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Abstract: Recipe generation from food images and ingredients is a challenging task, which requires the interpretation of the 
information from another modality. Different from the image captioning task, where the captions usually have one sentence, 
cooking instructions contain multiple sentences and have obvious structures. To help the model capture the recipe structure 
and avoid missing some cooking details, we propose a novel framework: Decomposing Generation Networks (DGN) with 
structure prediction, to get more structured and complete recipe generation outputs. Specifically, we split each cooking 
instruction into several phases, and assign different sub-generators to each phase. Our approach includes two novel ideas: 
(i) learning the recipe structures with the global structure prediction component and (ii) producing recipe phases in the sub-
generator output component based on the predicted structure. Extensive experiments on the challenging large-scale 
Recipe1M dataset validate the effectiveness of our proposed model, which improves the performance over the state-of-the-
art results. 

Keywords: Text generation, Vision-and-language 

 

1. Introduction 

Recent food-related research works such as food 
image recognition [1], food retrieval [2], [3] and 
recipe generation [4] have raised great interests, as 
food is very close to people’s daily life. Recipe 

generation is an emerging problem, where we are 
interested in automatically producing recipes 
(cooking instructions) based on food images. In this 
paper, we investigate an open research task of recipe 
generation, and propose a novel approach to resolve 
this task and jointly understand the multi-modal 
food data including food images and recipes. 

We use Recipe1M [2] dataset in this paper, 
which is large-scale and challenging, and only 
contains the static cooked food images instead of 
image sequence [5] for recipe generation. Since 
people may be curious about the exact recipe for a 
cooked food image and it would be hard to collect 
large-scale instructional video data in real world, we 
believe that generating cooking instructions from 
one single food image is of more value, compared to 
producing instructions from image sequence [5]. 
The prior recipe generation work [4] on Recipe1M 
dataset [2] mainly fails to explicitly learn the recipe 
global structure, where they give the whole cooking 
instruction sentences through a single decoder, and 
may result in some cooking steps to be missing. 

Specifically, cooking instructions are one 
kind of procedural text, which are constructed step 

by step with some format. For example, as is shown 
in Fig. 1, the cooking instructions are composed of 
several sentences, and each sentence starts with a 
verb in most cases. Apart from dividing the cooking 
instructions by sentences, we may also split them 
into more general phases, which represent the global 
structures of the cooking recipes. Imagine when 
people start cooking food, we may decompose the 
cooking procedure into some basic phases first, e.g. 
pre-process the ingredients, cook the main dish, etc. 
Then we will focus on some details, like determining 
which ingredients to use. While this coarse-to-fine 
reasoning is trivial for humans, most algorithms do 
not have the capacity to reason about the phase 
information contained in the static food image [6]. 
Hence it is important to guide the model to keep 
aware of the global structure of the recipe during 
generation, otherwise the generation outputs can 
hardly cover all the cooking details [4]. 

In this paper, we aim to capture the global 
structure of recipe and to generate the cooking 
instructions from one single image with a list of 
ingredients. The basic idea is that we first (i) 
assemble some of the consecutive steps to form a 
phase, (ii) assign suitable sub-generators to produce 
certain instruction phases, and (iii) concatenate the 
phases together to form the final recipes. We 
propose a novel framework of Decomposing 
Generation Networks (DGN)  
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Fig. 1. Illustration of the Decomposing Generation Networks (DGN) for recipe gen- 
eration. Instead of producing instructions directly from the image and ingredient 
embedding [4] , we first predict the instruction structure and choose different gen- 
erators to match the cooking phases. And then we combine the outputs of selected 
sub-generators to get the final generated recipes. 

with global structure prediction, to achieve the coarse-to-fine rea- 

soning. Fig. 2 shows the pipeline of the framework. To be specific, 

DGN is composed of two components, i.e. the global structure pre- 

diction component and the sub-generator output component. To 

obtain the global structure of the cooking instruction, we input im- 

age and ingredient representations into global structure prediction 

component, and get the sub-generator selections as well as their 

orders. Then in the sub-generator output component, we adopt at- 

tention mechanism to get the phase-aware features. The phase- 

aware features are designed for different sub-generators and help 

the sub-generators produce better instruction phases. 

We have conducted extensive experiments on the Recipe1M 

[2] dataset, and evaluated the recipe generation results by different 

evaluation metrics. We find our proposed model DGN outperforms 

the state-of-the-art methods across different metrics. 

2. Related work 

2.1. Food computing 

Our work is closely related to food computing [7] , which uti- 

lizes computational methods to analyze the food data including the 

food images and recipes. With the development of social media 

and mobile devices, more and more food data become available 

on the Internet, the UEC Food100 dataset [8] and ETHZ Food-101 

dataset [1] are proposed for the food recognition task. The previ- 

ous two food datasets are restricted to the variety of data types, 

only have different categories of food images. YouCook2 dataset is 

proposed by Zhou et al. in [5] , which contains cooking video data. 

They focused on generating cooking instruction steps from video 

segments in YouCook2 dataset. The latter work [9] proposed a new 

food dataset, Storyboarding, where the food data item has multiple 

images aligned with instruction steps. In their work, they proposed 

to utilize a scaffolding structure for the model representations. Be- 

sides, Bosselut et al. [6] generated the recipes based on the text, 

where they reasoned about causal effects that are not mentioned 

in the surface strings, they achieved this with memory architec- 

tures by dynamic entity tracking and obtained a better understand- 

ing on procedural text. 

In order to better model the relationship between recipes and 

food images, Recipe1M [2] has been proposed to provide richer 

food image, cooking instruction, ingredient, and semantic food- 

class information. Recipe1M contains large amounts of image- 

recipe pairs, which can be applied on the cross-modal food re- 

trieval [2,3] , food ingredient prediction [4] and cooking recipe gen- 

eration task [4,10] . Salvador et al. [4] focused more on the ingredi- 

ent prediction task. For instruction generation, they [4] generated 

the whole cooking instructions from given food images and ingre- 

dients through a single decoder directly, which may result in that 

some cooking details can be missing in some cases. Wang et al. 

[10] used the recipe structure information to boost the genera- 

tion performance, where they first learned the sentence-level tree 

structures for the lengthy cooking instructions. They embedded the 

inferred tree structures using the graph convolution networks, and 

they generated the recipes based on the concatenation of image 

and structure representations. In [10] , the recipe structure informa- 

tion is integrated implicitly into the generation process. In contrast, 

we adopt an explicit way to use the structure information, where 

we use different sub-generators for recipe phase generation. 

It is worth noting that, [4] is used as the recipe generation task 

baseline on Recipe1M dataset. We take food images and ingredi- 

ents as inputs in all experiments for fair comparison. Our proposed 

DGN approach improves the recipe generation performance by in- 

troducing the decomposing idea to the generation process. Hence, 

our proposed methods can be applied to many general models. We 

will demonstrate the details in Section 4 . 

2.2. Text generation 

Text generation is a widely researched task, which can take 

various input types as source information. Machine translation 

[11,12] is one of the representative works of text-based generation, 

in which the decoder takes one language text as the input and out- 

puts another language sentences. Image-based text generation in- 

volves both vision and language, such as image captioning [13,14] , 

visual question answering [15,16] . To be specific, the task of im- 

age captioning [13,14] is to generate textual descriptions for the 

given images, which is correlated with our recipe generation task. 

Anderson et al. [17] propose to use the attention mechanism to 

integrate the detected object features and improve the captioning 

performance. With the advent of transformer-based models [12] , Li 

et al. [18] and Zhang et al. [19] use the detected object features as 

the visual tokens and the textual word tokens to train a large-scale 

vision-language pretrained model. It demonstrates the pretrained 

vision-language model help boost the captioning performance. 

It is notable that the recipe generation task is clearly different 

from the image captioning task. Since in the food recipe dataset 

(Recipe1M), all ingredients are mixed and cooked in the food im- 

ages, and the prevailing object detectors can hardly produce rea- 

sonable detected results. Therefore, the detector-based image cap- 

tioning methods [13,14,18,19] are not applicable to the recipe gen- 

eration task. Moreover, the cooking recipes contain multiple sen- 

tences, while each textual caption in image captioning datasets 

only has one sentence. In this paper, to address the challenging 

recipe generation problem, we propose to use the decomposing 

framework and alleviate the difficulty of generating lengthy cook- 

ing recipes. 

2.3. Neural module networks 

The idea of using neural module network to decompose neu- 

ral models have been proposed for some language-vision intersec- 

2 
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Fig. 2. Decomposing Generation Networks with global structure prediction (DGN): We take food images and the corresponding ingredients as model inputs, and obtain 
the image and ingredient embedding F img , F ingr through a pre-trained image model CNN and the language model BERT respectively. After that, the model will be split into 
two branches, i.e. the global structure prediction component and the sub-generator output component. Both of them are constructed by the transformer. The global structure 
prediction component produces the sub-generator selections and their orders for the following branch. The sub-generator output component fuses F img , F ingr , the position 
representations F pos and the phase vector F phase to obtain the input of each sub-generator, and produces different phases of the recipe. 

tion tasks, such as visual question answering [20] , image caption- 

ing [21] , visual reasoning [22] . Neural module network has good 

capabilities to capture the structured knowledge representations 

of input images or sentences. In general, since the image layouts 

or questions are obviously structured, the aforementioned research 

works [20–22] focused on constructing better encoders with neu- 

ral modules. To produce a coherent story for an image in MS COCO 

[23] , Krause et al. [24] decomposed both images and paragraphs 

into their constituent parts, detecting semantic regions in images 

and using a hierarchical recurrent neural network to generate topic 

vectors with their corresponding sentences, but they generated dif- 

ferent paragraph parts with the same decoder, which restricted the 

recipe generation performance. In food data of Recipe1M [2] , the 

cooking instructions tend to be very structured as well. To generate 

recipes with better structures, we employ different sub-generators 

to produce different phases of cooking instructions. 

3. Method 

3.1. Overview 

In Fig. 2 , we show the training flow of DGN. It is observed that 

the cooking instructions have obvious structures and clear formats, 

most cooking instruction sentences in Recipe1M dataset [2] start 

with a verb, e.g. heat, combine, pierce , etc. Since how to automat- 

ically divide the recipes into phases remains a challenging prob- 

lem, we adopt a simple yet effective way to separate recipes into 

phases, where we use a pre-defined rule. Specifically, we split per 

instructions into 2 − 3 phases and try to ensure each phase shares 

equal sentence numbers, where one or more cooking steps (sen- 

tences) will map to one phase. This recipe segmentation rule is 

based on our empirical observations, since segmenting more recipe 

phases makes it unfeasible to build the hierarchy between cook- 

ing phases and steps. We show the example of segmented phases 

in Fig. 2 , the recipe for the roasted chicken totally has five steps, 

which are transitioned to three phases. 

Since different recipe phases have varying aspects, we adopt 

various types of sub-generators for phase generation. Based on the 

verbs in cooking steps, we use the approach of k-means clustering 

to assign pseudo labels to each recipe phase. The pseudo labels 

indicate which sub-generator can be selected to generate certain 

phases. Specifically, we first extract all the verbs in recipes with 

spaCy [25] , a Natural Language Processing (NLP) tool. Then, we can 

obtain the mean verb representations, which can be viewed as the 

representation of each phase. After that, we use k-means cluster- 

ing to get pseudo labels G = { g i , . . . , g k | Ca (g i ) ∈ [1 , N] } for phases 

{ i, . . . , k } to indicate the selections of sub-generators, where Ca de- 

notes the category of the sub-generator g i . Note that the number 

of the sub-generator category N is a hyper-parameter, we do ex- 

periments with different N and show the results in Table 3 . 

Fig. 2 provides an overview of our proposed model, which 

is composed of the global structure prediction component and 

sub-generator output component. Our model takes food images 

and their corresponding ingredients as input. It uses several sub- 

generators for different recipe phases, allowing sub-generators to 

focus on different clustered recipe phases. 

ResNet-50 [26] pretrained on ImageNet [27] and BERT 

[28] model implemented by Wolf et al. [29] are used to encode 

food images and ingredients respectively. We can get image and 

ingredient global representations F img and F ingr . These global rep- 

resentations will be fed into the global structure prediction com- 

ponent, to decide which sub-generators will be selected as well 

as their orders. To enable the interactions among sub-generators, 

the global structure prediction component also produces a P - 

dimensional phase vector F phase for each of the sub-generators. 

Then we split the target instructions into phases and assign dif- 

ferent position one-hot vectors v p ∈ R 3 for each phase, which will 

be transformed into a P -dimensional position representations F pos 

through a linear layer. With previous encoded features F img , F ingr , 

F phase and F pos , we can fuse them together and obtain the phase- 

aware features r i ∈ R P for sub-generator g i . 

3.2. Global structure prediction component 

Since the cooking instructions are divided into phases, the 

global structure prediction component not only needs to decide 

3 
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which generators to be selected in each phase, but also is re- 

quired to predict the order of the chosen sub-generators. In order 

to achieve the goal, we stack the transformer blocks [12] to con- 

struct our global structure prediction component. The last trans- 

former block is followed by a linear layer and a softmax activation, 

to find the predictions for each step. We set hidden size H = 512 , 

the number of heads n head = 8 and the number of stacked layers 

n layer = 4 , generate the sub-generator label sequence { y i , . . . , y k } . 
To be specific, the transformer block contains two sub-layers 

with layer normalization, where the first one employs the multi- 

head self-attention mechanism and the second one attends to the 

model conditional inputs to enhance the self-attention output. The 

attention outputs can be computed as [12] , 

Attention (Q, K, V ) = softmax ( 
QK T √ 

d k 
) V, (1) 

where the input comes from queries Q and keys K of dimension 

d k , and values V of dimension d v . We also adopt the multi-head 

attention mechanism [12] , which linearly maps Q, K, V with differ- 

ent, learned projections. These different projected results will be 

concatenated together and get better output values. 

MultiHead (Q, K, V ) = Concat ( head 1 , . . . , head h ) W O , (2) 

head i = Attention (QW 
Q 
i , KW K i , V W V i ) , (3) 

Where the projections are matrices W 
Q 
i ∈ R d k , W K 

i ∈ R d k , W V 
i ∈ R d v 

and W O ∈ R d v n head . 

We take the global context vectors { F img , F ingr } and target recipe 

phase labels G = { [ ST ART ] , g i , . . . , g k } as inputs when training the 

model. We first map the discrete labels to a sequence of contin- 

uous representations Z. The model generates an output sequence 

{ y i , . . . , y k } one element at a time. The target sequence embedding 

Z will be first fed into the model and processed with multi-head 

self-attention layers, as follows: 

H attn 
self = MultiHead (Z, Z, Z) , (4) 

We further concatenate the context vectors { F img , F ingr } together, 

get the conditional vector F k v , which will be attended to refine pre- 

vious self-attention outputs H attn 
self , which is defined as: 

H attn 
cond = MultiHead (H at t n 

sel f , F k v , F k v ) , (5) 

H attn 
cond is the final attention outputs of each phase, which can be 

used as the phase vector F phase for sub-generator output compo- 

nent. We transform H attn 
cond into H attn 

cond 
′ 

for output token generation 

with a linear layer. The dimension of H attn 
cond 

′ 
is identical with the 

number of sub-generator category N, the probabilities of generated 

tokens are p gen = softmax ( H attn 
cond 

′ 
) . Therefore, the final output to- 

kens of global structure prediction component y i = argmax (p gen ) . 

We train the global structure prediction component with cross- 

entropy loss L pre : 

L pre = 

S ∑ 

i =1 

� cross −entropy (p gen 
i , g i ) , (6) 

where S is the number of instruction phases. 

3.3. Sub-Generator output component 

The sub-generator output component uses different sub- 

generators predicted by global structure prediction component, to 

produce a certain phase of the recipe, and concatenate them to- 

gether to form the final cooking instruction. We stack 16 trans- 

former blocks to construct the generator, in which 12 of them are 

shared blocks, and the rest 4 are independent blocks of each of 

the generators. The reasons for using shared blocks lie in that the 

model may overfit to the limited training data and cannot gen- 

eralize well, if we adopt whole independent blocks for each sub- 

generator. 

We utilize each predicted sub-generator to produce one recipe 

phase, which requires that each of the generator inputs should 

be discriminative and informative enough. Therefore, we incorpo- 

rate various sources of feature representations, i.e. the food image 

features F img , the ingredient features F ingr , the position representa- 

tions F pos and the phase vector F phase ( H attn 
cond ) produced by global 

structure prediction component. F img provides the model with gen- 

eration contents from the food images, which belong to a differ- 

ent modality, and F ingr indicates the ingredients containing in the 

recipe, which can be reused in the generated cooking instructions. 

To allow the model to be aware of the generation phase, we fuse 

the recipe phase position representations F pos , which is constructed 

by the position one-hot vectors v p ∈ R 3 of each phase. F phase is 

computed with the same process as H attn 
cond , which is incorporated 

for enhancing the interactions among different sub-generators and 

helps the model adapt to different generation phases. 

The above four representations will be fused together to get the 

phase-aware features r = 〈 F img , F ingr , F pos , F phase 〉 , which are the in- 

puts of sub-generators. We adopt two different ways to achieve 

that. The first one is that we simply concatenate these repre- 

sentations, and get r cat . In the second way, we use attention 

mechanism to make F img , F ingr attend to the concatenated em- 

bedding cat (F pos , F phase ) respectively. To give attention represen- 

tations, specifically we utilize projection matrix W 1 and W 2 on 

cat (F pos , F phase ) and get the attention maps for F img and F ingr , the 

image and ingredient attention outputs can be formulated as: 

F at t n 
img = softmax ( W 1 ( cat (F pos , F phase ))) F img , (7) 

F at t n 
ingr = softmax ( W 2 ( cat (F pos , F phase ))) F ingr , (8) 

The final attended phase-aware features r attn is the concatena- 

tion of F at t n 
img and F at t n 

ingr . It is worth noting that we involve an addi- 

tional position classifier L pos on r to ensure that it contains certain 

phase position information, such that the input representations r i 
of different sub-generators can keep aware of their positions in 

the recipes, and consequently the overall combined recipes from 

phases would be more coherent. 

L pos = 
∑ 

i =1 

� cross −entropy ( ̂  pos r i , pos r i ) , (9) 

We also need to input the target instruction captions t = 

{ [ ST ART ] , t 1 , t 2 , . . . , t m } for training the Transformer [12] genera- 

tors, and map them to a continuous representation C. As described 

in Section 3.2 , we utilize attention mechanism with transformer 

blocks: 

F at t n 
sel f = MultiHead (C, C, C) , (10) 

F at t n 
cond = MultiHead (F at t n 

sel f , r , r ) , (11) 

We use F at t n 
cond to generate the tokens through a linear layer 

and softmax activation, and we can obtain the output probabilities 

p token among candidate tokens. For each sub-generator, we com- 

pute the training loss as follows: 

L gen = 

M ∑ 

i =1 

� cross −entropy (p token 
i , t i ) , (12) 

3.4. Training and inference 

The food images, ingredients and the target instruction captions 

are taken as the training input of the model. We totally have three 

4 
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Table 1 
Main Results. Evaluation of DGN performance against various settings. We 
first show the baseline results of three different ingredient encoders, where 
we adopt the word embedding layer, pretrained LSTM-based model ELMo 
and pretrained transformer-based model BERT respectively. We use ResNet- 
50 as the image encoder in all the experiments. DGN is added to the baseline 
models as an additional branch, where we show the results of different con- 
struction ways of phase-aware features r . DGN (cat) uses the concatenation 
of the provided representations for the sub-generator inputs, and DGN (attn) 
adopts the attention mechanism to enhance the representations. Moreover, 
we also compare our results with the state-of-the-art model SGN. We evalu- 
ate the model with perplexity (lower is better), BLEU (higher is better) and 
ROUGE-L (higher is better). We find the proposed DGN improves the baseline 
performance across all the metrics. 

Methods Ingredient Encoder Perplexity BLEU ROUGE-L 

Baseline [4] Embedding Layer 8.06 7.23 31.8 
DGN (cat) Embedding Layer 7.40 9.93 34.5 
DGN (attn) Embedding Layer 7.34 10.51 34.9 
Baseline [34] ELMo 7.87 8.02 32.5 
DGN (cat) ELMo 7.26 9.87 35.1 
DGN (attn) ELMo 7.01 10.66 35.4 
Baseline [28] BERT 7.52 9.29 34.8 
DGN (cat) BERT 6.78 10.76 36.0 
DGN (attn) BERT 6.59 11.83 36.6 
SGN [10] BERT 6.67 12.75 36.9 

loss functions, i.e. the global structure prediction loss L pre , sub- 

generator output loss L gen and position classification loss L pos , our 

training loss can be formulated as: 

L = λ1 L pre + λ2 L gen + λ3 L pos , (13) 

The Transformer model [12] is auto-regressive, which utilizes 

the previously generated tokens as additional input while gener- 

ating the next [12] . Therefore, during inference time, we first feed 

the model with the [ ST ART ] token instead of the whole target in- 

struction captions, and then the model will output the following 

tokens incrementally. We run the global structure prediction com- 

ponent first. According to the predicted sub-generator sequence, 

we utilize the chosen generator for each recipe phase. 

4. Experiments 

4.1. Dataset and evaluation metrics 

Dataset. We use the Recipe1M [2,4] provided official split: 

252,547, 54,255 and 54,506 recipes for training, validation and test 

respectively. Theses recipes are scraped from cooking websites, and 

each of them contains the food image, a list of ingredients and the 

cooking instructions. Since Recipe1M data is uploaded by users, 

there have large variance and noises across the food images and 

recipes. 

Evaluation Metrics. We totally adopt three different metrics for 

evaluation, i.e. perplexity, BLEU [30] , ROUGE [31] . The prior work 

[4] only used perplexity for evaluation, which measures how well 

the probability distribution of learned words matches that of the 

input instructions. BLEU scores are based on an average of uni- 

gram, bigram, trigram and 4-gram precision. Here we take the av- 

eraged BLEU scores for the cooking recipes evaluation. Averaged 

BLEU scores not only reflect the n-gram scores, but also contain 

Brevity Penalty (BP), showing the impact of the generation length. 

However, BLEU fails to consider sentence structures [32] . In other 

words, BLEU cannot evaluate the performance of our global struc- 

ture prediction component. ROUGE is a modification of BLEU that 

focuses on precision rather than recall, i.e. it looks at how many 

n-grams of the reference text show up in the outputs, rather than 

the reverse. Therefore, ROUGE can reflect the influence of the pro- 

posed global structure prediction component, which is discussed 

in Section 4.5 . 

4.2. Implementation details 

We utilize ResNet-50 [26] which is pretrained on ImageNet 

[27] as the image encoder, which takes image size of 224 × 224 as 

input. The ingredient encoder is BERT [28] , short for Bidirectional 

Encoder Representations from Transformers, which is a pretrained 

language model implemented by [29] and is one of the state-of- 

the-art NLP models. As the prior work setting [4] , we adopt the 

last convolutional layer of ResNet-50, whose output dimension is 

512, as the feature representations. The output embedding of BERT 

model will be mapped to the dimension of 512 as well. For the 

cooking instruction generators, different sub-generators will share 

12 transformer blocks, and each of them has additional indepen- 

dent 4 transformer blocks with 8 multi-head attention heads. To 

align with [4] and achieve a fair comparison, we generation in- 

struction of maximum 150 words. In all the experiments, we use 

greedy search for recipe generation. 

During the training phase, since we use the teacher-forcing 

training strategy, we integrate the target cooking instruction into 

the training process. Specifically, we use the ground truth token 

t i −1 to be the model input and generate the recipe token y i . Dur- 

ing the inference phase, we take the previous generated token y i −1 
as input to recursively produce the cooking recipes. It is notable 

that the DGN framework is not required to know ground truth 

phase number during testing phase. In the first step, we adopt our 

trained global structure prediction component, to predict the se- 

lected sub-generators as well as their order. Then in the second 

step, based on the predicted phase information, we further use 

the selected sub-generators to generate each phase of the cooking 

recipes. 

Regarding the phase number setting of each cooking instruc- 

tion, we experiment with different numbers and observe that split- 

ting per instruction into up-to three phases has the best perfor- 

mance. Since the cooking step numbers range from 2 to 19, sup- 

pose that if we split too many phases for each recipe, one phase 

may only contain one step, which will fail to obtain the global 

structure information. Therefore, we assume per instruction has at 

most three phases. 

In all the experiments, we fix the weights of the image encoder 

for faster training, and instead of using the predicted ingredients as 

conditional generator inputs [4] , we take the ground truth ingredi- 

ents and images as input for a fair comparison. We set λ1 , λ2 and 

λ3 in Eq. (13) to be 1, 1 and 0.1 respectively, which is based on em- 

pirical observations on validation set. The model is optimized with 

Adam, and the initial learning rate is set as 0.001, with 0.99 decay 

per epoch. The model is trained for about 25 epochs to be con- 

verged. We implement the proposed methods with PyTorch [33] . 

4.3. Baselines 

We use [4] as the baseline for this paper, it is worth noting that 

we use the same input as our proposed model in the implemen- 

tation of [4] , where we also adopt food images and ground truth 

ingredients as inputs for fair comparisons. 

Specifically, Salvador et al. [4] generate the whole cooking in- 

structions from the cooked food images through 16 transformer 

blocks. In contrast, our proposed DGN extends an additional branch 

for the text generation process, which predicts the structures of 

the recipes first and then utilizes the chosen sub-generators for 

each phase generation. In other words, DGN can be applied to 

different backbone networks. We compare the difference between 

baseline models and the proposed DGN in Fig. 3 . 

To fully demonstrate the efficacy of DGN, we experiment with 

three different ingredient encoders to act as baseline results. The 

first one comes from the prior work [4] , where they adopted one 

word embedding layer to encode the ingredients. We need to train 
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Fig. 3. The comparison of the baseline model and our proposed DGN. DGN can be applied to different backbone networks. 

it from scratch. Moreover, we also adopt the pretrained models as 

the ingredient encoder, where we experiment with ELMo [34] and 

BERT [28] . ELMo and BERT are LSTM-based and transformer-based 

pretrained models respectively. We finetune the pretrained mod- 

els during training the DGN frameoworks. Note that the aforemen- 

tioned three baseline models all use ResNet-50 as the image en- 

coder, they only differ in the ingredient encoders. 

4.4. Main results 

We show our main results of generating cooking instructions 

in Table 1 , which are evaluated across three language metrics: 

perplexity, BLEU [30] and ROUGE-L [31] . Generally, models with 

and without DGN have an obvious performance gap. Simply us- 

ing one word embedding layer for ingredient encoder performs 

poorly, achieving the lowest scores across all the metrics. When 

we replace the embedding layer with state-of-the-art pretrained 

language model, ELMo or BERT, the performance reasonably gets 

better, which highlights the significance of the pretrained model. 

We then incrementally add the DGN branch to three different 

backbone networks. To be specific, we experiment with two ways 

to construct the phase-aware features r , i.e. DGN (cat) , where r 

is formed by the concatenation of the four representations, and 

DGN (attn) , in which we construct image and ingredient features 

with attention mechanism, then concatenate them together to be 

r . First, we add DGN (cat) to the baseline models, surprisingly 

this approach can achieve more than 2 BLEU scores better than 

the baseline model with the word embedding layer and 1 BLEU 

score over state-of-the-art language model BERT, which indicates 

our proposed DGN is very promising and can extend to various 

general models. We further adopt DGN (attn) for recipe generation 

evaluation, the performance continually gets better, illustrating the 

usefulness of enhancing the inputs of generators. It is observed 

that BERT gives the best results across all the metrics among the 

encoder settings. 

Moreover, we compare our results with the state-of-the-art 

recipe generation model SGN [10] , where they unsupervisedly 

learn the sentence-level tree structure of the cooking instructions, 

and integrate the tree representations into the original image and 

ingredient representations. Although SGN [10] and our proposed 

DGN both use the structure information, SGN makes use of the 

recipe structure information in the encoder part, while our pro- 

posed DGN explicitly uses the predicted structures for the de- 

coding process. We can see that the proposed DGN framework 

achieves comparable results as SGN, and even outperforms SGN 

at the evaluation of perplexity. To summarize, our proposed DGN 

framework outperforms various baseline methods across all met- 

rics consistently, and achieves the state-of-the-art performance. 

4.5. Ablation studies 

The ablative influence of image and ingredient as input. To 

suggest the necessity of using both image and ingredient as input, 

we train the model with different inputs separately. We show the 

Table 2 
The ablative influence of image and ingredient as input. The model is evaluated 
by perplexity (lower is better), BLEU (higher is better) and ROUGE-L (higher is 
better). 

Input Perplexity BLEU ROUGE-L 

Only Image 8.16 3.72 31.0 
Only Ingredient 7.62 5.74 32.1 
Image and Ingredient 7.52 9.29 34.8 

Table 3 
The impact of sub-generator category number N. The model is evaluated by per- 
plexity (lower is better), BLEU (higher is better) and ROUGE-L (higher is better). 

N Methods Perplexity BLEU ROUGE-L 

1 BERT 7.52 9.29 34.8 
1 BERT + DGN 6.98 10.98 35.8 
3 BERT + DGN 6.59 11.83 36.6 
5 BERT + DGN 6.95 11.15 36.0 

ablation studies in Table 2 , where we use a transformer for gener- 

ation, instead of DGN. It can be observed that ingredient informa- 

tion helps more on the recipe generation, since ingredients can be 

directly reflected in the recipes. The model with image and ingre- 

dient as input has better performance than that of single modality 

input. 

The impact of sub-generator category number N. After we 

get the representation of each instruction phase, we adopt k- 

means clustering to obtain the phase labels, which indicate the 

sub-generator selections. Then these labels are used for the global 

structure prediction component training. We show the experiment 

results in Table 3 , where the first row shows the experiment re- 

sults of BERT baseline model, the last four rows are all imple- 

mented by BERT + DGN (attn). When N = 1 , we compare the re- 

sults of the first and second row, the first row uses the concate- 

nated representations of image and ingredient features, while the 

second row takes the enhanced phase-aware features r as input, 

indicating the efficacy of the phase-aware features. Besides, the 

model with N = 1 has inferior performance compared with model 

with N = 3 , illustrating the single generator struggles to fit data 

from different phases. When N = 5 , the model gets similar evalu- 

ation results to N = 1 . That model with N = 5 has poorer perfor- 

mance than model with N = 3 may because the model does not 

have enough data for training, due to the more splits of the train- 

ing data. Therefore, we set the hyper-parameter N to be 3. 

The impacts of DGN on the average length and vocabulary 

size of generated recipes. In order to further demonstrate the ef- 

fectiveness of the proposed DGN from other aspects, we perform 

some language analysis based on the generated outputs in the 

Table 4 . Our DGN approach generates text of the closet average 

length as ground truth recipes, which are crawled from websites 

and written by humans. While the models without DGN generate 

relatively short cooking instructions, which provides the evidence 

for our assumptions before: using one single generator will result 

in some cooking details are missing. We also show some qualita- 

tive results in Fig. 4 . To evaluate the diversity of the recipes, we 
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Fig. 4. Analysis of generated recipes by different models. We show the generated results conditioned on three different food images, namely pizza, beef stew spicy red 
beans, apple crumble and peach and nut cake . The left column shows the conditioned food images, and the right three columns show the ground truth cooking instructions, 
baseline BERT generations and DGN generated recipes. Words with color background represent the matching parts between raw recipes and the generated recipes. In the 
DGN generations, we state the recipe phases with the superscript numbers. 

Table 4 
The impacts of DGN on the average length and vocabulary size of generated 
recipes. The results demonstrate that the proposed DGN increases the average 
length and diversity of generated cooking instructions. 

Methods Average Length Vocab Size 

Baseline [4] 69.9 3657 
Baseline [28] 66.9 4521 
DGN (Baseline [4] ) 103.1 4836 
DGN (Baseline [28] ) 105.6 6573 
Ground Truth 116.5 33,110 

compute the vocabulary sizes of the generations and the ground 

truth, which indicates the number of unique words that appear in 

the text. According to the results, DGN (BERT) is actually the most 

diverse method apart from the ground truth. But there still remain 

huge gaps between the diversity of generated text and human- 

written text. 

The relation between the phase prediction procedure and 

the generated results. Global structure prediction component is 

the first and basic part of our proposed DGN model, which outputs 

the sub-generator selections and their orders for subsequent gen- 

erations. To demonstrate the relation between the phase predic- 

tion and the generated results, we experiment with DGN models 

trained with and without the global structure prediction loss L pre 

or the position classification loss L pos . It is observed that the pre- 

diction accuracy on the sub-generator selections of model trained 

with L pre is about 72%, while the accuracy of model trained with- 

out L pre is only 11%. Training the DGN model without L pre means 

we simply output random sub-generator selections for recipe gen- 

eration. We observe clear performance drop when we do not use 

our phase classification results for recipe generation. It indicates 

the necessity and usefulness of our proposed global structure pre- 

diction component. Moreover, we also give the ablation study on 

our proposed L pos . The results demonstrate that the proposed L pos 

enables the phase-aware features to contain certain phase position 

information, and further improve the overall evaluation results of 

the generated recipes. It also validates the importance of leverag- 

ing structure for food recipe generation ( Table 5 ). 

4.6. Qualitative results 

We present some qualitative results from our proposed model 

and the ground truth cooking instructions for comparison in Fig. 4 . 
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Table 5 
We show the ablative influence of the global structure prediction loss L pre or 
the position classification loss L pos to demonstrate the relation between the 
phase prediction procedure and the generation results. The model is evaluated 
by perplexity (lower is better), BLEU (higher is better) and ROUGE-L (higher is 
better). 

Methods Perplexity BLEU ROUGE-L 

full DGN 6.59 11.83 36.6 
- w/o L pre 7.65 9.20 34.6 
- w/o L pos 7.19 9.85 35.8 

In the left column, we show the conditional food images, which 

come from pizza, beef stew, spicy red beans, apple crumble and peach 

and nut cake respectively. And in the right three columns, we list 

the true recipes, the generated recipes of BERT and that of our 

proposed model DGN, which uses the attended features. We in- 

dicate the recipe phases with the red number in DGN generations, 

and words with yellow background suggest the matching parts be- 

tween raw recipes and the generated recipes. 

The obvious properties of DGN generations include its average 

length and its ability to capture rich cooking details. First of all, 

we can see that DGN generates longer recipe outputs than BERT, 

which has a similar length as true recipes. Besides, it is observed 

that the phase orders predicted by the global structure prediction 

component make sense in the shown cases: the first instruction 

phase gives some instructions on pre-processing the ingredients, 

the middle instruction phase tends to describe the details about 

the main dish cooking, and the last phase often contains some con- 

cluding work of cooking. 

Generally, it can be seen that DGN generates more matching 

cooking instruction steps with the ground truth recipes than BERT. 

When we go into the details, the DGN generated instructions in- 

clude the ingredients used in the true recipes. Specifically, in the 

top row, the generated text covers the ingredients of pepperoni, 

cheese, vegetables and etc. Compared with the BERT outputs, DGN 

generate similar sentences at the beginning. However, DGN pro- 

vides more details, e.g. in the instruction generation of beef stew , 

both BERT and DGN output the sentence of “Add onions and all- 

spice.”, while DGN further generate some tips: “Cook, stir occasion- 

ally, until onions are soft.”. 

It is also worth noting that some of the predicted numbers are 

not precise enough, like in the third generated phase of Beef Stew , 

the generation output turns out to be “cook ... for 8–10 hours”, 

which is not aligned with common sense. 

5. Conclusion 

In this paper, we have proposed to make the generated cooking 

instructions more structured and complete, i.e. to decompose the 

recipe generation process. In particular, we present a novel frame- 

work DGN for recipe generation that leverages the compositional 

structures of cooking instructions. Specifically, we first predict the 

global structures of the instructions based on the conditional food 

images and ingredients, and determine the sub-generator selec- 

tions and their orders. Then we construct novel phase-aware fea- 

tures for the input of chosen sub-generators and adopt them to 

produce the instruction phases, which are concatenated together 

to obtain the whole cooking instructions. Experimentally, we have 

demonstrated the advantages of our approach over traditional 

methods that use one single decoder to generate the long sen- 

tences, i.e. the proposed DGN can increase the diversity and aver- 

age length of generated recipes. We conduct extensive experiments 

with ablation studies, and achieved state-of-the-art recipe genera- 

tion results across different metrics in Recipe1M dataset. 

Though the proposed DGN achieves promising results in 

Recipe1M dataset, there exists some limitations with DGN. Specif- 

ically, some of model hyper-parameters are set based on empiri- 

cal experiments, such as phase number and sub-generator number 

selections, since it is challenging to automatically segment recipes 

into several phases according to context and we do not have strong 

supervisions. 

Our proposed DGN can give structured representations for 

lengthy paragraphs. In this paper, we show its effectiveness in food 

domain, and it can also be adapted to other fields that require to 

generate long sentences. In the future work, we will try to extend 

it to some other fields. 
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