
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2023

T-counter: Trustworthy and efficient CPU resource measurement T-counter: Trustworthy and efficient CPU resource measurement

using SGX in the cloud using SGX in the cloud

Chuntao DONG
Peking University

Qingni SHEN
Peking University

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Daoqing YU
Peking University

Wu LUO
Peking University

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
DONG, Chuntao; SHEN, Qingni; DING, Xuhua; YU, Daoqing; LUO, Wu; WU, Pengfei; and WU, Zhonghai. T-
counter: Trustworthy and efficient CPU resource measurement using SGX in the cloud. (2023). IEEE
Transactions on Dependable and Secure Computing. 20, (1), 867-885.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6968

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Chuntao DONG, Qingni SHEN, Xuhua DING, Daoqing YU, Wu LUO, Pengfei WU, and Zhonghai WU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6968

https://ink.library.smu.edu.sg/sis_research/6968

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

T-Counter: Trustworthy and Efficient CPU
Resource Measurement using SGX in the Cloud

Chuntao Dong, Qingni Shen, Xuhua Ding, Daoqing Yu, Wu Luo, Pengfei Wu, and Zhonghai Wu

Abstract—As cloud services have become popular, and their adoption is growing, consumers are becoming more concerned about
the cost of cloud services. Cloud Service Providers (CSPs) generally use a pay-per-use billing scheme in the cloud services model:
consumers use resources as they needed and are billed for their resource usage. However, CSPs are untrusted and privileged; they
have full control of the entire operating system (OS) and may tamper with bills to cheat consumers. So, how to provide a trusted
solution that can keep track of and verify the consumers’ resource usage has been a challenging problem. In this paper, we propose a
T-Counter framework based on Intel SGX. The T-Counter allows applications to construct a trusted solution to measure its CPU usage
by itself in cloud computing. These constructed applications are instrumented with counters in basic blocks and added three
components in trusted parts to count instructions and defend against malicious CSPs’ manipulations. We propose two algorithms
which selectively instrument counters in the CFG. T-Counter is implemented as an extension of the LLVM framework and integrated
with the SGX SDK. Theoretical analyses and evaluations show that T-Counter can effectively measure CPU usage and defend against
malicious CSPs’ manipulations.

Index Terms—Resource Measurement, Instruction Accounting, SGX, Cloud Services, Control Flow Graph (CFG)

F

1 INTRODUCTION

C LOUD computing adoption continues to overgrow
nowadays. Cloud Services Providers, such as Amazon

Web Service [1], Google Cloud [2], and Microsoft Azure
[3], have become popular. CSPs generally use a pay-per-use
billing scheme in the pay-as-you-go pricing model [4] [5] [6]
[7]: consumers use resources as needed and are billed for
their resources usage by the end of an agreed-upon period,
and consumers only need to pay for resource charges based
on used services (memory, CPU and bandwidth, etc.). From
the perspective of economic benefits, consumers do not
have to maintain dedicated infrastructure. They can save
a lot of equipment maintenance costs, and only need to pay
according to resource usage. Cost is a significant driver for
most consumers to adopt cloud services. As cloud adoption
grows, organizations and consumers focus on governing
charges for cloud services.

However, the CSPs could be adversarial and untrusted
from the perspective of consumers. They can not verify
the bills provided by CSPs. CSPs have the motivation to
make a false report to get more benefits, usually with an
exaggerated service time, resulting in more payment from
consumers. Even these CSPs adopting the pricing model
for their Service Level Agreements (SLAs) can not prove

• C. Dong, Q. Shen, D. Yu, and Z. Wu are with School of Soft-
ware and Microelectronics, Peking University, Beijing 102600, China.
E-mail: chuntaodong@pku.edu.cn, qingnishen@ss.pku.edu.cn, yudao-
qing@pku.edu.cn, wuzh@ss.pku.edu.cn

• X Ding is with School of Information Systems, Singapore Management
University, Singapore 188065. E-mail: xhding@smu.edu.sg

• W Luo is with School of Electronics Engineering and Computer Science,
Peking University, Beijing 102600, China. E-mail: lwyeluo@pku.edu.cn

• P. Wu is with School of Computing, National University of Singapore,
Singapore 117417. E-mail: pfwu@nus.edu.sg

• Z. Wu is also with National Engineering Research Center for Software
Engineering, Peking University, Beijing 100084, China

• Q. Shen is corresponding author.

that they have never cheated consumers on the bills as the
bills lack detailed records of resource usage. In this case,
the consumers may want to require the service usage logs
to verify the billed charges by checking the total service
time, and the number of running software or platforms,
etc. But all these behaviors of billing are under the control
of these CSPs. We consider a privileged attacker who may
tamper with the service time or resource usage logs to cheat
consumers on the bills. Besides, the billing systems of CSPs
may provide wrong bills due to system bugs or attacks.
Jellinek et al. show that cloud billing systems have bugs
that cause over-charging or free CPU time for consumers in
their study [8]. So, providing a trusted manner to keep track
of and verify the consumers’ cloud service usage is critical
for CSPs and consumers.

There have been several attempts to construct trustwor-
thy solutions that measure CPU resource usage, but they
have severe limitations. For example, THEMIS [9] uses a
cloud notary authority to oversee resource usage. ALIBI
[10] uses a trusted observer at the highest privilege level
underneath the providers’ platform software to account
for resource usage of customer instances. VeriCount [11]
can measure resource usage of programs running in SGX
enclaves. It instruments ecalls to read and store the starting
time using the SGX trusted time function provided by the
SGX SDK [12]. However, Vericount’s mechanism for mea-
suring computation time could be arbitrarily inflated by an
adversarial CSP by manipulating the system’s clock. Fritz
et al. proposed S-FaaS [13], a set of resource measurement
mechanisms that securely measure computation time based
on a trusted clock [14] [15] inside an enclave. But, S-FaaS
can only measure CPU usage of the applications running
in the enclave, does not support measure applications that
are running outside of the enclave. These efforts do not
implement trusted resource measurement perfectly.

ppyeo
Typewritten Text
Published in IEEE Transactions on Dependable and Secure Comuting, 2022, DOI: 10.1109/TDSC.2022.3145814

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

(a) Current approach (b) Observer approach (c) Self-Measurement approach (d) T-Counter

Fig. 1: Four approaches: a) Current approach, b) Observer approach, c) Self-measurement approach, and d) T-Counter.

These solutions need to rely on cloud server (see Fig
1a), a third party [9], the privilege level software [10] (see
Fig 1b), or untrusted system services [11] (see Fig 1c), they
solve the problem of trusted accounting with threefold or in
limited scenarios. For example, VeriCount [11] still needs to
rely on the system service (system clock), not strictly self-
measurement, see Fig. 1c. Besides, these self-measurement
solutions [11] [13] that are based on trusted technology (e.g.,
SGX) have many limitations; we summarize as follows. (1)
Security requirements. Not all applications have strong secu-
rity requirements. Many measured applications only have
weak security requirements and do not need to use SGX
originally. Therefore, it is not reasonable to run whole ap-
plications in the enclave just for measuring resource usage.
(2) Performance overhead. A pivotal obstacle to building self-
measurement solutions is performance overhead. The whole
application running in the enclave will increase enclave
memory access and lead to frequent ecalls/ocalls. Enclave
memory access will bring high-performance overhead [16],
and frequent ecalls/ocalls also carry unacceptable overhead
[17]. (3)TCB Size. Legacy applications entirety run inside
enclaves will results in a large trusted computing base (TCB)
[18] [19]. A big TCB will not only bring high-performance
overhead but also cause the application in the enclave to face
more security risks [20] [21]. (4) Application modification. The
self-measurement solution needs to rewrite the applications
to SGX applications and added measurement codes; this re-
quires consumers to have relevant development experience.

Because the current self-measurement schemes have the
above limitations, we want to build: a self-measurement
solution that measures an application’s CPU usage by itself and
not relays on system services, even if the application runs outside
the enclave . We also use the SGX enclave to ensure the confi-
dentiality of the measurement result and defend against the
adversary to tamper with accounting result by manipulating
the value or control flow graph of the application. Our
solution uses ecalls and switchless calls provided by SGX
SDK [12] to realize efficient instruction counting. The advent
of the Intel SGX enclave for shielded execution has become
popular. We assume that the untrusted cloud is willing to
provide an SGX enclave to consumers.

1.1 Our Contributions

In this paper, we seek to address the above challenges by
proposing a framework for building a trusted CPU usage

measurement solution, named T-Counter, which can mea-
sure CPU usage verifiably and efficiently by an application
itself in an untrusted cloud, as shown in Fig 1d. Our pro-
posal measures the CPU usage of a program by accounting
instructions that have been executed. We design a trusted
counter in the trusted space (enclave) to count instructions,
and instrument some counters (CALL instructions) at the
basic block level in the program to call the trusted counter to
record counters and count instructions. The main contribu-
tions of the paper are summarized as follows.
• Universal Solution to Trusted CPU Usage Measurement:

We propose a universal CPU usage solution, the T-Counter
framework, which can measure the CPU usage of a program
running outside the enclave in a manner that can be trusted
and verified by consumers. To address the above four chal-
lenges, we correspondingly adopt the following designs. (1)
The T-Counter architecture is that the program runs outside
the enclave, and the trusted counter runs in the enclave
(in Section 3.3). The trusted counter running in the enclave
[22] is to against the adversary to tamper with the account
result. The counter-value table stores the counters’ value,
and the counter-sequences table stores the sequences of
counters (in the paths of the CFG) in the enclave against the
adversary’s tamper (in Section 5.2). (2) To achieve the best
performance, we reduce the number of ecalls as much as
possible by selectively instrumenting counters in the CFG,
avoid context switch by using switchless call (in Section
7.2), and optimize loops using hotspot strategy (in Section
4.3). (3) The application runs outside the enclave, and only
trusted components such as the trusted counter run in the
enclave. The design makes the TCB minimized. (4) With
T-Counter’s help, users can easily instrument counters in
their programs with minimal modification and build the
measurement code in the enclave automatically.
• Selective and Optimal Instrumentation for Low Overhead:

Based on T-Counter’s designed architecture, a key obstacle
is how to instrument counters in as few blocks as possible
and achieve instruction counting. Instrumenting counters in
every basic block will cause high-performance overhead. We
need to selectively instrument a subset of all basic blocks in
the CFG and instrument counters in selected basic blocks
to account for instructions. We define five types of basic
blocks in the CFG and analyze that only two types of
basic blocks need to be instrumented counters, then design
two algorithms of instrumenting counters in the CFG (in
Section 4)). According to our analysis, we design a Base-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Instrumentation algorithm that instrument counters in two
type of basic blocks: exit blocks and multi-links predessors,
named Base-Ins (in Section 4.1). Based on Base-Ins, we
propose an Optimization-Instrumentation algorithm that
instrument less counter by analyzing and comparing the
weights of paths, and further reduce counters via counter
optimization strategy, named Opti-Ins (in Section 4.2). In
addition to the two algorithms, we also proposed a series
of optimization strategies to optimize our solution further.
Such as (1) using switchless calls to reduce SGX context
switch, (2) moving counters out of loops, and (3) randomly
ecalls at a hotspot (in Section 4.3).
• Theoretical analysis of T-Counter: Based on the designed

architecture, components, and algorithms of T-Counter, we
conduct theoretical analysis on the algorithm correctness,
security property, performance overhead and accuracy of
T-Counter (in Section 6)). We show that (1) the counters
are instrumented in the CFG correctly, and the values of
these counters are calculated accurately in theoretical; (2)
the trusted counter and verifier can defend against attacks to
counters and ensure the integrity of the instructions count-
ing; (3) the hotspot scheme can achieve the lowest latency
and overhead in theoretical, measurement code constructed
by T-Counter bounds the latency and overhead.
• Implementation and Evaluation of T-Counter: Except

for comprehensive theoretical analysis we implement T-
Counter in LLVM passes and conduct empirical experiments
to measure the performance of test cases (in Section 7)). T-
Counter is implemented as an extension of the LLVM [23]
framework and integrated with the Intel Linux SGX SDK
[12]. We compare the performance in different parameters,
such as runtime and message sending frequency. We also
compare the performance overhead of T-Counter with some
existing trusted resource usage measurement systems, such
as S-Faas [13] and VeriCount [11]. The evaluation shows the
runtime performance overhead of the T-Counter is almost
less than 8.52% and the accuracy error of the T-Counter is
almost less than 10.86 %. The results indicate that the effi-
ciency of T-Counter coincides with our theoretical analyses.
T-Counter can accurately and efficiently account CPU usage.

1.2 Related work
Many efforts have been made to design trusted resource
accounting schemes. According to techniques, these efforts
can be classified into three classes as follows.
• Trusted billing. Current cloud services in the industry

all used the unconditional trust model for billing, see Fig.
1a, the early works in academia focus on the third party
trust model. For example, THEMIS [9] uses a cloud notary
authority as a trusted third party to oversee the resource
consumption, making future resolutions of dispute more
acceptable and objective. The common feature of these
trusted billing proposals is that a third-party supervises
resource allocation or billing; the third party is threefold.
Many studies have proposed a billing scheme that does not
rely on third parties. For example, Chen et al. proposed a
mutually verifiable billing system Bitbill [24], a public trust
model to ensure natural and intuitive verification of billable
events in the cloud, leveraging a Bitcoin-like mechanism.
• Verifiable Resource Accounting. In addition to the

trusted billing system, many works have proposed resource

TABLE 1: Summary of the TCB of Existing Trusted Resource
Accounting Schemes†

Schemes TP Bitcoin-like SS Privilege SGX IP Drawbacks
THEMIS [9] X ∗ ∗ ∗ ∗ ∗ TP/threefold
Bitbill [24] ∗ X ∗ ∗ ∗ ∗ TP
ALIBI [10] ∗ ∗ ∗ X ∗ ∗ Privilege

Vericount [11] ∗ ∗ X ∗ X ∗ SS/in enclave
S-FaaS [13] ∗ ∗ X ∗ X ∗ SS/in enclave

AccTCC [25] ∗ ∗ ∗ ∗ X X in enclave
TCounter ∗ ∗ ∗ ∗ X X -

(†In this table, ”TP” is short for ”Third Party”, ”SS” is short for ”System Service”,
”SGX” is short for ”Software Guard Extension”, ”IP” is short for ”Integrity Pro-
tection”, the label “X” shows the scheme is based on this kind of technology to
against the adversary. Otherwise, it is set “∗.”)

usage accounting schemes. These solutions are most related
to our design and also based on trusted technology. We sum-
mary these works as verifiable resource accounting. Based
on scenarios, verifiable resource accounting can be divided
into three categories, as shown in Fig. 1b,1c, 1d . ALIBI [10]
uses nested virtualization to place a trusted observer at the
highest privilege level underneath the providers’ platform
software and all customer instances. ALIBI can be divided
into observer approach, see Fig 1b. Sekar et al. also adopted
a similar ”observer” approach in their approach [26]. Veri-
Count [11] measures resource usage of programs by in-
strumenting ecalls to read and store the starting time and
ending time using the trusted time function provided by
the SGX SDK [12]. However, VeriCount’s mechanism could
be arbitrarily inflated by an adversarial service provider by
manipulating the system’s clock. VeriCount can be divided
into a self-measurement approach, see Fig.1c. Fritz et al.
proposed S-FaaS [13], which measures computation time
based on a trusted clock [14] inside an enclave. However,
it can just measure the compute time used by the enclave. S-
FaaS can also be divided into a self-measurement approach.
AccTEE [25] also uses a self-measurement approach that
leverages enclave for isolation and instrumentation for re-
source accounting. The two schemes’ common feature is
building a trustworthy self-measurement scheme based on
the enclave. However, they only can measure the resource
usage of applications that running in the enclave. T-Counter
can measure CPU resource usage of applications running
outside the enclave, see Fig 1d. We summarize the TCB of
existing trusted resource accounting schemes in Table 1.
• Instructions counting. Our approach measures CPU

resource usage by accounting instructions. The following
works also adopted a similar approach. Zhang et al. [27]
propose Resource Efficient Mining (REM) to count the num-
ber of instructions executed within the enclave, which is
used to perform arbitrary useful computations. REM uses a
customized tool chain that reserves a register for instruction
counting and instruments the start of each basic block
with an instruction to increase the count by the number of
instructions in the basic block. Oleksenko et al. [14] use a
rough count of instructions to estimate the frequency of AEX
events. Similarly to our approach, these proposals achieved
their goals through accounting instructions, and instructions
accounting is sufficiently accurate for their purpose. The
difference is, T-Counter does not need to count instructions
in each block and only need to instrument measurement
instructions to a few blocks (in Section 4).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

TABLE 2: Summary of Notations and Descriptions

Notations Descriptions

G=(N,E) A control flow graph
Vi A basic block in the CFG

(Vi, Vj) An edge between two basic blocks in the CFG

P
A path or pathlet from one basic block to another basic
block in the CFG

W The weight of a basic block or a path/pathlet in the CFG.
C A counter instrumented in the CFG.
S The number of instructions that have been executed.

1.3 Organization

The remainder of this paper is organized as follows. In the
next section, we introduce some necessary preliminaries of
this paper. In Section 3, we describe motivation and chal-
lenges, threat model, and attacks on instructions accounting
and architecture of T-Counter. Next, we detail two instru-
mentation algorithms for instrumenting counters, strategies
to optimize hotspot and method to instrument counters in
Section 4. In Section 5, we discuss the detailed design of
the T-Counter and modular construction of a measurement
scheme. We demonstrate the correctness and security of T-
Counter and estimate the efficiency in Section 6. In Section
7, we perform some experiments and evaluate the perfor-
mance of the T-Counter. We discuss some limitations of T-
Counter in Section 8. Finally, we conclude Section 9.

2 PRELIMINARIES

We introduce some preliminaries in this section. In Table 2,
we summarize some helpful notations used in T-Counter.

2.1 Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) [22] is an extension
to x86 architecture, which enables user-level code to create
trusted execution environments named enclaves [28] [29].
SGX allows applications to ensure confidentiality and in-
tegrity against all other software on the platform, including
privileged system software [30].

Enclave switches. Enclave switches occur whenever the
CPU enters or exits an enclave, they can be triggered by ap-
plication developers in two ways, ECalls and OCalls. Ecalls
are trusted function calls from the outside of the enclave to
the inside, whereas OCalls are the opposite [31]. Ecalls and
ocalls are considered edge functions, as they cause execution
to cross security boundaries. Several security checks need to
be performed on the call’s parameters for the boundary-
crossing to be secure, particularly when they are pointers.
In the T-Counter, counters instrumented in the program call
the trusted counter in the enclave via ECalls.

Performance overhead. SGX incurs a performance over-
head when executing enclave code: (1) ecalls and ocalls
come at a high cost for security reasons. Weisse et al. [32]
measured enclave transitions of ecalls and ocalls in the
order of 8,600 to 14,000 cycles, depending on cache hit or
miss; (2) enclave code also pays the penalty for writes to
memory and cache misses because the MEE must encrypt
and decrypt cache lines. As described in work [17], if the ac-
cessed memory with L3 cache misses, there is a performance
overhead of up to 12 ×; and (3) applications whose memory
requirements exceed the EPC size(128MB) must swap pages

Fig. 2: A sample example of CFG

between the EPC and unprotected DRAM. The eviction of
EPC pages is costly because they must be encrypted and
integrity-protected before being copied to external DRAM.
This leads to an overhead of three orders of magnitude
[17]. These results show that a design should reduce enclave
transitions and access to enclave memory for performance
reasons. In our design, we try not to use enclave memory
and ecalls and avoid triggering page swaps and enclave
transitions as much as possible.

2.2 Control Flow Graph

A Control Flow Graph (CFG) is the graphical representation
of a program that captures all possible flows through the
program. It is a directed graph in which the nodes represent
basic blocks, and the edges represent control flow paths,
G=(V, E). The simplest unit of control flow in a program is a
basic block. A basic block is a linear sequence of program
instructions that always execute together. Each node V
corresponds to a basic block. Each edge (Vi, Vj) corresponds
to a possible transfer of control from block Vi to block Vj .
Control flow always enters a basic block at its entry point
(the first instruction executed) and exits at its exit point (the
last instruction executed). Control flow cannot exit or halt
inside the basic block except at its exit point. A Path is a
sequence of nodes on the CFG, including an entry node
and an exit node. CFG is represented differently for all
statements and loops.

Definition. We classify the basic blocks in the CFG into
five categories and define the five types of basic blocks as
follows. We also give examples of each type of basic block
in Fig. 2.

• Entry Block: A basic block with indegree is 0 in the
CFG, V1 is the entry block.

• Exit Block: A basic block with outdegree is 0 in the
CFG, V11 and V12 are exit blocks.

• Single-link: A basic block with indegree is 1 in the
CFG, V2, V3, V4, V5, V9 and V10 are multi-links
predecessor.

• Multi-links: A basic block with indegree larger than 1
in the CFG, V11 and V6, V7 and V8 are multi-links.

• Multi-links predecessor: A basic block that has an edge
to a multi-links in the CFG, V3, V4, V5, V6 and V10
are Multi-links predecessor.

We also use other concepts to describe our approach; the
definitions and examples are as follows.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

• Back edge: An edge (u, v) such that v is ancestor of
edge u but not part of DFS (Depth First Search) tree.
The edge (V10, V6) is a back edge.

• Path: A Path is a sequence of node on the CFG,
including an entry node and an exit node, (V1, V3,
V8, V12) is a path.

• Pathlet: A pathlet is path segment that consists of a
subsequence of nodes along the path, (V1, V3)is a
pathlet.

• Weight: Weight is the number of instructions in a
basic block or the sum of all basic blocks’ instructions
in a path or pathlet, the weight of (V1 is 7, and the
weight of pathlet (V1, V3) is 17.

• Counter: Counter is the instruction measurement
code added to the basic block in the CFG.

2.3 LLVM
The LLVM [23] compiler infrastructure project is a set of
compiler and toolchain technologies, which can be used to
develop a front end for any programming language and
a back end for any instruction set architecture [33]. LLVM
is designed around a language-independent intermediate
representation (IR) that serves as a portable, high-level
assembly language that can be optimized with a variety of
transformations over multiple passes [34]. The LLVM pass
framework is an important part of the LLVM system, LLVM
passes perform the transformations and optimizations that
make up the compiler, they build the analysis results that
are used by these transformations [35]. LLVM also can make
the CFG of every function explicit in the representation. The
Clang project provides a language front-end and tooling
infrastructure for languages in the C language family for the
LLVM project [36]. Our work extends the LLVM pass frame-
work to implement algorithms for instrumenting counters
in the program.

3 OVERVIEW

In this section, we define the adversary model (in Section
3.1), outline the design goals (in Section 3.2), then we
overview the architecture of T-Counter (in Section 3.3).

3.1 Threat Model
Consumers only trust the enclave provided by the cloud in
our threat model, and the trusted counter is running inside
the enclave. The instrumented program with counters is
running outside the enclave. The malicious CSPs’ purpose
is to obtain fees other than that he deserves. CSPs have
full control of all resources of the cloud. Therefore, CSPs
may exploit all means to achieve their goal. We make the
following assumption on a malicious CSP(adversary):

Rational and Cautious Adversary. CSP is a rational
adversary, in the sense that its attacks do not cost more CPU
cycles than it ”saves” from cheating in the program’s execution.
And a CSP is also a cautious adversary, in the sense that its
attacks should not attract consumers’ attention.

We argue that the assumption is reasonable since a
CSP’s ultimate goal is on the financial advantages. It has
no benefits if the attack costs more than the gains. CSP’s
primary goal is to maximize benefit rather than steal the

information or hamper the user’s program’s execution. And
such attacks may easily attract consumers’ attention and
damage CSP’s reputation. It is unwise for the CSP. We also
assume that untrusted CSPs are willing to provide a trusted
execution environment to consumers’ programs. We trust
the processor and assume the adversary cannot physically
open the processor package and extract secrets or corrupt
the state inside the processor. SGX Side-channel [37], [38],
[39] is not within the scope of this paper. DoS attacks are
also beyond the paper’s coverage, as a malicious OS can
easily do so by not scheduling the shielded execution.

We reasonably assume the adversaries attack capability:
(1) can easily and directly modify the bills. (2) can make a
false report indirectly by tampering with the resource usage
logs, manipulating service time, modifying the comput-
ing environment, etc. (3) may tamper consumers’ program
covertly, avoiding triggering program errors to be quickly
awarded by consumers. Therefore, we assume that adver-
saries can tamper with consumers’ programs statically but
will not fiddle programs while running because this can eas-
ily trigger program errors. Specifically, the adversaries can
modify constants or manipulate control flows of programs
finely to avoid errors and achieve its purpose. Liu and Ding
also have identified ways in which a CSP can damage the
integrity of resource metering in their work [40].

3.2 Design goals

We define several desirable properties to securely and cred-
ibly measure a program’s CPU usage based on the threat
model.

C1: Trusted and verifiable resource accounting. The
approach should ensure that a program’s resource usage
is accounted for in a trustworthy and verifiable manner; the
consumers must trust the accounting mechanism. It requires
that no attacker interferes with the accounting mechanism,
e.g., manipulate the accounting process to their advantage.

C2: Accounting integrity and confidentiality. To against
the CSPs tamper the accounting, the approach should en-
sure the integrity and confidentiality of the accounting pro-
cess and result. In our threat model, the accounting result
is protected in the enclave. However, the program instru-
mented with counters is out of the enclave, the adversary
can manipulate the accounting process. As far as we know,
protecting the integrity of accounting outside of the enclave
without other technologies is an unsolved challenge.

C3: Execution Integrity. Note that CSPs may tamper
with the control flow of consumers’ programs. Execution
integrity is to ensure that consumers can detect attacks on
the program control flow. This task is more challenging
than accounting integrity because it runs out of the enclave
without any protection. The proof-of-work schemes have
been proposed in previous work [41], but it does not apply
to our scenario. Our goal is not to ensure the integrity of
control flow but to ensure that adversary tampering with
the control flow will not affect the measurement results.

C4: Low Performance Overhead and minimal modifi-
cations. The challenge is to achieve practical and verifiable
resource accounting with a relatively low performance over-
head and minimal modifications to existing applications.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Fig. 3: Architecture Overview.

3.3 Architecture Overview

This section gives the architecture overview of the T-
Counter (see Fig. 3). In the T-Counter, a program that runs
in an untrusted cloud can measure its CPU usage by ac-
counting instructions by the trusted part of itself. T-Counter
mainly consists of two parts: an instrumented program with
counters and a trusted counter that runs in the enclave.
The trusted counter counts instructions by instrumented
counters at the basic-block level in the program.

Instrumented Program with Counters. T-Counter ac-
counts for a program’s instructions based on counters in-
strumented in the compilation process. Based on these in-
strumented counters, T-Counter can record the path through
the CFG and account instructions in the path. However,
the instrumented program with counters runs outside the
enclave, and the adversary can tamper with the program
arbitrarily. If the value of counters is directly instrumented
in the program, they are exposed to the adversary and
easily manipulated. Therefore, we number all instrumented
counters and put the specific value of these counters in the
enclave for protection. Such an approach cannot resist all
tampering attacks, but it can significantly reduce the ad-
versary’s attack surface. Moreover, T-Counter can perform
integrity verification (see Section 5) in the enclave based
on these counters’ numbers. Another question is why we
choose the way of instruction counting for CPU resource
measurement. Compared to instructions, CPU cycles may
be a more accurate metric to measure CPU usage. However,
measuring CPU usage by accounting cycles is vulnerable
to the manipulation of malicious OS (adversary). Therefore,
instruction counting is the best method for securely and
reliably estimating the CPU usage in our threat model.

A program’s execution time comes from three parts: the
application (written by the developer), the library functions
it invokes, and the system calls that may be triggered (see
Fig. 3). The library functions and system call are controlled
by the underlying OS and are easily attacked. To ensure
the integrity and improve the accuracy of the measurement,
we propose methods for measuring library functions and
system calls.

Library Functions. An alternative to measuring library
functions is to statically compile the application and library
functions that the application invokes together. We can
measure library functions’ CPU usage like the application
by instrumenting counters in the library functions. Statically
compiling the application can avoid using libraries provided

Fig. 4: Measurement of Library Functions and System Calls.

by the OS and reduce the attack surface. However, static
compilation changes the traditional program compilation
and execution process. And, instrumenting more counters
will lead to the T-Counter face more attacks (as analyzed in
Section 5.1.) and increase the performance overhead of the T-
Counter. Another alternative to measuring library functions
is to measure them statically, as the cost of calling library
functions is often relatively fixed. We can directly instru-
ment a counter in the basic block where the library function
invoked to measure the library function’s cost (include
library functions that the library function invokes). The
counter’s value can be calculated by static statistics of the
instructions’ number of library functions or by experiment
measurement. We adopt the statical measurement method
based on experiments in the T-Counter (see Section 7.6).

System Calls. The untrusted OS completely controls the
system calls. The program cannot control the system calls
nor measure them. Therefore, we also adopt a static mea-
surement method for measuring the cost of system calls.
We can measure the average cost of processing each type
of system call and instrument counters to the basic blocks
where the system call exists; the counter’s value is the cost
required to execute the system call. T-Counter can identify
system calls by their names in the system call table during
the compilation phase. During the program’s running, the
application was written by the developer seldom directly
triggers system calls, usually through the library function
indirectly triggers system calls. Therefore, in the design of
the T-Counter, we measure the cost of library functions, and
the system calls that the library function triggers together
by experiments, as shown in Fig. 4), which can reduce the
attack surface available to the adversary and the overhead.

Trusted Part of Program. The trusted part of the
program does instruction counting and integrity protection.
The trusted part is protected in the enclave against the
adversary to tamper the accounting progress and result.
The trusted mainly consists of three components: trusted
counter, recorder, and verifier. (1) The trusted counter
counts instructions that have been executed according to
counters instrumented in the program. When the trusted
counter receives a counter number from the program, it
will search the Counter-value table to find the corresponding
value of the counter, then add the instructions number of the
counter to the total instructions number S; (2) To against
adversary tampers counters’ number, the verifier verifies
the correctness of these counters’ number by checking the
order in which the counters are called. T-Counter uses a
Counter-Sequences Table to store the sequence of counters. If
a malicious OS modifies the counter sequence optionally,
the T-Counter will be aware of the malicious behavior
and send alerts to consumers. (3) The recorder records the
sequences of counters in the paths in the CFG and generates
accounting logs for online and offline verification.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

4 INSTRUMENTED PROGRAM WITH COUNTERS

In this section, we introduce the algorithms for selectively
instrumenting counters in the program. A key obstacle to
building an universal CPU measurement solution is over-
head; frequent ecalls will cause too high-performance over-
head in T-Counter. So, T-Counter selectively instruments
counters in a subset of basic blocks. We produce two algo-
rithms: Base Instrumentation algorithm and Optimization
Instrumentation algorithm, named Base-Ins and Opti-Ins.
We implement two algorithms in LLVM passes.

4.1 Base Instrumentation Algorithm
We classify basic blocks in the CFG into five types, as
described in Section 2.2. By analyzing the structure of CFG,
we find that two types of basic blocks can break down
the CFG into pathlets. The two types of basic blocks are
(1) the exit basic block; and (2) predecessors of multi-links,
which contains a particular case, the predecessors of the
back edge’s end node. Instrumenting counters in these two
types of basic blocks can completely record the program’s
execution path no matter how the program is executed.

Exit Block and Multi-links Predecessor Instrumenta-
tion. The end nodes of back edges can be treated as special
multi-links. Then, instrumenting counters in all exit basic
blocks and multi-links predecessors of a CFG can fully
record a program’s execution path and count instructions
with these instrumented counters; we call this algorithm
as Base-Ins (The proof is shown in Section 6.1). Compared
to instrument counters in each basic block, Base-Ins instru-
ments less counter in the CFG. The work [14] also adopted
a similar instrumentation scheme like Base-Ins. According
to the Base-Ins algorithm, T-Counter instruments counters
in all exit basic blocks and multi-links predecessors and
calculate these counters’ values as follows. The value of a
counter Cx is a path’s or a pathlet’s weight that ends with
counter Cx and start from the last counter Cl in the path.
The value of Cx includes the weight of the basic block that
Cx instrumented in and excludes the weight of the basic
block that Cl instrumented in. If there is no counter before
Cx, then the value counter Cx is the path’s weight, or the
pathlet ends with counter Cx, and start from the entry block.
The value of Cx includes the weight of the block Cx that
instrumented in and the entry block’s weight. For the back
edges, the marking process is similar due to the end node
of a back edge must be a multi-links. In summary, the exit
blocks and the predecessors of multi-links (includes the end
node of the back edge) need to be instrumented counters.

We illustrate an example of Base-Ins in Fig. 5a. First,
Base-Ins traversals G(V, E) and record the indegree and
outdegree of all the nodes, then find entry block V1 and
all the exit blocks: V11 and V12. These exit blocks need to be
marked. Next, the Base-Ins algorithm processes V11 and V12

respectively to search multi-links. For the exit block V11, we
find multi-links V7, and its predessors V4 and V5. For the
exit block V12, we find multi-links V8 and V6, and their
predessors V3, V6 and V10. For the back edge (V10, V6), we
mark predecessors of node V6: V3, V10. In summary, we
need to instrument 7 counters in V4, V5, V11, V3, V6, V10

and V12. These counters’ value is 36, 36, 9, 17, 4, 12, and 9,
respectively.

(a) Base Instrumentation (b) Optimization Instrumentation

Fig. 5: An example of Base Instrumentation Algorithm and
Optimization Instrumentation Algorithm.

4.2 Optimization Instrumentation Algorithm

Note the design goal of our approach; we are concerned
about how many instructions are executed when the pro-
gram ends with an exit block. As our analysis, not all exit
basic blocks and predecessors of multi-links need to be
instrumented counters. For example, if weights of paths
that end with a multi-links are similar, the multi-links’
predecessors do not need to be instrumented counters. So,
we proposed the Opti Ins algorithm.

For an exit block Vexit, (1) If there is only one path
ends with Vexit, or there are several paths end with Vexit

and the weights of these paths is similar, we only need to
instrument counters in Vexit, and other basic blocks in the
paths that end with Vexit are not needed to be instrumented
counter. Because no matter how the program is executed,
as long as the program exit from Vexit, the number of
executed instructions is similar. (2) Otherwise, there are
several paths end with Vexit and weights of these paths
end with Vexit is not similar. In this case, we need to
analyze further which basic blocks in the paths end with
Vexit need to be instrumented counters. There are paths
with different weights from entry block to exit block because
there are multi-links in the paths. Multi-links means that
multiple paths reach it. The predecessors of the multi-links
can indicate which path the program goes through. But not
all predecessors of multi-links are needed to instrument a
counter. Similarly, If the weight of paths from entry to the
multi-links is not similar, these multi-links’ predecessors
need to be instrumented counters. Instrumenting counters
in the multi-links predecessors can indicate the pathlets and
count instructions before they visit the multi-links.

DAG Instrumentation Algorithm. We can decompose a
CFG can into a DAG and several back edges. We first ana-
lyze how to selectively mark nodes (basic blocks that need
to be instrumented counters) in the DAG. The pseudocode
for marking DAG is given in Algorithm 1. The input of the
algorithm is a DAG G(V, E), a set of exit nodes exit node[]
of G, and an array visit[] to label whether a node has been
visited, the initial value of elements in visit[] is false. The
algorithm’s output is a set of marked nodes mark[V] in the
DAG; the initial value of elements in mark[V] is false. The
algorithm processes each exit node respectively, for each
unvisited exit node Vexit in exit node[]: The algorithm first
marks Vexit and sets the Vexit visited, then take reverse
depth-first search from Vexit. The pseudocode of reverse

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

Algotithm 1 The Algorithm of markDAG(G)

Input: G(V,E), Sexit = {ν | ν ∈ V (G) ∧ ν.outdegree = 0 }
Output: A set of marked nodes in G(V,E) : Smark

1: for each unvisited ν ∈ Sexit do
2: Smark ← Smark ∪ { ν }
3: ν.visit← true
4: Reverse DFS(ν)
5: end for

Algotithm 2 The Algorithm of Reverse DFS(ν)

Input: G(V,E), entry
Output: A set of marked nodes of G(V,E) : Smark

1: //Find all paths that start from entry and end with ν
2: Spath = { path|path.start = entry and path.end = ν }
3: //Compute the weight of all paths in Spath

4: Sweight = { p.weight | path p ∈ Spath }
5: if |Spath | > 1 && max(Sweight) 6= min(Sweight) then
6: if ν.indegree = 1 then
7: Reverse DFS(ν.pre)
8: else
9: Spre = { µ | µ ∈ V (G) ∧ < µ, ν > ∈ E(G) }

10: for each unvisited vertex µ ∈ Spre do
11: Smark ← Smark ∪ { µ }
12: µ.visit← true
13: Reverse DFS(µ)
14: end for
15: end if
16: else
17: ν.visit← true
18: return
19: end if

depth-first search (DFS) is given in Algorithm 2. The input
of the algorithm is G(V, E), indegree of all nodes in the
G(V, E) indegree[V], weight of all nodes weight[V], entry
node entry node, and a array visit[V] to label whether a
node in the G(V, E) has been visited, the initial value of
elements in visit[V] is false. For a node V , the algorithm first
determines whether the reverse search has ended. If V is
the entry node, then the search end. Otherwise, our algo-
rithm needs to determine whether to continue to search for
reversely. It depends on the number of paths that start from
the entry node and ends with node V : N and the weights
of these N paths. If N is one, or N greater than one and
the weights of N paths are similar, we don’t need to search
reversely from node V and the search ends. Otherwise, take
a reverse depth-first search from the node V . Our algorithm
searches reversely until finding a multi-links node U . For
each previous node Vp of node U , mark Vp and set it has
been visited, and then take a reverse depth search from it.

We illustrate an example of optimization instrumenta-
tion algorithm mark in Fig. 5b (exclude the back edge (V10,
V6)). First, our algorithm traversals G(V, E) and find entry
block V1 and all the exit blocks: V11 and V12, and the two
exit blocks need to be marked. Next, our algorithm also
processes V11 and V12 respectively to determine whether
a reverse search is required. For the exit block V11, there are
two paths end with it: P1(V1, V2, V4, V7, V11) and P2(V1,
V2, V5, V7, V11). Due to the weight of P1 and P2 is the same,

Algotithm 3 The Algorithm of markCFG(G)

Input: G(V,E), Sexit = {ν|ν ∈ V (G) ∧ ν.outdegree = 0 }
Output: A set of marked nodes : Smark

1: Find all back edges in G(V, E)
2: Sback= {< µ, ν > | < µ, ν > ∈ E(G) ∧ ∃path p :
p.start = ν and p.end = µ }

3: for each backedge < µ, ν > ∈ Sback do
4: E(G)← E(G) / { < µ, ν > }
5: Smark ← Smark ∪ { µ } ∪ { ω|ω ∈ V (G) ∧ < ω, ν >
∈ E(G) }

6: ν.indegree← ν.indegree - 1
7: µ.outdegree← µ.outdegree - 1
8: if µ.outdegree = 0 then
9: Sexit ← Sexit ∪ { µ }

10: end if
11: end for
12: After delete all backedges, G is a DAG
13: markDAG(G)

so we end the reverse search from V10. For the exit block
V12, there are also two paths end with it: P3(V1, V2, V4, V9,
V11) and P4(V1, V2, V4, V7, V9, V11). Because the weight
of P3 and P4 is different, so search reversely from V12 until
finding the first multi-links V8. Then T-Counter process V3

and V6 respectively, take V3 as an example, first mark V3,
and search reversely from the V3. Because the number of
paths that end with V3 is one, so search ends. In general,
V3, V6, V10, V11, and V12 need to be marked.

CFG Instrumentation Algorithm. We have introduced
the algorithm for marking DAG. We can decompose a CFG
to a DAG and several back edges and process the back edges
and the DAG, respectively. Pseudocode for marking CFG is
given in Algorithm 3. The input of the algorithm is digraph
G(V, E), indegree of all the nodes in G: indegree[], outdegree
of all the nodes in G: outdegree[], and a set of exit nodes
exit node[]. The algorithm’s output is a set of marked nodes
mark[V] in the CFG; the initial value of elements in mark[V]
is false. Our algorithm first traversal G(V, E) and find all
the back edges E[G] in G(V, E). For each back edge (Vi, Vj),
we first mark the node Vi and all other previous nodes of
Vj . These paths that end with Vj can be distinguished by Vi

and the other previous nodes of Vj . Then, we delete the back
edge (Vi, Vj) from E(G) and update the indegree of Vj and
the outdegree of Vi, the indegree of Vj , and the outdegree
of Vi need minus 1. If the outdegree of Vi becomes 0 after
minus 1, we add Vi to the array of exit nodes exit node[]
because Vi becomes a new exit node due to deleting the
back edge (Vi, Vj). After we delete all back edges in G(V,
E), G(V, E) has become a DAG. At last, we mark the G(V, E)
using the algorithm of marking DAG (Algorithm 1).

We illustrate an example of marking CFG in Fig. 5b.
There is one back edge in the CFG: (V10, V6). For the back
edge (V10, V6), we delete it from G(V, E) and mark V10 and
the other previous nodes of V6, and update the indegree
V6 as 1 of and the outdegree of V10 as 0. Because the
outdegree V10 of is 0, so V10 is an exit node now, we add
it to exit node[]. After, we delete the back edge (V10, V6),
G(V, E) has become a DAG. Then we mark the DAG using
algorithm 1. The mark result is V3, V6, V10, V11 and V12.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

(a) (b)

Fig. 6: An example of Counter Number Optimization.

Counter Value and Optimization. We need to instru-
ment counters in the marked nodes. The value of counter
Cx is the weight of the path that ends with Cx and start
from the last counter Cl. The value includes the weight of
the block Cx instrumented in and excludes the weight of the
block Cl instrumented in. If there is no counter before Cx,
then the value counter Cx is the weight of a path ending
with counter Cx and starts from the entry block. The value
includes the weight of the block Cx that instrumented in
and the entry block’s weight.

Based on our marking algorithms, we further give two
optimization strategies for instrumenting counters. For a
multi-links Vm, not all predecessors of Vm need to be
instrumented counters. We can reduce some counters by
modifying the counter’s value to make the program run
through as few counters as possible. As shown in Fig. 6,
there are two specific cases. (1) In Fig. 6a, the multi-links
V5 has two predecessors V3 and V4, and V3 and V4 are
not the predecessor to each other. In such a case, we can
instrument counters in V4, set the counter’s value as w4-
w3, and add w4-w3 to these exit nodes that V5 ends. The
instrumented result is as shown in the subfigure. If a multi-
links has more than two predecessors, we can omit counters
at the predecessors with the same weight and the largest
number. (2) In the Fig. 6b, the multi-links V3 also has two
predecessors V2 and V4, and V2 is the predecessor of V4.
In this case, we can instrument counters in the successor
nodes of them, so we instrument counter in the V4 with
weight W4, and add W2 to these exit nodes that V3 ends.

4.3 Hotspot Optimization Strategies
According to the 90/10 law, 90% of the execution time is
spent in 10% of the code [42]. Most of the execution time is
spent in loops. A loop corresponds to a back edge in CFG.
As our instrumentation algorithm design, each iteration of
the loop needs at least an Ecall to record the CPU usage,
which will lead to high performance overhead. Because
there are always dozens of instructions in a loop, the over-
head of an Ecall is thousands of cycles, much more than
the number of instructions in the loop. Spend thousands
of cycles to record dozens of instructions usage is unwise.
As our analysis, the program call counter for each iteration
of the loop will lead to high overhead. We propose two
solutions to solve this problem: (1) Moving counters out of
loops, or (2) Randomly Ecall at the hotspot to avoid calling
the counter for each iteration of the loop.

Fig. 7: Instrumenting counters and Integrating T-Counter
with SGX SDK.

Strategy 1: Moving counters out of loops. If the iteration
of the loop is a constant, the number of instructions in
each iteration is definite. We can instrument counter only
once after exiting the loop, instead of instrumenting the
instruction counter in each iteration. The counter’s value
is the number of instructions in the loop’s body times the
number of iterations. This strategy can only apply to control-
flow independent instructions inside the loop body. If a loop
variable is identified, we need to use Strategy 2.

Strategy 2: Randomly Ecall at the hotspot. Assuming
that iterations of a loop is n, sum of instructions of each
iteration is c. We can use a random function produces num-
ber x between 0 and m-1. If x equals 0, the counter will call
the trusted counter to account; the recorded value is m×c.
Otherwise, the counter will not call the trusted counter. It
means that each iteration of the loop with 1/m probability
to call the trusted counter. For each iteration of loop, the
expectation of instruction number is (1/m)×m×c, it equals c.
A confusing problem is how to select the m; it is a balance of
performance and accuracy. According to experiments, when
m is less than 100, the overhead is still unacceptable. When
m greater than 10000, the error of accuracy is greater than
5% sometimes, it is unsatisfactory. So we advise m’s suitable
range is from 100 to 10000, and we set m as 1000 in our
experiments. Attackers could try to exploit this optimization
by tampering with random number intervals and target. T-
Counter against this by allowing an ecall to get a random
interval (min, max) and target t before execute the loop. In
this way, attackers cannot tamper with (min ,max) and t.

4.4 Selectively Instrumenting with LLVM Pass
we implement our algorithms as LLVM IR optimization
passes. Our extended Clang instruments basic blocks that
are marked and add instructions that call the trusted counter
in the enclave to measure the instructions. The detailed
work progress of LLVM is shown in Fig. 7. The LLVM
takes the application source code as input and compiles
the source code to IR. Our instrumentation pass analyzes
and instrument counters in the IR code and generates the
counter-value table and counter-sequences table, respec-
tively. LLVM backend compiles the IR to instrumented
binary. The counter-value table and counter-sequences table
are used to verify the correctness and integrity of counting
by counter and verifier. T-Counter library code is compiled
using the clang compiler to an object file. Fig. 8 shows
a snippet of instrumented assembly code. The enclave is
finally signed by an Intel SGX signing tool, creating an
application Enclave.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

Fig. 8: A snippet of assembly code instrumented with the T-
Counter. Global eid is the ID of the enclave that the trusted
part of the application runs in; the call instruction to call the
enclave is incremented at the ending of the basic block.

5 TRUSTED COUNTER IN ENCLAVE

In this section, we discuss several types of attacks against
T-Counter, detail the components of the trusted part of
the program, and introduce the protection mechanism of
accounting integrity and confidentiality.

5.1 Attacks on Instructions Accounting
As described in the threat model (in Section 3.1), the attack-
ers can modify the program’s constants outside the enclave.
As the program runs outside the enclave, system services
are under the control of the malicious OS. We can not mea-
sure the CPU usage based on any services provided by OS.
It is a challenging problem to ensure that instructions are
counted correctly, even in the presence of malicious OS. So,
as our design, we account for instructions by the application
itself without any system services. More challenging is that
the application is also under the control of the malicious OS.
Therefore, the T-Counter must defend against direct attacks
on the values of instrumented counters. We will discuss
several types of attacks against resource metering in this
section. Specifically, based on the assumption of the adver-
sary’s attack capability, we consider three specific types of
attacks against reliably accounting of T-Counter: 1) counter
manipulation attacks; 2) counter substitution attacks; and 3)
control-flow manipulation attacks, see Fig. 9. These attacks
may tamper with the measurement result.

A1: Counter manipulation. Malicious servers may mod-
ify the value of counters instrumented in the program. And
this will result in an incorrect measurement result. If we
instrument the counter’s value in the basic block directly,
the malicious server can modify the value, resulting in larger
measurement results. So, we number counters and store the
specific value of the corresponding counter in the enclave.
It can reduce the adversary’s attack surface.

A2: Counter substitution. As described in A1, if an
adversary cannot directly tamper with the counters’ value,
it may tamper with measurement results by substituting
the value of counters with values of the other counters
instrumented in the program. And this will also result in an
incorrect calculation result. For example, a malicious CSP
can substitute the counter C1 with C2, see Fig. 9.

A3: Control-flow manipulation. Programs are running
outside the enclave; a malicious CSP may statically modify
code(such as constants) to hijack the program’s control flow

Fig. 9: Three specific types of attacks against T-Counter.

to tamper with the measurement result. For example, a
malicious CSP may modify the registers that control the
flow so that the process takes a much longer execution path
to finish, such as reducing the number of loops. Our scheme
saves sequences of counters in the enclave and checks the
program’s control flow based on these sequences to protect
the control flow. We will detail this in 5.2

5.2 Components of Trusted Part.
In this section, we detail components of the trusted part.
According to the threat model and attacks on instructions
accounting (in Section 3.2 and Section 5.2), we design three
components and three data structures in T-Counter: trusted
counter, recorder and verifier, counter-value table, counter-
sequences table and accounting logs. The details of these
components are as follows.
• Trusted Counter. The function of the trusted counter

is to account for the instructions. The counter receives a
counter and searches the counter-value table to find the
counter’s relevant value, then account for the instructions
number that has been executed. The Counter-Value Table
is used to stores the value of counters instrumented in the
program. As described in attack A1, the attacker can modify
the program’s constants outside the enclave. If the value
of counters is directly instrumented in the program, it is
directly exposed to the attacker and easily manipulated. In
our approach, the ”values” instrumented in the program
are just the counters’ number; the real values of counters
are stored in the enclave.
• Verifier. As the counters’ values are stored in the

enclave, the adversary can no longer arbitrarily tamper
with the accounting result. But, the adversary still can
modify the number of counters to interfere with instructions
accounting. The adversary can attack by substituting the
counter number with other numbers in the counter-value
table (A2). We can define a series of rules for checking the
counters’ correctness, such as the order of counters called.
The verifier uses the counter-sequences table to verify the
counters’ correctness against A2 and verify the integrity
of program control flow against control-flow manipulation
(A3). If a malicious OS modifies the counter sequences
optionally, the verifier will be aware of the malicious be-
havior and send an alert to the consumer. The correctness
check dramatically reduces the attack surface against T-
Counter. We will detail the verification strategies in Section

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Fig. 10: The forest of counter sequences.

5.3. The Counter-Sequences Table is used to store the forests
of counter sequences instrumented in the program. For
example, the sequence <C1, C3> and <C2, C3> shown in
the Fig. 10. The counter-sequences table and counter-value
table are generated by LLVM in the compilation progress
and integrated with the trusted part, as described in Section
4.4.
• Recorder. The recorder is used to record the counter

number sent from the untrusted part for online verification
and to generate accounting logs for offline verification. The
Accounting Logs are generated by the recorder; these
logs can be used to offline verification and solve future
resolutions between CSPs and consumers.

5.3 Verification Strategies for Accounting Integrity
As we described in attacks on counters, the attacker can
not modify the value of a counter anymore due to the
value stored in the enclave. The ”value” instrumented in the
counter is the number of the counter. Generally, more than
one instrumented counters in a CFG, and each counter’s
value is often different. The adversary can also get the value
of these counters via calculation. In this case, the adversary
can replace the counters’ number with the numbers of other
counters with enormous value. To defend against this type
of attack, we define the counter-sequences table and design
the verifier to verify the counter sequence. Only storing the
counters’ sequences than holding the entire CFG can signif-
icantly save storage space and demonstrate the control flow
faster. We give an example in Fig. 10. For example, when
the sequence of counters passed during program execution
is <C1, C3 >, the adversary can replace one or both of the
two counters. Suppose the adversary individually replaces
counter C1 with counter from C3 to C7, or individually
replace counter C3 with counter from C1 to C7. In that case,
the verifier will notice the malicious behavior, as the counter
sequence can’t match any counter sequence in the counter-
sequences table. But if the adversary modify <C1, C3> as
<C2, C3>, The verifier cannot notice the malicious behav-
ior because the counter sequence <C2, C3>is also legal in
the counter-sequences table. The verifier the adversary can
also replace the sequence < C1, C3 > as < C4, C7 >, the
verifier even can’t aware of the modification directly. But
these counter sequences will be recorded and checked out
by the offline verification because the recorded sequence is
conflicting with the counters sequences that the program
executes typically. In general, our approach can resist most
of the adversary’s substitution attacks to the counters of-
fline but cannot wholly resist all of them in time online.
Our design significantly increased the difficulty and cost
of the adversary’s attacks and reduced the impact of the
adversary’s attack.

(a)

(b) (c)

Fig. 11: Proof of Base Instrumentation Algorithm

6 THEORETICAL ANALYSIS

In this section, we first give the correctness analysis of the
proposed T-Counter (in Section 6.1) and then demonstrate
its security(in Section 6.2). Last, we quantitatively analyze
some user cases’ efficiency in terms of latency and runtime
to demonstrate the optimal solution (in Section 6.3).

6.1 Correctness Analysis
In this section, we give the correctness analysis of instru-
mentation algorithms. For a counter C instrumented in the
CFG, we need to prove the pathlets between counters that
directly link to C and C with the same weight, see Fig. ??.

Proof. Suppose there is a counter Cx in the Marked CFG.
(1) If there are no counters before Cx in the path, Cx is the
first counter in the path from the entry node, then the value
of Cx is the weight of the pathlet end with Cx. (2) If there
are counters before Cx, the number of counters that link to
Cx directly through different pathlets must be more than
one (without counter optimization), as the design of our
algorithms. It means that there are multiple pathlets P1, P1,
..., PN , start with these counters and end with counter Cx.
We need to prove that these pathlets has the same weight.
The counters omitted by the counter optimization strategy
can be regarded as a counter with a value of zero. The
weights of these pathlets that start from the entry node and
end with Cx must be different from our algorithms’ design.
Because the weights of these pathlets are the same, there
will be no counter before Cx. As these pathlets’ weight is
different, we need to search reversely from Cx until finding
one node Vm, which indegree larger than 1. We assume the
node that Cx instrumented in is Vx. There are two cases: 1)
one case is that the indegree of Vx is larger than 1, Vx is
the Vm, see Fig. 11b, then the value of Cx is the weight of
Cx. 2) another case is that the Vx’s indegree is one, there
exists a node V0 before Vx, and it’s the indegree larger than
one, and the degree of all the nodes that between V0 and
Vx is one. In other words, there exists only one path V0 and
Vx, V0 is the Vm, see Fig. 11c. Therefore, these pathlets start
from V0 and end with C0 consist of the same nodes, so the
weights of these pathlets are the same. In general, the nodes
between Vx and Vm (maybe Vx itself) are the same under
any condition.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

6.2 Security Analysis

In this section, we give the security analysis of our T-
Counter framework. We first analyze the measurement
confidentiality of the T-Counter. Then, we prove that T-
Counter can realize verification. Finally, we demonstrate
that T-Counter can also realize execution integrity.

Measurement confidentiality. In our design, a trusted
counter is running in the enclave to ensure the confiden-
tiality of measurement results against the malicious CSP, as
explained in Section 3.3. And, the values of counters are also
protected in the enclave instead of directly instrumented
in the program that runs outside enclave. We design the
counter-value table to store the value of counters in the
enclave. The malicious CSP can not get the specific values of
counters and damage the measurement process’s integrity.
Therefore, even a malicious CSP cannot damage the ac-
counting integrity of the process and result. In a word, T-
Counter can protect the integrity of resource measurement.

Measurement Verifiability As we described in Section
5.1, the adversary can not tamper with the ”values” of
counters that instrumented in the program directly because
these values are just numbers of these counters. The ad-
versary can only substitute counters’ numbers with other
legal counter numbers stored in the counter-value table. To
defend against such type of attack, we design the verifier
and verification strategies to verify the counters’ number
by checking sequences of received counters’ number. The
counter-sequences table can contain the relationship be-
tween counters instrumented in the CFG of a function and
the relationship between counters instrumented in the CFG
of different functions. As we analyzed in Section 5.3, the
verifier can detect most substitution attacks online and de-
tect all substitution attacks offline with the counter sequence
corresponding to the execution result. In general, T-Counter
can verify the process and result of the measurement.

Execution Integrity The instrumented counters can be
used not only for accounting resource usage but also to
verify the control-flow integrity (CFI) [43] of the program.
As our analysis in Section 3.1, the malicious CSPs have
many ways to hijack the program’s control flow in our
threat model. Such as non-control-data attacks [44] to ma-
nipulate variables that affect the program’s control flow,
jump-oriented programming attacks [45] exploit indirect
jump and call instructions at the end of each invoked code
sequence, et. CFI is one of the main directions in the research
field of runtime exploits mitigation. It can ensure that a
program only follows a valid path in the program’s CFG.
Many works have been done to make CFI be an efficient and
effective mitigation technology [46] [47]. But, CFI does not
cover non-control-data attacks [44], leading to the execution
of unauthorized but valid CFG paths. T-Counter can attest
to the execution path of a program running outside the
enclave. The counters instrumented in the CFG divides CFG
into several pathlets and can indicate which pathlets the
program goes through during execution. And the sequences
stored in the counter-sequences table to verify the correct-
ness of control flow. Execution integrity here is to detect
but not defend against the behaviors that the adversary
damages measurement integrity. C-FLAT [48] is a similar
attestation scheme in the embedded system.

TABLE 3: Performance Estimation of Six Schemes‡

Schemes Runtime Average Overhead

Native TP -
Baseline TB = TP +Tini+Tdes OB = Tini+Tdes

Base-Ins TB + Nbase×Tecall OB + Nbase×Tecall

Opti-Ins TB + Nopti×Tecall OB + Nopti×Tecall

Swtichless TB + Nopti×Tswitch OB + Nopti×Tswitch

Hotspot
TB + Nopti × Tswitch -

Nhots×(Nrand-1)×Tswitch

+Trand×Nhots

OB + Nopti×Tswitch

-Nhots×(Nrand-1)×Tswitch

+Trand×Nhots

(‡In this table, “TP ” is the runtime of application itself, “TB” is the runtime of
Baseline scheme, “Tini” and “Tdes” are the runtime of SGX enclave initialization
and destruction respectively, “OB” is the overhead of Baseline scheme, Tecall is
the runtime of one ECall (include one OCall), Nbase is executed counters based
on the Base-Ins algorithm, Nopti is executed counters based on the Opti-Ins
algorithm, Tswitch is the runtime of one ECall without context switch, Nrand is
the random number chosen in hotspot scheme, Nhots is the number of hotspot
in hotspot scheme,Trand is the runtime of random function runs one time.)

6.3 Efficiency Analysis
This section quantitatively estimates average latency and
overhead for seven applications in six schemes: native,
baseline, base-ins, opti-ins, switchless, hotpots. These six
schemes are defined as follows, and their estimated results
are revealed in Table 3.
• Native and Baseline: We first run the unmodified ap-

plication in an environment without enclave configuration.
We measure the runtime of the unmodified application as
a native reference for experimental evaluation. Then, we
run the unmodified application in an environment with
enclave configuration, which mainly includes the enclave’s
initialization and destruction but does not include ecalls.
We measure the runtime of applications that run in this
configuration as baseline scheme. The overhead of baseline
compared to native is Tini+Tdes.
• Base-Ins Scheme and Opti-Ins Scheme. We imple-

mented two instrumentation algorithms as two instrumen-
tation schemes: base-ins scheme and opti-ins scheme, and
evaluated the performance of the two schemes, respectively.
The Base-Ins scheme instrumenting ecalls according to the
Base-Ins algorithm, and the Opti-Ins scheme instrumenting
ecalls to the application according to the Opti-Ins algorithm.
Then, we measured the runtime of two schemes, respec-
tively. The overhead of these two schemes is the number of
executed counters times Tecall compared to baseline.
• Switchless Optimization and Hotpots Optimization.

As we described in Section 2.1, the strong security offered
by SGX does not come for free; the overhead of an ecall is
over 8000 CPU cycles, which is 50X more expensive than
that of a system call [32]. Due to the high overhead after
instrumented ecalls, we adopted a series of optimization
strategies. The optimization strategy is divided into two
parts to achieve and evaluate. We first achieve swithless
optimization scheme that adopted “switchless call” [49]
(we detail it in Section 7.2). The optimization runtime is
Nopti×(Tecall-Tswitch) compared to opti-ins scheme. Based
on the opti-ins scheme. Based on the swithless scheme,
we use the hotspot strategy to achieve hotpots optimiza-
tion scheme that further optimize the loops. Similarly,
we measured runtime of two schemes respectively. The
optimization runtime is Tswitch×(Nopti-Nhots×(Nrand-1))-
Trand×Nhots compared to switchless scheme.

In the next section, we will perform some experiments
to compare these schemes’ performance in reality.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

(a) (b) (c)

Fig. 12: Runtime comparisons of six schemes of six applications..

6.4 Accuracy Analysis

In this section, we give the accuracy analysis of the T-
Counter. Due to the CPU’s internal design, the number of
instructions cannot be completely equal to the CPU cycles
overhead. Different instructions require different cycles to
execute. Although we can measure a list of cycles required
for the execution of all instructions, and use the list in
the path analysis in T-Counter. AccTEE adopted such a
solution [25]. But the cost of instructions depend on CPU
architecture, CPU generation and the runtime. In fact, even
we measure the cost of each instruction in detail, we can’t
get accurate results, so we did not adopt AccTEE’s method
in our design. We directly use the average cost of all instruc-
tions as the weight and multiply the weight by the number
of instructions as the final CPU overhead. Such a strategy
can not only greatly reduce the difficulty of path analysis
but also fully guarantee the accuracy of the measurement.
The specific experimental results are shown in Section 7.6.

7 IMPLEMENTATION AND EVALUATION

To validate the efficiency estimation presented in Section 6.3,
we design several experiments to evaluate T-Counter’s per-
formance in seven use cases. The T-Counter framework is
implemented by extending the LLVM [23] and programmed
in C programming language with about 850 LOC. We
benchmark constructed SGX applications on Dell Optiplex
7050 laptop, which is equipped with a 2.60GHz Intel I7-7700
Skylake CPU with four cores and supports SGX extensions,
16GB RAM, and 1TB disk. The size of EPC was the default,
128MB. The operating system was a Ubuntu 18.04 LTS
operating system with Linux kernel version 3.19.0. In our
experiments, we use the SGX Software Development Kit
(SDK) in version 2.7.1. We evaluate the runtime of 7 appli-
cations in the six schemes. The average runtime overhead
of the two instrumentation algorithm is 3.82 (wordcount) -
1441.62(PI) times and 3.75 (wordcount) -141.33 (PI) times,
respectively. The average optimization of 2 optimization
schemes are 50.32 % (Quicksort) - 70.45 (wordcount)% (the
random number is 1000) and 0 (wordcount) - 95.82% (PI).

7.1 Integration T-Counter with SGX.

The T-Counter is designed independently of the software
development environment. For demonstration purposes, we
integrate T-Counter with the official Linux SGX SDK [12].
The workflow for integrating T-Counter with the official

Linux SGX SDK (see Fig. 6). Following the standard use
case of Intel SGX described by the SDK, these applications’
source code is separated into an application part and an
enclave part. The separation is enabled by the SGX SDK
with an edl file, which is manually created by the developer
and specifies which files and functions are to be compiled
into which parts. With the help of an SDK-provided tool
called edger8r, two header files are generated to help the
two parts interact with each other [12]. The standard SDK
compiles the application source code using the GCC com-
piler. To enable program analysis and instrumentation, we
replace the compiler for the source code with Clang [36]. The
standard SDK compiles the enclave source code using the
GCC compiler. We leave this part unchanged; the compiled
binary is the SGX library loaded into the enclave.

7.2 Asynchronous Call via Switchless Calls
The high-performance overhead incurred by enclave
switches is especially problematic, where ecalls are called
in a high frequency to call the trusted part inside the
enclave. To minimize the performance overhead incurred by
ecalls/ocalls, several previous works [16] [32] [50] propose
techniques that share the same core idea: caller threads
send the requests of ecalls/ocalls into shared untrusted
buffers, from which the requests are received and processed
asynchronously by worker threads. These approaches make
ecalls/ocalls does not trigger enclave switches. Intel team
calls this type of technique Switchless Calls and adopted it in
the work [49]. Switchless calls provide a speedup over the
default interface. The Intel SGX SDK [12] has provided the
switchless calls from version 2.2. We adopt switchless calls
in our switchless scheme and hotspot scheme.

7.3 Use cases.
We implement six representative use cases of computation
intensive in C/C++ programming language, including three
micro benchmarks: wordcount [51], PI and Quicksort, 3
machine learning applications: Naive Bayes (NBayes), K-
Means and Hidden Markov Model (HMM), and or select
a web server application: Thttpd [52].

WordCount. WordCount is a distributed system Hadoop
MapReduce application. It is a simple application that
counts the number of occurrences of each word in a given
input set [51]. We implement the map function in the C
programming language and take it as a use case. The size of
the input set is 860M.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

Fig. 13: Performance comparisons of Thttpd in 5 dif-
ferent schemes. (a) Mbytes/connection, (b) fetches/sec,
(c)bytes/sec and (d) msecs/connect in different schemes.

Benchmarks. Quicksort is a commonly used algorithm
for sorting. PI is an algorithm to approximate π with
arbitrary accuracy (repeat times). Quicksort and PI have
commonly used microbenchmarks. We implement them in
the C programming language as benchmarks to evaluate our
schemes. The accuracy of PI as 9×105 in our evaluation.

Machine Learning (ML). NBayes classifiers are a fam-
ily of simple ”probabilistic classifiers” based on applying
Bayes’ theorem with strong (naive) independence assump-
tions between the features. K-Means clustering is a method
of vector quantization that aims to partition n observations
into k clusters. Each observation belongs to the cluster with
the nearest mean, serving as a prototype of the cluster.
HMM is a probabilistic system designed to model a se-
quence due to a markovian process that cannot be observed.
We implement three applications in the C++ language.

Thttpd. Thttpd is a simple, small, portable, fast, and
secure HTTP server [52]. It doesn’t have many unique
features, but it suffices for most web uses; it’s about as fast
as the best full-featured servers (Apache, NCSA Netscape)
has one handy feature that no other server currently has. We
use the Thttpd in version 2.25.

7.4 Instrumentation Overhead and Optimization
In this section, we will show the overhead of two instru-
mentation schemes. We first evaluate the runtimes of these
six benchmarks and applications. Then, we evaluate the
Thttpd server’s overheads, including the bytes/connection,
fetches/sec, bytes/sec, and msecs/connect. We repeat each
experiment 10 times to obtain the mean value.

Base-Ins Algorithm Overhead Fig. 12 shows the run-
time overhead of six applications in four schemes with T-
Counter compared to the native and baseline scheme. From
Fig. 12, we can observe that runtime of these six applica-
tions in the baseline scheme increases about 20ms-210ms
compared to the native scheme. It shows that the runtime
overhead of enclave initialization and destruction is rela-
tively certain. From Fig. 12a, we can observe that runtime of
base ins scheme of wordcount increases 2.1× compared to
baseline. In Fig. 12b, we can observe that runtime of base ins

TABLE 4: The LoC (Lines of Code) and NoC (Number of
instrumented Counters) of six Applications.

Works
Native Baseline Base Ins Opti Ins Switchless Hotspot

LoC LoC LoC NoC LoC NoC LoC NoC LoC NoC

Wordcount 48 52 57 5 56 4 59 4 63 4
PI 59 63 71 8 69 6 72 6 76 6

QuickSort 57 61 70 9 68 7 71 7 77 7
NBayes 322 326 352 26 347 21 350 21 380 15
HMM 626 630 672 42 667 37 670 37 710 37

K-Means 616 620 661 41 656 36 659 36 717 36
Thttpd 9750 9754 10552 798 10552 798 10555 798 10555 798

scheme of PI and Quicksort increases 1441.62× and 271.92×
respectively compared to their baseline. The runtime of
base ins scheme of three machine learning applications
increases 44.77×, 53.85×, and 23.07× compared to their base-
line, as shown in Fig 12c. The performance overhead of the
base ins scheme of these applications ranges from several
times to hundreds of times. The base ins scheme selectively
instrumented less than 20% basic blocks in the CFG. If we
do not selectively instrument counters by our base ins algo-
rithm, the performance overhead will be one to two orders
of magnitude higher. In general, our base ins algorithm
adds one to three magnitudes of performance overhead
compared to the baseline scheme. The high-performance
cost is because the cost of the context switch caused by ecalls
is much higher than the cost of the program itself.

Opti-Ins Algorithm Overhead and Optimization Fig. 12
shows the runtime of six applications in the opti ins scheme.
We observe that the overhead of the opti ins scheme ranges
from several times to hundreds of times. We also observe a
noticeable reduction in overhead of opti ins scheme of six
applications to base ins scheme. Significantly, the overheads
of PI, Quicksort, and three ML applications reduce by nearly
an order of magnitude. The overheads of PI and Quicksort
reduce 90.2% and 76.94%; the overheads of three machine
learning applications reduce 73.48%, 71.19%, and 67.44%
separately. The ingenious design of our opti ins algorithm
reduces counters compared to the base ins algorithm, which
significantly reduces the counters (Table 4) triggered by the
program during execution.

For the non-computation intensive web application
Thttpd, instrumentation has a much smaller impact on its
performance (see Fig. 13. In the same settings, compared
to the baseline scheme, the bytes transferred in every con-
nection decrease 25.92% and 22.37% in base ins scheme
and opti ins scheme separately (see Fig. 13a). The fetches
processed in every second decrease 4.13% and 3.07% in
two schemes separately (Fig 13b), the bytes transferred in
every second separately decrease 28.89% and 3.07% in two
schemes (see Fig 13c), the delay per connection individually
increase 21.46% and 14.14% in two schemes (see Fig 13d).

7.5 Performance Optimization

This section will show the performance optimization of the
switchless scheme and hotspot scheme, respectively.

Swithless Optimization. As shown in Fig. 12, the per-
formance of the opti ins scheme has improved several times
compared to the base ins scheme. And, the number of coun-
ters instrumented and executed is challenging to reduce.
But, several times or even dozens of times performance

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

(a) (b) (c)

Fig. 14: Runtime comparisons of six applications’ hotspot scheme with different number range.

overhead is still unacceptable for consumers. It is mainly
due to the context switch caused by ecalls. We adopt the
switchless call supported by SGX SDK in the switchless
scheme to avoid context switches. From Fig. 12, we also
observe a noticeable reduction in overhead of switchless
scheme of six applications to opti ins scheme. The over-
head reductions of the switchless scheme of six applications
compared to their opti ins scheme: wordcount is 70.45%,
PI and Quicksort are 52.27%, and 50.32%, 56.31%, 67.04%,
and 59.01%. In general, the switchless schemes’ overhead
reduces by more than 50% compared to opti ins schemes.

Hotspot Optimization. Fig. 12 shows that these appli-
cations’ hotspot schemes’ performance further improves
compared to their switchless schemes, the performance
improvement of the hotspot schemes are 0.49% (word-
count), 95.82% (PI), 94.15% (Quicksort), 80.06% (NBayes),
81.23% (HMM) and 60.48% (K-Means). And compared
to the baseline schemes, the performance overhead of
the hotspot schemes is 10.32% (wordcount), 181.76% (PI),
82.24% (Quicksort), 3.39% (NBayes), 8.52% (HMM), and
7.67% (K-Means). In general, three machine learning appli-
cations achieve low-performance overhead from 3.39% to
8.52%, and the word count also reaches good performance
optimization. PI and Quicksort’s lousy performance is be-
cause they only have dozens of lines of code; this leads to
the runtime of instrumented code is close to the runtime
of application code. Such situations only occur in a few
cases. Compared with the performance of these existing
trusted resource usage measurement systems, such as S-
Faas (5.3%/6.3%) [13], VeriCount (3:62%/16:03%) [11] and
AccTEE [25] (10%), T-Counter achieve better performance.

As we analyzed in Section 4.3, the existence of the
hotspot is an important reason for high-performance over-
head. We use a random call to solve the problem and
evaluate the runtime of these applications’ hotspot schemes
with the random number’ range of random number m from
10 to 104 (see Fig. 14). Fig.14b shows that the performance
optimization of PI and Quicksort is getting better obviously
with m from 10 to 103. But, when m from 103 to 104, the
optimization magnitude of two applications’ optimization
schemes are almost zero. The performance optimization
of three machine learning applications are similar to PI
and Quicksort, see Fig. 14c. For the Thttpd, compared to
the baseline scheme, the four metrics respectively increase
or decrease 9.29%, 2.47%, 6.08% and 4.71% in switchless
scheme, and increase or decrease 7.58%, 1.43%, 3.01% and

TABLE 5: Instruction Latency and Throughput.

Instruction Latency Throughput Instruction Latency Throughput

MOV 1 1 CVTSI2SD 5 1
SUB 1 1 MOVSD 1 1
XOR 1 0.25 DIVSD 14 5

PXOR 1 0.33 MOVAPD 2 0.33
AND 1 0.25 ADDSD 4 0.5
CMP 1 0.25 MULSD 3 0.5
LEA 1 0.5 IMUL 4 1
SAR 1 0.5 TEST 1 0.25

CDQE 1 0.5 UCOMISD 2 1

0.38% in hotspot scheme, see Fig. 13(a)-(d). Instrumentation
almost does not affect the performance of the Thttpd after
adopting all optimization. So, we set the random number
as 103 in these applications’ hotspot schemes as default.
It guarantees both performance optimization and the accu-
racy(described in Section 7.6) of the resource measurement.

7.6 Accuracy Evaluation

To accurately measure CPU cost, we need to measure the av-
erage cost of instructions. As measured in our experiments
and described in Intel document [53], most instructions
are executed in 1 cycle (80%), fewer instructions in less
than 10 cycles (e.g. cvtsi2sd and addsd), and especially
expensive (e.g. divsd) needing more than 10 cycles, as
shown in Table 5. So, we simplify the average cost of all
instructions to 1 cycle. Then, the CPU cost measured by T-
Counter is the product of instructions’ number (N) and the
CPU frequency (F). Each counter itself needs ten instructions
to execute (excluding security check of the enclave etc.). For
every library function(include system calls it triggers), we
generate code that executes the library function n times.
The number of cycles per library function is calculated by
dividing the total number of cycles by n (n = 100 in our
experiment). These values are then used as weights for T-
Counter’s library function CPU resource accounting. We
adopt Linux command htop to monitor the CPU time (T)
of programs and take the CPU time as reference standards
for our experiments. The monitored CPU time refers to the
occupancy time of one core.

AE = N ∗ weight/(T ∗ F) (1)

The accuracy error (AE) is calculated as formula 1.
The accuracy evaluation results of six applications are as
depicted in Table 6. These applications can be divided into
two categories: computation-intensive and I/O-intensive.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

TABLE 6: The Accuracy Evaluation of Six Applications.

Works Work Type CPUTime App Lib+Sys Instruction Accuracy(Error)

Wordcount I/O-intensive 45.214s 0.406 44.808 1.765∗1011 95.211(-4.789)%
PI CPU-intensive 4.343 4.257 0.086 1.974∗1010 110.86(+10.86)%

Quicksort CPU-intensive 60.006 14.615 45.386 2.723∗1011 110.68(+10.68)%
NBayes CPU-intensive 24.436 8.756 15.680 9.548∗1010 95.301(-4.699)%
HMM CPU-intensive 10.418 4.856 5.362 4.067∗1010 95.215(-4.785)%

K-Means CPU-intensive 35.909 13.565 22.344 1.413∗1011 95.959(-4.041)%

Wordcount is an I/O-intensive application, and its CPU cost
mainly comes from printf operation, which includes library
functions and system calls that handle io operations. As our
experiment measurement, the total cost per I/O operation
is(include library functions and system call) 7500 cycles, and
the cost of library functions and system calls are accounted
for 99.9%. The measurement accuracy of WordCount is
95.211%, and the accuracy error of WordCount is -4.789%.
The measurement accuracy errors of other programs also
are less than +10.86%.

Accuracy of Hotspot Optimization. As the Hotspot
optimization strategy uses a random function to reduce
ecalls, it will affect the accuracy of the measurement. So we
evaluate the accuracy of the Hotspot optimization strategy
with different parameters. Evaluation results are as depicted
in Table 7. The result shows that the larger range of ran-
dom number has a greater influence on the measurement
accuracy, the accuracy of measurement of six applications
is decreasing obviously with m from 10 to 104, and the
accuracy decreasing about 4.279% at worst.

7.7 Binary Size and CPU core Overhead

Binary Size Overhead. The T-Counter does not change
the computation logic of the programs of consumers. It
just rewrites the application as an SGX application. The
original application instrumented with counters is the un-
trusted part of the SGX application and runs outside the
enclave, the added trusted part running inside the enclave
to account and verify resource usage. The code added into
applications is mainly the ecalls and hotspot randomized
codes(exclude enclave edge code). The lines of codes added
into applications are shown in Table 4. The instrumented
binaries are between 6.4% and 31.25% larger after enabling
all optimizations (hotspot).

TCB size. To minimize the TCB, we just put the trusted
counter, verifier, recorder, and data structures they rely on in
the enclave. Excluding the SGX trusted libraries, T-Counter
adds less than 350 lines of C++ code in the enclave. Thus,
the trusted part of the T-Counter code is easy for security
verification.

CPU core Overhead. The switchless call feature of our
switchless schemes needs an additional CPU core to process
the ecalls. Although the switchless schemes increase the
performance overhead, it is wise to add an additional CPU
core for processing accounting compared to increasing per-
formance overhead. This is more acceptable to consumers.
And one ecall thread can be used to process several worker
threads. When the CPU usage of the program is larger,
an additional CPU core overhead of the trusted counter is
smaller compared with the CPU cores used by the appli-
cation itself. Intel research team has proposed a scheme to
reduce additional CPU core overhead in their work [49].

TABLE 7: The Accuracy Evaluation of Hotspot.

Works None Hotpots/10 Hotpots/102 Hotpots/103 Hotpots/104

Wordcount 95.211% 94.984(-0.227)% 94.968(-0.243)% 94.531(-0.68)% 96.147(+0.936)%
PI 110.86% 110.86(–)% 110.86(–)% 110.809(-0.051)% 110.786(-0.07)%

Quicksort 110.68% 110.802(-0.122)% 110.802(-0.122)% 110.802(-0.122)% 110.924(-0.244)%
NBayes 95.301% 95.209(-0.092)% 95.437(+1.362)% 97.573(+2.272)% 98327.(+3.026)%
HMM 95.215% 95.129(-0.086)% 96.227(+1.012)% 98.017(+2.802)% 99.141(+3.926)%

K-Means 95.959% 95.857(-0.102)% 94.737(-1.222)% 99.525(+3.566)% 100.238(+4.279)%

8 DISCUSSIONS AND FUTURE WORKS

Even though T-Counter provides a security guarantee and
achieves efficiency and accurate advantages. The approach
can be improved in the future, and we discuss it as follows.

Security Enhancements. The solution we propose in this
paper have minimized the attack surface that the adversary
can use and make the adversary’s attack more expensive
than his attack’s profit. These efforts guarantee the effec-
tiveness and trustworthiness of our measurement. But it
is not perfect against all attacks, and the adversary can
still do some damage to resource measurement. We need
to resist more attacks and more efficient counter sequence
verification methods.

Other resources measurements. In addition to CPU
resources, many other important resources need to be mea-
sured, such as memory, network, disk, etc. Some works
have also proposed schemes to measure the cost of these
resources. E.g. S-FaaS [13] measure memory cost by in-
strumenting the malloc, realloc, and free functions used
by the function or interpreter. AccTEE [25] uses the linear
memory size for the accounting of memory consumed by
the workload. But these schemes can only measure the
memory cost inside the enclave. And, measuring I/O over-
head also faces the problem. AccTEE uses an additional
counter to accumulate how many bytes flow in and out of
the enclave through I/O functions, but it cannot measure the
operations outside the enclave trustworthy. The malicious
OS can manipulate these operations arbitrarily. Achieving
trust measurement of resource usage outside the enclave is a
challenging problem. For measuring memory and network,
we can also use the counter to calculate linear memory
for accounting memory cost and calculate bytes flow for
accounting I/O overhead. More importantly, we need to
focus on solving security challenges in future works.

9 CONCLUSION

In this paper, we proposed a universal CPU usage mea-
surement framework T-Counter, which allows for the con-
struction of CPU instructions accounting solutions for ap-
plications with provable security in the cloud. As far as we
know, T-Counter was the first framework and implemented
to measure the CPU usage of a program running outside a
trusted space in the cloud. We described the threat model of
resource measurement and proposed the architecture of the
T-Counter. We classified the basic blocks in the CFGs and
proposed two counter instrumentation algorithms, named
Base-Ins and Opti-Ins. These applications constructed by
T-Counter are specified by three components, a trusted
counter, a verifier, and a recorder. A concrete application
built by these components can measure its CPU usage by
itself in a trusted manner and make an adversary unable
to tamper counters arbitrarily. Based on the measurement

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 17

mechanisms, we introduced the importance of switchless.
In further, we showed how to optimize instrumentation per-
formance at the hotspot and model the relationship between
performance and a random number. Finally, we performed
some experiments to show the efficiency and accuracy of
T-Counter, and verify the instrumentation algorithms’ cor-
rectness.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No.61672062 and
61232005.

REFERENCES

[1] “Amazon web services (aws): Cloud computing services,” https:
//aws.amazon.com/cn/, 2020.

[2] “Google cloud: Cloud computing services,” https://cloud.google.
com/, 2020.

[3] “Microsoft azure: Cloud computing services,” https://azure.
microsoft.com/en-us/, 2020.

[4] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume
cloud computing,” in 2011 IEEE International Conference on Services
Computing. IEEE, 2011, pp. 370–377.

[5] “Aws ec2 pricing,” https://aws.amazon.com/cn/ec2/pricing/,
2020.

[6] “Google cloud pricing,” https://cloud.google.com/pricing/,
2020.

[7] “Microsoft azure pricing,” https://azure.microsoft.com/en-us/
pricing/, 2020.

[8] R. Jellinek, Y. Zhai, T. Ristenpart, and M. Swift, “A day late and a
dollar short: The case for research on cloud billing systems,” in 6th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud
14), 2014.

[9] K.-W. Park, J. Han, J. Chung, and K. H. Park, “Themis: A mutually
verifiable billing system for the cloud computing environment,”
IEEE Transactions on Services Computing, vol. 6, no. 3, pp. 300–313,
2012.

[10] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and V. Sekar,
“Towards verifiable resource accounting for outsourced computa-
tion,” in Proceedings of the 9th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, 2013, pp. 167–178.

[11] S. Tople, S. Park, M. S. Kang, and P. Saxena, “V eri c ount: Verifiable
resource accounting using hardware and software isolation,” in In-
ternational Conference on Applied Cryptography and Network Security.
Springer, 2018, pp. 657–677.

[12] “Intel software guard extensions sdk for linux,” https://01.org/
sites/default/files/documentation/, 2020.

[13] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner,
“S-faas: Trustworthy and accountable function-as-a-service using
intel sgx,” in Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, 2019, pp. 185–199.

[14] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting priv-
ileged side-channel attacks in shielded execution with déjá vu,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 2017, pp. 7–18.

[15] H. Liang and M. Li, “Bring the missing jigsaw back: Trustedclock
for sgx enclaves,” in Proceedings of the 11th European Workshop on
Systems Security, 2018, pp. 1–6.

[16] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
Exitless os services for sgx enclaves,” in Proceedings of the Twelfth
European Conference on Computer Systems, 2017, pp. 238–253.

[17] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al.,
“{SCONE}: Secure linux containers with intel {SGX},” in 12th
{USENIX} Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 16), 2016, pp. 689–703.

[18] H. Tian, Y. Zhang, C. Xing, and S. Yan, “Sgxkernel: A library
operating system optimized for intel sgx,” in Proceedings of the
Computing Frontiers Conference, 2017, pp. 35–44.

[19] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A prac-
tical library {OS} for unmodified applications on {SGX},” in
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17),
2017, pp. 645–658.

[20] S. C. Misra and V. C. Bhavsar, “Relationships between selected
software measures and latent bug-density: Guidelines for improv-
ing quality,” in International Conference on Computational Science and
Its Applications. Springer, 2003, pp. 724–732.

[21] V. Y. Shen, T.-J. Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying
error-prone software—an empirical study,” IEEE Transactions on
Software Engineering, no. 4, pp. 317–324, 1985.

[22] “Intel software guard extensions,” https://software.intel.com/
en-us/sgx/details, 2020.

[23] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in International Sym-
posium on Code Generation and Optimization, 2004. CGO 2004. IEEE,
2004, pp. 75–86.

[24] L. Chen and K. Chen, “Bitbill: Scalable, robust, verifiable peer-to-
peer billing for cloud computing,” in Proceedings of the 6th USENIX
conference on Hot Topics in Cloud Computing, 2014, pp. 20–20.

[25] D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, “Acctee: A
webassembly-based two-way sandbox for trusted resource ac-
counting,” in Proceedings of the 20th International Middleware Con-
ference, 2019, pp. 123–135.

[26] V. Sekar and P. Maniatis, “Verifiable resource accounting for cloud
computing services,” in Proceedings of the 3rd ACM workshop on
Cloud computing security workshop, 2011, pp. 21–26.

[27] F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. Van Renesse, “{REM}:
Resource-efficient mining for blockchains,” in 26th {USENIX}
Security Symposium ({USENIX} Security 17), 2017, pp. 1427–1444.

[28] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using innovative instructions to create trustworthy software so-
lutions.” HASP@ ISCA, vol. 11, no. 10.1145, pp. 2 487 726–2 488 370,
2013.

[29] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, “Innovative instructions and
software model for isolated execution in: Proceedings of the 2nd
international workshop on hardware and architectural support for
security and privacy, hasp’13, 10–1101.. acm, new york,” ACM, Tel-
Aviv, 2013.

[30] V. Costan, I. A. Lebedev, S. Devadas et al., “Secure processors
part ii: Intel sgx security analysis and mit sanctum architecture,”
Foundations and Trends in Electronic Design Automation, vol. 11,
no. 3, pp. 249–361, 2017.

[31] “Intel sgx developer guide,” https://download.01.org/intel-sgx/
sgx-linux/2.7.1/docs/IntelSGXDeveloperGuide.pdf, 2020.

[32] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with
hotcalls: A fast interface for sgx secure enclaves,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 2, pp. 81–93, 2017.

[33] “The llvm compiler infrastructure,” http://llvm.org/, 2020.
[34] “Llvm language reference manual,” http://llvm.org/docs/

LangRef.html, 2020.
[35] “Writing an llvm pass,” https://llvm.org/docs/

WritingAnLLVMPass.html, 2020.
[36] “Clang: a c language family frontend for llvm,” http://clang.llvm.

org, 2020.
[37] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and

A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks are
practical,” in 11th {USENIX} Workshop on Offensive Technologies
({WOOT} 17), 2017.

[38] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-
based attacks on enclaved execution,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1041–1056.

[39] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fet-
zer, “Varys: Protecting {SGX} enclaves from practical side-
channel attacks,” in 2018 {Usenix} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 227–240.

[40] M. Liu and X. Ding, “On trustworthiness of cpu usage metering
and accounting,” in 2010 IEEE 30th International Conference on
Distributed Computing Systems Workshops. IEEE, 2010, pp. 82–91.

[41] M. Jakobsson and A. Juels, “Proofs of work and bread pudding
protocols,” in Secure information networks. Springer, 1999, pp. 258–
272.

[42] J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-
tative approach. Elsevier, 2011.

[43] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM
Transactions on Information and System Security (TISSEC), vol. 13,
no. 1, pp. 1–40, 2009.

https://aws.amazon.com/cn/
https://aws.amazon.com/cn/
https://cloud.google.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://aws.amazon.com/cn/ec2/pricing/
https://cloud.google.com/pricing/
https://azure.microsoft.com/en-us/pricing/
https://azure.microsoft.com/en-us/pricing/
https://01.org/sites/default/files/documentation/
https://01.org/sites/default/files/documentation/
https://software.intel.com/en-us/sgx/details
https://software.intel.com/en-us/sgx/details
https://download.01.org/intel-sgx/sgx-linux/2.7.1/docs/Intel SGX Developer Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.7.1/docs/Intel SGX Developer Guide.pdf
http://llvm.org/
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html
http://clang.llvm.org
http://clang.llvm.org

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 18

[44] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats.” in USENIX Security Symposium,
vol. 5, 2005.

[45] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented pro-
gramming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, 2011, pp. 30–40.

[46] M. Zhang and R. Sekar, “Control flow integrity for {COTS} bina-
ries,” in 22nd {USENIX} Security Symposium ({USENIX} Security
13), 2013, pp. 337–352.

[47] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlings-
son, L. Lozano, and G. Pike, “Enforcing forward-edge control-
flow integrity in {GCC} & {LLVM},” in 23rd {USENIX} Security
Symposium ({USENIX} Security 14), 2014, pp. 941–955.

[48] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for
embedded systems software,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 743–754.

[49] H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv,
and N. Milshten, “Switchless calls made practical in intel sgx,”
in Proceedings of the 3rd Workshop on System Software for Trusted
Execution, 2018, pp. 22–27.

[50] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification struc-
tures,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 665–678.

[51] “Apache hadoop mapreduce.” https://hadoop.
apache.org/docs/current/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/MapReduceTutorial.html#
Source Code, 2020.

[52] “Thttpd.” https://acme.com/software/thttpd/, 2020.
[53] “Intel 64 and ia-32 architectures optimization reference.” https://

software.intel.com/content/www/us/en/develop/download/
intel-64-and-ia-32-architectures-optimization-reference-manual.
html, 2021.

Chuntao Dong received BSc. degree in soft-
ware engineering from Shandong University, Ji-
nan, China, and the Master degree in soft-
ware engineering from Peking University, Bei-
jing, China, in 2013 and 2016. He is currently
pursuing the Ph.D. degree of Software Engi-
neering in Peking University, Beijing, China. He
ever worked as a research assistant with the
School of Information Systems, Singapore Man-
agement University, Singapore, in 2017-2018.
His research interests include system security,

big data security, and trusted computing.

Qingni Shen received the Ph.D. degree from
Institute of Software Chinese Academy of Sci-
ences, Beijing, China, in 2006. She is currently a
professor of School of Software and Microelec-
tronics, Peking University, Beijing, China. Her
research interests include OS and virtualization
security, privacy preserving in cloud and big
data, trusted computing. She is a senior mem-
ber of CCF, IEEE and ACM member. She is
now serving for many international journals and
conferences, including Computers & Security,

JPDC, TrustCom, SecureComm, ACNS and ever as the general chair
of ICICS 2019 and as the steering committee memeber of ICICS since
2019.

Xuhua Ding received the Ph.D. degree from
University of Southern California, America, in
2003. He is currently an associate professor of
Information Systems in the School of Informa-
tion Systems, Singapore Management Univer-
sity. His research interests include information
systems and technology, cybersecurity, safety
and security, security of digital platforms and
devices.

Daoqing Yu received the B.Sc. degree in soft-
ware engineering from Beijing Institute of Tech-
nology, Beijing, China, in 2018. He is currently
pursuing the Master degree in Peking University,
Beijing, China. His research interests include
cloud security and system security.

Wu Luo received his BS degrees in telecom-
munications engineering from Beijing University
of Posts and Telecommunication, Beijing, China.
He is currently working towards his PhD degree
at the School of Electronics Engineering and
Computer Science, Peking University. His cur-
rent research interests include Trusted Comput-
ing, Cloud Security and Operating Systems.

Pengfei Wu received BSc. degree in software
engineering from Shandong University, Jinan,
China, and the PhD degree in software engi-
neering from Peking University, Beijing, China,
in 2016 and 2020. Now, he is a research fel-
low in School of Computing, National University
of Singapore, Singapore. He ever worked as a
research assistant with the School of Informa-
tion Systems, Singapore Management Univer-
sity, Singapore, in 2018-2019. His research in-
terests include cloud security, big data security,

and applied cryptography.

Zhonghai Wu received the Ph.D. degree from
Zhejiang University, Hangzhou, China, in 1997.
Previously he worked as a postdoctor and se-
nior research fellow in Institute of Computer Sci-
ence and Technology, Peking University, Beijing,
China. Since then he has been involved both
in research and application development of dis-
tributed system and multimedia applications. He
is currently the executive president of School of
Software and Microelectronics, Peking Univer-
sity, Beijing, China. His research interests in-

clude context-aware services, embedded software and system, cloud
services and security, and open innovation.

https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html#Source_Code
https://acme.com/software/thttpd/
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html

	T-counter: Trustworthy and efficient CPU resource measurement using SGX in the cloud
	Citation
	Author

	T-Counter: Trustworthy and Efficient CPU Resource Measurement using SGX in the Cloud

