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Deep Learning for Image
Super-Resolution: A Survey

Zhihao Wang , Jian Chen , and Steven C. H. Hoi , Fellow, IEEE

Abstract—Image Super-Resolution (SR) is an important class of image processing techniqueso enhance the resolution of images and

videos in computer vision. Recent years have witnessed remarkable progress of image super-resolution using deep learning

techniques. This article aims to provide a comprehensive survey on recent advances of image super-resolution using deep learning

approaches. In general, we can roughly group the existing studies of SR techniques into three major categories: supervised SR,

unsupervised SR, and domain-specific SR. In addition, we also cover some other important issues, such as publicly available

benchmark datasets and performance evaluation metrics. Finally, we conclude this survey by highlighting several future directions and

open issues which should be further addressed by the community in the future.

Index Terms—Image super-resolution, deep learning, convolutional neural networks (CNN), Generative adversarial nets (GAN)

Ç

1 INTRODUCTION

IMAGE super-resolution (SR), which refers to the process of
recovering high-resolution (HR) images from low-resolu-

tion (LR) images, is an important class of image processing
techniques in computer vision and image processing. It
enjoys a wide range of real-world applications, such as
medical imaging [1], [2], [3], surveillance and security [4],
[5]), amongst others. Other than improving image percep-
tual quality, it also helps to improve other computer vision
tasks [6], [7], [8], [9]. In general, this problem is very chal-
lenging and inherently ill-posed since there are always mul-
tiple HR images corresponding to a single LR image. In
literature, a variety of classical SR methods have been pro-
posed, including prediction-based methods [10], [11], [12],
edge-based methods [13], [14], statistical methods [15], [16],
patch-based methods [13], [17], [18], [19] and sparse repre-
sentation methods [20], [21], etc.

With the rapid development of deep learning techniques
in recent years, deep learning based SR models have been
actively explored and often achieve the state-of-the-art per-
formance on various benchmarks of SR. A variety of deep
learning methods have been applied to tackle SR tasks,
ranging from the early Convolutional Neural Networks
(CNN) based method (e.g., SRCNN [22], [23]) to recent
promising SR approaches using Generative Adversarial
Nets (GAN) [24] (e.g., SRGAN [25]). In general, the family
of SR algorithms using deep learning techniques differ from

each other in the following major aspects: different types of
network architectures [26], [27], [28], different types of loss
functions [8], [29], [30], different types of learning principles
and strategies [8], [31], [32], etc.

In this paper, we give a comprehensive overview of recent
advances in image super-resolution with deep learning.
Although there are some existing SR surveys in literature, our
work differs in that we are focused in deep learning based SR
techniques, while most of the earlier works [33], [34], [35], [36]
aim at surveying traditional SR algorithms or some studies
mainly concentrate on providing quantitative evaluations
based on full-reference metrics or human visual perception
[37], [38].Unlike the existing surveys, this survey takes a unique
deep learning based perspective to review the recent advances
of SR techniques in a systematic and comprehensivemanner.

The main contributions of this survey are three-fold:

1) We give a comprehensive review of image super-res-
olution techniques based on deep learning, including
problem settings, benchmark datasets, performance
metrics, a family of SR methods with deep learning,
domain-specific SR applications, etc.

2) We provide a systematic overview of recent advan-
ces of deep learning based SR techniques in a hierar-
chical and structural manner, and summarize the
advantages and limitations of each component for
an effective SR solution.

3) We discuss the challenges and open issues, and iden-
tify the new trends and future directions to provide
an insightful guidance for the community.

In the following sections, we will cover various aspects of
recent advances in image super-resolution with deep learn-
ing. Fig. 1 shows the taxonomy of image SR to be covered in
this survey in a hierarchically-structured way. Section 2
gives the problem definition and reviews the mainstream
datasets and evaluation metrics. Section 3 analyzes main
components of supervised SR modularly. Section 4 gives a
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brief introduction to unsupervised SR methods. Section 5
introduces some popular domain-specific SR applications,
and Section 6 discusses future directions and open issues.

2 PROBLEM SETTING AND TERMINOLOGY

2.1 Problem Definitions

Image super-resolution aims at recovering the correspond-
ing HR images from the LR images. Generally, the LR image
Ix is modeled as the output of the following degradation:

Ix ¼ DðIy; dÞ; (1)

where D denotes a degradation mapping function, Iy is the
corresponding HR image and d is the parameters of the deg-
radation process (e.g., the scaling factor or noise). Generally,
the degradation process (i.e., D and d) is unknown and only
LR images are provided. In this case, also known as blind
SR, researchers are required to recover an HR approxima-
tion Îy of the ground truth HR image Iy from the LR image
Ix, following:

Îy ¼ FðIx; uÞ; (2)

where F is the super-resolution model and u denotes the
parameters of F .

Although the degradation process is unknown and can
be affected by various factors (e.g., compression artifacts,
anisotropic degradations, sensor noise and speckle noise),
researchers are trying to model the degradation mapping.
Most works directly model the degradation as a single
downsampling operation, as follows:

DðIy; dÞ ¼ ðIyÞ #s; fsg � d; (3)

where #s is a downsampling operation with the scaling fac-
tor s. As a matter of fact, most datasets for generic SR are
built based on this pattern, and the most commonly used
downsampling operation is bicubic interpolation with anti-
aliasing. However, there are other works [39] modelling the
degradation as a combination of several operations:

DðIy; dÞ ¼ ðIy � kÞ #s þn&; fk; s; &g � d; (4)

where Iy � k represents the convolution between a blur ker-
nel k and the HR image Iy, and n& is some additive white
Gaussian noise with standard deviation &. Compared to the
naive definition of Eq. 3, the combinative degradation pat-
tern of Eq. 4 is closer to real-world cases and has been
shown to be more beneficial for SR [39].

To this end, the objective of SR is as follows:

û ¼ argmin
u

LðÎy; IyÞ þ �FðuÞ; (5)

where LðÎy; IyÞ represents the loss function between the
generated HR image Îy and the ground truth image Iy, FðuÞ
is the regularization term and � is the tradeoff parameter.
Although the most popular loss function for SR is pixel-
wise mean squared error (i.e., pixel loss), more powerful
models tend to use a combination of multiple loss functions,
which will be covered in Section 3.4.1.

2.2 Datasets for Super-Resolution

Today there are a variety of datasets available for image
super-resolution, which greatly differ in image amounts,
quality, resolution, and diversity, etc. Some of them provide
LR-HR image pairs, while others only provide HR images,
in which case the LR images are typically obtained by

Fig. 1. Hierarchically-structured taxonomy of this survey.
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imresize function with default settings in MATLAB (i.e.,
bicubic interpolation with anti-aliasing). In Table 1 we list a
number of image datasets commonly used by the SR com-
munity, and specifically indicate their amounts of HR
images, average resolution, average numbers of pixels,
image formats, and category keywords.

Besides these datasets, some datasets widely used for
other vision tasks are also employed for SR, such as Image-
Net [51], MS-COCO [52], VOC2012 [53], CelebA [54]. In
addition, combining multiple datasets for training is also
popular, such as combining T91 and BSDS300 [26], [27],
[55], [56], combining DIV2K and Flickr2K [31], [57].

2.3 Image Quality Assessment

Image quality refers to visual attributes of images and
focuses on the perceptual assessments of viewers. In gen-
eral, image quality assessment (IQA) methods include sub-
jective methods based on humans’ perception (i.e., how
realistic the image looks) and objective computational meth-
ods. The former is more in line with our need but often
time-consuming and expensive, thus the latter is currently
the mainstream. However, these methods aren’t necessarily
consistent between each other, because objective methods
are often unable to capture the human visual perception
very accurately, which may lead to large difference in IQA
results [25], [58].

In addition, the objective IQA methods are further
divided into three types [58]: full-reference methods per-
forming assessment using reference images, reduced-refer-
ence methods based on comparisons of extracted features,
and no-reference methods (i.e., blind IQA) without any ref-
erence images.

Next we’ll introduce several most commonly used IQA
methods covering both subjective methods and objective
methods.

2.3.1 Peak Signal-to-Noise Ratio

Peak signal-to-noise ratio (PSNR) is one of the most popular
reconstruction quality measurement of lossy transformation
(e.g., image compression, image inpainting). For image
super-resolution, PSNR is defined via the maximum pixel
value (denoted as L) and the mean squared error (MSE)
between images. Given the ground truth image I with N
pixels and the reconstruction Î, the PSNR between I and Î

are defined as follows:

PSNR ¼ 10 � log 10

L2

1
N

PN
i¼1ðIðiÞ � ÎðiÞÞ2

 !
; (6)

where L equals to 255 in general cases using 8-bit represen-
tations. Since the PSNR is only related to the pixel-level
MSE, only caring about the differences between correspond-
ing pixels instead of visual perception, it often leads to poor
performance in representing the reconstruction quality in
real scenes, where we’re usually more concerned with
human perceptions. However, due to the necessity to com-
pare with literature works and the lack of completely accu-
rate perceptual metrics, PSNR is still currently the most
widely used evaluation criteria for SR models.

2.3.2 Structural Similarity

Considering that the human visual system (HVS) is highly
adapted to extract image structures [59], the structural simi-
larity index (SSIM) [58] is proposed for measuring the struc-
tural similarity between images, based on independent
comparisons in terms of luminance, contrast, and struc-
tures. For an image I with N pixels, the luminance mI and
contrast sI are estimated as the mean and standard devia-
tion of the image intensity, respectively, i.e., mI ¼
1
N

PN
i¼1 IðiÞ and sI ¼ ð 1

N�1

PN
i¼1ðIðiÞ � mIÞ2Þ

1
2, where IðiÞ rep-

resents the intensity of the i-th pixel of image I. And the
comparisons on luminance and contrast, denoted as ClðI; ÎÞ
and CcðI; ÎÞ respectively, are given by:

ClðI; ÎÞ ¼ 2mImÎ þ C1

m2
I þ m2

Î
þ C1

(7)

CcðI; ÎÞ ¼ 2sIsÎ þ C2

s2
I þ s2

Î
þ C2

; (8)

where C1 ¼ ðk1LÞ2 and C2 ¼ ðk2LÞ2 are constants for avoid-
ing instability, k1 � 1 and k2 � 1.

Besides, the image structure is represented by the nor-
malized pixel values (i.e., ðI � mIÞ=sI), whose correlations
(i.e., inner product) measure the structural similarity, equiv-
alent to the correlation coefficient between I and Î. Thus the
structure comparison function CsðI; ÎÞ is defined as:

TABLE 1
List of Public Image Datasets for Super-Resolution Benchmarks

Dataset Amount Avg. Resolution Avg. Pixels Format Category Keywords

BSDS300 [40] 300 ð435; 367Þ 154,401 JPG animal, building, food, landscape, people, plant, etc.
BSDS500 [41] 500 ð432; 370Þ 154,401 JPG animal, building, food, landscape, people, plant, etc.
DIV2K [42] 1000 ð1972; 1437Þ 2,793,250 PNG environment, flora, fauna, handmade object, people, scenery, etc.
General-100 [43] 100 ð435; 381Þ 181,108 BMP animal, daily necessity, food, people, plant, texture, etc.
L20 [44] 20 ð3843; 2870Þ 11,577,492 PNG animal, building, landscape, people, plant, etc.
Manga109 [45] 109 ð826; 1169Þ 966,011 PNG manga volume
OutdoorScene [46] 10624 ð553; 440Þ 249,593 PNG animal, building, grass, mountain, plant, sky, water
PIRM [47] 200 ð617; 482Þ 292,021 PNG environments, flora, natural scenery, objects, people, etc.
Set5 [48] 5 ð313; 336Þ 113,491 PNG baby, bird, butterfly, head, woman
Set14 [49] 14 ð492; 446Þ 230,203 PNG humans, animals, insects, flowers, vegetables, comic, slides, etc.
T91 [21] 91 ð264; 204Þ 58,853 PNG car, flower, fruit, human face, etc.
Urban100 [50] 100 ð984; 797Þ 774,314 PNG architecture, city, structure, urban, etc.
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sIÎ ¼
1

N � 1

XN
i¼1

ðIðiÞ � mIÞðÎðiÞ � mÎÞ (9)

CsðI; ÎÞ ¼ sIÎ þ C3

sIsÎ þ C3
; (10)

where sI;Î is the covariance between I and Î, and C3 is a
constant for stability.

Finally, the SSIM is given by:

SSIMðI; ÎÞ ¼ ½ClðI; ÎÞ�a½CcðI; ÎÞ�b½CsðI; ÎÞ�g ; (11)

where a, b, g are control parameters for adjusting the rela-
tive importance. Since the SSIM evaluates the reconstruction
quality from the perspective of the HVS, it better meets the
requirements of perceptual assessment [60], [61], and is also
widely used.

2.3.3 Mean Opinion Score

Mean opinion score (MOS) testing is a commonly used sub-
jective IQAmethod, where human raters are asked to assign
perceptual quality scores to tested images. Typically, the
scores are from 1 (bad) to 5 (good). And the final MOS is cal-
culated as the arithmetic mean over all ratings.

Although the MOS testing seems a faithful IQA method,
it has some inherent defects, such as non-linearly perceived
scales, biases and variance of rating criteria. In reality, there
are some SR models performing poorly in common IQA
metrics (e.g., PSNR) but far exceeding others in terms of
perceptual quality, in which case the MOS testing is the
most reliable IQA method for accurately measuring the per-
ceptual quality [8], [25], [46], [62], [63], [64], [65].

2.3.4 Learning-Based Perceptual Quality

In order to better assess the image perceptual quality while
reducing manual intervention, researchers try to assess the
perceptual quality by learning on large datasets. Specifically,
Ma et al. [66] and Talebi et al. [67] propose no-reference Ma
and NIMA, respectively, which are learned from visual per-
ceptual scores and directly predict the quality scores without
ground-truth images. In contrast, Kim et al. [68] propose
DeepQA, which predicts visual similarity of images by train-
ing on triplets of distorted images, objective error maps, and
subjective scores. And Zhang et al. [69] collect a large-scale
perceptual similarity dataset, evaluate the perceptual image
patch similarity (LPIPS) according to the difference in deep
features by trained deep networks, and show that the deep
features learned by CNNs model perceptual similarity much
better than measures without CNNs.

Although these methods exhibit better performance on
capturing human visual perception, what kind of percep-
tual quality we need (e.g., more realistic images, or consis-
tent identity to the original image) remains a question to be
explored, thus the objective IQA methods (e.g., PSNR,
SSIM) are still the mainstreams currently.

2.3.5 Task-Based Evaluation

According to the fact that SR models can often help other
vision tasks [6], [7], [8], [9], evaluating reconstruction per-
formance by means of other tasks is another effective way.

Specifically, researchers feed the original and the recon-
structed HR images into trained models, and evaluate the
reconstruction quality by comparing the impacts on the pre-
diction performance. The vision tasks used for evaluation
include object recognition [8], [70], face recognition [71],
[72], face alignment and parsing [30], [73], etc.

2.3.6 Other IQA Methods

In addition to above IQA methods, there are other less pop-
ular SR metrics. The multi-scale structural similarity (MS-
SSIM) [74] supplies more flexibility than single-scale SSIM
in incorporating the variations of viewing conditions. The
feature similarity (FSIM) [75] extracts feature points of
human interest based on phase congruency and image gra-
dient magnitude to evaluate image quality. The Natural
Image Quality Evaluator (NIQE) [76] makes use of measur-
able deviations from statistical regularities observed in nat-
ural images, without exposure to distorted images.

Recently, Blau et al. [77] prove mathematically that dis-
tortion (e.g., PSNR, SSIM) and perceptual quality (e.g.,
MOS) are at odds with each other, and show that as the dis-
tortion decreases, the perceptual quality must be worse.
Thus how to accurately measure the SR quality is still an
urgent problem to be solved.

2.4 Operating Channels

In addition to the commonly used RGB color space, the
YCbCr color space is also widely used for SR. In this space,
images are represented by Y, Cb, Cr channels, denoting the
luminance, blue-difference and red-difference chroma com-
ponents, respectively. Although currently there is no
accepted best practice for performing or evaluating super-
resolution on which space, earlier models favor operating
on the Y channel of YCbCr space [26], [43], [78], [79], while
more recent models tend to operate on RGB channels [28],
[31], [57], [70]. It is worth noting that operating (training or
evaluation) on different color spaces or channels can make
the evaluation results differ greatly (up to 4 dB) [23].

2.5 Super-Resolution Challenges

In this section, we will briefly introduce two most popular
challenges for image SR, NTIRE [80] and PIRM [47], [81].

NTIRE Challenge. The New Trends in Image Restoration
and Enhancement (NTIRE) challenge [80] is in conjunction
with CVPR and includes multiple tasks like SR, denoising
and colorization. For image SR, the NTIRE challenge is built
on the DIV2K [42] dataset and consists of bicubic downscal-
ing tracks and blind tracks with realistic unknown degrada-
tion. These tracks differs in degradations and scaling
factors, and aim to promote the SR research under both
ideal conditions and real-world adverse situations.

PIRM Challenge. The Perceptual Image Restoration and
Manipulation (PIRM) challenges are in conjunction with
ECCV and also includes multiple tasks. In contrast to
NTIRE, one sub-challenge [47] of PIRM focuses on the
tradeoff between generation accuracy and perceptual qual-
ity, and the other [81] focuses on SR on smartphones. As is
well-known [77], the models target for distortion frequently
produce visually unpleasing results, while the models tar-
get for perceptual quality performs poorly on information
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fidelity. Specifically, the PIRM divided the perception-dis-
tortion plane into three regions according to thresholds on
root mean squared error (RMSE). In each region, the win-
ning algorithm is the one that achieves the best perceptual
quality [77], evaluated by NIQE [76] and Ma [66]. While in
the other sub-challenge [81], SR on smartphones, partici-
pants are asked to perform SR with limited smartphone
hardwares (including CPU, GPU, RAM, etc.), and the evalu-
ation metrics include PSNR, MS-SSIM and MOS testing. In
this way, PIRM encourages advanced research on the per-
ception-distortion tradeoff, and also drives lightweight and
efficient image enhancement on smartphones.

3 SUPERVISED SUPER-RESOLUTION

Nowadays researchers have proposed a variety of super-
resolution models with deep learning. These models focus
on supervised SR, i.e., trained with both LR images and cor-
responding HR images. Although the differences between
these models are very large, they are essentially some com-
binations of a set of components such as model frameworks,
upsampling methods, network design, and learning strate-
gies. From this perspective, researchers combine these com-
ponents to build an integrated SR model for fitting specific
purposes. In this section, we concentrate on modularly ana-
lyzing the fundamental components (as Fig. 1 shows)
instead of introducing each model in isolation, and summa-
rizing their advantages and limitations.

3.1 Super-Resolution Frameworks

Since image super-resolution is an ill-posed problem, how
to perform upsampling (i.e., generating HR output from LR
input) is the key problem. Although the architectures of
existing models vary widely, they can be attributed to four
model frameworks (as Fig. 2 shows), based on the employed
upsampling operations and their locations in the model.

3.1.1 Pre-Upsampling Super-Resolution

On account of the difficulty of directly learning the mapping
from low-dimensional space to high-dimensional space, uti-
lizing traditional upsampling algorithms to obtain higher-
resolution images and then refining them using deep neural
networks is a straightforward solution. Thus Dong et al.
[22], [23] first adopt the pre-upsampling SR framework (as
Fig. 2a shows) and propose SRCNN to learn an end-to-end
mapping from interpolated LR images to HR images. Spe-
cifically, the LR images are upsampled to coarse HR images
with the desired size using traditional methods (e.g., bicubic
interpolation), then deep CNNs are applied on these images
for reconstructing high-quality details. Since the most diffi-
cult upsampling operation has been completed, CNNs only
need to refine the coarse images, which significantly
reduces the learning difficulty. In addition, these models
can take interpolated images with arbitrary sizes and scal-
ing factors as input, and give refined results with compara-
ble performance to single-scale SR models [26]. Thus it has
gradually become one of the most popular frameworks [55],
[56], [82], [83], and the main differences between these mod-
els are the posterior model design (Section 3.3) and learning
strategies (Section 3.4). However, the predefined upsam-
pling often introduce side effects (e.g., noise amplification

and blurring), and since most operations are performed in
high-dimensional space, the cost of time and space is much
higher than other frameworks [43], [84].

3.1.2 Post-Upsampling Super-Resolution

In order to improve the computational efficiency and make
full use of deep learning technology to increase resolution
automatically, researchers propose to perform most compu-
tation in low-dimensional space by replacing the predefined
upsampling with end-to-end learnable layers integrated at
the end of the models. In the pioneer works [43], [84] of this
framework, namely post-upsampling SR as Fig. 2b shows,
the LR input images are fed into deep CNNs without
increasing resolution, and end-to-end learnable upsampling
layers are applied at the end of the network.

Since the feature extraction process with huge computa-
tional cost only occurs in low-dimensional space and the
resolution increases only at the end, the computation and
spatial complexity are much reduced. Therefore, this

Fig. 2. Super-resolution model frameworks based on deep learning. The
cube size represents the output size. The gray ones denote predefined
upsampling, while the green, yellow and blue ones indicate learnable
upsampling, downsampling and convolutional layers, respectively. And
the blocks enclosed by dashed boxes represent stackable modules.

WANG ETAL.: DEEP LEARNING FOR IMAGE SUPER-RESOLUTION: A SURVEY 3369



framework also has become one of the most mainstr-
eam frameworks [25], [31], [79], [85]. These models differ
mainly in the learnable upsampling layers (Section 3.2),
anterior CNN structures (Section 3.3) and learning strate-
gies (Section 3.4), etc.

3.1.3 Progressive Upsampling Super-Resolution

Although post-upsampling SR framework has immensely
reduced the computational cost, it still has some shortcom-
ings. On the one hand, the upsampling is performed in
only one step, which greatly increases the learning diffi-
culty for large scaling factors (e.g., 4, 8). On the other
hand, each scaling factor requires training an individual
SR model, which cannot cope with the need for multi-scale
SR. To address these drawbacks, a progressive upsampling
framework is adopted by Laplacian pyramid SR network
(LapSRN) [27], as Fig. 2c shows. Specifically, the models
under this framework are based on a cascade of CNNs and
progressively reconstruct higher-resolution images. At
each stage, the images are upsampled to higher resolution
and refined by CNNs.

Other works such as MS-LapSRN [65] and progressive
SR (ProSR) [32] also adopt this framework and achieve rela-
tively high performance. In contrast to the LapSRN and MS-
LapSRN using the intermediate reconstructed images as the
“base images” for subsequent modules, the ProSR keeps the
main information stream and reconstructs intermediate-res-
olution images by individual heads.

By decomposing a difficult task into simple tasks, the mod-
els under this framework greatly reduce the learning difficulty,
especiallywith large factors, and also copewith themulti-scale
SR without introducing overmuch spacial and temporal
cost. In addition, some specific learning strategies such as
curriculum learning (Section 3.4.3) and multi-supervision
(Section 3.4.4) can be directly integrated to further reduce
learning difficulty and improve final performance. However,
these models also encounter some problems, such as the com-
plicated model designing for multiple stages and the training
stability, and more modelling guidance and more advanced
training strategies are needed.

3.1.4 Iterative Up-and-Down Sampling

Super-Resolution

In order to better capture the mutual dependency of LR-HR
image pairs, an efficient iterative procedure named back-
projection [12] is incorporated into SR [44]. This SR frame-
work, namely iterative up-and-down sampling SR (as
Fig. 2d shows), tries to iteratively apply back-projection
refinement, i.e., computing the reconstruction error then
fusing it back to tune the HR image intensity. Specifically,
Haris et al. [57] exploit iterative up-and-down sampling
layers and propose DBPN, which connects upsampling and
downsampling layers alternately and reconstructs the final
HR result using all of the intermediately reconstructions.
Similarly, the SRFBN [86] employs a iterative up-and-down
sampling feedback block with more dense skip connections
and learns better representations. And the RBPN [87] for
video super-resolution extracts context from continuous
video frames and combines these context to produce recur-
rent output frames by a back-projection module.

The models under this framework can better mine the
deep relationships between LR-HR image pairs and thus
provide higher-quality reconstruction results. Nevertheless,
the design criteria of the back-projection modules are still
unclear.

Since this mechanism has just been introduced into deep
learning-based SR, the framework has great potential and
needs further exploration.

3.2 Upsampling Methods

In addition to the upsampling positions in the model, how
to perform upsampling is of great importance. Although
there has been various traditional upsampling methods
[20], [21], [88], [89], making use of CNNs to learn end-to-
end upsampling has gradually become a trend. In this sec-
tion, we’ll introduce some traditional interpolation-based
algorithms and deep learning-based upsampling layers.

3.2.1 Interpolation-Based Upsampling

Image interpolation, a.k.a. image scaling, refers to resizing
digital images and is widely used by image-related appli-
cations. The traditional interpolation methods include
nearest-neighbor interpolation, bilinear and bicubic inter-
polation, Sinc and Lanczos resampling, etc. Since these
methods are interpretable and easy to implement, some of
them are still widely used in CNN-based SR models.

Nearest-Neighbor Interpolation. The nearest-neighbor inter-
polation is a simple and intuitive algorithm. It selects the
value of the nearest pixel for each position to be interpolated
regardless of any other pixels. Thus this method is very fast
but usually produces blocky results of low quality.

Bilinear Interpolation. The bilinear interpolation (BLI) first
performs linear interpolation on one axis of the image and
then performs on the other axis, as Fig. 3 shows. Since it
results in a quadratic interpolation with a receptive field
sized 2	 2, it shows much better performance than nearest-
neighbor interpolation while keeping relatively fast speed.

Bicubic Interpolation. Similarly, the bicubic interpolation
(BCI) [10] performs cubic interpolation on each of the two
axes, as Fig. 3 shows. Compared to BLI, the BCI takes 4	 4
pixels into account, and results in smoother results with fewer
artifacts butmuch lower speed. In fact, the BCIwith anti-alias-
ing is the mainstream method for building SR datasets (i.e.,
degrading HR images to LR images), and is also widely used
in pre-upsampling SR framework (Section 3.1.1).

As a matter of fact, the interpolation-based upsampling
methods improve the image resolution only based on its
own image signals, without bringing any more information.
Instead, they often introduce some side effects, such as
computational complexity, noise amplification, blurring

Fig. 3. Interpolation-based upsampling methods. The gray board
denotes the coordinates of pixels, and the blue, yellow and green points
represent the initial, intermediate and output pixels, respectively.
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results. Therefore, the current trend is to replace the interpo-
lation-based methods with learnable upsampling layers.

3.2.2 Learning-Based Upsampling

In order to overcome the shortcomings of interpolation-
based methods and learn upsampling in an end-to-end
manner, transposed convolution layer and sub-pixel layer
are introduced into the SR field.

Transposed Convolution Layer. Transposed convolution
layer, a.k.a. deconvolution layer [90], [91], tries to perform
transformation opposite a normal convolution, i.e., predict-
ing the possible input based on feature maps sized like con-
volution output. Specifically, it increases the image
resolution by expanding the image by inserting zeros and
performing convolution. Taking 2	 SR with 3	 3 kernel as
example (as Fig. 4 shows), the input is first expanded twice
of the original size, where the added pixel values are set to 0
(Fig. 4b). Then a convolution with kernel sized 3	 3, stride
1 and padding 1 is applied (Fig. 4c). In this way, the input is
upsampled by a factor of 2, in which case the receptive field
is at most 2	 2. Since the transposed convolution enlarges
the image size in an end-to-end manner while maintaining
a connectivity pattern compatible with vanilla convolution,
it is widely used as upsampling layers in SR models [57],
[78], [79], [85]. However, this layer can easily cause “uneven
overlapping” on each axis [92], and the multiplied results
on both axes further create a checkerboard-like pattern of
varying magnitudes and thus hurt the SR performance.

Sub-Pixel Layer. The sub-pixel layer [84], another end-to-
end learnable upsampling layer, performs upsampling by
generating a plurality of channels by convolution and then
reshaping them, as Fig. 5 shows. Within this layer, a convolu-
tion is first applied for producing outputs with s2 times chan-
nels, where s is the scaling factor (Fig. 5b). Assuming the
input size is h	 w	 c, the output size will be h	 w	 s2c.
After that, the reshaping operation (a.k.a. shuffle [84]) is per-
formed to produce outputs with size sh	 sw	 c (Fig. 5c). In
this case, the receptive field can be up to 3	 3. Due to the end-
to-end upsampling manner, this layer is also widely used by
SR models [25], [28], [39], [93]. Compared with transposed
convolution layer, the sub-pixel layer has a larger receptive

field, which provides more contextual information to help
generate more realistic details. However, since the distribu-
tion of the receptive fields is uneven and blocky regions actu-
ally share the same receptive field, it may result in some
artifacts near the boundaries of different blocks. On the other
hand, independently predicting adjacent pixels in a blocky
region may cause unsmooth outputs. Thus Gao et al. [94]
propose PixelTCL,which replaces the independent prediction
to interdependent sequential prediction, and produces
smoother andmore consistent results.

Meta Upscale Module. The previous methods need to prede-
fine the scaling factors, i.e., training different upsamplingmod-
ules for different factors, which is inefficient and not in line
with real needs. So that Hu et al. [95] propose meta upscale
module (as Fig. 6 shows),which first solves SR of arbitrary scal-
ing factors based on meta learning. Specifically, for each target
position on the HR images, this module project it to a small
patch on the LR featuremaps (i.e., k	 k	 cin), predicts convo-
lution weights (i.e., k	 k	 cin 	 cout) according to the projec-
tion offsets and the scaling factor by dense layers and perform
convolution. In thisway, themeta upscalemodule can continu-
ously zoom in it with arbitrary factors by a single model. And
due to the large amount of training data (multiple factors are
simultaneously trained), themodule can exhibit comparable or
even better performance on fixed factors. Although this mod-
ule needs to predict weights during inference, the execution
time of the upsampling module only accounts for about 1 per-
cent of the time of feature extraction [95]. However, this
method predicts a large number of convolution weights for
each target pixel based on several values independent of the
image contents, so the prediction result may be unstable and
less efficientwhen facedwith largermagnifications.

Nowadays, these learning-based layers have become the
most widely used upsampling methods. Especially in the
post-upsampling framework (Section 3.1.2), these layers are
usually used in the final upsampling phase for reconstruct-
ing HR images based on high-level representations
extracted in low-dimensional space, and thus achieve end-
to-end SR while avoiding overwhelming operations in
high-dimensional space.

3.3 Network Design

Nowadays the network design has been one of the most
important parts of deep learning. In the super-resolution
field, researchers apply all kinds of network design strate-
gies on top of the four SR frameworks (Section 3.1) to con-
struct the final networks. In this section, we decompose
these networks to essential principles or strategies for net-
work design, introduce them and analyze the advantages
and limitations one by one.

Fig. 4. Transposed convolution layer. The blue boxes denote the input,
and the green boxes indicate the kernel and the convolution output.

Fig. 5. Sub-pixel layer. The blue boxes denote the input, and the boxes
with other colors indicate different convolution operations and different
output feature maps.

Fig. 6. Meta upscale module. The blue boxes denote the projection
patch, and the green boxes and lines indicate the convolution operation
with predicted weights.
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3.3.1 Residual Learning

Before He et al. [96] propose ResNet for learning residuals
instead of a thorough mapping, residual learning has been
widely employed by SR models [48], [88], [97], as Fig. 7a
shows. Among them, the residual learning strategies can be
roughly divided into global and local residual learning.

Global Residual Learning. Since the image SR is an image-
to-image translation task where the input image is highly
correlated with the target image, researchers try to learn
only the residuals between them, namely global residual
learning. In this case, it avoids learning a complicated trans-
formation from a complete image to another, instead only
requires learning a residual map to restore the missing
high-frequency details. Since the residuals in most regions
are close to zero, the model complexity and learning diffi-
culty are greatly reduced. Thus it is widely used by SR mod-
els [26], [55], [56], [98].

Local Residual Learning. The local residual learning is sim-
ilar to the residual learning in ResNet [96] and used to alle-
viate the degradation problem [96] caused by ever-
increasing network depths, reduce training difficulty and
improve the learning ability. It is also widely used for SR
[70], [78], [85], [99].

In practice, the above methods are both implemented by
shortcut connections (often scaled by a small constant) and
element-wise addition, while the difference is that the for-
mer directly connects the input and output images, while
the latter usually adds multiple shortcuts between layers
with different depths inside the network.

3.3.2 Recursive Learning

In order to learn higher-level features without introducing
overwhelming parameters, recursive learning, which means
applying the same modules multiple times in a recursive
manner, is introduced into the SR field, as Fig. 7 shows.

Among them, the 16-recursive DRCN [82] employs a sin-
gle convolutional layer as the recursive unit and reaches a
receptive field of 41	 41, which is much larger than 13	 13
of SRCNN [22], without over many parameters. The DRRN
[56] uses a ResBlock [96] as the recursive unit for 25 recur-
sions and obtains even better performance than the 17-Res-
Block baseline. Later Tai et al. [55] propose MemNet based
on the memory block, which is composed of a 6-recursive

ResBlock where the outputs of every recursion are
concatenated and go through an extra 1	 1 convolution for
memorizing and forgetting. The cascading residual network
(CARN) [28] also adopts a similar recursive unit including
several ResBlocks. Recently, Li et al. [86] employ iterative up-
and-down sampling SR framework, and propose a feedback
network based on recursive learning, where the weights of
the entire network are shared across all recursions.

Besides, researchers also employ different recursive
modules in different parts. Specifically, Han et al. [85] pro-
pose dual-state recurrent network (DSRN) to exchange sig-
nals between the LR and HR states. At each time step (i.e.,
recursion), the representations of each branch are updated
and exchanged for better exploring LR-HR relationships.

Similarly, Lai et al. [65] employ the embedding and upsam-
pling modules as recursive units, and thus much reduce the
model size at the expense of little performance loss.

In general, the recursive learning can indeed learn more
advanced representations without introducing excessive
parameters, but still can’t avoid high computational costs.
And it inherently brings vanishing or exploding gradient
problems, consequently some techniques such as residual
learning (Section 3.3.1) and multi-supervision (Section 3.4.4)
are often integrated with recursive learning for mitigating
these problems [55], [56], [82], [85].

3.3.3 Multi-Path Learning

Multi-path learning refers to passing features through mul-
tiple paths, which perform different operations, and fusing
them back for providing better modelling capabilities. Spe-
cifically, it could be divided into global, local and scale-spe-
cific multi-path learning, as bellow.

Global Multi-Path Learning. Global multi-path learning
refers to making use of multiple paths to extract features of
different aspects of the images. These paths can cross each
other in the propagation and thus greatly enhance the learn-
ing ability. Specifically, the LapSRN [27] includes a feature
extraction path predicting the sub-band residuals in a
coarse-to-fine fashion and another path to reconstruct HR
images based on the signals from both paths. Similarly, the
DSRN [85] utilizes two paths to extract information in low-
dimensional and high-dimensional space, respectively, and
continuously exchanges information for further improving

Fig. 7. Network design strategies.
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learning ability. And the pixel recursive super-resolution
[64] adopts a conditioning path to capture the global struc-
ture of images, and a prior path to capture the serial depen-
dence of generated pixels. In contrast, Ren et al. [100]
employ multiple paths with unbalanced structures to per-
form upsampling and fuse them at the end of the model.

Local Multi-Path Learning. Motivated by the inception
module [101], the MSRN [99] adopts a new block for multi-
scale feature extraction, as Fig. 7e shows. In this block, two
convolution layers with kernel size 3	 3 and 5	 5 are
adopted to extract features simultaneously, then the outputs
are concatenated and go through the same operations again,
and finally an extra 1	 1 convolution is applied. A shortcut
connects the input and output by element-wise addition.
Through such local multi-path learning, the SR models can
better extract image features from multiple scales and fur-
ther improve performance.

Scale-Specific Multi-Path Learning. Considering that SR
models for different scales need to go through similar fea-
ture extraction, Lim et al. [31] propose scale-specific multi-
path learning to cope with multi-scale SR with a single net-
work. To be concrete, they share the principal components
of the model (i.e., the intermediate layers for feature extrac-
tion), and attach scale-specific pre-processing paths and
upsampling paths at the beginning and the end of the net-
work, respectively (as Fig. 7f shows). During training, only
the paths corresponding to the selected scale are enabled
and updated. In this way, the proposed MDSR [31] greatly
reduce the model size by sharing most of the parameters for
different scales and exhibits comparable performance as
single-scale models. The similar scale-specific multi-path
learning is also adopted by CARN [28] and ProSR [32].

3.3.4 Dense Connections

Since Huang et al. [102] propose DenseNet based on dense
blocks, the dense connections have become more and more
popular in vision tasks. For each layer in a dense block, the
feature maps of all preceding layers are used as inputs, and
its own feature maps are used as inputs into all subsequent
layers, so that it leads to l � ðl� 1Þ=2 connections in a l-layer
dense block (l 
 2). The dense connections not only help
alleviate gradient vanishing, enhance signal propagation
and encourage feature reuse, but also substantially reduce
the model size by employing small growth rate (i.e., number
of channels in dense blocks) and squeezing channels after
concatenating all input feature maps.

For the sake of fusing low-level and high-level features to
provide richer information for reconstructing high-quality
details, dense connections are introduced into the SR field,
as Fig. 7d shows. Tong et al. [79] not only adopt dense blocks
to construct a 69-layers SRDenseNet, but also insert dense
connections between different dense blocks, i.e., for every
dense block, the feature maps of all preceding blocks are
used as inputs, and its own feature maps are used as inputs
into all subsequent blocks. These layer-level and block-level
dense connections are also adopted by MemNet [55], CARN
[28], RDN [93] and ESRGAN [103]. The DBPN [57] also
adopts dense connections extensively, but their dense con-
nections are between all the upsampling units, as are the
downsampling units.

3.3.5 Attention Mechanism

Channel Attention. Considering the interdependence and
interaction of the feature representations between different
channels, Hu et al. [104] propose a “squeeze-and-excitation”
block to improve learning ability by explicitly modelling
channel interdependence, as Fig. 7c shows. In this block,
each input channel is squeezed into a channel descriptor
(i.e., a constant) using global average pooling (GAP), then
these descriptors are fed into two dense layers to produce
channel-wise scaling factors for input channels. Recently,
Zhang et al. [70] incorporate the channel attention mecha-
nism with SR and propose RCAN, which markedly
improves the representation ability of the model and SR
performance. In order to better learn the feature correla-
tions, Dai et al. [105] further propose a second-order channel
attention (SOCA) module. The SOCA adaptively rescales
the channel-wise features by using second-order feature sta-
tistics instead of GAP, and enables extracting more informa-
tive and discriminative representations.

Non-Local Attention. Most existing SR models have very
limited local receptive fields. However, some distant objects
or textures may be very important for local patch generation.
So that Zhang et al. [106] propose local and non-local atten-
tion blocks to extract features that capture the long-range
dependencies between pixels. Specifically, they propose a
trunk branch for extracting features, and a (non-)local mask
branch for adaptively rescaling features of trunk branch.
Among them, the local branch employs an encoder-decoder
structure to learn the local attention, while the non-local
branch uses the embedded Gaussian function to evaluate
pairwise relationships between every two position indices
in the feature maps to predict the scaling weights. Through
this mechanism, the proposed method captures the spatial
attention well and further enhances the representation abil-
ity. Similarly, Dai et al. [105] also incorporate the non-local
attentionmechanism to capture long-distance spatial contex-
tual information.

3.3.6 Advanced Convolution

Since convolution operations are the basis of deep neural
networks, researchers also attempt to improve convolution
operations for better performance or greater efficiency.

Dilated Convolution. It is well known that the contextual
information facilitates generating realistic details for SR.
Thus Zhang et al. [107] replace the common convolution by
dilated convolution in SR models, increase the receptive
field over twice and achieve much better performance.

Group Convolution. Motivated by recent advances on
lightweight CNNs [108], [109], Hui et al. [98] and Ahn et al.
[28] propose IDN and CARN-M, respectively, by replacing
the vanilla convolution by group convolution. As some pre-
vious works have proven, the group convolution much
reduces the number of parameters and operations at the
expense of a little performance loss [28], [98].

Depthwise Separable Convolution Since Howard et al. [110]
propose depthwise separable convolution for efficient con-
volution, it has been expanded to into various fields. Specifi-
cally, it consists of a factorized depthwise convolution and a
pointwise convolution (i.e., 1	 1 convolution), and thus
reduces plenty of parameters and operations at only a small
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reduction in accuracy [110]. And recently, Nie et al. [81]
employ the depthwise separable convolution and much
accelerate the SR architecture.

3.3.7 Region-Recursive Learning

Most SR models treat SR as a pixel-independent task and
thus cannot source the interdependence between generated
pixels properly. Inspired by PixelCNN [111], Dahl et al. [64]
first propose pixel recursive learning to perform pixel-by-
pixel generation, by employing two networks to capture
global contextual information and serial generation depen-
dence, respectively. In this way, the proposed method syn-
thesizes realistic hair and skin details on super-resolving
very low-resolution face images (e.g., 8	 8) and far exceeds
the previous methods on MOS testing [64] (Section 2.3.3).

Motivated by the human attention shifting mechanism
[112], the Attention-FH [113] also adopts this strategy by
resorting to a recurrent policy network for sequentially dis-
covering attended patches and performing local enhance-
ment. In this way, it is capable of adaptively personalizing
an optimal searching path for each image according to its
own characteristic, and thus fully exploits the global intra-
dependence of images.

Although these methods show better performance to
some extent, the recursive process requiring a long propaga-
tion path greatly increases the computational cost and train-
ing difficulty, especially for super-resolving HR images.

3.3.8 Pyramid Pooling

Motivated by the spatial pyramid pooling layer [114], Zhao
et al. [115] propose the pyramid pooling module to better
utilize global and local contextual information. Specifically,
for feature maps sized h	 w	 c, each feature map is
divided into M 	M bins, and goes through global average
pooling, resulting in M 	M 	 c outputs. Then a 1	 1 con-
volution is performed for compressing the outputs to a sin-
gle channel. After that, the low-dimensional feature map is
upsampled to the same size as the original feature map via
bilinear interpolation. By using different M, the module
integrates global as well as local contextual information
effectively. By incorporating this module, the proposed
EDSR-PP model [116] further improve the performance
over baselines.

3.3.9 Wavelet Transformation

As is well-known, the wavelet transformation (WT) [117],
[118] is a highly efficient representation of images by
decomposing the image signal into high-frequency sub-
bands denoting texture details and low-frequency sub-
bands containing global topological information. Bae et al.
[119] first combine WT with deep learning based SR model,
take sub-bands of interpolated LR wavelet as input and pre-
dict residuals of corresponding HR sub-bands. WT and
inverse WT are applied for decomposing the LR input and
reconstructing the HR output, respectively. Similarly, the
DWSR [120] and Wavelet-SRNet [121] also perform SR in
the wavelet domain but with more complicated structures.
In contrast to the above works processing each sub-band
independently, the MWCNN [122] adopts multi-level WT
and takes the concatenated sub-bands as the input to a

single CNN for better capturing the dependence between
them. Due to the efficient representation by wavelet trans-
formation, the models using this strategy often much reduce
the model size and computational cost, while maintain com-
petitive performance [119], [122].

3.3.10 Desubpixel

In order to speed up the inference speed, Vu et al. [123] pro-
pose to perform the time-consuming feature extraction in a
lower-dimensional space, and propose desubpixel, an inverse
of the shuffle operation of sub-pixel layer (Section 3.2.2). Spe-
cifically, the desubpixel operation splits the images spatially,
stacks them as extra channels and thus avoids loss of informa-
tion. In this way, they downsample input images by desub-
pixel at the beginning of the model, learn representations in a
lower-dimensional space, and upsample to the target size at
the end. The proposed model achieves the best scores in the
PIRM Challenge on Smartphones [81] with very high-speed
inference and good performance.

3.3.11 xUnit

In order to combine spatial feature processing and nonlin-
ear activations to learn complex features more efficiently,
Kligvasser et al. [124] propose xUnit for learning a spatial acti-
vation function. Specifically, the ReLU is regarded as deter-
mining a weight map to perform element-wise multiplication
with the input, while the xUnit directly learn the weight map
through convolution and Gaussian gating. Although the
xUnit is more computationally demanding, due to its dra-
matic effect on the performance, it allows greatly reducing the
model size while matching the performance with ReLU. In
this way, the authors reduce the model size by nearly 50 per-
cent without any performance degradation.

3.4 Learning Strategies

3.4.1 Loss Functions

In the super-resolution field, loss functions are used to mea-
sure reconstruction error and guide the model optimization.
In early times, researchers usually employ the pixel-wise L2
loss, but later discover that it cannot measure the recon-
struction quality very accurately. Therefore, a variety of loss
functions (e.g., content loss [29], adversarial loss [25]) are
adopted for better measuring the reconstruction error and
producing more realistic and higher-quality results. Nowa-
days these loss functions have been playing an important
role. In this section, we’ll take a closer look at the loss
functions used widely. The notations in this section follow
Section 2.1, except that we ignore the subscript y of the tar-
get HR image Îy and generated HR image Iy for brevity.

Pixel Loss. Pixel loss measures pixel-wise difference
between two images and mainly includes L1 loss (i.e., mean
absolute error) and L2 loss (i.e., mean square error):

Lpixel l1ðÎ; IÞ ¼ 1

hwc

X
i;j;k

jÎi;j;k � Ii;j;kj (12)

Lpixel l2ðÎ; IÞ ¼ 1

hwc

X
i;j;k

ðÎi;j;k � Ii;j;kÞ2; (13)
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where h, w and c are the height, width and number of chan-
nels of the evaluated images, respectively. In addition, there
is a variant of the pixel L1 loss, namely Charbonnier loss
[27], [125], given by:.

Lpixel ChaðÎ; IÞ ¼ 1

hwc

X
i;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðÎi;j;k � Ii;j;kÞ2 þ �2

q
; (14)

where � is a constant (e.g., 10�3) for numerical stability.
The pixel loss constrains the generated HR image Î to be

close enough to the ground truth I on the pixel values.
Comparing with L1 loss, the L2 loss penalizes larger errors
but is more tolerant to small errors, and thus often results in
too smooth results. In practice, the L1 loss shows improved
performance and convergence over L2 loss [28], [31], [126].
Since the definition of PSNR (Section 2.3.1) is highly corre-
lated with pixel-wise difference and minimizing pixel loss
directly maximize PSNR, the pixel loss gradual becomes the
most widely used loss function. However, since the pixel
loss actually doesn’t take image quality (e.g., perceptual
quality [29], textures [8]) into account, the results often lack
high-frequency details and are perceptually unsatisfying
with oversmooth textures [25], [29], [58], [74].

Content Loss. In order to evaluate perceptual quality of
images, the content loss is introduced into SR [29], [127].
Specifically, it measures the semantic differences between
images using a pre-trained image classification network.
Denoting this network as f and the extracted high-level rep-
resentations on l-th layer as fðlÞðIÞ, the content loss is indi-
cated as the euclidean distance between high-level
representations of two images, as follows:

LcontentðÎ; I;f; lÞ ¼ 1

hlwlcl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j;k

ðfðlÞ
i;j;kðÎÞ � f

ðlÞ
i;j;kðIÞÞ2

s
;

(15)
where hl, wl and cl are the height, width and number of
channels of the representations on layer l, respectively.

Essentially the content loss transfers the learned knowl-
edge of hierarchical image features from the classification
network f to the SR network. In contrast to the pixel loss,
the content loss encourages the output image Î to be percep-
tually similar to the target image I instead of forcing them to
match pixels exactly. Thus it produces visually more per-
ceptible results and is also widely used in this field [8], [25],
[29], [30], [46], [103], where the VGG [128] and ResNet [96]
are the most commonly used pre-trained CNNs. Texture
Loss. On account that the reconstructed image should have
the same style (e.g., colors, textures, contrast) with the target
image, and motivated by the style representation by Gatys
et al. [129], [130], the texture loss (a.k.a style reconstruction
loss) is introduced into SR. Following [129], [130], the image
texture is regarded as the correlations between different fea-
ture channels and defined as the Gram matrix GðlÞ 2 Rcl	cl ,
where G

ðlÞ
ij is the inner product between the vectorized fea-

ture maps i and j on layer l:

G
ðlÞ
ij ðIÞ ¼ vecðfðlÞ

i ðIÞÞ � vecðfðlÞ
j ðIÞÞ; (16)

where vecð�Þ denotes the vectorization operation, and f
ðlÞ
i ðIÞ

denotes the i-th channel of the feature maps on layer l of
image I. Then the texture loss is given by:

LtextureðÎ; I;f; lÞ ¼ 1

c2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

ðGðlÞ
i;jðÎÞ �G

ðlÞ
i;jðIÞÞ2

s
: (17)

By employing texture loss, the EnhanceNet [8] proposed
by Sajjadi et al. creates much more realistic textures and pro-
duces visually more satisfactory results. Despite this, deter-
mining the patch size to match textures is still empirical.
Too small patches lead to artifacts in textured regions, while
too large patches lead to artifacts throughout the entire
image because texture statistics are averaged over regions
of varying textures.

Adversarial Loss. In recent years, due to the powerful
learning ability, the GANs [24] receive more and more
attention and are introduced to various vision tasks. To be
concrete, the GAN consists of a generator performing gener-
ation (e.g., text generation, image transformation), and a
discriminator which takes the generated results and instan-
ces sampled from the target distribution as input and dis-
criminates whether each input comes from the target
distribution. During training, two steps are alternately per-
formed: (a) fix the generator and train the discriminator to
better discriminate, (b) fix the discriminator and train the
generator to fool the discriminator. Through adequate itera-
tive adversarial training, the resulting generator can pro-
duce outputs consistent with the distribution of real data,
while the discriminator can’t distinguish between the gener-
ated data and real data.

In terms of super-resolution, it is straightforward to
adopt adversarial learning, in which case we only need to
treat the SR model as a generator, and define an extra dis-
criminator to judge whether the input image is generated or
not. Therefore, Ledig et al. [25] first propose SRGAN using
adversarial loss based on cross entropy, as follows:

Lgan ce gðÎ;DÞ ¼ �logDðÎÞ (18)

Lgan ce dðÎ; Is;DÞ ¼ �logDðIsÞ � log ð1�DðÎÞÞ; (19)

where Lgan ce g and Lgan ce d denote the adversarial loss of the
generator (i.e., the SR model) and the discriminator D (i.e., a
binary classifier), respectively, and Is represents images ran-
domly sampled from the ground truths. Besides, the Enhan-
cenet [8] also adopts the similar adversarial loss.

Besides, Wang et al. [32] and Yuan et al. [131] use adver-
sarial loss based on least square error for more stable train-
ing process and higher quality results [132], given by:

Lgan ls gðÎ;DÞ ¼ ðDðÎÞ � 1Þ2 (20)

Lgan ls dðÎ; Is;DÞ ¼ ðDðÎÞÞ2 þ ðDðIsÞ � 1Þ2: (21)

In contrast to the above works focusing on the specific
forms of adversarial loss, Park et al. [133] argue that the
pixel-level discriminator causes generating meaningless
high-frequency noise, and attach another feature-level dis-
criminator to operate on high-level representations extrac-
ted by a pre-trained CNN which captures more meaningful
attributes of real HR images. Xu et al. [63] incorporate a
multi-class GAN consisting of a generator and multiple
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class-specific discriminators. And the ESRGAN [103]
employs relativistic GAN [134] to predict the probability
that real images are relatively more realistic than fake ones,
instead of the probability that input images are real or fake,
and thus guide recovering more detailed textures.

Extensive MOS tests (Section 2.3.3) show that even
though the SR models trained with adversarial loss and con-
tent loss achieve lower PSNR compared to those trained
with pixel loss, they bring significant gains in perceptual
quality [8], [25]. As a matter of fact, the discriminator
extracts some difficult-to-learn latent patterns of real HR
images, and pushes the generated HR images to conform,
thus helps to generate more realistic images. However, cur-
rently the training process of GAN is still difficult and
unstable. Although there have been some studies on how to
stabilize the GAN training [135], [136], [137], how to ensure
that the GANs integrated into SR models are trained cor-
rectly and play an active role remains a problem.

Cycle Consistency Loss. Motivated by the CycleGAN pro-
posed by Zhu et al. [138], Yuan et al. [131] present a cycle-in-
cycle approach for super-resolution. Concretely speaking,
they not only super-resolve the LR image I to the HR image
Î but also downsample Î back to another LR image I 0

through another CNN. The regenerated I 0 is required to be
identical to the input I, thus the cycle consistency loss is
introduced for constraining their pixel-level consistency:

LcycleðI 0; IÞ ¼ 1

hwc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j;k

ðI 0i;j;k � Ii;j;kÞ2
s

: (22)

Total Variation Loss. In order to suppress noise in gener-
ated images, the total variation (TV) loss [139] is introduced
into SR by Aly et al. [140]. It is defined as the sum of the
absolute differences between neighboring pixels and meas-
ures how much noise is in the images, as follows:

LTVðÎÞ ¼ 1

hwc

X
i;j;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðÎi;jþ1;k � Îi;j;kÞ2 þ ðÎiþ1;j;k � Îi;j;kÞ2

q
:

(23)
Lai et al. [25] and Yuan et al. [131] also adopt the TV loss for
imposing spatial smoothness.

Prior-Based Loss. In addition to the above loss functions,
external prior knowledge is also introduced to constrain the
generation. Specifically, Bulat et al. [30] focus on face image
SR and introduce a face alignment network (FAN) to con-
strain the consistency of facial landmarks. The FAN is pre-
trained and integrated for providing face alignment priors,
and then trained jointly with the SR. In this way, the pro-
posed Super-FAN improves performance both on LR face
alignment and face image SR.

As a matter of fact, the content loss and the texture loss,
both of which introduce a classification network, essentially
provide prior knowledge of hierarchical image features for
SR. By introducing more prior knowledge, the SR perfor-
mance can be further improved.

In this section, we introduce various loss functions for
SR. In practice, researchers often combine multiple loss
functions by weighted average [8], [25], [27], [46], [141] for
constraining different aspects of the generation process,
especially for distortion-perception tradeoff [25], [103],

[142], [143], [144]. However, the weights of different loss
functions require a lot of empirical exploration, and how to
combine reasonably and effectively remains a problem.

3.4.2 Batch Normalization

In order to accelerate and stabilize training of deep CNNs,
Sergey et al. [145] propose batch normalization (BN) to
reduce internal covariate shift of networks. Specifically,
they perform normalization for each mini-batch and train
two extra transformation parameters for each channel to
preserve the representation ability. Since the BN calibrates
the intermediate feature distribution and mitigates vanish-
ing gradients, it allows using higher learning rates and
being less careful about initialization. Thus this technique is
widely used by SR models [25], [39], [55], [56], [122], [146].

However, Lim et al. [31] argue that the BN loses the scale
information of each image and gets rid of range flexibility
from networks. So they remove BN and use the saved mem-
ory cost (up to 40 percent) to develop a much larger model,
and thus increase the performance substantially. Some other
models [32], [103], [147] also adopt this experience and
achieve performance improvements.

3.4.3 Curriculum Learning

Curriculum learning [148] refers to starting from an easier task
and gradually increasing the difficulty. Since super-resolution
is an ill-posed problem and always suffers adverse conditions
such as large scaling factors, noise and blurring, the curricu-
lum training is incorporated for reducing learning difficulty.

In order to reduce the difficulty of SRwith large scaling fac-
tors, Wang et al. [32], Bei et al. [149] and Ahn et al. [150] pro-
pose ProSR, ADRSR and progressive CARN, respectively,
which are progressive not only on architectures (Section 3.1.3)
but also on training procedure. The training starts with the
2	 upsampling, and after finishing training, the portions with
4	 or larger scaling factors are gradually mounted and
blended with the previous portions. Specifically, the ProSR
blends by linearly combining the output of this level and the
upsampled output of previous levels following [151], the
ADRSR concatenates them and attaches another convolu-
tional layer, while the progressiveCARN replace the previous
reconstruction block with the one that produces the image in
double resolution.

In addition, Park et al. [116] divide the 8	 SR problem to
three sub-problems (i.e., 1	 to 2	, 2	 to 4	, 4	 to 8	) and
train independent networks for each problem. Then two
of them are concatenated and fine-tuned, and then with the
third one. Besides, they also decompose the 4	 SR under
difficult conditions into 1	 to 2	, 2	 to 4	 and denoising
or deblurring sub-problems. In contrast, the SRFBN [86]
uses this strategy for SR under adverse conditions, i.e., start-
ing from easy degradation and gradually increasing degra-
dation complexity.

Compared to common training procedure, the curricu-
lum learning greatly reduces the training difficulty and
shortens the total training time, especially for large factors.

3.4.4 Multi-Supervision

Multi-supervision refers to adding multiple supervision sig-
nals within the model for enhancing the gradient
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propagation and avoiding vanishing and exploding gra-
dients. In order to prevent the gradient problems intro-
duced by recursive learning (Section 3.3.2), the DRCN [82]
incorporates multi-supervision with recursive units. Specifi-
cally, they feed each output of recursive units into a recon-
struction module to generate an HR image, and build the
final prediction by incorporating all the intermediate recon-
structions. Similar strategies are also taken by MemNet [55]
and DSRN [85], which are also based on recursive learning.

Besides, since the LapSRN [27], [65] under the progres-
sive upsampling framework (Section 3.1.3) generates inter-
mediate results of different scales during propagation, it is
straightforward to adopt multi-supervision strategy. Specif-
ically, the intermediate results are forced to be the same as
the intermediate images downsampled from the ground
truth HR images.

In practice, this multi-supervision technique is often
implemented by adding some terms in the loss function,
and in this way, the supervision signals are back-propa-
gated more effectively, and thus reduce the training diffi-
culty and enhance the model training.

3.5 Other Improvements

In addition to the network design and learning strategies,
there are other techniques further improving SR models.

3.5.1 Context-Wise Network Fusion

Context-wise network fusion (CNF) [100] refers to a stack-
ing technique fusing predictions from multiple SR networks
(i.e., a special case of multi-path learning in Section 3.3.3).
To be concrete, they train individual SR models with differ-
ent architectures separately, feed the prediction of each
model into individual convolutional layers, and finally sum
the outputs up to be the final prediction result. Within this
CNF framework, the final model constructed by three light-
weight SRCNNs [22], [23] achieves comparable perfor-
mance with state-of-the-art models with acceptable
efficiency [100].

3.5.2 Data Augmentation

Data augmentation is one of the most widely used techni-
ques for boosting performance with deep learning. For
image super-resolution, some useful augmentation options
include cropping, flipping, scaling, rotation, color jittering,
etc. [27], [31], [44], [56], [85], [98]. In addition, Bei et al. [149]
also randomly shuffle RGB channels, which not only aug-
ments data, but also alleviates color bias caused by the data-
set with color unbalance.

3.5.3 Multi-Task Learning

Multi-task learning [152] refers to improving generalization
ability by leveraging domain-specific information contained
in training signals of related tasks, such as object detection
and semantic segmentation [153], head pose estimation and
facial attribute inference [154]. In the SR field, Wang et al.
[46] incorporate a semantic segmentation network for pro-
viding semantic knowledge and generating semantic-spe-
cific details. Specifically, they propose spatial feature
transformation to take semantic maps as input and predict

spatial-wise parameters of affine transformation performed
on the intermediate feature maps.

The proposed SFT-GAN thus generates more realistic
and visually pleasing textures on images with rich semantic
regions. Besides, considering that directly super-resolving
noisy images may cause noise amplification, the DNSR
[149] proposes to train a denoising network and an SR net-
work separately, then concatenates them and fine-tunes
together. Similarly, the cycle-in-cycle GAN (CinCGAN)
[131] combines a cycle-in-cycle denoising framework and a
cycle-in-cycle SR model to joint perform noise reduction
and super-resolution.

Since different tasks tend to focus on different aspects of
the data, combining related tasks with SR models usually
improves the SR performance by providing extra informa-
tion and knowledge.

3.5.4 Network Interpolation

PSNR-based models produce images closer to ground
truths but introduce blurring problems, while GAN-based
models bring better perceptual quality but introduce
unpleasant artifacts (e.g., meaningless noise making images
more “realistic”). In order to better balance the distortion
and perception, Wang et al. [103], [155] propose a network
interpolation strategy. Specifically, they train a PSNR-based
model and train a GAN-based model by fine-tuning, then
interpolate all the corresponding parameters of both net-
works to derive intermediate models. By tuning the interpo-
lation weights without retraining networks, they produce
meaningful results with much less artifacts.

3.5.5 Self-Ensemble

Self-ensemble, a.k.a. enhanced prediction [44], is an infer-
ence technique commonly used by SR models. Specifically,
rotations with different angles (0�, 90�, 180�, 270�) and hori-
zontal flipping are applied on the LR images to get a set of 8
images. Then these images are fed into the SR model and
the corresponding inverse transformation is applied to the
reconstructed HR images to get the outputs. The final pre-
diction result is conducted by the mean [31], [32], [44], [70],
[78], [93] or the median [83] of these outputs. In this way,
these models further improve performance.

3.6 State-of-the-Art Super-Resolution Models

In recent years, image super-resolution models based on
deep learning have received more and more attention and
achieved state-of-the-art performance. In previous sections,
we decompose SR models into specific components, includ-
ing model frameworks (Section 3.1), upsampling methods
(Section 3.2), network design (Section 3.3) and learning
strategies (Section 3.4), analyze these components hierar-
chically and identify their advantages and limitations. As a
matter of fact, most of the state-of-the-art SR models today
can basically be attributed to a combination of multiple
strategies we summarize above. For example, the biggest
contribution of the RCAN [70] comes from the channel
attention mechanism (Section 3.3.5), and it also employs
other strategies like sub-pixel upsampling (Section 3.2.2),
residual learning (Section 3.3.1), pixel L1 loss (Section 3.4.1),
and self-ensemble (Section 3.5.5). In similar manners, we
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summarize some representative models and their key strat-
egies, as Table 2 shows.

In addition to SR accuracy, the efficiency is another very
important aspect and different strategies have more or less
impact on efficiency. So in the previous sections, we not
only analyze the accuracy of the presented strategies, but
also indicate the concrete impacts on efficiency for the ones
with a greater impact on efficiency, such as the post-upsam-
pling (Section 3.1.2), recursive learning (Section 3.3.2), dense
connections (Section 3.3.4), xUnit (Section 3.3.11). And we
also benchmark some representative SR models on the SR
accuracy (i.e., PSNR), model size (i.e., number of parame-
ters) and computation cost (i.e., number of Multi-Adds), as
shown in Fig. 8. The accuracy is measured by the mean of
the PSNR on 4 benchmark datasets (i.e., Set5 [48], Set14 [49],
B100 [40] and Urban100 [50]). And the model size and
computational cost are calculated with PyTorch-OpCounter
[157], where the output resolution is 720p (i.e., 1080	 720).
All statistics are derived from the original papers or calcu-
lated on official models, with a scaling factor of 2. For better
viewing and comparison, we also provide an interactive
online version1.

4 UNSUPERVISED SUPER-RESOLUTION

Existing super-resolution works mostly focus on supervised
learning, i.e., learning with matched LR-HR image pairs.
However, since it is difficult to collect images of the same
scene but with different resolutions, the LR images in SR
datasets are often obtained by performing predefined deg-
radation on HR images. Thus the trained SR models actually

learn a reverse process of the predefined degradation. In
order to learn the real-world LR-HRmapping without intro-
ducing manual degradation priors, researchers pay more
and more attention to unsupervised SR, in which case only
unpaired LR-HR images are provided for training, so that
the resulting models are more likely to cope with the SR
problems in real-world scenarios. Next we’ll briefly intro-
duce several existing unsupervised SR models with deep
learning, and more methods are yet to be explored.

4.1 Zero-Shot Super-Resolution

Considering that the internal image statistics inside a single
image have provided sufficient information for SR, Shocher
et al. [83] propose zero-shot super-resolution (ZSSR) to cope
with unsupervised SR by training image-specific SR net-
works at test time rather than training a generic model on
large external datasets. Specifically, they estimate the degra-
dation kernel from a single image using [158] and use this
kernel to build a small dataset by performing degradation
with different scaling factors and augmentation on this
image. Then a small CNN for SR is trained on this dataset
and used for the final prediction.

In this way, the ZSSR leverages on the cross-scale inter-
nal recurrence inside every image, and thus outperforms
previous approaches by a large margin (1 dB for estimated
kernels and 2 dB for known kernels) on images under non-
ideal conditions (i.e., images obtained by non-bicubic degra-
dation and suffered effects like blurring, noise, compression
artifacts), which is closer to the real-world scenes, while
give competitive results under ideal conditions (i.e., images
obtained by bicubic degradation). However, since it needs
to train different networks for different images during test-
ing, the inference time is much longer than others.

TABLE 2
Super-Resolution Methodology Employed by Some Representative Models

Method Publication Fw. Up. Rec. Res. Dense Att. LL1 LL2 Keywords

SRCNN [22] 2014, ECCV Pre. Bicubic @
DRCN [82] 2016, CVPR Pre. Bicubic @ @ @ Recursive layers
FSRCNN [43] 2016, ECCV Post. Deconv @ Lightweight design
ESPCN [156] 2017, CVPR Pre. Sub-Pixel @ Sub-pixel
LapSRN [27] 2017, CVPR Pro. Bicubic @ @ Lpixel Cha

DRRN [56] 2017, CVPR Pre. Bicubic @ @ @ Recursive blocks
SRResNet [25] 2017, CVPR Post. Sub-Pixel @ @ LCon., LTV

SRGAN [25] 2017, CVPR Post. Sub-Pixel @ LCon., LGAN

EDSR [31] 2017, CVPRW Post. Sub-Pixel @ @ Compact and large-size
design

EnhanceNet [8] 2017, ICCV Pre. Bicubic @ LCon., LGAN, Ltexture

MemNet [55] 2017, ICCV Pre. Bicubic @ @ @ @ Memory block
SRDenseNet [79] 2017, ICCV Post. Deconv @ @ @ Dense connections
DBPN [57] 2018, CVPR Iter. Deconv @ @ @ Back-projection
DSRN [85] 2018, CVPR Pre. Deconv @ @ @ Dual state
RDN [93] 2018, CVPR Post. Sub-Pixel @ @ @ Residual dense block
CARN [28] 2018, ECCV Post. Sub-Pixel @ @ @ @ Cascading
MSRN [99] 2018, ECCV Post. Sub-Pixel @ @ Multi-path
RCAN [70] 2018, ECCV Post. Sub-Pixel @ @ @ Channel attention
ESRGAN [103] 2018, ECCVW Post. Sub-Pixel @ @ @ LCon., LGAN

RNAN [106] 2019, ICLR Post. Sub-Pixel @ @ @ Non-local attention
Meta-RDN [95] 2019, CVPR Post. Meta Upscale @ @ @ Magnification-arbitrary
SAN [105] 2019, CVPR Post. Sub-Pixel @ @ @ Second-order attention
SRFBN [86] 2019, CVPR Post. Deconv @ @ @ @ Feedback mechanism

The “Fw.”, “Up.”, “Rec.”, “Res.”, “Dense.”, “Att.” represent SR frameworks, upsampling methods, recursive learning, residual learning, dense connections,
attention mechanism, respectively.

1. https://github.com/ptkin/Awesome-Super-Resolution
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4.2 Weakly-Supervised Super-Resolution

To cope with super-resolution without introducing prede-
fined degradation, researchers attempt to learn SR models
with weakly-supervised learning, i.e., using unpaired LR-
HR images. Among them, some researchers first learn the
HR-to-LR degradation and use it to construct datasets for
training the SR model, while others design cycle-in-cycle
networks to learn the LR-to-HR and HR-to-LR mappings
simultaneously. Next we’ll detail these models.

Learned Degradation. Since the predefined degradation is
suboptimal, learning the degradation from unpaired LR-HR
datasets is a feasible direction. Bulat et al. [159] propose a two-
stage process which first trains anHR-to-LR GAN to learn deg-
radation using unpaired LR-HR images and then trains an LR-
to-HRGAN for SR using paired LR-HR images conducted base
on the first GAN. Specifically, for the HR-to-LR GAN, HR
images are fed into the generator to produce LR outputs, which
are required to match not only the LR images obtained by
downscaling the HR images (by average pooling) but also the
distribution of real LR images. After finishing training, the gen-
erator is used as a degradationmodel to generate LR-HR image
pairs. Then for the LR-to-HR GAN, the generator (i.e., the SR
model) takes the generated LR images as input and predicts
HR outputs, which are required to match not only the corre-
spondingHR images but also thedistribution of theHR images.

By applying this two-stage process, the proposed unsu-
pervised model effectively increases the quality of super-
resolving real-world LR images and obtains large improve-
ment over previous state-of-the-art works.

Cycle-in-Cycle Super-Resolution. Another approach for
unsupervised super-resolution is to treat the LR space and
the HR space as two domains, and use a cycle-in-cycle stru-
cture to learn the mappings between each other. In this
case, the training objectives include pushing the mapped
results to match the target domain distribution and making
the images recoverable through round-trip mappings.

Motivated by CycleGAN [138], Yuan et al. [131] propose a
cycle-in-cycle SR network (CinCGAN) composed of 4 genera-
tors and 2 discriminators, making up two CycleGANs for
noisy LR Ð clean LR and clean LR Ð clean HR mappings,
respectively. Specifically, in the first CycleGAN, the noisy LR
image is fed into a generator, and the output is required to be
consistent with the distribution of real clean LR images. Then
it’s fed into another generator and required to recover the
original input. Several loss functions (e.g., adversarial loss,
cycle consistency loss, identity loss) are employed for guaran-
teeing the cycle consistency, distribution consistency, and
mapping validity. The other CycleGAN is similarly designed,
except that themapping domains are different.

Because of avoiding the predefined degradation, the unsu-
pervised CinCGAN not only achieves comparable perfor-
mance to supervised methods, but also is applicable to
various cases even under very harsh conditions. However,
due to the ill-posed essence of SR problem and the compli-
cated architecture of CinCGAN, some advanced strategies are
needed for reducing the training difficulty and instability.

4.3 Deep Image Prior

Considering that the CNN structure is sufficient to capture a
great deal of low-level image statistics prior for inverse
problems, Ulyanov et al. [160] employ a randomly-initial-
ized CNN as handcrafted prior to perform SR. Specifically,
they define a generator network which takes a random vec-
tor z as input and tries to generate the target HR image Iy.
The goal is to train the network to find an Îy that the down-
sampled Îy is identical to the LR image Ix. Since the network
is randomly initialized and never trained, the only prior is
the CNN structure itself. Although the performance of this
method is still worse than the supervised methods (2 dB), it
outperforms traditional bicubic upsampling considerably (1
dB). Besides, it shows the rationality of the CNN architec-
tures itself, and prompts us to improve SR by combining

Fig. 8. Super-resolution benchmarking. The x-axis and the y-axis denote the Multi-Adds and PSNR, respectively, and the circle size represents the
number of parameters.
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the deep learning methodology with handcrafted priors
such as CNN structures or self-similarity.

5 DOMAIN-SPECIFIC APPLICATIONS

5.1 Depth Map Super-Resolution

Depth maps record the depth (i.e., distance) between the
viewpoint and objects in the scene, and plays important
roles in many tasks like pose estimation [161], [162] and
semantic segmentation [163], [164]. However, due to eco-
nomic and production constraints, the depth maps pro-
duced by depth sensors are often low-resolution and suffer
degradation effects such as noise, quantization and missing
values. Thus super-resolution is introduced for increasing
the spatial resolution of depth maps.

Nowadays one of the most popular practices for depth
map SR is to use another economical RGB camera to obtain
HR images of the same scenes for guiding super-resolving
the LR depth maps. Specifically, Song et al. [165] exploit the
depth field statistics and local correlations between depth
maps and RGB images to constrain the global statistics and
local structures. Hui et al. [166] utilize two CNNs to simulta-
neously upsample LR depth maps and downsample HR
RGB images, then use RGB features as the guidance for
upsampling depth maps with the same resolution. And
Haefner et al. [167] further exploit the color information and
guide SR by resorting to the shape-from-shading technique.
In contrast, Riegler et al. [168] combine CNNs with an
energy minimization model in the form of a powerful varia-
tional model to recover HR depth maps without other refer-
ence images.

5.2 Face Image Super-Resolution

Face image super-resolution, a.k.a. face hallucination (FH),
can often help other face-related tasks [72], [73], [169]. Com-
pared to generic images, face images have more face-related
structured information, so incorporating facial prior knowl-
edge (e.g., landmarks, parsing maps, identities) into FH is a
very popular and promising approach.

One of the most straightforward way is to constrain the
generated images to have the identical face-related attrib-
utes to ground truth. Specifically, the CBN [170] utilizes the
facial prior by alternately optimizing FH and dense corre-
spondence field estimation. The Super-FAN [30] and
MTUN [171] both introduce FAN to guarantee the consis-
tency of facial landmarks by end-to-end multi-task learning.
And the FSRNet [73] uses not only facial landmark heat-
maps but also face parsing maps as prior constraints. The
SICNN [72], which aims at recovering the real identity,
adopts a super-identity loss function and a domain-inte-
grated training approach to stable the joint training.

Besides explicitly using facial prior, the implicit methods
are also widely studied. The TDN [172] incorporates spatial
transformer networks [173] for automatic spatial transfor-
mations and thus solves the face unalignment problem.
Based on TDN, the TDAE [174] adopts a decoder-encoder-
decoder framework, where the first decoder learns to
upsample and denoise, the encoder projects it back to
aligned and noise-free LR faces, and the last decoder gener-
ates hallucinated HR images. In contrast, the LCGE [175]
employs component-specific CNNs to perform SR on five

facial components, uses k-NN search on an HR facial com-
ponent dataset to find corresponding patches, synthesizes
finer-grained components and finally fuses them to FH
results. Similarly, Yang et al. [176] decompose deblocked
face images into facial components and background, use the
component landmarks to retrieve adequate HR exemplars
in external datasets, perform generic SR on the background,
and finally fuse them to complete HR faces.

In addition, researchers also improve FH from other per-
spectives. Motivated by the human attention shifting mech-
anism [112], the Attention-FH [113] resorts to a recurrent
policy network for sequentially discovering attended face
patches and performing local enhancement, and thus fully
exploits the global interdependency of face images. The UR-
DGN [177] adopts a network similar to SRGAN [25] with
adversarial learning. And Xu et al. [63] propose a multi-class
GAN-based FH model composed of a generic generator and
class-specific discriminators. Both Lee et al. [178] and Yu
et al. [179] utilize additional facial attribute information to
perform FH with the specified attributes, based on the con-
ditional GAN [180].

5.3 Hyperspectral Image Super-Resolution

Compared to panchromatic images (PANs, i.e., RGB
images with 3 bands), hyperspectral images (HSIs) contain-
ing hundreds of bands provide abundant spectral features
and help various vision tasks [181], [182], [183]. However,
due to hardware limitations, collecting high-quality HSIs is
much more difficult than PANs and the resolution is also
lower. Thus super-resolution is introduced into this field,
and researchers tend to combine HR PANs and LR HSIs to
predict HR HSIs. Among them, Masi et al. [184] employ
SRCNN [22] and incorporate several maps of nonlinear
radiometric indices for boosting performance. Qu et al.
[185] jointly train two encoder-decoder networks to per-
form SR on PANs and HSIs, respectively, and transfer the
SR knowledge from PAN to HSI by sharing the decoder
and applying constraints such as angle similarity loss and
reconstruction loss. Recently, Fu et al. [186] evaluate the
effect of camera spectral response (CSR) functions for HSI
SR and propose a CSR optimization layer which can auto-
matically select or design the optimal CSR, and outperform
the state-of-the-arts.

5.4 Real-World Image Super-Resolution

Generally, the LR images for training SR models are gener-
ated by downsampling RGB images manually (e.g., by bicu-
bic downsampling). However, real-world cameras actually
capture 12-bit or 14-bit RAW images, and performs a series
of operations (e.g., demosaicing, denoising and compres-
sion) through camera ISPs (image signal processors) and
finally produce 8-bit RGB images. Through this process, the
RGB images have lost lots of original signals and are very
different from the original images taken by the camera.
Therefore, it is suboptimal to directly use the manually
downsampled RGB image for SR.

To solve this problem, researchers study how to use real-
world images for SR. Among them, Chen et al. [187] analyze
the relationships between image resolution (R) and field-of-
view (V) in imaging systems (namely R-V degradation),
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propose data acquisition strategies to conduct a real-world
dataset City100, and experimentally demonstrate the supe-
riority of the proposed image synthesis model. Zhang et al.
[188] build another real-world image dataset SR-RAW (i.e.,
paired HR RAW images and LR RGB images) through opti-
cal zoom of cameras, and propose contextual bilateral loss
to solve the misalignment problem. In contrast, Xu et al.
[189] propose a pipeline to generate realistic training data
by simulating the imaging process and develop a dual CNN
to exploit the originally captured radiance information in
RAW images. They also propose to learn a spatially-variant
color transformation for effective color corrections and gen-
eralization to other sensors.

5.5 Video Super-Resolution

For video super-resolution, multiple frames provide much
more scene information, and there are not only intra-frame
spatial dependency but also inter-frame temporal depen-
dency (e.g., motions, brightness and color changes). Thus
the existing works mainly focus on making better use of
spatio-temporal dependency, including explicit motion
compensation (e.g., optical flow-based, learning-based) and
recurrent methods, etc.

Among the optical flow-based methods, Liao et al. [190]
employ optical flow methods to generate HR candidates
and ensemble them by CNNs. VSRnet [191] and CVSRnet
[192] deal with motion compensation by Druleas algorithm
[193], and uses CNNs to take successive frames as input
and predict HR frames. While Liu et al. [194], [195] perform
rectified optical flow alignment, and propose a temporal
adaptive net to generate HR frames in various temporal
scales and aggregate them adaptively.

Besides, others also try to directly learn the motion com-
pensation. The VESPCN [156] utilizes a trainable spatial
transformer [173] to learn motion compensation based on
adjacent frames, and enters multiple frames into a spatio-
temporal ESPCN [84] for end-to-end prediction. And Tao
et al. [196] root from accurate LR imaging model and pro-
pose a sub-pixel-like module to simultaneously achieve
motion compensation and super-resolution, and thus fuse
the aligned frames more effectively.

Another trend is to use recurrent methods to capture the
spatial-temporal dependency without explicit motion com-
pensation. Specifically, the BRCN [197], [198] employs a bidi-
rectional framework, and uses CNN, RNN, and conditional
CNN to model the spatial, temporal and spatial-temporal
dependency, respectively. Similarly, STCN [199] uses a deep
CNN and a bidirectional LSTM [200] to extract spatial and
temporal information. And FRVSR [201] uses previously
inferred HR estimates to reconstruct the subsequent HR
frames by two deep CNNs in a recurrent manner. Recently
the FSTRN [202] employs two much smaller 3D convolution
filters to replace the original large filter, and thus enhances the
performance through deeper CNNs while maintaining low
computational cost. While the RBPN [87] extracts spatial and
temporal contexts by a recurrent encoder-decoder, and com-
bines them with an iterative refinement framework based on
the back-projectionmechanism (Section 3.1.4).

In addition, the FAST [203] exploits compact descriptions
of the structure and pixel correlations extracted by

compression algorithms, transfers the SR results from one
frame to adjacent frames, and much accelerates the state-of-
the-art SR algorithms with little performance loss. And Jo
et al. [204] generate dynamic upsampling filters and the HR
residual image based on the local spatio-temporal neighbor-
hoods of each pixel, and also avoid explicit motion
compensation.

5.6 Other Applications

Deep learning based super-resolution is also adopted to
other domain-specific applications and shows great perfor-
mance. Specifically, the Perceptual GAN [205] addresses the
small object detection problem by super-resolving represen-
tations of small objects to have similar characteristics as
large objects and be more discriminative for detection. Simi-
larly, the FSR-GAN [206] super-resolves small-size images
in the feature space instead of the pixel space, and thus
transforms the raw poor features to highly discriminative
ones, which greatly benefits image retrieval. Besides, Jeon
et al. [207] utilize a parallax prior in stereo images to recon-
struct HR images with sub-pixel accuracy in registration.
Wang et al. [208] propose a parallax-attention model to
tackle the stereo image super-resolution problem. Li et al.
[209] incorporate the 3D geometric information and super-
resolve 3D object texture maps. And Zhang et al. [210] sepa-
rate view images in one light field into groups, learn inher-
ent mapping for every group and finally combine the
residuals in every group to reconstruct higher-resolution
light fields. All in all, super-resolution technology can play
an important role in all kinds of applications, especially
when we can deal with large objects well but cannot handle
small objects.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have given an extensive survey on recent
advances in image super-resolution with deep learning. We
mainly discussed the improvement of supervised and unsu-
pervised SR, and also introduced some domain-specific
applications. Despite great success, there are still many
unsolved problems. Thus in this section, we will point out
these problems explicitly and introduce some promising
trends for future evolution. We hope that this survey not
only provides a better understanding of image SR for
researchers but also facilitates future research activities and
application developments in this field.

6.1 Network Design

Good network design not only determines a hypothesis
space with great performance upper bound, but also helps
efficiently learn representations without excessive spatial
and computational redundancy. Below we will introduce
some promising directions for network improvements.

Combining Local and Global Information. Large receptive
field provides more contextual information and helps gen-
erate more realistic results. Thus it is promising to combine
local and global information for providing contextual infor-
mation of different scales for image SR.

Combining Low- and High-Level Information. Shallow layers
in CNNs tend to extract low-level features like colors and
edges, while deeper layers learn higher-level representations
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like object identities. Thus combining low-level details with
high-level semantics can be of great help forHR reconstruction.

Context-Specific Attention. In different contexts, people
tend to care about different aspects of the images. For exam-
ple, for the grass area people may be more concerned with
local colors and textures, while in the animal body area peo-
ple may care more about the species and corresponding
hair details. Therefore, incorporating attention mechanism
to enhance the attention to key features facilitates the gener-
ation of realistic details.

More Efficient Architectures. Existing SR modes tend to
pursue ultimate performance, while ignoring the model
size and inference speed. For example, the EDSR [31] takes
20s per image for 4	 SR on DIV2K [42] with a Titan GTX
GPU [80], and DBPN [57] takes 35s for 8	 SR [211]. Such
long prediction time is unacceptable in practical applica-
tions, thus more efficient architectures are imperative. How
to reduce model sizes and speed up prediction while main-
taining performance remains a problem.

Upsampling Methods. Existing upsampling methods
(Section 3.2) have more or less disadvantages: interpolation
methods result in expensive computation and cannot be
end-to-end learned, the transposed convolution produces
checkerboard artifacts, the sub-pixel layer brings uneven
distribution of receptive fields, and the meta upscale mod-
ule may cause instability or inefficiency and have further
room for improvement. How to perform effective and effi-
cient upsampling still needs to be studied, especially with
high scaling factors.

Recently, the neural architecture search (NAS) technique
for deep learning has become more and more popular,
greatly improving the performance or efficiency with little
artificial intervention [212], [213], [214]. For the SR field,
combining the exploration of the above directions with
NAS is of great potential.

6.2 Learning Strategies

Besides good hypothesis spaces, robust learning strategies
are also needed for achieving satisfactory results. Next we’ll
introduce some promising directions of learning strategies.

Loss Functions. Existing loss functions can be regarded as
establishing constraints among LR/HR/SR images, and
guide optimization based on whether these constraints are
met. In practice, these loss functions are often weighted
combined and the best loss function for SR is still unclear.
Therefore, one of the most promising directions is to explore
the potential correlations between these images and seek
more accurate loss functions.

Normalization. Although BN is widely used in vision
tasks, which greatly speeds up training and improves per-
formance, it is proven to be sub-optimal for super-resolu-
tion [31], [32], [147]. Thus other effective normalization
techniques for SR are needed to be studied.

6.3 Evaluation Metrics

Evaluation metrics are one of the most fundamental compo-
nents for machine learning. If the performance cannot be
measured accurately, researchers will have great difficulty
verifying improvements. Metrics for super-resolution face
such challenges and need more exploration.

More Accurate Metrics. Nowadays the PSNR and SSIM
have been the most widely used metrics for SR. However,
the PSNR tends to result in excessive smoothness and the
results can vary wildly between almost indistinguishable
images. The SSIM [58] performs evaluation in terms of
brightness, contrast and structure, but still cannot measure
perceptual quality accurately [8], [25]. Besides, the MOS is
the closest to human visual response, but needs to take a lot
of efforts and is non-reproducible. Although researchers
have proposed various metrics (Section 2.3), but currently
there is no unified and admitted evaluation metrics for SR
quality. Thus more accurate metrics for evaluating recon-
struction quality are urgently needed.

Blind IQA Methods. Today most metrics used for SR are
all-reference methods, i.e., assuming that we have paired
LR-HR images with perfect quality. But since it’s difficult to
obtain such datasets, the commonly used datasets for evalu-
ation are often conducted by manual degradation. In this
case, the task we perform evaluation on is actually the
inverse process of the predefined degradation. Therefore,
developing blind IQA methods also has great demands.

6.4 Unsupervised Super-Resolution

As mentioned in Section 4, it is often difficult to collect
images with different resolutions of the same scene, so bicu-
bic interpolation is widely used for constructing SR data-
sets. However, the SR models trained on these datasets may
only learn the inverse process of the predefined degrada-
tion. Therefore, how to perform unsupervised super-resolu-
tion (i.e., trained on datasets without paired LR-HR images)
is a promising direction for future development.

6.5 Towards Real-World Scenarios

Image super-resolution is greatly limited in real-world sce-
narios, such as suffering unknown degradation, missing
paired LR-HR images. Below we’ll introduce some direc-
tions towards real-world scenarios.

Dealing with Various Degradation. Real-world images
tend to suffer degradation like blurring, additive noise
and compression artifacts. Thus the models trained on
datasets conducted manually often perform poorly in
real-world scenes. Some works have been proposed for
solving this [39], [131], [149], [159], but these methods
have some inherent drawbacks, such as great training
difficulty and over-perfect assumptions. This issue is
urgently needed to be resolved.

Domain-specific Applications. Super-resolution can not
only be used in domain-specific data and scenes directly,
but also help other vision tasks greatly (Section 5). There-
fore, it is also a promising direction to apply SR to more spe-
cific domains, such as video surveillance, object tracking,
medical imaging and scene rendering.
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