). This is

due to delays in identifying and releasing false positives
from quarantine facilities, which leads to more cross-
infections. As shown in Figure 11, we also observe that a
sensitivity of approximately 0.85 is nearly optimal under
all three prioritized policies.

Conclusion and Discussion
COVID-19 tests have an essential role in the contain-
ment of the pandemic. A stream of research is devoted
to improving sensitivity (Han et al. 2020, Wyllie et al.
2020). However, there remains insufficient analysis
regarding whether higher test sensitivity could lead to
more effective and efficient control of the disease. The
impact of test sensitivity on the evolution of the pandemic

Figure 11. (Color online) The Impact of Test Accuracy on the Pandemic Under aMedium Test Capacity Constraint and a
Higher Cross-Infection Rate
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remains largely understudied. In this study, we investi-
gate the impact of sensitivity on the progression of the
pandemic, discovering that improving test sensitivity is
not always beneficial even in total infected cases when
quarantine facilities cannot effectively isolate
individuals.

We first develop a transmission model that captures
both test sensitivity and specificity. The dynamics of
false positive and negative cases are included in the
proposed model. The model parameters are estimated
using historical data from Singapore. Projection
results validate that the proposed model captures the
reality well. Based on the model, we conduct counter-
factual simulation analyses to examine the impact of
sensitivity in different scenarios.

Under the scenario of unlimited test capacity, the num-
ber of infected cases decreases as sensitivity increases.
This is intuitive as most infected patients can be identified
at the beginning of the pandemic, which could effec-
tively control the disease. Nevertheless, the number of
detected cases increases as sensitivity increases above
0.8. Particularly, it grows exponentially when sensitiv-
ity is beyond 0.9, whereas the number of infected cases
decreases marginally. Having such high test sensitivity
would cause unnecessary stress for the government to
quarantine a large number of detected cases, which
can potentially act as a barrier for infected patients’
accommodation in quarantine facilities.

We further examine the scenario of limited test
capacity. We consider three assignment policies: UA,
QP, and SP. Under UA and QP policies, the number of
infected cases no longer monotonically decreases as sen-
sitivity increases. Increasing sensitivity leads to lower
specificity, which implies more false positive cases that
sequentially require a large number of test kits for retest-
ing and confirmation. Such a large number of false posi-
tive cases can be a barrier to timely testing for those
who are truly infected, consequently causing more indi-
viduals to become infected. Under the SP policy, the
trade-off is not as straightforward. The SP policy could
potentially lead to more false positives with high sensi-
tivity by testing more symptomatic cases, whereas by
prioritizing test kits for symptomatic cases, infected
patients could be detected with shortened testing delay.
In the Singapore context, with an extremely low cross-
infection rate, the benefit of timely testing for sympto-
matic cases dominates the drawback of increased false
positives. Thus, the results under the SP policy are con-
sistent with the unlimited test capacity scenario: increas-
ing sensitivity helps control the pandemic by reducing
the number of infected cases. Our findings suggest that
policymakers should consider assigning the highest pri-
ority of testing for symptomatic individuals.

The results under the scenarios with a high cross-
infection rate confirm our previous analysis. When the
cross-infection rate becomes relatively higher, which

could be the case in countries or regions with inad-
equate resources, the number of infected cases also
exhibit a U-shaped relationship with sensitivity under
the SP policy. The negative impact of increasing false
positives gradually dominates the benefit of timely
detection owing to more cross-infections in quarantine
facilities crowded with both false and true positive
cases. In this case, further increasing sensitivity leads
to ineffective control of the pandemic. Our results sug-
gest that a median level of sensitivity (i.e., 0.8–0.85),
coupled with SP policy, can effectively and efficiently
help control the disease spread.

It is worth highlighting several inherent limitations
of the SEIR model and their implications on our
results. First, the SEIR framework assumes a homoge-
neous population. Therefore, the parameter values we
used or estimated in the model represent the popula-
tion average. It might not be able to capture the heter-
ogeneous factors, such as population-specific infection
rates. Therefore, the results and insights in our paper
are relevant to the population-based public policy
design and may not be applicable to derive insights
for specific subgroups. To address this limitation, we
can extend the SEIR framework to a multilayer SEIR
compartmental model in which each layer of SEIR
compartments corresponds to one subgroup. Links can
be present across multiple layers to capture the interac-
tions among different subgroups. Despite its advantage
in capturing heterogeneous factors, it leads to a com-
plex model that requires more parameters to be esti-
mated. The model potentially suffers from overfitting
or identifiability issues. Similarly, it is also assumed
that the individual contact is spatially homogeneous;
that is, each individual can contact one another with an
equal probability. In the context of Singapore, being a
city-state with a dense population, this assumption
could be well-justified. One might also adopt the multi-
layer SEIR compartmental model if the spatial hetero-
geneity is significant and partition the population into
subgroups by different contact rates. Second, the SEIR
model assumes a closed population. Given that our
current analysis focuses on community cases and the
data used in this study cover Singapore’s lockdown
period, there is little impact from migration because of
limited interaction between the local population and
foreign visitors. Nevertheless, one should be careful
applying the SEIR model and extend it to capture the
interaction with external populations when the coun-
tries gradually open up. Third, our current approach
models the country-wide time-varying features, such
as the dynamics of government policy and the progres-
sion of mortality risk at the population level. We do
not incorporate individual-level time-varying factors,
such as the infectivity profiles. This limitation can be
addressed by adding more compartments that trace
more granular partitions of individuals at different
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states of infectivity. However, such an extension would
also lead to a complex model with a large number of
parameters to estimate. Fourth, our paper studies the
containment of COVID-19 during the early stage, dur-
ing which new variants were not observed. One can
further extend our model to capture new variants if
corresponding data are more available. The idea of
multilayer SEIR can be adopted to model the presence
of more than one variant with each layer being a sub-
SEIR model corresponding to one variant. By construct-
ing the interlinks among different layers, one can model
more involved cases, such as a recovered individual
from one variant being infected by another. Fifth,
because of viral shedding, infected individuals may still
test positive, but they are not infectious (He et al. 2020,
Young et al. 2020). In this paper, we focus on analyzing
the impact of test accuracy on pandemic control in the
early stage, when there are insufficient test kits to sup-
port large-scale testing. Most individuals who initiate a
test would have developed some COVID-19 symptoms
and are largely infectious. Therefore, the false positives
we estimate from our data are mostly a result of test
accuracy, not viral shedding. In addition, for those indi-
viduals that are not infectious in the later stage of the
disease, including both detected and undetected cases,
we capture them in the recovered compartment. The
recovered compartment is an absorbing state of the
model, and individuals in this compartment are not
subject to testing. Therefore, ignoring viral shedding for
these individuals may potentially underestimate the
demand for community quarantine because, in practice,
individuals in the recovered compartment may test
positive and be required to quarantine in the commun-
ity (as they are asymptomatic). With more knowledge
on the virus transmission and more technologies to

confirm whether individuals are infectious, we can
reduce such community quarantine cases. The model
can also be extended to capture additional testing to
confirm the transmissibility of individuals. Finally, the
parameters in the SEIR model are point estimates,
which do not account for potential uncertainty in the
parameters. As pointed out by Tolles and Luong (2020),
one can use more complicated estimation methods that
use distributions for each parameter instead of a point
estimate (i.e., Bayesian SEIR model in De Oliveira et al.
2020, Lai et al. 2021) to tackle this issue. However, this
is beyond the scope of the current paper, and we leave
it to future research.

Appendix. Additional Figures

Figure A.1. (Color online) The Impact of Test Accuracy on
Total Cases

Figure A.2. (Color online) The Impact of Test Accuracy on Daily Cases (Continued)
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