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Deep Learning for Person Re-identification:
A Survey and Outlook

Mang Ye, Jianbing Shen, Senior Member, IEEE , Gaojie Lin, Tao Xiang
Ling Shao, Fellow, IEEE and Steven C. H. Hoi, Fellow, IEEE

Abstract—Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the
advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased
interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize
it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various
research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first
conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including
deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under
closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging
issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five
different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or
at least comparable performance on twelve datasets for four different Re-ID tasks. Meanwhile, we introduce a new evaluation metric
(mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the
Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.

Index Terms—Person Re-Identification, Pedestrian Retrieval, Literature Survey, Evaluation Metric, Deep Learning

F

1 INTRODUCTION

P ERSON re-identification (Re-ID) has been widely studied as
a specific person retrieval problem across non-overlapping
cameras [1], [2]. Given a query person-of-interest, the goal
of Re-ID is to determine whether this person has appeared
in another place at a distinct time captured by a different
camera, or even the same camera at a different time instant
[3]. The query person can be represented by an image [4],
[5], [6], a video sequence [7], [8], and even a text description
[9], [10]. Due to the urgent demand of public safety and
increasing number of surveillance cameras, person Re-ID is
imperative in intelligent surveillance systems with signifi-
cant research impact and practical importance.

Re-ID is a challenging task due to the presence of dif-
ferent viewpoints [11], [12], varying low-image resolutions
[13], [14], illumination changes [15], unconstrained poses
[16], [17], [18], occlusions [19], [20], heterogeneous modal-
ities [10], [21], complex camera environments, background
clutter [22], unreliable bounding box generations, etc. These
result in varying variations and uncertainty. In addition, for
practical model deployment, the dynamic updated camera
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network [23], [24], large scale gallery with efficient retrieval
[25], group uncertainty [26], significant domain shift [27],
unseen testing scenarios [28], incremental model updating
[29] and changing cloths [30] also greatly increase the dif-
ficulties. These challenges lead that Re-ID is still unsolved
problem. Early research efforts mainly focus on the hand-
crafted feature construction with body structures [31], [32],
[33], [34], [35] or distance metric learning [36], [37], [38],
[39], [40], [41]. With the advancement of deep learning,
person Re-ID has achieved inspiring performance on the
widely used benchmarks [5], [42], [43], [44]. However, there
is still a large gap between the research-oriented scenarios
and practical applications [45]. This motivates us to conduct
a comprehensive survey, develop a powerful baseline for
different Re-ID tasks and discuss several future directions.

Though some surveys have also summarized the deep
learning techniques [2], [46], [47], our survey makes three
major differences: 1) We provide an in-depth and com-
prehensive analysis of existing deep learning methods by
discussing their advantages and limitations, analyzing the
state-of-the-arts. This provides insights for future algo-
rithm design and new topic exploration. 2) We design a
new powerful baseline (AGW: Attention Generalized mean
pooling with Weighted triplet loss) and a new evaluation
metric (mINP: mean Inverse Negative Penalty) for future
developments. AGW achieves state-of-the-art performance
on twelve datasets for four different Re-ID tasks. mINP
provides a supplement metric to existing CMC/mAP, in-
dicating the cost to find all the correct matches. 3) We make
an attempt to discuss several important research directions
with under-investigated open issues to narrow the gap be-
tween the closed-world and open-world applications, taking
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2. Bounding Box Generation1. Raw Data Collection 3. Train Data Annotation

Re-ID

Model

4. Training Model

Query

Gallery

Search

…

5. TestingFig. 1: The flow of designing a practical person Re-ID system, including five main steps: 1) Raw Data Collection, (2) Bounding
Box Generation, 3) Training Data Annotation, 4) Model Training and 5) Pedestrian Retrieval.

TABLE 1: Closed-world vs. Open-world Person Re-ID.
Closed-world (Section 2) Open-world (Section 3)
X Single-modality Data Heterogeneous Data (§ 3.1)
X Bounding Boxes Generation Raw Images/Videos (§ 3.2)
X Sufficient Annotated Data Unavailable/Limited Labels (§ 3.3)
X Correct Annotation Noisy Annotation (§ 3.4)
X Query Exists in Gallery Open-set (§ 3.5)

a step towards real-world Re-ID system design.
Unless otherwise specified, person Re-ID in this survey

refers to the pedestrian retrieval problem across multiple
surveillance cameras, from a computer vision perspective.
Generally, building a person Re-ID system for a specific
scenario requires five main steps (as shown in Fig. 1):

1) Step 1: Raw Data Collection: Obtaining raw video data
from surveillance cameras is the primary requirement
of practical video investigation. These cameras are usu-
ally located in different places under varying environ-
ments [48]. Most likely, this raw data contains a large
amount of complex and noisy background clutter.

2) Step 2: Bounding Box Generation: Extracting the bound-
ing boxes which contain the person images from the
raw video data. Generally, it is impossible to manually
crop all the person images in large-scale applications.
The bounding boxes are usually obtained by the person
detection [49], [50] or tracking algorithms [51], [52].

3) Step 3: Training Data Annotation: Annotating the cross-
camera labels. Training data annotation is usually indis-
pensable for discriminative Re-ID model learning due
to the large cross-camera variations. In the existence of
large domain shift [53], we often need to annotate the
training data in every new scenario.

4) Step 4: Model Training: Training a discriminative and
robust Re-ID model with the previous annotated person
images/videos. This step is the core for developing a
Re-ID system and it is also the most widely studied
paradigm in the literature. Extensive models have been
developed to handle the various challenges, concen-
trating on feature representation learning [54], [55],
distance metric learning [56], [57] or their combinations.

5) Step 5: Pedestrian Retrieval: The testing phase conduct-
s the pedestrian retrieval. Given a person-of-interest
(query) and a gallery set, we extract the feature rep-
resentations using the Re-ID model learned in previous
stage. A retrieved ranking list is obtained by sorting
the calculated query-to-gallery similarity. Some meth-
ods have also investigated the ranking optimization to
improve the retrieval performance [58], [59].

According to the five steps mentioned above, we cate-
gorize existing Re-ID methods into two main trends: closed-
world and open-world settings, as summarized in Table 1. A

step-by-step comparison is in the following five aspects:
1) Single-modality vs. Heterogeneous Data: For the raw data

collection in Step 1, all the persons are represented
by images/videos captured by single-modality visible
cameras in the closed-world setting [5], [8], [31], [42],
[43], [44]. However, in practical open-world applica-
tions, we might also need to process heterogeneous
data, which are infrared images [21], [60], sketches [61],
depth images [62], or even text descriptions [63]. This
motivates the heterogeneous Re-ID in § 3.1.

2) Bounding Box Generation vs. Raw Images/Videos : For the
bounding box generation in Step 2, the closed-world
person Re-ID usually performs the training and testing
based on the generated bounding boxes, where the
bounding boxes mainly contain the person appearance
information. In contrast, some practical open-world
applications require end-to-end person search from the
raw images or videos [55], [64]. This leads to another
open-world topic, i.e., end-to-end person search in § 3.2.

3) Sufficient Annotated Data vs. Unavailable/Limited Labels:
For the training data annotation in Step 3, the closed-
world person Re-ID usually assumes that we have
enough annotated training data for supervised Re-ID
model training. However, label annotation for each
camera pair in every new environment is time consum-
ing and labor intensive, incurring high costs. In open-
world scenarios, we might not have enough annotated
data (i.e., limited labels) [65] or even without any label
information [66]. This inspires the discussion of the
unsupervised and semi-supervised Re-ID in § 3.3.

4) Correct Annotation vs. Noisy Annotation: For Step 4, exist-
ing closed-world person Re-ID systems usually assume
that all the annotations are correct, with clean labels.
However, annotation noise is usually unavoidable due
to annotation error (i.e., label noise) or imperfect detec-
tion/tracking results (i.e., sample noise, partial Re-ID
[67]). This leads to the analysis of noise-robust person
Re-ID under different noise types in § 3.4.

5) Query Exists in Gallery vs. Open-set: In the pedestrian
retrieval stage (Step 5), most existing closed-world per-
son Re-ID works assume that the query must occur in
the gallery set by calculating the CMC [68] and mAP
[5]. However, in many scenarios, the query person may
not appear in the gallery set [69], [70], or we need to
perform the verification rather than retrieval [26]. This
brings us to the open-set person Re-ID in § 3.5.

This survey first introduces the widely studied person
Re-ID under closed-world settings in § 2. A detailed review
on the datasets and the state-of-the-arts are conducted in
§ 2.4. We then introduce the open-world person Re-ID in § 3.
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An outlook for future Re-ID is presented in § 4, including
a new evaluation metric (§ 4.1), a new powerful AGW
baseline (§ 4.2). We discuss several under-investigated open
issues for future study (§ 4.3). Conclusions will be drawn in
§ 5. A structure overview is shown in the supplementary.

2 CLOSED-WORLD PERSON RE-IDENTIFICATION

This section provides an overview for closed-world person
Re-ID. As discussed in § 1, this setting usually has the fol-
lowing assumptions: 1) person appearances are captured by
single-modality visible cameras, either by image or video; 2)
The persons are represented by bounding boxes, where most
of the bounding box area belongs the same identity; 3) The
training has enough annotated training data for supervised
discriminative Re-ID model learning; 4) The annotations are
generally correct; 5) The query person must appear in the
gallery set. Typically, a standard closed-world Re-ID sys-
tem contains three main components: Feature Representation
Learning (§ 2.1), which focuses on developing the feature
construction strategies; Deep Metric Learning (§ 2.2), which
aims at designing the training objectives with different loss
functions or sampling strategies; and Ranking Optimization
(§ 2.3), which concentrates on optimizing the retrieved rank-
ing list. An overview of the datasets and state-of-the-arts
with in-depth analysis is provided in § 2.4.2.

2.1 Feature Representation Learning
We firstly discuss the feature learning strategies in closed-
world person Re-ID. There are four main categories (as
shown in Fig. 2): a) Global Feature (§ 2.1.1), it extracts a
global feature representation vector for each person image
without additional annotation cues [55]; b) Local Feature
(§ 2.1.2), it aggregates part-level local features to formulate
a combined representation for each person image [75], [76],
[77]; c) Auxiliary Feature (§ 2.1.3), it improves the feature
representation learning using auxiliary information, e.g.,
attributes [71], [72], [78], GAN generated images [42], etc.
d) Video Feature (§ 2.1.4), it learns video representation
for video-based Re-ID [7] using multiple image frames and
temporal information [73], [74]. We also review several
specific architecture designs for person Re-ID in § 2.1.5.

2.1.1 Global Feature Representation Learning
Global feature representation learning extracts a global fea-
ture vector for each person image, as shown in Fig. 2(a).
Since deep neural networks are originally applied in image
classification [79], [80], global feature learning is the primary
choice when integrating advanced deep learning techniques
into the person Re-ID field in early years.

To capture the fine-grained cues in global feature learn-
ing, A joint learning framework consisting of a single-
image representation (SIR) and cross-image representation
(CIR) is developed in [81], trained with triplet loss using
specific sub-networks. The widely-used ID-discriminative
Embedding (IDE) model [55] constructs the training pro-
cess as a multi-class classification problem by treating each
identity as a distinct class. It is now widely used in Re-ID
community [42], [58], [77], [82], [83]. Qian et al. [84] develop
a multi-scale deep representation learning model to capture
discriminative cues at different scales.

Attention Information. Attention schemes have been
widely studied in literature to enhance representation learn-
ing [85]. 1) Group 1: Attention within the person image. Typ-
ical strategies include the pixel level attention [86] and
the channel-wise feature response re-weighting [86], [87],
[88], [89], or background suppressing [22]. The spatial in-
formation is integrated in [90]. 2) Group 2: attention across
multiple person images. A context-aware attentive feature
learning method is proposed in [91], incorporating both
an intra-sequence and inter-sequence attention for pair-wise
feature alignment and refinement. The attention consistency
property is added in [92], [93]. Group similarity [94], [95]
is another popular approach to leverage the cross-image
attention, which involves multiple images for local and
global similarity modeling. The first group mainly enhances
the robustness against misalignment/imperfect detection,
and the second improves the feature learning by mining the
relations across multiple images.

2.1.2 Local Feature Representation Learning
It learns part/region aggregated features, making it robust
against misalignment [77], [96]. The body parts are either
automatically generated by human parsing/pose estimation
(Group 1) or roughly horizontal division (Group 2).

With automatic body part detection, the popular solution
is to combine the full body representation and local part fea-
tures [97], [98]. Specifically, the multi-channel aggregation
[99], multi-scale context-aware convolutions [100], multi-
stage feature decomposition [17] and bilinear-pooling [97]
are designed to improve the local feature learning. Rather
than feature level fusion, the part-level similarity combina-
tion is also studied in [98]. Another popular solution is to
enhance the robustness against background clutter, using
the pose-driven matching [101], pose-guided part attention
module [102], semantically part alignment [103], [104].

For horizontal-divided region features, multiple part-
level classifiers are learned in Part-based Convolutional
Baseline (PCB) [77], which now serves as a strong part
feature learning baseline in the current state-of-the-art
[28], [105], [106]. To capture the relations across multiple
body parts, the Siamese Long Short-Term Memory (LST-
M) architecture [96], second-order non-local attention [107],
Interaction-and-Aggregation (IA) [108] are designed to rein-
force the feature learning.

The first group uses human parsing techniques to obtain
semantically meaningful body parts, which provides well-
align part features. However, they require an additional
pose detector and are prone to noisy pose detections [77].
The second group uses a uniform partition to obtain the
horizontal stripe parts, which is more flexible, but it is
sensitive to heavy occlusions and large background clutter.

2.1.3 Auxiliary Feature Representation Learning
Auxiliary feature representation learning usually requires
additional annotated information (e.g., semantic attributes
[71]) or generated/augmented training samples to reinforce
the feature representation [19], [42].

Semantic Attributes. A joint identity and attribute learn-
ing baseline is introduced in [72]. Su et al. [71] propose
a deep attribute learning framework by incorporating the
predicted semantic attribute information, enhancing the
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Fig. 2: Four different feature learning strategies. a) Global Feature, learning a global representation for each person image
in § 2.1.1; b) Local Feature, learning part-aggregated local features in § 2.1.2; c) Auxiliary Feature, learning the feature
representation using auxiliary information, e.g., attributes [71], [72] in § 2.1.3 and d) Video Feature , learning the video
representation using multiple image frames and temporal information [73], [74] in § 2.1.4.

generalizability and robustness of the feature representation
in a semi-supervised learning manner. Both the semantic
attributes and the attention scheme are incorporated to
improve part feature learning [109]. Semantic attributes are
also adopted in [110] for video Re-ID feature representation
learning. They are also leveraged as the auxiliary supervi-
sion information in unsupervised learning [111].

Viewpoint Information. The viewpoint information is
also leveraged to enhance the feature representation learn-
ing [112], [113]. Multi-Level Factorisation Net (MLFN) [112]
also tries to learn the identity-discriminative and view-
invariant feature representations at multiple semantic levels.
Liu et al. [113] extract a combination of view-generic and
view-specific learning. An angular regularization is incor-
porated in [114] in the viewpoint-aware feature learning.

Domain Information. A Domain Guided Dropout
(DGD) algorithm [54] is designed to adaptively mine the
domain-sharable and domain-specific neurons for multi-
domain deep feature representation learning. Treating each
camera as a distinct domain, Lin et al. [115] propose a multi-
camera consistent matching constraint to obtain a globally
optimal representation in a deep learning framework. Sim-
ilarly, the camera view information or the detected camera
location is also applied in [18] to improve the feature repre-
sentation with camera-specific information modeling.

GAN Generation. This section discusses the use of GAN
generated images as the auxiliary information. Zheng et al.
[42] start the first attempt to apply the GAN technique for
person Re-ID. It improves the supervised feature represen-
tation learning with the generated person images. Pose con-
straints are incorporated in [116] to improve the quality of
the generated person images, generating the person images
with new pose variants. A pose-normalized image genera-
tion approach is designed in [117], which enhances the ro-
bustness against pose variations. Camera style information
[118] is also integrated in the image generation process to
address the cross camera variations. A joint discriminative
and generative learning model [119] separately learns the
appearance and structure codes to improve the image gen-
eration quality. Using the GAN generated images is also a
widely used approach in unsupervised domain adaptation
Re-ID [120], [121], approximating the target distribution.

Data Augmentation. For Re-ID, custom operations are
random resize, cropping and horizontal flip [122]. Besides,
adversarially occluded samples [19] are generated to aug-
ment the variation of training data. A similar random
erasing strategy is proposed in [123], adding random noise
to the input images. A batch DropBlock [124] randomly

drops a region block in the feature map to reinforce the
attentive feature learning. Bak et al. [125] generate the virtual
humans rendered under different illumination conditions.
These methods enrich the supervision with the augmented
samples, improving the generalizability on the testing set.

2.1.4 Video Feature Representation Learning
Video-based Re-ID is another popular topic [126], where
each person is represented by a video sequence with mul-
tiple frames. Due to the rich appearance and temporal
information, it has gained increasing interest in the Re-
ID community. This also brings in additional challenges in
video feature representation learning with multiple images.

The primary challenge is to accurately capture the tem-
poral information. A recurrent neural network architecture
is designed for video-based person Re-ID [127], which joint-
ly optimizes the final recurrent layer for temporal informa-
tion propagation and the temporal pooling layer. A weight-
ed scheme for spatial and temporal streams is developed in
[128]. Yan et al. [129] present a progressive/sequential fusion
framework to aggregate the frame-level human region rep-
resentations. Semantic attributes are also adopted in [110]
for video Re-ID with feature disentangling and frame re-
weighting. Jointly aggregating the frame-level feature and
spatio-temporal appearance information is crucial for video
representation learning [130], [131], [132].

Another major challenge is the unavoidable outlier
tracking frames within the videos. Informative frames are
selected in a joint Spatial and Temporal Attention Pooling
Network (ASTPN) [131], and the contextual information is
integrated in [130]. A co-segmentation inspired attention
model [132] detects salient features across multiple video
frames with mutual consensus estimation. A diversity regu-
larization [133] is employed to mine multiple discriminative
body parts in each video sequence. An affine hull is adopted
to handle the outlier frames within the video sequence [83].
An interesting work [20] utilizes the multiple video frames
to auto-complete occluded regions. These works demon-
strate that handling the noisy frames can greatly improve
the video representation learning.

It is also challenging to handle the varying lengths of
video sequences, Chen et al. [134] divide the long video
sequences into multiple short snippets, aggregating the top-
ranked snippets to learn a compact embedding. A clip-level
learning strategy [135] exploits both spatial and temporal
dimensional attention cues to produce a robust clip-level
representation. Both the short- and long-term relations [136]
are integrated in a self-attention scheme.
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2.1.5 Architecture Design
Framing person Re-ID as a specific pedestrian retrieval
problem, most existing works adopt the network archi-
tectures [79], [80] designed for image classification as the
backbone. Some works have tried to modify the backbone
architecture to achieve better Re-ID features. For the widely
used ResNet50 backbone [80], the important modifications
include changing the last convolutional stripe/size to 1 [77],
employing adaptive average pooling in the last pooling
layer [77], and adding bottleneck layer with batch normal-
ization after the pooling layer [82].

Accuracy is the major concern for specific Re-ID network
architecture design to improve the accuracy, Li et al. [43]
start the first attempt by designing a filter pairing neural
network (FPNN), which jointly handles misalignment and
occlusions with part discriminative information mining.
Wang et al. [89] propose a BraidNet with a specially de-
signed WConv layer and Channel Scaling layer. The WConv
layer extracts the difference information of two images to
enhance the robustness against misalignments and Channel
Scaling layer optimizes the scaling factor of each input
channel. A Multi-Level Factorisation Net (MLFN) [112]
contains multiple stacked blocks to model various latent
factors at a specific level, and the factors are dynamically
selected to formulate the final representation. An efficient
fully convolutional Siamese network [137] with convolution
similarity module is developed to optimize multi-level sim-
ilarity measurement. The similarity is efficiently captured
and optimized by using the depth-wise convolution.

Efficiency is another important factor for Re-ID architec-
ture design. An efficient small scale network, namely Omni-
Scale Network (OSNet) [138], is designed by incorporating
the point-wise and depth-wise convolutions. To achieve
multi-scale feature learning, a residual block composed of
multiple convolutional streams is introduced.

With the increasing interest in auto-machine learning, an
Auto-ReID [139] model is proposed. Auto-ReID provides an
efficient and effective automated neural architecture design
based on a set of basic architecture components, using a
part-aware module to capture the discriminative local Re-
ID features. This provides a potential research direction in
exploring powerful domain-specific architectures.

2.2 Deep Metric Learning
Metric learning has been extensively studied before the deep
learning era by learning a Mahalanobis distance function
[36], [37] or projection matrix [40]. The role of metric learn-
ing has been replaced by the loss function designs to guide
the feature representation learning. We will first review the
widely used loss functions in § 2.2.1 and then summarize the
training strategies with specific sampling designs § 2.2.2.

2.2.1 Loss Function Design
This survey only focuses on the loss functions designed for
deep learning. An overview of the distance metric learning
designed for hand-crafted systems can be found in [2], [143].
There are three widely studied loss functions with their
variants in the literature for person Re-ID, including the
identity loss, verification loss and triplet loss. An illustration
of three loss functions is shown in Fig. 3.
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CNN

(b) Verification Loss

CNN

CNN

(c) Triplet Loss

CNN

CNN
… …

?

PullPush

Margin

Before

After
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Fig. 3: Three kinds of widely used loss functions in the litera-
ture. (a) Identity Loss [42], [82], [118], [140] ; (b) Verification
Loss [94], [141] and (c) Triplet Loss [14], [22], [57]. Many
works employ their combinations [87], [137], [141], [142].

Identity Loss. It treats the training process of person
Re-ID as an image classification problem [55], i.e., each
identity is a distinct class. In the testing phase, the output
of the pooling layer or embedding layer is adopted as the
feature extractor. Given an input image xi with label yi, the
predicted probability of xi being recognized as class yi is
encoded with a softmax function, represented by p(yi|xi).
The identity loss is then computed by the cross-entropy

Lid = − 1

n

∑n

i=1
log(p(yi|xi)), (1)

where n represents the number of training samples within
each batch. The identity loss has been widely used in ex-
isting methods [19], [42], [82], [92], [95], [106], [118], [120],
[140], [144]. Generally, it is easy to train and automatical-
ly mine the hard samples during the training process, as
demonstrated in [145]. Several works have also investigated
the softmax variants [146], such as the sphere loss in [147]
and AM softmax in [95]. Another simple yet effective strat-
egy, i.e., label smoothing [42], [122], is generally integrated
into the standard softmax cross-entropy loss. Its basic idea
is to avoid the model fitting to over-confident annotated
labels, improving the generalizability [148].

Verification Loss. It optimizes the pairwise relationship,
either with a contrastive loss [96], [120] or binary verification
loss [43], [141]. The contrastive loss improves the relative
pairwise distance comparison, formulated by

Lcon = (1− δij){max(0, ρ− dij)}2 + δijd
2
ij , (2)

where dij represents the Euclidean distance between the
embedding features of two input samples xi and xj . δij is
a binary label indicator (δij = 1 when xi and xj belong to
the same identity, and δij = 0, otherwise). ρ is a margin
parameter. There are several variants, e.g., the pairwise
comparison with ranking SVM in [81].

Binary verification [43], [141] discriminates the positive
and negative of a input image pair. Generally, a differential
feature fij is obtained by fij = (fj − fj)2 [141], where fi
and fj are the embedding features of two samples xi and
xj . The verification network classifies the differential feature
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into positive or negative. We use p(δij |fij) to represent the
probability of an input pair (xi and xj) being recognized as
δij (0 or 1). The verification loss with cross-entropy is

Lveri(i, j) = −δij log(p(δij |fij))−(1−δij) log(1−p(δij |fij)).
(3)

The verification is often combined with the identity loss
to improve the performance [94], [96], [120], [141].

Triplet loss. It treats the Re-ID model training process
as a retrieval ranking problem. The basic idea is that the
distance between the positive pair should be smaller than
the negative pair by a pre-defined margin [57]. Typically, a
triplet contains one anchor sample xi, one positive sample
xj with the same identity, and one negative sample xk from
a different identity. The triplet loss with a margin parameter
is represented by

Ltri(i, j, k) = max(ρ+ dij − dik, 0), (4)

where d(·) measures the Euclidean distance between two
samples. The large proportion of easy triplets will dominate
the training process if we directly optimize above loss
function, resulting in limited discriminability. To alleviate
this issue, various informative triplet mining methods have
been designed [14], [22], [57], [97]. The basic idea is to select
the informative triplets [57], [149]. Specifically, a moderate
positive mining with a weight constraint is introduced in
[149], which directly optimizes the feature difference. Her-
mans et al. [57] demonstrate that the online hardest positive
and negative mining within each training batch is beneficial
for discriminative Re-ID model learning. Some methods also
studied the point to set similarity strategy for informative
triplet mining [150], [151]. This enhances robustness against
the outlier samples with a soft hard-mining scheme.

To further enrich the triplet supervision, a quadruplet
deep network is developed in [152], where each quadruplet
contains one anchor sample, one positive sample and two
mined negative samples. The quadruplets are formulated
with a margin-based online hard negative mining. Optimiz-
ing the quadruplet relationship results in smaller intra-class
variation and larger inter-class variation.

The combination of triplet loss and identity loss is one of
the most popular solutions for deep Re-ID model learning
[28], [87], [90], [93], [103], [104], [116], [137], [142], [153],
[154]. These two components are mutually beneficial for
discriminative feature representation learning.

OIM loss. In addition to the above three kinds of loss
functions, an Online Instance Matching (OIM) loss [64] is
designed with a memory bank scheme. A memory bank
{vk, k = 1, 2, · · · , c} contains the stored instance features,
where c denotes the class number. The OIM loss is then
formulated by

Loim = − 1

n

∑n

i=1
log

exp(vTi fi/τ)∑c
k=1 exp(v

T
k fi/τ)

, (5)

where vi represents the corresponding stored memory fea-
ture for class yi, and τ is a temperature parameter that
controls the similarity space [145]. vTi fi measures the online
instance matching score. The comparison with a memorized
feature set of unlabelled identities is further included to
calculate the denominator [64], handling the large instance
number of non-targeted identities. This memory scheme is
also adopted in unsupervised domain adaptive Re-ID [106].
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Fig. 4: An illustration of re-ranking in person Re-ID. Given
a query example, an initial rank list is retrieved, where
the hard matches are ranked in the bottom. Using the top-
ranked easy positive match (1) as query to search in the
gallery, we can get the hard match (2) and (3) with similarity
propagation in the gallery set.

2.2.2 Training strategy
The batch sampling strategy plays an important role in
discriminative Re-ID model learning. It is challenging since
the number of annotated training images for each identity
varies significantly [5]. Meanwhile, the severely imbalanced
positive and negative sample pairs increases additional
difficulty for the training strategy design [40].

The most commonly used training strategy for handling
the imbalanced issue is identity sampling [57], [122]. For
each training batch, a certain number of identities are
randomly selected, and then several images are sampled
from each selected identity. This batch sampling strategy
guarantees the informative positive and negative mining.

To handle the imbalance issue between the positive and
negative, adaptive sampling is the popular approach to
adjust the contribution of positive and negative samples,
such as Sample Rate Learning (SRL) [89], curriculum sam-
pling [87]. Another approach is sample re-weighting, using
the sample distribution [87] or similarity difference [52] to
adjust the sample weight. An efficient reference constraint
is designed in [155] to transform the pairwise/triplet sim-
ilarity to a sample-to-reference similarity, addressing the
imbalance issue and enhancing the discriminability, which
is also robust to outliers.

To adaptively combine multiple loss functions, a multi-
loss dynamic training strategy [156] adaptively reweights
the identity loss and triplet loss, extracting appropriate
component shared between them. This multi-loss training
strategy leads to consistent performance gain.

2.3 Ranking Optimization

Ranking optimization plays a crucial role in improving
the retrieval performance in the testing stage. Given an
initial ranking list, it optimizes the ranking order, either by
automatic gallery-to-gallery similarity mining [58], [157] or
human interaction [158], [159]. Rank/Metric fusion [160],
[161] is another popular approach for improving the ranking
performance with multiple ranking list inputs.



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3054775, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

2.3.1 Re-ranking
The basic idea of re-ranking is to utilize the gallery-to-
gallery similarity to optimize the initial ranking list, as
shown in Fig. 4. The top-ranked similarity pulling and
bottom-ranked dissimilarity pushing is proposed in [157].
The widely-used k-reciprocal reranking [58] mines the con-
textual information. Similar idea for contextual information
modeling is applied in [25]. Bai et al. [162] utilize the geo-
metric structure of the underlying manifold. An expanded
cross neighborhood re-ranking method [18] is introduced
by integrating the cross neighborhood distance. A local
blurring re-ranking [95] employs the clustering structure to
improve neighborhood similarity measurement.

Query Adaptive. Considering the query difference,
some methods have designed the query adaptive retrieval
strategy to replace the uniform searching engine to improve
the performance [163], [164]. Andy et al. [163] propose a
query adaptive re-ranking method using locality preserv-
ing projections. An efficient online local metric adaptation
method is presented in [164], which learns a strictly local
metric with mined negative samples for each probe.

Human Interaction. It involves using human feedback
to optimize the ranking list [158]. This provides reliable su-
pervision during the re-ranking process. A hybrid human-
computer incremental learning model is presented in [159],
which cumulatively learns from human feedback, improv-
ing the Re-ID ranking performance on-the-fly.

2.3.2 Rank Fusion
Rank fusion exploits multiple ranking lists obtained with
different methods to improve the retrieval performance [59].
Zheng et al. [165] propose a query adaptive late fusion
method on top of a “L” shaped observation to fuse methods.
A rank aggregation method by employing the similarity and
dissimilarity is developed in [59]. The rank fusion process in
person Re-ID is formulated as a consensus-based decision
problem with graph theory [166], mapping the similarity
scores obtained by multiple algorithms into a graph with
path searching. An Unified Ensemble Diffusion (UED) [161]
is recently designed for metric fusion. UED maintains the
advantages of three existing fusion algorithms, optimized
by a new objective function and derivation. The metric
ensemble learning is also studied in [160].

2.4 Datasets and Evaluation
2.4.1 Datasets and Evaluation Metrics
Datasets. We first review the widely used datasets for the
closed-world setting, including 11 image datasets (VIPeR
[31], iLIDS [167], GRID [168], PRID2011 [126], CUHK01-
03 [43], Market-1501 [5], DukeMTMC [42], Airport [169]
and MSMT17 [44]) and 7 video datasets (PRID-2011 [126],
iLIDS-VID [7], MARS [8], Duke-Video [144], Duke-Tracklet
[170], LPW [171] and LS-VID [136]). The statistics of these
datasets are shown in Table 2. This survey only focuses on
the general large-scale datsets for deep learning methods. A
comprehensive summarization of the Re-ID datasets can be
found in [169] and their website1. Several observations can
be made in terms of the dataset collection over recent years:

1. https://github.com/NEU-Gou/awesome-reid-dataset

TABLE 2: Statistics of some commonly used datasets for
closed-world person Re-ID. “both” means that it contains
both hand-cropped and detected bounding boxes. “C&M”
means both CMC and mAP are evaluated.

Image datasets
Dataset Time #ID #image #cam. Label Res. Eval.
VIPeR 2007 632 1,264 2 hand fixed CMC
iLIDS 2009 119 476 2 hand vary CMC
GRID 2009 250 1,275 8 hand vary CMC
PRID2011 2011 200 1,134 2 hand fixed CMC
CUHK01 2012 971 3,884 2 hand fixed CMC
CUHK02 2013 1,816 7,264 10 hand fixed CMC
CUHK03 2014 1,467 13,164 2 both vary CMC
Market-1501 2015 1,501 32,668 6 both fixed C&M
DukeMTMC 2017 1,404 36,411 8 both fixed C&M
Airport 2017 9,651 39,902 6 auto fixed C&M
MSMT17 2018 4,101 126,441 15 auto vary C&M

Video datasets
Dataset time #ID #track(#bbox) #cam. label Res. Eval
PRID-2011 2011 200 400 (40k) 2 hand fixed CMC
iLIDS-VID 2014 300 600 (44k) 2 hand vary CMC
MARS 2016 1261 20,715 (1M) 6 auto fixed C&M
Duke-Video 2018 1,812 4,832 (-) 8 auto fixed C&M
Duke-Tracklet 2018 1,788 12,647 (-) 8 auto C&M
LPW 2018 2,731 7,694(590K) 4 auto fixed C&M
LS-VID 2019 3,772 14,943 (3M) 15 auto fixed C&M

1) The dataset scale (both #image and #ID) has increased
rapidly. Generally, the deep learning approach can benefit
from more training samples. This also increases the anno-
tation difficulty needed in closed-world person Re-ID. 2)
The camera number is also greatly increased to approximate
the large-scale camera network in practical scenarios. This
also introduces additional challenges for model generaliz-
ability in a dynamically updated network. 3) The bounding
boxes generation is usually performed automatically detect-
ed/tracked, rather than mannually cropped. This simulates
the real-world scenario with tracking/detection errors.

Evaluation Metrics. To evaluate a Re-ID system, Cumu-
lative Matching Characteristics (CMC) [68] and mean Aver-
age Precision (mAP) [5] are two widely used measurements.

CMC-k (a.k.a, Rank-k matching accuracy) [68] represents
the probability that a correct match appears in the top-k
ranked retrieved results. CMC is accurate when only one
ground truth exists for each query, since it only considers
the first match in evaluation process. However, the gallery
set usually contains multiple groundtruths in a large camera
network, and CMC cannot completely reflect the discrim-
inability of a model across multiple cameras.

Another metric, i.e., mean Average Precision (mAP) [5],
measures the average retrieval performance with multiple
grountruths. It is originally widely used in image retrieval.
For Re-ID evaluation, it can address the issue of two systems
performing equally well in searching the first ground truth
(might be easy match as in Fig. 4), but having different
retrieval abilities for other hard matches.

Considering the efficiency and complexity of training
a Re-ID model, some recent works [138], [139] also report
the FLoating-point Operations Per second (FLOPs) and the
network parameter size as the evaluation metrics. These
two metrics are crucial when the training/testing device has
limited computational resources.

2.4.2 In-depth Analysis on State-of-The-Arts
We review the state-of-the-arts from both image-based and
video-based perspectives. We include methods published in
top CV venues over the past three years.

https://github.com/NEU-Gou/awesome-reid-dataset
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Fig. 5: State-of-the-arts (SOTA) on four image-based person Re-ID datasets. Both the Rank-1 accuracy (%) and mAP value (%) are
reported. For CUHK03 [43], the detected data under the setting [58] is reported. For Market-1501, the single query setting is used.
The best result is highlighted with a red star. All the listed results do not use re-ranking or additional annotated information.

Image-based Re-ID. There are a large number of pub-
lished papers for image-based Re-ID2. We mainly review
the works published in 2019 as well as some representative
works in 2018. Specifically, we include PCB [77], MGN
[172], PyrNet [6], Auto-ReID [139], ABD-Net [173], BagTrick-
s [122], OSNet [138], DGNet [119], SCAL [90], MHN [174],
P2Net [104], BDB [124], SONA [107], SFT [95], ConsAtt
[93], DenseS [103], Pyramid [156], IANet [108], VAL [114].
We summarize the results on four datasets (Fig. 5). This
overview motivates five major insights, as discussed below.

First, with the advancement of deep learning, most
of the image-based Re-ID methods have achieved higher
rank-1 accuracy than humans (93.5% [175]) on the widely
used Market-1501 dataset. In particular, VAL [114] obtains
the best mAP of 91.6% and Rank-1 accuracy of 96.2% on
Market-1501 dataset. The major advantage of VAL is the
usage of viewpoint information. The performance can be
further improved when using re-ranking or metric fusion.
The success of deep learning on these closed-world datasets
also motivates the shift focus to more challenging scenarios,
i.e., large data size [136] or unsupervised learning [176].

Second, part-level feature learning is beneficial for dis-
criminative Re-ID model learning. Global feature learning
directly learns the representation on the whole image with-
out the part constraints [122]. It is discriminative when
the person detection/ tracking can accurately locate the
human body. When the person images suffer from large
background clutter or heavy occlusions, part-level feature
learning usually achieves better performance by mining
discriminative body regions [67]. Due to its advantage in
handling misalignment/occlusions, we observe that most
of the state-of-the-art methods developed recently adopt
the features aggregation paradigm, combining the part-level
and full human body features [139], [156].

Third, attention is beneficial for discriminative Re-ID
model learning. We observe that all the methods (ConsAtt
[93], SCAL [90], SONA [107], ABD-Net [173]) achieving
the best performance on each dataset adopt an attention
scheme. The attention captures the relationship between
different convolutional channels, multiple feature maps,
hierarchical layers, different body parts/regions, and even
multiple images. Meanwhile, discriminative [173], diverse
[133], consistent [93] and high-order [107] properties are

2. https://paperswithcode.com/task/person-re-identification

incorporated to enhance the attentive feature learning. Con-
sidering the powerful attention schemes and the specificity
of the Re-ID problem, it is highly possible that attentive
deeply learned systems will continue dominating the Re-ID
community, with more domain specific properties.

Fourth, multi-loss training can improve the Re-ID model
learning. Different loss functions optimize the network from
a multi-view perspective. Combining multiple loss function-
s can improve the performance, evidenced by the multi-loss
training strategy in the state-of-the-art methods, including
ConsAtt [93], ABD-Net [173] and SONA [107]. In addition, a
dynamic multi-loss training strategy is designed in [156] to
adaptively integrated two loss functions. The combination
of identity loss and triplet loss with hard mining is the pri-
mary choice. Moreover, due to the imbalanced issue, sample
weighting strategy generally improves the performance by
mining informative triplets [52], [89].

Finally, there is still much room for further improvement
due to the increasing size of datasets, complex environment,
limited training samples. For example, the Rank-1 accuracy
(82.3%) and mAP (60.8%) on the newly released MSMT17
dataset [44] are much lower than that on Market-1501 (Rank-
1: 96.2% and mAP 91.7%) and DukeMTMC (Rank-1: 91.6%
and mAP 84.5%). On some other challenging datasets with
limited training samples (e.g., GRID [168] and VIPeR [31]),
the performance is still very low. In addition, Re-ID models
usually suffers significantly on cross-dataset evaluation [28],
[54], and the performance drops dramatically under adver-
sarial attack [177]. We are optimistic that there would be
important breakthroughs in person Re-ID, with increasing
discriminability, robustness, and generalizability.

Video-based Re-ID. Video-based Re-ID has received
less interest, compared to image-based Re-ID. We review
the deeply learned Re-ID models, including CoSeg [132],
GLTR [136], STA [135], ADFD [110], STC [20], DRSA [133],
Snippet [134], ETAP [144], DuATM [91], SDM [178], TwoS
[128], ASTPN [131], RQEN [171], Forest [130], RNN [127]
and IDEX [8]. We also summarize the results on four video
Re-ID datasets, as shown in Fig. 6. From these results, the
following observations can be drawn.

First, a clear trend of increasing performance can be
seen over the years with the development of deep learning
techniques. Specifically, the Rank-1 accuracy increases from
70% (RNN [127] in 2016) to 95.5% (GLTR [136] in 2019) on
PRID-2011 dataset, and from 58% (RNN [127]) to 86.3%

https://paperswithcode.com/task/person-re-identification
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Fig. 6: State-of-the-arts (SOTA) on four widely used video-based person Re-ID datasets. The Rank-1 accuracies (%) over years are
reported. mAP values (%) on MARS [8] and Duke-Video [144] are reported. For Duke-Video, we refer to the settings in [144]. The
best result is highlighted with a red star. All the listed results do not use re-ranking or additional annotated information.

(ADFD [110]) on iLIDS-VID dataset. On the large-scale
MARS dataset, the Rank-1 accuracy/mAP increase from
68.3%/49.3% (IDEX [8]) to 88.5%/82.3% (STC [20]). On the
Duke-Video dataset [144], STA [135] also achieves a Rank-1
accuracy of 96.2%, and the mAP is 94.9%.

Second, spatial and temporal modeling is crucial for
discriminative video representation learning. We observe
that all the methods (STA [135], STC [20], GLTR [136])
design spatial-temporal aggregation strategies to improve
the video Re-ID performance. Similar to image-based Re-
ID, the attention scheme across multiple frames [110], [135]
also greatly enhances the discriminability. Another interest-
ing observation in [20] demonstrates that utilizing multiple
frames within the video sequence can fill in the occluded
regions, which provides a possible solution for handling the
challenging occlusion problem in the future.

Finally, the performance on these datases has reached a
saturation state, usually about less than 1% accuracy gain on
these four video datasets. However, there is still large room
for improvements on the challenging cases. For example, on
the newly collected video dataset, LS-VID [136], the Rank-
1 accuracy/mAP of GLTR [136] are only 63.1%/44.43%,
while GLTR [136] can achieve state-of-the-art or at least
comparable performance on the other four daatsets. LS-VID
[136] contains significantly more identities and video se-
quences. This provides a challenging benchmark for future
breakthroughs in video based Re-ID.

3 OPEN-WORLD PERSON RE-IDENTIFICATION

This section reviews open-world person Re-ID as discussed
in § 1, including heterogeneous Re-ID by matching per-
son images across heterogeneous modalities (§ 3.1), end-
to-end Re-ID from the raw images/videos (§ 3.2), semi-
/unsupervised learning with limited/unavailable annotat-
ed labels (§ 3.3), robust Re-ID model learning with noisy
annotations (§ 3.4) and open-set person Re-ID when the
correct match does not occur in the gallery (§ 3.5).

3.1 Heterogeneous Re-ID

This subsection summarizes four main kinds of hetero-
geneous Re-ID, including Re-ID between depth and RGB
images (§ 3.1.1), text-to-image Re-ID (§ 3.1.2), visible-to-
infrared Re-ID (§ 3.1.3) and cross resolution Re-ID (§ 3.1.4).

3.1.1 Depth-based Re-ID
Depth images capture the body shape and skeleton in-
formation. This provides the possibility for Re-ID under
illumination/clothes changing environments, which is also
important for personalized human interaction applications.

A recurrent attention-based model is proposed in [179]
to address the depth-based person identification. In a re-
inforcement learning framework, they combine the convo-
lutional and recurrent neural networks to identify small,
discriminative local regions of the human body.

Karianakis et al. [180] leverage the large RGB datasets
to design a split-rate RGB-to-Depth transfer method, which
bridges the gap between the depth images and the RGB im-
ages. Their model further incorporates a temporal attention
to enhance video representation for depth Re-ID.

Some methods [62], [181] have also studied the combi-
nation of RGB and depth information to improve the Re-ID
performance, addressing the clothes-changing challenge.

3.1.2 Text-to-Image Re-ID
Text-to-image Re-ID addresses the matching between a text
description and RGB images [63]. It is imperative when the
visual image of query person cannot be obtained, and only
a text description can be alternatively provided.

A gated neural attention model [63] with recurrent neu-
ral network learns the shared features between the text
description and the person images. This enables the end-
to-end training for text to image pedestrian retrieval. Cheng
et al. [182] propose a global discriminative image-language
association learning method, capturing the identity discrim-
inative information and local reconstructive image-language
association under a reconstruction process. A cross projec-
tion learning method [183] also learns a shared space with
image-to-text matching. A deep adversarial graph attention
convolution network is designed in [184] with graph rela-
tion mining. However, the large semantic gap between the
text descriptions and the visual images is still challenging.
Meanwhile, how to combine the texts and hand-painting
sketch image is also worth studying in the future.

3.1.3 Visible-Infrared Re-ID
Visible-Infrared Re-ID handles the cross-modality matching
between the daytime visible and night-time infrared images.
It is important in low-lighting conditions, where the images
can only be captured by infrared cameras [21], [60], [185].
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Wu et al. [21] start the first attempt to address this issue,
by proposing a deep zero-padding framework [21] to adap-
tively learn the modality sharable features. A two stream
network is introduced in [142], [186] to model the modality-
sharable and -specific information, addressing the intra- and
cross-modality variations simultaneously. Besides the cross-
modality shared embedding learning [187], the classifier-
level discrepancy is also investigated in [188]. Recent meth-
ods [189], [190] adopt the GAN technique to generate cross-
modality person images to reduce the cross-modality dis-
crepancy at both image and feature level. Hierarchical cross-
Modality disentanglement factors are modeled in [191]. A
dual-attentive aggregation learning method is presented in
[192] to capture multi-level relations.

3.1.4 Cross-Resolution Re-ID
Cross-Resolution Re-ID conducts the matching between
low-resolution and high-resolution images, addressing the
large resolution variations [13], [14]. A cascaded SR-GAN
[193] generates the high-resolution person images in a cas-
caded manner, incorporating the identity information. Li et
al. [194] adopt the adversarial learning technique to obtain
resolution-invariant image representations.

3.2 End-to-End Re-ID

End-to-end Re-ID alleviates the reliance on additional step
for bounding boxes generation. It involves the person Re-ID
from raw images or videos, and multi-camera tracking.

Re-ID in Raw Images/Videos This task requires that
the model jointly performs the person detection and re-
identification in a single framework [55], [64]. It is challeng-
ing due to the different focuses of two major components.

Zheng et al. [55] present a two-stage framework, and sys-
tematically evaluate the benefits and limitations of person
detection for the later stage person Re-ID. Xiao et al. [64]
design an end-to-end person search system using a single
convolutional neural network for joint person detection and
re-identification. A Neural Person Search Machine (NPSM)
[195] is developed to recursively refine the searching area
and locate the target person by fully exploiting the con-
textual information between the query and the detected
candidate region. Similarly, a contextual instance expansion
module [196] is learned in a graph learning framework
to improve the end-to-end person search. A query-guided
end-to-end person search system [197] is developed using
the Siamese squeeze-and-excitation network to capture the
global context information with query-guided region pro-
posal generation. A localization refinement scheme with
discriminative Re-ID feature learning is introduced in [198]
to generate more reliable bounding boxes. An Identity
DiscriminativE Attention reinforcement Learning (IDEAL)
method [199] selects informative regions for auto-generated
bounding boxes, improving the Re-ID performance.

Yamaguchi et al. [200] investigate a more challenging
problem, i.e., searching for the person from raw videos with
text description. A multi-stage method with spatio-temporal
person detection and multi-modal retrieval is proposed.
Further exploration along this direction is expected.

Multi-camera Tracking End-to-end person Re-ID is also
closely related to multi-person, multi-camera tracking [52].

A graph-based formulation to link person hypotheses is
proposed for multi-person tracking [201], where the holistic
features of the full human body and body pose layout are
combined as the representation for each person. Ristani et
al. [52] learn the correlation between the multi-target multi-
camera tracking and person Re-ID by hard-identity mining
and adaptive weighted triplet learning. Recently, a locality
aware appearance metric (LAAM) [202] with both intra- and
inter-camera relation modeling is proposed.

3.3 Semi-supervised and Unsupervised Re-ID

3.3.1 Unsupervised Re-ID
Early unsupervised Re-ID mainly learns invariant compo-
nents, i.e., dictionary [203], metric [204] or saliency [66],
which leads to limited discriminability or scalability.

For deeply unsupervised methods, cross-camera label
estimation is one the popular approaches [176], [205]. Dy-
namic graph matching (DGM) [206] formulates the label
estimation as a bipartite graph matching problem. Liu et
al. progressively mine the labels with step-wise metric pro-
motion [204]. A robust anchor embedding method [83] itera-
tively assigns labels to the unlabelled tracklets to enlarge the
anchor video sequences set. With the estimated labels, deep
learning can be applied to learn Re-ID models. However,
how to identify the unknown new identities is still an
unsolved issue, which is imperative for practical scenario.

For end-to-end unsupervised Re-ID, an iterative cluster-
ing and Re-ID model learning is presented in [205]. Similar-
ly, the relations among samples are utilized in a hierarchical
clustering framework [207]. Soft multi-label learning [208]
mines the soft label information from a reference set for
unsupervised learning. A Tracklet Association Unsuper-
vised Deep Learning (TAUDL) framework [170] jointly con-
ducts the within-camera tracklet association and model the
cross-camera tracklet correlation. Similarly, an unsupervised
camera-aware similarity consistency mining method [209]
is also presented in a coarse-to-fine consistency learning
scheme. The intra-camera mining and inter-camera associ-
ation is applied in a graph association framework [210]. The
semantic attributes are also adopted in Transferable Join-
t Attribute-Identity Deep Learning (TJ-AIDL) framework
[111]. However, it is still challenging for model updating
with newly arriving unlabelled data.

Besides, several methods have also tried to learn a part-
level representation based on the observation that it is
easier to mine the label information in local parts than
that of a whole image. A PatchNet [153] is designed to
learn discriminative patch features by mining patch level
similarity. A Self-similarity Grouping (SSG) approach [211]
iteratively conducts grouping (exploits both the global body
and local parts similarity for pseudo labeling) and Re-ID
model training in a self-paced manner.

Semi-supervised Re-ID. With limited label information,
a one-shot metric learning method is proposed in [212],
which incorporates a deep texture representation learned
from intensity image and learns a color metric using a single
pair of ColorChecker images. A stepwise one-shot learning
method (EUG) is proposed in [144] for video-based person
re-identification, gradually selecting a few candidates from
unlabeled tracklets to enrich the labeled tracklet set.
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3.3.2 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) transfers the
knowledge on a labeled source dataset to the unlabeled tar-
get dataset [53]. Due to the large domain shift and powerful
supervision in source dataset, it is another popular approach
for unsupervised Re-ID without target dataset labels.

Target Image Generation. Using GAN generation to
transfer the source domain images to target-domain style
is a popular approach for UDA Re-ID. With the generated
images, this enables supervised Re-ID model learning in the
unlabeled target domain. Wei et al. [44] propose a Person
Transfer Generative Adversarial Network (PTGAN), trans-
ferring the knowledge from one labeled source dataset to
the unlabeled target dataset. Preserved self-similarity and
domain-dissimilarity [120] is trained with a similarity pre-
serving generative adversarial network (SPGAN). A Hetero-
Homogeneous Learning (HHL) method [213] simultane-
ously considers the camera invariance with homogeneous
learning and domain connectedness with heterogeneous
learning. An adaptive transfer network [214] decomposes
the adaptation process into certain imaging factors, includ-
ing illumination, resolution, camera view, etc. This strategy
improves the cross-dataset performance. Huang et al. [215]
try to suppress the background shift to minimize the domain
shift problem. Chen et al. [216] design an instance-guided
context rendering scheme to transfer the person identities
from source domain into diverse contexts in the target do-
main. Besides, a pose disentanglement scheme is added to
improve the image generation [121]. A mutual mean-teacher
learning scheme is also developed in [217]. However, the
scalability and stability of the image generation for practical
large-scale changing environment are still challenging.

Bak et al. [125] generate a synthetic dataset with differ-
ent illumination conditions to model realistic indoor and
outdoor lighting. The synthesized dataset increases general-
izability of the learned model and can be easily adapted to
a new dataset without additional supervision [218].

Target Domain Supervision Mining. Some method-
s directly mine the supervision on the unlabeled tar-
get dataset with a well trained model from source
dataset. An exemplar memory learning scheme [106] con-
siders three invariant cues as the supervision, including
exemplar-invariance, camera invariance and neighborhood-
invariance. The Domain-Invariant Mapping Network (DIM-
N) [28] formulates a meta-learning pipeline for the domain
transfer task, and a subset of source domain is sampled at
each training episode to update the memory bank, enhanc-
ing the scalability and discriminability. The camera view
information is also applied in [219] as the supervision signal
to reduce the domain gap. A self-training method with
progressive augmentation [220] jointly captures the local
structure and global data distribution on the target dataset.
Recently, a self-paced contrastive learning framework with
hybrid memory [221] is developed with great success, which
dynamically generates multi-level supervision signals.

The spatio-temporal information is also utilized as the
supervision in TFusion [222]. TFusion transfers the spatio-
temporal patterns learned in the source domain to the target
domain with a Bayesian fusion model. Similarly, Query-
Adaptive Convolution (QAConv) [223] is developed to im-
prove cross-dataset accuracy.

TABLE 3: Statistics of SOTA unsupervised person Re-ID
on two image-based datasets. “Source” represents if it u-
tilizes the source annotated data in training the target Re-ID
model. “Gen.” indicates if it contains an image generation
process. Rank-1 accuracy (%) and mAP (%) are reported.

Market-1501 DukeMTMC
Methods Source Gen. R1 mAP R1 mAP
CAMEL [224] ICCV17 Model No 54.5 26.3 - -
PUL [205] TOMM18 Model No 45.5 20.5 30.0 16.4
PTGAN [120] CVPR18 Data Yes 58.1 26.9 46.9 26.4
TJ-AIDL†[111] CVPR18 Data No 58.2 26.5 44.3 23.0
HHL [213] ECCV18 Data Yes 62.2 31.4 46.9 27.2
MAR‡[208] CVPR19 Data No 67.7 40.0 67.1 48.0
ENC [106] CVPR19 Data No 75.1 43.0 63.3 40.4
ATNet [214] CVPR19 Data Yes 55.7 25.6 45.1 24.9
PAUL‡[153] CVPR19 Model No 68.5 40.1 72.0 53.2
SBGAN [215] ICCV19 Data Yes 58.5 27.3 53.5 30.8
UCDA [219] ICCV19 Data No 64.3 34.5 55.4 36.7
CASC‡[209] ICCV19 Model No 65.4 35.5 59.3 37.8
PDA [121] ICCV19 Data Yes 75.2 47.6 63.2 45.1
CR-GAN [216] ICCV19 Data Yes 77.7 54.0 68.9 48.6
PAST [220] ICCV19 Model No 78.4 54.6 72.4 54.3
SSG [211] ICCV19 Model No 80.0 58.3 73.0 53.4
HCT [207] CVPR20 Model No 80.0 56.4 69.6 50.7
SNR [225] CVPR20 Data No 82.8 61.7 76.3 58.1
MMT [217] ICLR20 Data No 87.7 71.2 78.0 65.1
MEB-Net [226] ECCV20 Data No 89.9 76.0 79.6 66.1
SpCL [221] NeurIPS20 Data No 90.3 76.7 82.9 68.8
• † TJ-AIDL [111] requires additional attribute annotation.
• § DAS [125] generates synthesized virtual humans under vairous lightings.
• ‡ PAUL [153], MAR [208] and CASC [209] use MSMT17 as source dataset.

3.3.3 State-of-The-Arts for Unsupervised Re-ID
Unsupervised Re-ID has achieved increasing attention in
recent years, evidenced by the increasing number of publica-
tions in top venues. We review the SOTA for unsupervised
deeply learned methods on two widely-used image-based
Re-ID datasets. The results are summarized in Table 3. From
these results, the following insights can be drawn.

First, the unsupervised Re-ID performance has increased
significantly over the years. The Rank-1 accuracy/mAP
increases from 54.5%/26.3% (CAMEL [224]) to 90.3%/76.7%
(SpCL [221]) on the Market-1501 dataset within three years.
The performance for DukeMTMC dataset increases from
30.0%/16.4% to 82.9%/68.8%. The gap between the su-
pervised upper bound and the unsupervised learning is
narrowed significantly. This demonstrates the success of
unsupervised Re-ID with deep learning.

Second, current unsupervised Re-ID is still under-
developed and it can be further improved in the following
aspects: 1) The powerful attention scheme in supervised Re-
ID methods has rarely been applied in unsupervised Re-
ID. 2) Target domain image generation has been proved
effective in some methods, but they are not applied in
two best methods (PAST [220], SSG [211]). 3) Using the
annotated source data in the training process of the target
domain is beneficial for cross-dataset learning, but it is also
not included in above two methods. These observations
provide the potential basis for further improvements.

Third, there is still a large gap between the unsupervised
and supervised Re-ID. For example, the rank-1 accuracy of
supervised ConsAtt [93] has achieved 96.1% on the Market-
1501 dataset, while the highest accuracy of unsupervised
SpCL [221] is about 90.3%. Recently, He et al. [227] have
demonstrated that unsupervised learning with large-scale
unlabeled training data has the ability to outperform the
supervised learning on various tasks [228]. We expect that
several breakthroughs in future unsupervised Re-ID.
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3.4 Noise-Robust Re-ID
Re-ID usually suffers from unavoidable noise due to data
collection and annotation difficulty. We review noise-robust
Re-ID from three aspects: Partial Re-ID with heavy occlusion,
Re-ID with sample noise caused by detection or tracking
errors, and Re-ID with label noise caused by annotation error.

Partial Re-ID. This addresses the Re-ID problem with
heavy occlusions, i.e., only part of the human body is visible
[229]. A fully convolutional network [230] is adopted to
generate fix-sized spatial feature maps for the incomplete
person images. Deep Spatial feature Reconstruction (D-
SR) is further incorporated to avoid explicit alignment by
exploiting the reconstructing error. Sun et al. [67] design
a Visibility-aware Part Model (VPM) to extract sharable
region-level features, thus suppressing the spatial misalign-
ment in the incomplete images. A foreground-aware pyra-
mid reconstruction scheme [231] also tries to learn from the
unoccluded regions. The Pose-Guided Feature Alignment
(PGFA) [232] exploits the pose landmarks to mine discrim-
inative part information from occlusion noise. However, it
is still challenging due to the severe partial misalignment,
unpredictable visible regions and distracting unshared body
regions. Meanwhile, how to adaptively adjust the matching
model for different queries still needs further investigation.

Re-ID with Sample Noise. This refers to the prob-
lem of the person images or the video sequence contain-
ing outlying regions/frames, either caused by poor de-
tection/inaccurate tracking results. To handle the outlying
regions or background clutter within the person image, pose
estimation cues [17], [18] or attention cues [22], [66], [199]
are exploited. The basic idea is to suppress the contribution
of the noisy regions in the final holistic representation. For
video sequences, set-level feature learning [83] or frame
level re-weighting [134] are the commonly used approaches
to reduce the impact of noisy frames. Hou et al. [20] also
utilize multiple video frames to auto-complete occluded
regions. It is expected that more domain-specific sample
noise handling designs in the future.

Re-ID with Label Noise. Label noise is usually un-
avoidable due to annotation error. Zheng et al. adopt a
label smoothing technique to avoid label overfiting issues
[42]. A Distribution Net (DNet) that models the feature
uncertainty is proposed in [233] for robust Re-ID model
learning against label noise, reducing the impact of samples
with high feature uncertainty. Different from the general
classification problem, robust Re-ID model learning suffers
from limited training samples for each identity [234]. In
addition, the unknown new identities increase additional
difficulty for the robust Re-ID model learning.

3.5 Open-set Re-ID and Beyond
Open-set Re-ID is usually formulated as a person veri-
fication problem, i.e., discriminating whether or not two
person images belong to the same identity [69], [70]. The
verification usually requires a learned condition τ , i.e.,
sim(query, gallery) > τ . Early researches design hand-
crafted systems [26], [69], [70]. For deep learning methods,
an Adversarial PersonNet (APN) is proposed in [235], which
jointly learns a GAN module and the Re-ID feature extrac-
tor. The basic idea of this GAN is to generate realistic target-

Rank List 2
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1 2 3 4 5 10...

(a) CMC = 1    AP = 0.77     INP = 0.3

Rank List 1

(b) CMC = 1    AP = 0.70     INP = 0.6  

NP =
10 − 3

10
= 0.7

NP =
5 − 3

5
= 0.4

INP = 1- NP 

Fig. 7: Difference between the widely used CMC, AP and
the negative penalty (NP) measurements. True matching
and false matching are bounded in green and red boxes,
respectively. Assume that only three correct matches exist
in the gallery, rank list 1 gets better AP, but gets much
worse NP than rank list 2. The main reason is that rank
list 1 contains too many false matchings before finding the
hardest true matching. For consistency with CMC and mAP,
we compute the inverse negative penalty (INP), e.g., INP =
1- NP. Larger INP means better performance.

like images (imposters) and enforce the feature extractor
is robust to the generated image attack. Modeling feature
uncertainty is also investigated in [233]. However, it remains
quite challenging to achieve a high true target recognition
and maintain low false target recognition rate [236].

Group Re-ID. It aims at associating the persons in
groups rather than individuals [167]. Early researches main-
ly focus on group representation extraction with sparse
dictionary learning [237] or covariance descriptor aggre-
gation [238]. The multi-grain information is integrated in
[239] to fully capture the characteristics of a group. Re-
cently, the graph convoltuional network is applied in [240],
representing the group as a graph. The group similarity
is also applied in the end-to-end person search [196] and
the individual re-identification [197], [241] to improve the
accuracy. However, group Re-ID is still challenging since the
group variation is more complicated than the individuals.

Dynamic Multi-Camera Network. Dynamic updated
multi-camera network is another challenging issue [23], [24],
[27], [29], which needs model adaptation for new cameras or
probes. A human in-the-loop incremental learning method
is introduced in [24] to update the Re-ID model, adapting
the representation for different probe galleries. Early re-
search also applies the active learning [27] for continuous
Re-ID in multi-camera network. A continuous adaptation
method based on sparse non-redundant representative se-
lection is introduced in [23]. A transitive inference algorithm
[242] is designed to exploit the best source camera model
based on a geodesic flow kernel. Multiple environmental
constraints (e.g., Camera Topology) in dense crowds and
social relationships are integrated for an open-world person
Re-ID system [243]. The model adaptation and environmen-
tal factors of cameras are crucial in practical dynamic multi-
camera network. Moreover, how to apply the deep learning
technique for the dynamic multi-camera network is still less
investigated.

4 AN OUTLOOK: RE-ID IN NEXT ERA

This section firstly presents a new evaluation metric in § 4.1,
a strong baseline (in § 4.2) for person Re-ID. It provides an
important guidance for future Re-ID research. Finally, we
discuss some under-investigated open issues in § 4.3.
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TABLE 4: Comparison with the state-of-the-arts on single-
modality image-based Re-ID. Rank-1 accuracy (%), mAP (%)
and mINP (%) are reported on two public datasets.

Market-1501 [5] DukeMTMC [42]
Method R1 mAP mINP R1 mAP mINP
BagTricks [122] CVPR19W 94.5 85.9 59.4 86.4 76.4 40.7
ABD-Net [173] ICCV19 95.6 88.3 66.2 89.0 78.6 42.1
B (ours) 94.2 85.4 58.3 86.1 76.1 40.3
B + Att [244] 94.9 86.9 62.2 87.5 77.6 41.9
B + WRT 94.6 86.8 61.9 87.1 77.0 41.4
B + GeM [245] 94.4 86.3 60.1 87.3 77.3 41.9
B + WRT + GeM 94.9 87.1 62.5 88.2 78.1 43.4
AGW (Full) 95.1 87.8 65.0 89.0 79.6 45.7

4.1 mINP: A New Evaluation Metric for Re-ID

For a good Re-ID system, the target person should be re-
trieved as accurately as possible, i.e., all the correct matches
should have low rank values. Considering that the target
person should not be neglected in the top-ranked retrieved
list, especially for multi-camera network, so as to accurately
track the target. When the target person appears in the
gallery set at multiple time stamps, the rank position of
the hardest correct match determines the workload of the
inspectors for further investigation. However, the currently
widely used CMC and mAP metrics cannot evaluate this
property, as shown in Fig. 7. With the same CMC, rank
list 1 achieves a better AP than rank list 2, but it requires
more efforts to find all the correct matches. To address this
issue, we design a computationally efficient metric, namely
a negative penalty (NP), which measures the penalty to find
the hardest correct match

NPi =
Rhard

i − |Gi|
Rhard

i

, (6)

where Rhard
i indicates the rank position of the hardest

match, and |Gi| represents the total number of correct
matches for query i. Naturally, a smaller NP represents
better performance. For consistency with CMC and mAP, we
prefer to use the inverse negative penalty (INP), an inverse
operation of NP. Overall, the mean INP of all the queries is
represented by

mINP =
1

n

∑
i
(1−NPi) =

1

n

∑
i

|Gi|
Rhard

i

. (7)

The calculation of mINP is quite efficient and can be
seamlessly integrated in the CMC/mAP calculating pro-
cess. mINP avoids the domination of easy matches in the
mAP/CMC evaluation. One limitation is that mINP value
difference for large gallery size would be much smaller
compared to small galleries. But it still can reflect the relative
performance of a Re-ID model, providing a supplement to
the widely-used CMC and mAP metrics.

4.2 A New Baseline for Single-/Cross-Modality Re-ID

According to the discussion in § 2.4.2, we design a new AG-
W3 baseline for person Re-ID, which achieves competitive
performance on both single-modality (image and video) and
cross-modality Re-ID tasks. Specifically, our new baseline is
designed on top of BagTricks [122], and AGW contains the
following three major improved components:

3. Details are in https://github.com/mangye16/ReID-Survey and
comprehensive comparison is shown in the supplementary material.

1 × 1 𝑐𝑜𝑛𝑣
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(3) Weighted Regularization Triplet 
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𝑝
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ID loss
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ResNet50 Backbone

Fig. 8: The framework of the proposed AGW baseline using
the widely used ResNet50 [80] as the backbone network.

(1) Non-local Attention (Att) Block. As discussed in
§ 2.4.2, the attention scheme plays a crucial role in discrim-
inative Re-ID model learning. We adopt the powerful non-
local attention block [244] to obtain the weighted sum of the
features at all positions, represented by

zi =Wz ∗ φ(xi) + xi, (8)

where Wz is a weight matrix to be learned, φ(·) represents a
non-local operation, and +xi formulates a residual learning
strategy. Details can be found in [244]. We adopt the default
setting from [244] to insert the non-local attention block.

(2) Generalized-mean (GeM) Pooling. As a fine-grained
instance retrieval, the widely-used max-pooling or aver-
age pooling cannot capture the domain-specific discrimina-
tive features. We adopt a learnable pooling layer, named
generalized-mean (GeM) pooling [245], formulated by

f = [f1 · · · fk · · · fK ]T , fk = (
1

|Xk|
∑

xi∈Xk

xpk

i )
1
pk , (9)

where fk represents the feature map, and K is number of
feature maps in the last layer. Xk is the set of W × H acti-
vations for feature map k ∈ {1, 2, · · · ,K}. pk is a pooling
hyper-parameter, which is learned in the back-propagation
process [245]. The above operation approximates max pool-
ing when pk →∞ and average pooling when pk = 1.

(3) Weighted Regularization Triplet (WRT) loss. In
addition to the baseline identity loss with softmax cross-
entropy, we integrate with another weighted regularized
triplet loss,
Lwrt(i) = log(1 + exp(

∑
j
wp

ijd
p
ij −

∑
k
wn

ikd
n
ik)). (10)

wp
ij =

exp (dpij)∑
dp
ij∈Pi

exp(dpij)
, wn

ik =
exp (−dnik)∑

dn
ik∈Ni

exp(−dnik)
, (11)

where (i, j, k) represents a hard triplet within each training
batch. For anchor i, Pi is the corresponding positive set,
and Ni is the negative set. dpij/dnik represents the pairwise
distance of a positive/negative sample pair. The above
weighted regularization inherits the advantage of relative
distance optimization between positive and negative pairs,
but it avoids introducing any additional margin parameters.
Our weighting strategy is similar to [246], but our solution
does not introduce additional hyper-parameters.

The overall framework of AGW is shown in Fig 8. Other
components are exactly the same as [122]. In the testing
phase, the output of BN layer is adopted as the feature rep-
resentation for Re-ID. The implementation details and more
experimental results are in the supplementary material.

https://github.com/mangye16/ReID-Survey
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TABLE 5: Comparison with the state-of-the-arts on two
image Re-ID datasets, including CUHK03 and MSMT17.
Rank-1 accuracy (%), mAP (%) and mINP (%) are reported.

CUHK03 [43] MSMT17 [44]
Method R1 mAP mINP R1 mAP mINP
BagTricks [122] CVPR19W 58.0 56.6 43.8 63.4 45.1 12.4
AGW (Full) 63.6 62.0 50.3 68.3 49.3 14.7

TABLE 6: Comparison with the state-of-the-arts on four
video-based Re-ID datasets, including MARS [8], Duke-
Video [144], PRID2011 [126] and iLIDS-VID [7]. Rank-1
accuracy (%), mAP (%) and mINP (%) are reported.

MARS [8] DukeVideo [144]
Method R1 mAP mINP R1 mAP mINP
BagTricks [122] CVPR19W 85.8 81.6 62.0 92.6 92.4 88.3
CoSeg [132] ICCV19 84.9 79.9 57.8 95.4 94.1 89.8
AGW (Ours) 87.0 82.2 62.8 94.6 93.4 89.2
AGW+ (Ours) 87.6 83.0 63.9 95.4 94.9 91.9

PRID2011 [126] iLIDS-VID [7]
Method R1 R5 mINP R1 R5 mINP
BagTricks [122] CVPR19W 84.3 93.3 88.5 74.0 93.3 82.2
AGW (Ours) 87.8 96.6 91.7 78.0 97.0 85.5
AGW+ (Ours) 94.4 98.4 95.4 83.2 98.3 89.0

Results on Single-modality Image Re-ID. We first eval-
uate each component on two image-based datasets (Market-
1501 and DukeMTMC) in Table 4. We also list two state-
of-the-art methods, BagTricks [122] and ABD-Net [173]. We
report the results on CUHK03 and MSMT17 datasets in
Table 5. We obtain the following two observations:

1) All the components consistently contribute the ac-
curacy gain, and AGW performs much better than the
original BagTricks under various metrics. AGW provides
a strong baseline for future improvements. We have also
tried to incorporate part-level feature learning [77], but
extensive experiments show that it does not improve the
performance. How to aggregate part-level feature learning
with AGW needs further study in the future. 2) Compared to
the current state-of-the-art, ABD-Net [173], AGW performs
favorably in most cases. In particular, we achieve much
higher mINP on DukeMTMC dataset, 45.7% vs. 42.1%. This
demonstrates that AGW requires less effort to find all the
correct matches, verifying the ability of mINP.

Results on Single-modality Video Re-ID. We also eval-
uate the proposed AGW on four widely used single modal-
ity video-based datasets ( MARS [8], DukeVideo [144],
PRID2011 [126] and iLIDS-VID [7], as shown in Table 6. We
also compare two state-of-the-art methods, BagTricks [122]
and Co-Seg [132]. For video data, we develop a variant
(AGW+) to capture the temporal information with frame-
level average pooling for sequence representation. Mean-
while, constraint random sampling strategy [133] is applied
for training. Compared to Co-Seg [132], our AGW+ obtains
better Rank-1, mAP and mINP in most cases.

Results on Partial Re-ID. We also test the performance
of AGW on two partial Re-ID datasets, as shown in Table
7. The experimental setting are from DSR [230]. We also
achieve comparable performance with the state-of-the-art
VPM method [67]. This experiment further demonstrates the
superiority of AGW for the open-world partial Re-ID task.
Meanwhile, the mINP also shows the applicability for this
open-world Re-ID problem.

Results on Cross-modality Re-ID. We also test the
performance of AGW using a two-stream architecture on the
cross-modality visible-infrared Re-ID task. The comparison

TABLE 7: Comparison with the state-of-the-arts on two
partial Re-ID datasets, including Partial-REID and Partial-
iLIDS. Rank-1, -3 accuracy (%) and mINP (%) are reported.

Method Partial-REID Partial-iLIDS
R1 R3 mINP R1 R3 mINP

DSR [230] CVPR18 50.7 70.0 - 58.8 67.2 -
SFR [247] ArXiv18 56.9 78.5 - 63.9 74.8 -
VPM [67] CVPR19 67.7 81.9 - 67.2 76.5 -
BagTricks [122] CVPR19W 62.0 74.0 45.4 58.8 73.9 68.7
AGW 69.7 80.0 56.7 64.7 79.8 73.3

TABLE 8: Comparison with the state-of-the-arts on cross-
modality visible-infrared Re-ID. Rank-1 accuracy (%), mAP
(%) and mINP (%) are reported on two public datasets.

RegDB [60] SYSU-MM01 [21]
Visible-Thermal All Search Indoor Search

Method R1 mAP R1 mAP R1 mAP
Zero-Pad [21] ICCV17 17.75 18.90 14.8 15.95 20.58 26.92
HCML [186] AAAI18 24.44 20.08 14.32 16.16 24.52 30.08
eBDTR [142] TIFS19 34.62 33.46 27.82 28.42 32.46 42.46
HSME [187] AAAI19 50.85 47.00 20.68 23.12 - -
D2RL [189] CVPR19 43.4 44.1 28.9 29.2 - -
AlignG [190] ICCV19 57.9 53.6 42.4 40.7 45.9 54.3
Hi-CMD [191] CVPR20 70.93 66.04 34.9 35.9

AGW (Ours) 70.05 66.37 47.50 47.65 54.17 62.97
mINP = 50.19 mINP =35.30 mINP = 59.23

with the current state-of-the-arts on two datasets is shown
in Table 8. We follow the settings in AlignG [190] to perform
the experiments. Results show that AGW achieves much
higher accuracy than existing cross-modality Re-ID models,
verifying the effectiveness for the open-world Re-ID task.

4.3 Under-Investigated Open Issues

We discuss the open-issues from five different aspects ac-
cording to the five steps in §1, including uncontrollable
data collection, human annotation minimization, domain-
specific/generalizable architecture design, dynamic model
updating and efficient model deployment.

4.3.1 Uncontrollable Data Collection
Most existing Re-ID works evaluate their method on a well-
defined data collection environment. However, the data
collection in real complex environment is uncontrollable.
The data might be captured from unpredictable modality,
modality combinations, or even cloth changing data [30].

Multi-Heterogeneous Data. In real applications, the Re-
ID data might be captured from multiple heterogeneous
modalities, i.e., the resolutions of person images vary a lot
[193], both the query and gallery sets may contain different
modalities (visible, thermal [21], depth [62] or text descrip-
tion [10]). This results in a challenging multiple heteroge-
neous person Re-ID. A good person Re-ID system would
be able to automatically handle the changing resolutions,
different modalities, various environments and multiple do-
mains. Future work with broad generalizability is expected,
evaluating their method for different Re-ID tasks.

Cloth-Changing Data. In practical surveillance system,
it is very likely to contain a large number of target persons
with changing clothes. A cloth-Clothing Change Aware
Network (CCAN) [248] addresses this issue by separately
extracting the face and body context representation, and
similar idea is applied in [249]. Yang et al. [30] present
a spatial polar transformation (SPT) to learn cross-cloth
invariant representation. However, they still rely heavily on
the face and body appearance, which might be unavailable



0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3054775, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

and unstable in real scenarios. It would be interesting to
further explore the possibility of other discriminative cues
(e.g., gait, shape) to address the cloth-changing issue.

4.3.2 Human Annotation Minimization
Besides the unsupervised learning, active learning or hu-
man interaction [24], [27], [154], [159] provides another pos-
sible solution to alleviate the reliance on human annotation.

Active Learning. Incorporating human interaction, la-
bels are easily provided for newly arriving data and the
model can be subsequently updated [24], [27]. A pairwise
subset selection framework [250] minimizes human labeling
effort by firstly constructing an edge-weighted complete k-
partite graph and then solving it as a triangle free subgraph
maximization problem. Along this line, a deep reinforce-
ment active learning method [154] iteratively refines the
learning policy and trains a Re-ID network with human-in-
the-loop supervision. For video data, an interpretable rein-
forcement learning method with sequential decision making
[178] is designed. The active learning is crucial in practical
Re-ID system design, but it has received less attention in
the research community. Additionally, the newly arriving
identities is extremely challenging, even for human. Efficient
human in-the-loop active learning is expected in the future.

Learning for Virtual Data. This provides an alternative
for minimizing the human annotation. A synthetic dataset is
collected in [218] for training, and they achieve competitive
performance on real-world datasets when trained on this
synthesized dataset. Bak et al. [125] generate a new synthetic
dataset with different illumination conditions to model re-
alistic indoor and outdoor lighting. A large-scale synthetic
PersonX dataset is collected in [105] to systematically study
the effect of viewpoint for a person Re-ID system. Recently,
the 3D person images are also studied in [251], generating
the 3D body structure from 2D images. However, how to
bridge the gap between synthesized images and real-world
datasets remains challenging.

4.3.3 Domain-Specific/Generalizable Architecture Design
Re-ID Specific Architecture. Existing Re-ID methods usu-
ally adopt architectures designed for image classification
as the backbone. Some methods modify the architecture
to achieve better Re-ID features [82], [122]. Very recently,
researchers have started to design domain specific architec-
tures, e.g., OSNet with omni-scale feature learning [138]. It
detects the small-scale discriminative features at a certain
scale. OSNet is extremely lightweight and achieves compet-
itive performance. With the advancement of automatic neu-
ral architecture search (e.g., Auto-ReID [139]), more domain-
specific powerful architectures are expected to address the
task-specific Re-ID challenges. Limited training samples in
Re-ID also increase the difficulty in architecture design.

Domain Generalizable Re-ID. It is well recognized
that there is a large domain gap between different datsets
[56], [223]. Most existing methods adopt domain adaptation
for cross-dataset training. A more practical solution would
be learning a domain generalized model with a number
of source datasets, such that the learned model can be
generalized to new unseen datasets for discriminative Re-
ID without additional training [28]. The Domain-Invariant
Mapping Network (DIMN) [28] designs a meta-learning

pipeline for domain generalizable Re-ID, learning a map-
ping between a person image and its identity classifier. The
domain generalizability is crucial to deploy the learned Re-
ID model under an unknown scenario.

4.3.4 Dynamic Model Updating

Fixed model is inappropriate for practical dynamically
updated surveillance system. To alleviate this issue, dy-
namic model updating is imperative, either to a new do-
main/camera or adaptation with newly collected data.

Model Adaptation to New Domain/Camera. Model
adaptation to a new domain has been widely studied in
the literature as a domain adaptation problem [125], [214].
In practical dynamic camera network, a new camera may be
temporarily inserted into an existing surveillance system.
Model adaptation is crucial for continuous identification in
a multi-camera network [23], [29]. To adapt a learned model
to a new camera, a transitive inference algorithm [242] is
designed to exploit the best source camera model based
on a geodesic flow kernel. However, it is still challenging
when the newly collected data by the new camera has
totally different distributions. Meanwhile, efficient online
adaptation for different queries is still an open issue.

Model Updating with Newly Arriving Data. With the
newly collected data, it is impractical to training the previ-
ously learned model from the scratch [24]. An incremental
learning approach together with human interaction is de-
signed in [24]. For deeply learned model, an addition using
covariance loss [252] is integrated in the overall learning
function. However, this problem is not well studied since the
deep model training require large amount of training data.
Besides, the unknown new identities in the newly arriving
data is hard to be identified for the model updating.

4.3.5 Efficient Model Deployment

It is important to design efficient and adaptive models to
address scalability issue for practical model deployment.

Fast Re-ID. For fast retrieval, hashing has been exten-
sively studied to boost the searching speed, approximat-
ing the nearest neighbor search. Cross-camera Semantic
Binary Transformation (CSBT) [253] transforms the original
high-dimensional feature representations into compact low-
dimensional identity-preserving binary codes. A Coarse-to-
Fine (CtF) hashing code search strategy is developed in
[254], complementarily using short and long codes. How-
ever, the domain-specific hashing still needs further study.

Lightweight Model. Another direction for addressing
the scalability issue is to design a lightweight Re-ID model.
Modifying the network architecture to achieve a lightweight
model is investigated in [86], [138], [139]. Model distillation
is another approach, e.g., a multi-teacher adaptive similarity
distillation framework is proposed in [255], which learns
a user-specified lightweight student model from multiple
teacher models, without access to source domain data.

Resource Aware Re-ID. Adaptively adjusting the model
according to the hardware configurations also provides a
solution to handle the scalability issue. Deep Anytime Re-
ID (DaRe) [14] employs a simple distance based routing
strategy to adaptively adjust the model, fitting to hardware
devices with different computational resources.
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5 CONCLUDING REMARKS

This paper presents a comprehensive survey with in-depth
analysis for person Re-ID. We first introduce the widely
studied person Re-ID under the closed-world setting from
three aspects: feature representation learning, deep metric
learning and ranking optimization. With powerful deep
learning, the closed-world person Re-ID has achieved per-
formance saturation on several datasets. The open-world
setting has recently gained increasing attention, with efforts
to address various practical challenges. We also design a
new AGW baseline, which achieves competitive perfor-
mance on four Re-ID tasks under various metrics. This
survey also introduces a new evaluation metric to measure
the cost of finding all the correct matches. We believe it
provides important guidance for future Re-ID research.
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