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ABSTRACT

Deep learning (DL) systems are increasingly deployed for autono-

mous decision-making in a wide range of applications. Apart from

the robustness and safety, fairness is also an important property that

a well-designed DL system should have. To evaluate and improve

individual fairness of a model, systematic test case generation for

identifying individual discriminatory instances in the input space

is essential. In this paper, we propose a framework EIDIG for ef-

ficiently discovering individual fairness violation. Our technique

combines a global generation phase for rapidly generating a set

of diverse discriminatory seeds with a local generation phase for

generating as many individual discriminatory instances as possible

around these seeds under the guidance of the gradient of the model

output. In each phase, prior information at successive iterations is

fully exploited to accelerate convergence of iterative optimization

or reduce frequency of gradient calculation. Our experimental re-

sults show that, on average, our approach EIDIG generates 19.11%

more individual discriminatory instances with a speedup of 121.49%

when compared with the state-of-the-art method and mitigates in-

dividual discrimination by 80.03% with a limited accuracy loss after

retraining.

CCS CONCEPTS

· Software and its engineering→ Software testing and debug-

ging; · Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION

Recently, deep learning (DL) systems are becoming crucial enablers

in many real-world applications involving decision-making, includ-

ing self-driving [5, 21], traffic control [28], medical diagnosis [34],

fraud detection [19], etc. Although deep neural networks (DNNs)

have achieved an astonishing performance commensurate with the

cognitive abilities of humans in widespread domains, assurance evi-

dence for their trustworthiness is insufficient, especially when such

models are designed to make life-changing decisions. It has been

found that DNNs are vulnerable to adversarial examples, which are

crafted to fool the model under test by slightly perturbing the orig-

inal inputs [22, 31, 40, 47]. Apart from the robustness risk exposed

by adversarial examples, fairness violation is also a notable threat

to the full acceptance of DL.

For decision-making in data-driven applications, fairness is non-

discrimination, which ensures that no group or individual is preju-

diced or favored due to their inherent or acquired characteristics

[37, 43]. We call such characteristics protected attributes (e.g., age,

race, gender, etc.). Discrimination might limit the opportunity that

a group or an individual is qualified and further exacerbate social

inequity [14]. More and more real-world examples of algorithmic

bias that demonstrate harmful societal effects have emerged, such

as racial bias in the COMPAS recidivism prediction model [3] and

gender bias in Amazon’s recruiting model [11]. The bias in DNNs

can be traced back to the training data. However, It is not effec-

tive enough for bias mitigation to simply remove the protected

attributes before training, because these attributes could be de-

rived by the combination of other features. Due to the difficulty in

keeping fairness during design and engineering, systematical bias

detection is a crucial step before deployment.

To detect and evaluate software bias, a growing number of stud-

ies have been targeted to group fairness and individual fairness

respectively. The group fairness focuses on the statistical parity

for different groups [24, 32], while the individual fairness empha-

sizes that any two individuals who differ only in their intrinsic or

acquired traits should be treated in a similar fashion during the

decision-making [16, 20]. Note that some discrimination behav-

iors are not captured in the context of the group fairness when

the model discriminates against a group in one setting but favors

them in another, while the individual fairness can identify these

behaviors [20]. Therefore, we focus on the individual fairness in

this work. To uncover individual fairness violation, Galhotra et al.

[20] proposed Themis to generate test suites for discrimination

measurement by randomly sampling from the input space. Udeshi

et al. [50] presented AEQUITAS, which first discovers some discrim-

inatory inputs through random sampling and then searches the

neighborhood of them for identifying more discriminatory inputs

by perturbing these seeds under the guidance of a global adaptive

probability distribution. Agarwal et al. [2] introduced traditional
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software testing techniques into fairness testing for machine learn-

ing models. Their approach Symbolic Generation (SG) first adopts

local explanation to approximate the original model with a decision

tree, and then performs symbolic execution to systematically gener-

ate test cases evidencing discrimination. Zhang et al. [51] proposed

Adversarial Discrimination Finder (ADF) to generate individual dis-

criminatory instances utilizing the gradient of the loss function as

guidance. In the global generation phase, ADF iteratively perturbs

the original inputs towards the decision boundary to rapidly iden-

tify a set of discriminatory seeds. In the local generation phase, ADF

searches the neighborhood of these discriminatory seeds for more

discriminatory instances according to an input-specific probability

distribution. Despite their abilities to generate plentiful test cases

violating the individual fairness for several real-world datasets,

these approaches are far from efficient. We further discuss them in

Section 5.

To this end, we propose a scalable and efficient approach called

Efficient Individual Discriminatory Instances Generator (EIDIG) to

systematically generate test cases that violate the individual fair-

ness for differentiable models (e.g., DNNs). EIDIG inherits and

improves the state-of-the-art approach ADF [51] in three aspects.

Primarily, We utilize the gradient of the model output w.r.t the

corresponding input instead of the gradient of the loss function to

build a more direct and precise mapping between input perturba-

tions and output variations. The absence of the backpropagation

through the loss function significantly reduces the computation

cost at each iteration for the two-phase generation. During global

generation, we integrate the momentum term into the iterative

search for identifying discriminatory seeds. The momentum term

enables the memorization of the previous trend and helps to escape

from local optima [15], which ensures a higher success rate of find-

ing individual discriminatory instances. During local generation,

we reduce frequency of gradient calculation by exploiting the prior

knowledge of gradients. In our experiments, we find that attribute

contributions are highly correlated at successive iterations due

to minor perturbation preferred in the local phase. Consequently,

gradients and attribute contributions are recalculated every few

iterations to decrease time cost while maintaining effectiveness in

discrimination detection.

We have implemented our framework EIDIG and comprehen-

sively compared it with state-of-the-art approach ADF for 10 bench-

marks on three real-world datasets. Our experimental results show

that on average EIDIG-∞ generates 19.11% more individual discrim-

inatory instances with a speedup of 121.49% when the maximum

number of search attempts is fixed. After retraining, the individual

discrimination in the model is reduced by 80.03% with a limited

accuracy loss on average.

Overall, the main contributions of our paper are:

• We propose an efficient and effective approach EIDIG for

generating test cases evidencing the individual discrimina-

tion for differentiable models through gradient search.

• We implement EIDIG with Python3.6 and Tensorflow2.0 [1].

All details about our implementation, experimental data, and

trained models are available online1.

1https://github.com/LingfengZhang98/EIDIG

Figure 1: A shallow feedforward neural network.

• We evaluate EIDIG against the state-of-the-art method ADF

[51] with 10 benchmarks on three real-world datasets, in-

cluding four combinatorial benchmarks. It is shown that our

approach significantly outperforms ADF.

• We leverage the generated individual discriminatory instances

for data augmentation and then automatically retrain the

original models to successfully mitigate bias.

The remainder of the paper is structured as follows. In Section

2, we briefly present the necessary background. In Section 3, we

describe and justify EIDIG in detail. In Section 4, we discuss our

experimental results. In Section 5, we review the evolution in the

relevant research domains. Finally, we conclude our work in Section

6.

2 BACKGROUND

2.1 Deep Neural Networks

A feedforward neural network N contains one input layer for re-

ceiving the input data, multiple hidden layers for computing, and

one output layer for formatting the outputs. We show a simple

example in Fig. 1. Formally, we defineN as a tuple (𝐿,𝐶,Φ), where

𝐿 = {𝐿𝑖 |𝑖 ∈ {1, ..., 𝑙}} denotes the set of layers, the 𝑖-th layer of

which contains 𝑠𝑖 neurons,𝐶 ⊆ 𝐿 ×𝐿 denotes connections between

layers, and Φ = {𝜙𝑖 |𝑖 ∈ {2, ..., 𝑙}} denotes the set of activation func-

tions (e.g., Rectified Linear Unit (ReLU)[39], sigmoid, hyperbolic

tangent (tanh), etc.) used in each layer. The neuron 𝑗 of the layer 𝑖

is denoted by 𝑛𝑖, 𝑗 , and its corresponding activation value is 𝑣𝑖, 𝑗 . Ex-

cept in the input layer, each neuron is connected to the neurons in

the preceding layer with pretrained weights such that for 2 ≤ 𝑖 ≤ 𝑙

and 1 ≤ 𝑗 ≤ 𝑠𝑖 , activation value of 𝑛𝑖, 𝑗 is given by

𝑣𝑖, 𝑗 = 𝜙𝑖 (𝑏𝑖, 𝑗 +

𝑠𝑖−1
∑

𝑘=1

𝑤𝑖−1,𝑘, 𝑗 · 𝑣𝑖−1,𝑘 ) (1)

where𝑤𝑖−1,𝑘, 𝑗 is the weight for the connection between 𝑛𝑖−1,𝑘 and

𝑛𝑖, 𝑗 , 𝑏𝑖, 𝑗 is the bias term for 𝑛𝑖, 𝑗 , and 𝜙𝑖 is the activation function

used in the layer 𝑖 . Essentially, a DNNmodel is a composite function,

whose gradients are easily computed by applying the chain rule

[46]. The output vector F (𝑥) of the model N is composed of the

activation values from the output layer and each element of F (𝑥)

represents the prediction probability for the corresponding class.
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We can compute the Jacobian matrix of F (𝑥) w.r.t. a given input

vector 𝑥 by

𝐽F (𝑥) =
𝜕F (𝑥)

𝜕𝑥
=

[

𝜕F𝑛 (𝑥)

𝜕𝑥𝑚

]

𝑚×𝑛

(2)

where the 𝑛-th column is the gradient vector of the 𝑛-th output

element w.r.t. input vector 𝑥 .

2.2 Gradient-Based Adversarial Attacks

Recently, DNNs have been found vulnerable to well-designed inputs

called adversarial examples[47], which is imperceptible to humans

but able to easily fool state-of-the-art models. Many adversarial

attack methods have been proposed, which deliberately perturb

the original inputs from the training set to generate adversarial

examples. These methods are potentially implemented to generate

test cases for other requirements (e.g., fairness testing).

Gradient-based adversarial attacks utilize the gradient as a pow-

erful guidance for optimization. Goodfellow et al. [22] proposed Fast

Gradient Sign Method (FGSM) to generate adversarial examples.

They only performed one-step perturbation with the sign of the

gradient at each pixel. Kurakin et al. [31] extended FGSM by using

smaller perturbation steps for multiple iterations, which is called

Basic Iterative Method (BIM). Dong et al. [13] integrate momentum

into BIM to generate more transferable adversarial examples. Pa-

pernot et al. [40] designed a novel method called Jacobian-based

saliency map attack (JSMA). They constructed a saliency map to

represent the importance of each pixel for decision-making, which

is given by

𝑆𝑥𝑦 [𝑖] =

{

0 if sign (𝐽𝑖𝑡 (𝑥)) = sign
(

∑

𝑗≠𝑡 𝐽𝑖 𝑗 (𝑥)
)

𝐽𝑖𝑡 (𝑥) ∗
�

�

∑

𝑗≠𝑡 𝐽𝑖 𝑗 (𝑥)
�

� otherwise
(3)

where 𝐽 is the Jacobian matrix of the output 𝑦 w.r.t. the input 𝑥 , and

𝑡 is the target class for the attack. Then they selected the two most

significant input features to perturb at each iteration according to

the absolute value of saliency value |𝑆𝑥𝑦 [𝑖] |. Different from FGSM

and BIM, JSMA adopts the gradient of the network instead of the

gradient of the loss function, which omits the backpropagation

through loss function at each iteration. Inspired by JSMA, our work

also establish a precise mapping between inputs and outputs of

DNNs based on the gradient of the model output to guide the

fairness testing.

2.3 Individual Discrimination

It is proved that if a software group discriminates against a set of

protected attributes, it must individually discriminate against that

set at least as much [20]. Therefore, we only focus on the individual

fairness in this work.

Definition 2.1 (Individual discriminatory instance). Let 𝑋 be a

dataset with a set of attributes 𝐴 = {𝑎𝑖 |𝑖 ∈ {1, ..., 𝑛}}. If 𝑎𝑖 ∈ I𝑖
holds for 1 ≤ 𝑖 ≤ 𝑛, the input domain of the corresponding decision-

making software S: I→ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒} is I = I1 × I2 × . . . × I𝑛 . We

use 𝑃 to denote the set of protected attributes, and thus 𝐴 \ 𝑃 is the

set of non-protected attributes. We define that an instance 𝑥 ∈ I is

an individual discriminatory instance for software S if there exists

an instance 𝑥 ′ ∈ I such that

• ∃𝑎 ∈ 𝑃 , 𝑥𝑎 ≠ 𝑥 ′𝑎
• ∀𝑎 ∈ 𝐴 \ 𝑃 , 𝑥𝑎 = 𝑥 ′𝑎

• S(𝑥) ≠ S(𝑥 ′)

The tuple (𝑥, 𝑥 ′) is thus an individual discriminatory instance pair.

Example 2.1. For a dataset with 12 features, we choose gender as

the protected attribute and take a pair (𝑥, 𝑥 ′) from the dataset as

an example:

𝑥 : [2, 0, 10, 1, 8, 3, 0, 0, 1, 1, 3, 0]

𝑥 ′: [2, 0, 10, 1, 8, 3, 0, 1, 1, 1, 3, 0]

We highlight gender in red for clarity. If the decision-making soft-

ware S makes different predictions for 𝑥 and 𝑥 ′, 𝑥 is an individual

discriminatory instance w.r.t. gender, and (𝑥, 𝑥 ′) is an individual dis-

criminatory instance pair. Next, we formally introduce the notion

of perturbations and define the problem to be solved.

Definition 2.2 (Perturbation). We define a perturbation function

𝑓 : I × (𝐴 \ 𝑃) × Γ → I where Γ is the set of possible directions for

perturbation, e.g., Γ is defined as {-1, 1} for a single discrete attribute.

For simplicity, we use 𝑓 (𝑥) to denote the instance generated from

𝑥 by perturbation.

Problem definition. For a given dataset 𝑋 and a DNN model N ,

we attempt to quickly generate as many diverse individual dis-

criminatory instances as possible that manifests individual fairness

violation in N by perturbing the seed inputs in 𝑋 and mitigate

the individual bias with the generated individual discriminatory

instances.

3 APPROACH

In this section, we present our gradient-based algorithm called Ef-

ficient Individual Discriminatory Instances Generator (EIDIG) for

generating individual discriminatory instances, whose high-level

workflow is shown in Fig. 2. EIDIG generates individual discrimi-

natory instances in two sequential phases (i.e., a global generation

phase and a local generation phase). In the following, we will de-

scribe our innovations and improvements in EIDIG in detail. We

first demonstrate how to construct a direct and precise mapping

from input perturbations to output variations, which is adopted as

guidance for generating individual discriminatory instances. We

then present how to introduce momentum into the global gener-

ation phase to improve the success rate of finding discriminatory

seeds. Finally, we elaborate on how we generate as many individ-

ual discriminatory instances as possible with a limited budget for

gradient calculation in the local generation phase.

3.1 Utilizing Gradient as A Powerful Guidance

To systematically generate abundant test cases evidencing individ-

ual fairness violation, we first need to find effective guidance that

provides precise information for the search process.

Assume that the model N classifies an input 𝑥 as class 𝑝 for the

clarity of illustration. In [51], Zhang et al. adopted the gradient of

the loss function L w.r.t. the input features 𝑥 (∇𝑥L(F (𝑥), 𝑦)) as

guidance for generating individual discriminatory instances. The

sign of the gradient is the direction in which the function value

increases most quickly, so the prediction error L(F (𝑥), 𝑦) will in-

crease and the confidence for current prediction F𝑝 (𝑥) will decrease

if the attributes are perturbed in the direction of ∇𝑥L(F (𝑥), 𝑦) and

vise versa. The impact of each attribute on the model predictions is

proportional to the absolute value of the corresponding gradient

element when the attribute is perturbed. Then any seed input can
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Figure 2: EIDIG workflow of generating individual discriminatory instances for a DNN model.

be systematically perturbed to generate new inputs while getting

or keeping a certain property according to the above rules.

In this paper, we take the derivative of the model N and utilize

the gradient of the model output F (𝑥) w.r.t. the input features 𝑥

(∇𝑥F (𝑥)) to construct a direct and precise mapping from input

perturbations to output variations. Specifically, we only need to cal-

culate the gradient of the class 𝑝 predicted by the model (∇𝑥F𝑝 (𝑥))

for an input 𝑥 . In this way, we can increase the confidence for

current prediction F𝑝 (𝑥) by perturbing the input in the direction

of ∇𝑥F𝑝 (𝑥) or decrease it by perturbing the input in the opposite

direction. Compared with the gradient of the loss function, the gra-

dient of the predicted class saves the backpropagation through the

loss function w.r.t. computation, i.e., the derivatives of the loss func-

tion w.r.t. the outputs of the output layer’s neurons (
𝜕L(F(𝑥),𝑦)

𝜕F(𝑥)
)

and the derivatives of the outputs of these neurons except neuron 𝑝

w.r.t. the penultimate layer’s outputs H(𝑥) (
𝜕F(𝑥)
𝜕H(𝑥)

except
𝜕F𝑝 (𝑥)

𝜕H(𝑥)
)

are not computed any more according to the chain rule [46].

Example 3.1. We take the network shown in Fig. 1 as an example

to illustrate the difference between the gradient of the loss func-

tion and the gradient of the predicted class. Assume that an input

𝑥 = (𝑥1, 𝑥2, 𝑥3) is labeled as class one, and the model predicts the

probabilities F (𝑥) = (𝑦1, 𝑦2). We choose the mean squared error

as the loss function L. We then calculate the gradient of the loss

function and the gradient of the predicted class respectively:

∇𝑥L =
𝜕L(F (𝑥), 𝑦)

𝜕𝑥
=

𝜕L(F (𝑥), 𝑦)

𝜕F (𝑥)
·
𝜕F (𝑥)

𝜕H(𝑥)
·
𝜕H(𝑥)

𝜕𝑥

=

[

𝜕L(F(𝑥),𝑦)
𝜕F1 (𝑥)

𝜕L(F(𝑥),𝑦)
𝜕F2 (𝑥)

]

·

[

𝜕F1 (𝑥)
𝜕H(𝑥)
𝜕F2 (𝑥)
𝜕H(𝑥)

]

·
𝜕H(𝑥)

𝜕𝑥

(4)

∇𝑥F𝑝 =
𝜕F1 (𝑥)

𝜕𝑥
=

𝜕F1 (𝑥)

𝜕H(𝑥)
·
𝜕H(𝑥)

𝜕𝑥
(5)

Comparing Eq. 4 with Eq. 5, we find that it is not necessary

to calculate
𝜕L(F(𝑥),𝑦)

𝜕F1 (𝑥)
,
𝜕L(F(𝑥),𝑦)

𝜕F2 (𝑥)
and

𝜕F2 (𝑥)
𝜕H(𝑥)

when computing

∇𝑥F𝑝 . The former two terms share similar computational process,

so here we only compute
𝜕L(F(𝑥),𝑦)

𝜕F1 (𝑥)
as an example:

𝜕L(F (𝑥), 𝑦)

𝜕F1 (𝑥)
=

𝜕( 12 · ((F1 (𝑥) − 1)2 + F 2
2 (𝑥)))

𝜕F1 (𝑥)

=
1

2
· 2 · (F1 (𝑥) − 1) = F1 (𝑥) − 1

(6)

We then compute
𝜕F2 (𝑥)
𝜕H(𝑥)

with the following expressions:

𝜕F2 (𝑥)

𝜕H(𝑥)
=

[

𝜕F2 (𝑥)
𝜕H1 (𝑥)

𝜕F2 (𝑥)
𝜕H2 (𝑥)

𝜕F2 (𝑥)
𝜕H3 (𝑥)

𝜕F2 (𝑥)
𝜕H4 (𝑥)

]

(7)

These four elements also share similar computational process, and

here we take
𝜕F2 (𝑥)
𝜕H1 (𝑥)

as an example:

𝜕F2 (𝑥)

𝜕H1 (𝑥)
=

𝜕𝜙3 (
∑4
𝑘=1

𝑤2,𝑘,2 · H𝑘 (𝑥))

𝜕H1 (𝑥)

= 𝜙 ′
3 (

4
∑

𝑘=1

𝑤2,𝑘,2 · H𝑘 (𝑥)) ·𝑤2,1,2

(8)

The computation cost we reduce is proportional to the diffi-

culty of the loss function, the number of neurons in the last two

layers, and the difficulty of the activation function used in the out-

put layer. Note that DNNs deployed in the industries can exploit

well-designed loss functions, have a huge width and adopt non-

saturating activation functions. Therefore, the guidance used in

our work can significantly reduce time consumption for generating

individual discriminatory instances.
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Algorithm 1 Global Generation

Input: Training set𝑋 , model under test N, protected attributes set 𝑃 , input

domain I, 𝑐_𝑛𝑢𝑚, 𝑔_𝑛𝑢𝑚, 𝜂,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 , 𝑠_𝑔.

Output: Diverse seeds 𝑔_𝑖𝑑 violating individual fairness.

1: 𝑔_𝑖𝑑 = ∅

2: clusters = Clustering(𝑋,𝑐_𝑛𝑢𝑚)

3: for 𝑖 from 0 to 𝑔_𝑛𝑢𝑚 do

4: Sample a seed 𝑥 from clusters in a round-robin fashion

5: 𝑚 =𝑚′
= ZerosLike(𝑥)

6: for 𝑖𝑡𝑒𝑟 from 0 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do

7: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑥 = {𝑥′ ∈ I |∃𝑎 ∈ 𝑃, 𝑥′𝑎 ≠ 𝑥𝑎 ; ∀𝑎 ∈ 𝐴 \ 𝑃, 𝑥′𝑎 = 𝑥𝑎 }

8: if 𝑥 violates individual fairness then

9: 𝑔_𝑖𝑑 = 𝑔_𝑖𝑑 ∪ 𝑥

10: Break

11: end if

12: 𝑥′ = argmax{ ∥F(𝑥) − F(𝑥′) ∥2 |𝑥
′ ∈ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑥 }

13: 𝑚 = 𝜂 ∗𝑚 + 𝜕F(𝑥)pred/𝜕𝑥

14: 𝑚′
= 𝜂 ∗𝑚′ + 𝜕F(𝑥′)pred/𝜕𝑥

′

15: 𝑑𝑖𝑟 = ZerosLike(𝑥)

16: for 𝑎 ∈ 𝐴 \ 𝑃 do

17: if sign(𝑚𝑎) = sign(𝑚′
𝑎) then

18: 𝑑𝑖𝑟𝑎 = (−1) ∗ 𝑠𝑖𝑔𝑛 (𝑚𝑎)

19: end if

20: end for

21: 𝑥 = 𝑥 + 𝑠_𝑔 ∗ 𝑑𝑖𝑟

22: 𝑥 = Clip(𝑥, I)

23: end for

24: end for

25: return 𝑔_𝑖𝑑

3.2 Boosting Global Generation with

Momentum

Algorithm 1 presents the skeleton algorithm for global generation.

The purpose that we adopt a global generation phase is to accelerate

the process of generating individual discriminatory instances and

diversify the generated instances.

To cover diverse instances, we first cluster the original training

set𝑋 with clustering algorithms like K-Means [35] (line 2). We then

sample a seed 𝑥 from the clusters in a round-robin fashion (line 4).

As defined in Definition 2.1, the key to identifying an individual

discriminatory instance is to successfully find an individual dis-

criminatory instance pair. We thus collect all instances that differ

only in protected attributes from 𝑥 as a set 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑥 (line 7), the

size of which is the number of all possible combinations of the

selected protected attributes in I except 𝑥 . Afterward, we check

whether 𝑥 violates the individual fairness by exploring 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑥

(lines 8-11). If there is an instance that gets a different prediction

from 𝑥 , then 𝑥 is an individual discriminatory instance according to

Definition 2.1, and we continue to sample another seed input. Oth-

erwise, we iteratively perturb 𝑥 with the guidance of the gradient

of the predicted class until an individual discriminatory instance

is generated or the maximum iteration𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 is reached (lines

12-22). We traverse 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑥 and select an instance 𝑥 ′ from it such

that ∥F (𝑥) − F (𝑥 ′)∥2 is maximized (line 12). The intuition is that

𝑥 and 𝑥 ′ are more likely to be split by the decision boundary of

N after perturbation if the Euclidean distance between them is

maximized.

Momentum optimization [42] is a technique for speeding up

iterative methods by adding the local gradient to the momentum

vector at each iteration. For each instance in the potential pair

(𝑥, 𝑥 ′), We compute the gradient of the predicted class w.r.t. the

input vector and integrate the previous momentum term multiplied

by a decay factor 𝜂 into the local gradient(lines 13,14). The momen-

tum term enables the memorization of previous gradients, which

helps to stabilize update directions and escape from poor local min-

ima or maxima [15]. Therefore, the introduction of momentum

boosts the iterative search process and improves the success rate of

discovering the individual discrimination during global generation.

After the momentum vectors𝑚 and𝑚′ are calculated, the prob-

lem is how to choose attributes and directions for perturbation

such that N(𝑓 (𝑥)) ≠ N(𝑓 (𝑥 ′)). Note that the same perturbation

should be added to both 𝑥 and 𝑥 ′ at each iteration in order to keep

the pair only different in the selected protected attributes. To solve

this problem, Zhang et al. [51] tries to maximize the difference

between N(𝑓 (𝑥)) and N(𝑓 (𝑥 ′)) via EM algorithm [12] and hence

selects the attributes on which the gradients of the loss function

for the pair have the same sign to perturb. Afterward, They perturb

these chosen attributes in the same direction with the gradient of

the loss function to make N reduce its confidence for the current

predictions. Similarly, we utilize the gradient of the model output

integrating a momentum term to guide the optimization process.

We also select the non-protected attributes whose corresponding

momentums have the same sign, and then perturb these attributes

in the opposite direction of the momentum vectors (lines 15-21).

Eventually, we clip the generated instance to keep it within the in-

put domain I (line 22). Intuitively, the pair are iteratively perturbed

towards the decision boundary of N to maximize the likelihood

that they get different predictions from N .

The individual discriminatory instances generated during global

generation (i.e., 𝑔_𝑖𝑑) will be taken as the seed inputs for local

generation.

3.3 Accelerating Local Generation by Reducing

Frequency of Gradient Calculation

During local generation, we attempt to rapidly generate as many

individual discriminatory instances as possible in the neighborhood

of the seeds 𝑔_𝑖𝑑 generated by global generation. Our motivation

is from the robustness of well-trained classifiers [17, 47], which

requires that similar valid inputs are mapped to similar or the same

outputs. Note that during global generation, we maximally change

the model outputs for the potential individual discriminatory in-

stance pair at each iteration to quickly discover a discriminatory

input, while in the local generation phase, we minimally change

the model outputs to maintain the original predictions from the

model for the pair. In this way, the perturbed pair still get different

model predictions while keeping only different in some protected

attributes, i.e., a new individual discriminatory instance is gener-

ated around the original one. Therefore, we prefer to choose the

non-protected attribute whose contribution to the model prediction

is small for perturbation.

Recall that we integrate the momentum term into the global gen-

eration phase since it is necessary to consider the overall trend of

optimization when a big step is taken at each iteration. In contrast,
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(a) Successive iterations (b) Every 5 iterations (c) Every iteration with the initial one

Figure 3: Cosine similarity between the information at the current and previous iterations during local generation of ADF.

Algorithm 2 Local Generation

Input: Model under test N, protected attributes set 𝑃 , input domain I,𝑔_𝑖𝑑 ,

𝑙_𝑛𝑢𝑚, 𝑠_𝑙 , 𝑢𝑝𝑑𝑎𝑡𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 .

Output: Individual discriminatory instances 𝑙_𝑖𝑑 around 𝑔_𝑖𝑑 .

1: 𝑙_𝑖𝑑 = ∅

2: for 𝑥 ∈ 𝑔_𝑖𝑑 do

3: 𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

4: for 𝑖 from 0 to 𝑙_𝑛𝑢𝑚 do

5: if 𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑢𝑝𝑑𝑎𝑡𝑒_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 then

6: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑥 = {𝑥′ ∈ I |∃𝑎 ∈ 𝑃, 𝑥′𝑎 ≠ 𝑥𝑎 ; ∀𝑎 ∈ 𝐴 \ 𝑃, 𝑥′𝑎 = 𝑥𝑎 }

7: Select 𝑥′ ∈ {𝑥′ ∈ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑥 |N (𝑥) ≠ N(𝑥′) }

8: 𝑔𝑟𝑎𝑑 = 𝜕F(𝑥)pred/𝜕𝑥

9: 𝑔𝑟𝑎𝑑′ = 𝜕F(𝑥′)pred/𝜕𝑥
′

10: 𝑝𝑟𝑜𝑏 = Normalization(𝑔𝑟𝑎𝑑,𝑔𝑟𝑎𝑑′, 𝑃 )

11: 𝑐𝑜𝑢𝑛𝑡𝑠 = 0

12: end if

13: 𝑐𝑜𝑢𝑛𝑡𝑠 = 𝑐𝑜𝑢𝑛𝑡𝑠 + 1

14: Select 𝑎 ∈ 𝐴 \ 𝑃 with probability 𝑝𝑟𝑜𝑏𝑎
15: Select 𝑑𝑖𝑟 ∈ {−1, 1} with uniform probability

16: 𝑥𝑎 = 𝑥𝑎 + 𝑠_𝑙 ∗ 𝑑𝑖𝑟

17: 𝑥 = Clip(𝑥, I)

18: if 𝑥 violates individual fairness then

19: 𝑙_𝑖𝑑 = 𝑙_𝑖𝑑 ∪ 𝑥

20: else

21: Reset(𝑥 ); Reset(𝑝𝑟𝑜𝑏)

22: 𝑐𝑜𝑢𝑛𝑡𝑠 = 0

23: end if

24: end for

25: end for

26: return 𝑙_𝑖𝑑

information guiding attribute selection and perturbation is likely

to be highly correlated at each iteration due to minor perturba-

tion in the local generation phase. To confirm this, we empirically

show the correlation in Fig. 3 by plotting the cosine similarity be-

tween iterations along the local search trajectory of ADF as [27]

did for iterative attacks. We find that the attribute contribution

measured by ADF is almost constant during the local search on a

single discriminatory seed. Therefore, there is no need to update

gradient normalization at each iteration like ADF, and we prefer to

recalculate the attribute contributions every few iterations or even

never update it. In this way, the frequency of gradient calculation

are drastically decreased with a very limited loss in the number of

discriminatory instances found.

Algorithm 2 shows the details of local generation. For each seed

𝑥 in𝑔_𝑖𝑑 , we can always find a similar instance 𝑥 ′ such thatN(𝑥) ≠

N(𝑥 ′) (lines 6,7). We then utilize the gradient of the model output

to guide attribute selection and perturbation like ADF (lines 8-10,

14-16). We first form a probability distribution on the non-protected

attributes as the attribute contributions, which calculates the sum of

the absolute values of the gradients as an indicator of the influence

on the model predictions for each non-protected attribute, and

then normalizes the corresponding reciprocals as the probability

distribution for attribute selection because we tend to choose the

attribute with less impact on the model predictions. After choosing

an attribute according to the probability distribution, we determine

the perturbation direction based on uniformly random distribution.

After perturbation, we also clip the instance 𝑥 within the input

domain I. If 𝑥 violates the individual fairness after perturbation,

we repeat the process with the generated discriminatory input.

Otherwise, the instance is reset to the original value. The main

difference is that the constant update_interval is introduced to

control the interval steps between gradient calculation instead of

simply updating the attribute contributions at each iteration.

At this point, we have generated abundant individual discrimina-

tory instances (i.e., 𝑔_𝑖𝑑 ∪ 𝑙_𝑖𝑑), which can be leveraged to mitigate

bias for the original model. In the next section, we experimentally

show effectiveness and efficiency of EIDIG.

4 EVALUATION

In this section, we evaluate how EIDIG performs. Our experimental

evaluation answers the research questions below.

RQ1: How effective and efficient is EIDIG in generating indi-

vidual discriminatory instances?

RQ2: Does utilizing the gradient of the model output as guid-

ance improve the ability of EIDIG to generate individual

discriminatory instances?
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Table 1: DNN models under test and accuracy variation after retraining

Dataset Model Input Domain Accuracy/F1-score (before)
Accuracy/F1-score (after)

ADF EIDIG-5 EIDIG-∞

Census Income Six-layer Fully-connected Neural Network 2.96 × 109 84.32%/0.6258 83.66%/0.5632 84.12%/0.6131 84.11%/0.6324

German Credit Six-layer Fully-connected Neural Network 1.01 × 1011 78.25%/0.5756 77.25%/0.5517 77.00%/0.5619 74.50%/0.5750

Bank Marketing Six-layer Fully-connected Neural Network 2.34 × 108 89.22%/0.2756 89.03%/0.3351 89.14%/0.3199 89.00%/0.3291

Figure 4: Effect of decay factor during global generation.

RQ3: Does momentum boost the iterative search during global

generation?

RQ4: Does EIDIG achieve a significant speedup while ensuring

effectiveness during local generation with a low frequency

of gradient calculation?

RQ5: How useful are the generated test inputs for improving

the fairness of the model?

To answer these research questions, we systematically designed

our experiments comparing EIDIG with the state-of-the-art method

ADF [51]. Note that Zhang et al. proved that ADF significantly

outperforms other methods, including Themis [20], AEQUITAS

[50], and Symbolic Generation (SG) [2]. Themis and AEQUITAS

are lightweight, but they suffer from the high duplicate rate when

plentiful search attempts are made and miss many combinations of

non-protected attributes that may violate individual fairness [2, 51].

SG seeks to solve these problems by combining local explanation

Figure 5: Effect of update interval during local generation.

and symbolic execution, but it is relatively heavy and less scalable.

The most recent work ADF introduces the gradient of the loss

function as guidance for discovering individual discrimination and

shows state-of-the-art performance in efficiency and effectiveness.

Therefore, we only choose ADF for baseline comparison.

4.1 Experimental Setup

Datasets andModels.We evaluate EIDIG on three real-world datasets,

which are most commonly used in individual fairness testing [2,

20, 50, 51], including Census Income2, German Credit3, and Bank

Marketing4. The prediction tasks of these datasets are to determine

whether a person meets a certain condition. Here we first prepro-

cess the datasets with the binning method to convert all attributes

to categorical ones, e.g., discretize age according to the human life

cycle. Afterward, we train six-layer fully-connected DNN models

for consistency with ADF, and the details of these models are listed

in Table 1. In this context, we choose age, race, and gender as the

protected attributes. To ensure reasonability, We have verified that

these three attributes are not heavily correlated with any other

attributes in the subject datasets by applying Spearman’s rank-

order correlation [45]. The previous research [2, 20, 50, 51] only

conducted experiments on a single protected attribute. However,

2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
4https://archive.ics.uci.edu/ml/datasets/bank+marketing
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the bias towards some subgroups can be hidden or compromised

if each protected attribute is considered in isolation [6]. To fully

expose the bias in the models under test, we also combine some

protected attributes together as additional benchmarks (e.g., gender

and race on Census Income dataset). For ease of presentation, We

denote each benchmark as ’X-x’, where ’X’ is the capital initial of

the dataset name, and ’x’ is the initial of the protected attribute.

Configurations. During global generation, we use K-Means [35]

to cluster the training set with the cluster number 𝑐_𝑛𝑢𝑚 set to 4

as SG and ADF did. Fig. 4 shows the average effect of decay fac-

tor on all 10 benchmarks given 1000 seeds for each benchmark

(600 for German Credit Dataset). When the decay factor 𝜂 is set to

0.5 for the momentum term, EIDIG achieves best performance in

terms of generation number, generation speed, and convergence

speed. Therefore, we set the decay factor 𝜂 to 0.5, i.e., past gradient

information decays away to half its original impact after each it-

eration. We also set the maximum iterations𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 to 10, since

we find that less than 5 iterations need to be taken for most of

the seeds if an individual discriminatory instance can be identified

around them. During local generation, Fig. 5 shows the average

effect of the gradient update interval on all 10 benchmarks given

100 discriminatory seeds for each benchmark. When the update in-

terval increases, the number of generated discriminatory instances

decreases slightly, but the generation speed grows rapidly. We em-

pirically set update_interval to 5 and ∞, and the corresponding

methods are referred to as EIDIG-5 and EIDIG-∞ respectively. The

step sizes of perturbation 𝑠_𝑔 and 𝑠_𝑙 are fixed to 1.0, i.e., the mini-

mum step for the categorical attributes. Additionally, we implement

EIDIG-G that improves ADF only by utilizing the gradient of the

model output as guidance for a comprehensive comparison.

All experiments were run on a personal computer with 16 GB

RAM, AMD Ryzen 7 3700X 3.60GHz CPU and NVIDIA GTX 1650su-

per GPU in Ubuntu20.10, and we take the average on 5 rounds for

all empirical results below.

4.2 Results and Discussion

We conduct a comprehensive comparison between EIDIG and ADF.

Notice that both ADF and EIDIG comprise a global generation phase

and a local generation phase. To this end, we also compare them

phase by phase other than a complete comparison to give a close

investigation.

RQ1(Effectiveness and Efficiency). We select 1000 seeds during

global generation and then generate 1000 instances in the vicinity

of each individual discriminatory instance successfully identified

before during local generation (i.e., 𝑔_𝑛𝑢𝑚 = 𝑙_𝑛𝑢𝑚 = 1000). Note

that there are only 600 instances in the training set of the German

Credit dataset, so we use the whole training set as the seeds for

global generation. The comparison results are shown in Fig. 6 and

Fig. 7 labeled with ’Two phases’. Fig. 6 shows the number of indi-

vidual discriminatory instances generated by each approach. Fig. 7

shows the number of individual discriminatory instances generated

per second. We find that both EIDIG-5 and EIDIG-∞ stably outper-

form ADF w.r.t. the number and speed of individual discrimination

generation.

We first show effectiveness of EIDIG. On average, EIDIG-5 (EIDIG-

∞) explores 24.75% (19.74%) larger search space than ADF when the

Figure 6: Number of generated individual discriminatory in-

stances.

Figure 7: Speed of generating individual discriminatory in-

stances.

maximum number of search attempts is fixed. Specifically, EIDIG-5

(EIDIG-∞) generates 25.78% (19.11%) more individual discrimina-

tory instances thanADF on average.We also study the ratio of found

discriminatory instances to seed inputs (𝑔_𝑛𝑢𝑚 = 𝑙_𝑛𝑢𝑚 = 100,

averaged on 10 benchmarks). As shown in Fig. 8, Both ADF and EI-

DIG generate instances at an almost linear trend, and EIDIG clearly

generates more individual discriminatory instances than ADF given

a set of seeds.

Another improvement we have made is a significant increase in

the efficiency of individual discrimination generation due to the
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Figure 8: Effectiveness comparison with ADF.

Figure 9: Efficiency comparison with ADF.

absence of the backpropagation through the loss function, faster

convergence in the global search, and fewer counts of gradient

calculation needed in the local search. In our experiments, EIDIG-5

(EIDIG-∞) achieves an average speedup of 81.29% (121.49%) for gen-

erating individual discriminatory instances when compared with

ADF. Fig. 9 shows the time consumption for generating 10000 indi-

vidual discriminatory instances averaged on 10 benchmarks. both

EIDIG-5 and EIDIG-∞ take much less time than ADF to generate

the same number of individual discriminatory instances.

We conclude that EIDIG significantly outperforms ADF

both in terms of effectiveness and efficiency.

RQ2(Guidance). For global generation, we sample 1000 seeds

(600 for German Credit dataset) from the clustered training set in a

round-robin fashion.We use the same set of seeds for ADF, EIDIG-G,

and EIDIG. The lines labeled with ’Global Generation’ in Fig. 6 and

Fig. 7 show the comparison results for global generation. Compared

Figure 10: Convergence speed for global generation.

with ADF, EIDIG-G generates 1.42% more individual discriminatory

instances and achieves a speedup of 9.73% on average.

For local generation, we generate 100 diverse individual discrim-

inatory instances as the seed inputs for ADF, EIDIG-G, EIDIG-5,

and EIDIG-∞. The experimental results for local generation are

also shown in Fig. 6 and Fig. 7. We find that with 𝑙_𝑛𝑢𝑚 set to

1000, EIDIG-G generates almost the same individual discrimina-

tory instances, and achieves a speedup of 10.56% on average when

compared with ADF.

The more direct and precise guidance speeds up both the global

generation phase and the local generation phase, which is one of

the factors accounting for efficiency of EIDIG.

We conclude that utilizing the gradient of the model out-

put as guidance improves the speed of generating individual

discriminatory instances.

RQ3(Global Generation). As shown in Fig. 6 and Fig. 7, EIDIG

further improves EIDIG-G in terms of the number and speed of

individual discrimination generation during global generation. Af-

ter introducing the momentum term into global generation, EIDIG

generates 29.15% more individual discriminatory instances and

accelerates the iterative process of finding individual discrimina-

tory instances by 59.46% on average when compared with ADF. To

further understand the improvements from momentum, we show

the average iteration for each seed input and the average number

of individual discriminatory instances generated at each iteration

with𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 fixed to 10 in Fig. 10. We find that ADF and EIDIG-G

share almost the same results w.r.t. average iteration, so utilizing

the gradient of the model output as guidance does not boost the

convergence speed for iterative search. However, EIDIG takes 8.72%

fewer iterations and have a 44.79% higher success rate of identifying

a new individual discriminatory instance at each iteration on aver-

age when compared with ADF. Thus, the integration of momentum

enables EIDIG to markedly improve the ability to generate individ-

ual discriminatory instances on the basis of EIDIG-G. By means of

momentum, EIDIG successfully generates individual discrimina-

tory instances around some seeds that ADF fails to handle. Recall
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Table 2: Fairness improvement with retraining

Benchmark Before(%)
After(%)

ADF EIDIG-5 EIDIG-∞

C-r 9.33±0.06 2.61±0.03 1.00±0.02 1.24±0.02

C-g 3.81±0.04 1.24±0.02 0.89±0.02 1.27±0.02

C-a 11.78±0.07 4.45±0.03 2.28±0.03 2.64±0.03

G-a 28.70±0.08 3.93±0.04 4.20±0.04 3.64±0.04

G-g 10.23±0.05 3.64±0.04 3.41±0.03 3.21±0.04

B-a 10.36±0.06 3.73±0.04 2.83±0.03 3.22±0.04

C-a&g 15.54±0.07 5.70±0.04 3.18±0.03 3.90±0.03

C-a&r 21.20±0.08 7.18±0.04 3.31±0.03 3.92±0.04

C-r&g 13.16±0.07 3.87±0.03 1.90±0.03 2.51±0.03

G-g&a 38.42±0.08 7.58±0.06 7.63±0.05 6.90±0.06

that the goal of global generation is to rapidly generate a set of

diverse individual discriminatory instances, and EIDIG significantly

outperforms ADF in this context.

We conclude that the momentum term stabilizes the up-

date direction, accelerates the iterative search, and increases

the success rate of identifying a new individual discrimina-

tory instance during global generation.

RQ4(Local Generation). The experimental results of local genera-

tion given 100 discriminatory seeds are shown in Fig. 6 and Fig. 7.

EIDIG-5 (EIDIG-∞) generates 3.71% (9.16%) fewer individual dis-

criminatory instances, but achieves a speedup of 164.12% (242.89%)

on average when compared with ADF, which means that EIDIG

further achieves a significant speedup with a limited loss in the

number of instances generated during local generation. Recall that

EIDIG-5 recalculate gradients and attribute contributions every 5 it-

erations, and EIDIG-∞ never recalculate them. Reducing frequency

of gradient calculation notably accelerates our algorithms while

still enabling EIDIG to generate abundant discriminatory instances

due to the heavy correlation between the guidance information of

successive iterations.

We conclude that reducing frequency of gradient calcu-

lation during local generation enables EIDIG to find abun-

dant individual discriminatory instances with a significant

speedup.

RQ5(Usefulness). The next step is to mitigate bias for the orig-

inal model. It is shown that a neural network gets more robust

to adversarial examples after being trained on a mixture of clean

and adversarial examples [47, 48]. Similarly, we also leverage the

individual discriminatory instances generated before to mitigate

bias in the model. To utilize the generated individual discriminatory

instances, we need to attach more fair labels to them first. Hence,

we train five common models as an ensemble model, including k-

Nearest Neighbors [18], Multilayer Perceptron [25], Support Vector

Machine [9], Random Forest [26], and Gaussian Naive Bayes [25].

As [51] did, we randomly sample 5% of the individual discrimina-

tory instances and then relabel them with majority voting [33].

Afterward, we add these instances to the original training set and

then retrain the model under test on the augmented training set.

The experimental results of retraining are listed in Table 2, where

columns ’Before’ and ’After’ are the statistical estimation of the

percentage of discriminatory inputs in the input domain before and

after retraining. To evaluate the model bias, we randomly sample

10000 instances to estimate the proportion of individual discrimina-

tory instances for 100 rounds, and also compute the 95% confidence

interval. It is found that EIDIG-5 (EIDIG-∞) achieves a fairness im-

provement of 81.15% (80.03%) versus 72.97% for ADF. Additionally,

we record the accuracy and F1-score [23] of retrained models on

the original test set in Table 1. We find that the accuracy loss of the

models under test is very limited after retraining.

We conclude that the individual discriminatory instances

generated by EIDIG are useful for bias mitigation through

retraining.

5 RELATED WORK

In this section, we review the evolution in related domains and

position our work on fairness testing.

Fair Machine Learning. Numerous attempts have been targeted

to combatting bias in machine learning. These methods fall un-

der three categories, which are pre-processing, in-processing, and

post-processing respectively [37]. Pre-processing techniques try to

remove the bias from the data before training [7, 10]. In-processing

techniques achieve fairness by regularizing the model or modify-

ing the learning procedure [4, 29]. Post-processing calibrates the

model’s prediction during inference by enforcing prediction dis-

tribution to approach either the training distribution or a specific

fairness metric [14, 41]. Our work is complementary to these ap-

proaches for bias detection and mitigation.

Fairness Testing. Bias in software is common even when fairness

is an explicit goal during design, and thus fairness testing is a crit-

ical step before deployment [20, 50]. Galhotra et al. [20] formally

defined software fairness testing, introduced a causality-based mea-

sure of the algorithmic discrimination, and also proposed Themis

to perform these measurements by randomly sampling test suites.

Although Themis is a black-box approach, it is ineffective due to the

absence of any systematic test case generation technique. Unlike

Themis, Udeshi et al. [50] systematically designed a directed test

generation module AEQUITAS to generate individual discrimina-

tory instances for machine learning models. During global search,

AEQUITAS also randomly samples from the input domain to iden-

tify a set of individual discriminatory instances. During local search,

AEQUITAS takes the discriminatory inputs generated before as

seeds and searches the neighborhood of them with the guidance

of a global adaptive probability distribution, which represents the

likelihood of successfully generating an individual discriminatory

instance by perturbing a non-protected attribute. However, the

global probability distribution maintained by AEQUITAS hardly

applies to all specific inputs, since the contribution of each non-

protected attribute to the model inference can vary for different

inputs. Agarwal et al. [2] presented Symbolic Generation (SG) to

find individual discrimination. SG combines local explanation that

constructs a linear model (e.g., decision tree) to approximate the

model under test with symbolic execution that aims to systemat-

ically explore the input space. Therefore, SG is relatively heavy

when compared with Themis and AEQUITAS, because SG is largely
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dependent on the development of local model explainers and sym-

bolic execution solvers, which makes SG less scalable. Zhang et al.

[51] proposed Adversarial Discrimination Finder (ADF) to generate

individual discriminatory instances through adversarial sampling

with a two-phase generation framework. ADF utilizes the gradient

of the loss function as guidance for perturbation. During global

generation, ADF rapidly discovers some individual discriminatory

instances by iteratively perturbing the seed inputs towards the deci-

sion boundary. During local generation, ADF searches the vicinity

of each found discriminatory input according to an input-specific

probability distribution. The non-protected attributes with a smaller

impact on the model output correspond to a higher probability of

being chosen for perturbation.

Our approach EIDIG inherits and improves ADF via construct-

ing a more direct mapping from input perturbations to output

variations, integrating momentum into the global search, and fully

exploiting prior information in the local search. The direct and pre-

cise mapping effectively reduces computation cost for each search

iteration, the introduction of momentum improves the success rate

of identifying individual discriminatory instances during global

generation, and the full exploitation of prior information signif-

icantly decreases frequency of gradient calculation during local

generation.

There are also some recent studies targeted at fairness testing

for high-dimensional data, such as images or texts. Tian et al. [49]

defined NAPVD (Neuron Activation Probability Vector Distance)

and identified class-based confusion and bias errors in DNN-driven

image classification software based on NAPVD. Ma et al. [36] em-

ployed metamorphic testing to test NLP models for fairness vio-

lation. Soremekun et al. [44] leveraged context-free grammars to

generate discriminatory inputs for NLP models.

Adversarial Attacks. Apart from the gradient-based methods re-

viewed in Section 2.2, there are also othermethods (e.g., optimization-

based methods) for generating adversarial examples. Szegedy et

al. [47] used an optimization method L-BFGS to optimize the dis-

tance between adversarial examples and real examples. C&W At-

tack [8] formulates generating adversarial examples as image dis-

tance minimization problem and solves it with the optimizer Adam

[30]. Moosavi-Dezfooli et al. [38] proposed DeepFool to iteratively

project the original input to the linear approximation of the deci-

sion boundary of adversarial examples. Adversarial attacks focus on

test case generation for testing the robustness and safety of DNNs,

while fairness testing aims to generate test suites for testing the

fairness of DNNs. Therefore, these two research domains are highly

correlated. In the future, more novel adversarial attack methods

can be introduced into fairness testing.

6 CONCLUSION

In this paper, we propose an effective and efficient algorithm EIDIG

for discovering individual discrimination in differentiable models

through gradient-based heuristic search. EIDIG utilizes the gradi-

ent of the model output as powerful guidance for the two-phase

search. During global generation, we rapidly identify a set of diverse

individual discriminatory instances by iteratively perturbing the

potential individual discriminatory instance pairs towards the deci-

sion boundary, and we boost the iterative search with momentum.

During local generation, we exploit the robustness of well-trained

deep neural networks and search the neighborhood of the found

discriminatory seeds for more individual discriminatory instances

with a low frequency of gradient calculation. Our experimental

results show that EIDIG achieves state-of-the-art performance for

individual discrimination generation.
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