
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2022

Hybrid tabu search algorithm for unrelated parallel machine Hybrid tabu search algorithm for unrelated parallel machine

scheduling in semiconductor fabs with setup times, job release, scheduling in semiconductor fabs with setup times, job release,

and expired times and expired times

Changyu CHEN
Singapore Management University, cychen.2020@phdcs.smu.edu.sg

Madhi FATHI
University of North Texas

Marzieh KHAKIFIROOZ
Tecnologico de Monterrey

Kan WU
Chang Gung University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, and the

Theory and Algorithms Commons

Citation Citation
CHEN, Changyu; FATHI, Madhi; KHAKIFIROOZ, Marzieh; and WU, Kan. Hybrid tabu search algorithm for
unrelated parallel machine scheduling in semiconductor fabs with setup times, job release, and expired
times. (2022). Computers and Industrial Engineering. 165, 1-11.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6956

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6956&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Hybrid tabu search algorithm for unrelated parallel machine scheduling in
semiconductor fabs with setup times, job release, and expired times

Changyu Chena, Mahdi Fathib, Marzieh Khakifiroozc, Kan Wud,*

a Singapore Management University, Singapore
b Department of Information Technology and Decision Sciences, G. Brint Ryan College of Business, University of North Texas,
Denton, TX, USA
c Department of Industrial Engineering, Tecnologico de Monterrey, Monterrey, NL, Mexico
d Business Analytics Research Center, Chang Gung University, Taoyuan, Taiwan
* Corresponding author. E-mail addresses: chen1297@e.ntu.edu.sg (C. Chen), mahdi.fathi@unt.edu (M. Fathi), mkhakifirooz@tec.mx
(M. Khakifirooz), kan@mail.cgu.edu.tw (K. Wu).

Published in Computers & Industrial Engineering, March 2022, 165, 107915. DOI: 10.1016/j.cie.2021.107915

Abstract: This research is motivated by a scheduling problem arising in the ion implantation process of wafer fabrication.
The ion implementation scheduling problem is modeled as an unrelated parallel machine scheduling (UPMS) problem with
sequence-dependent setup times that are subject to job release time and expiration time of allowing a job to be processed on

a specific machine, defined as: . The objective is first to maximize the number of processed jobs, then
minimize the maximum completion time (makespan), and finally minimize the maximum completion times of the non-
bottleneck machines. A mixed-integer programming (MIP) model is proposed as a solution approach and adopts a hybrid
tabu search (TS) algorithm to acquire approximate feasible solutions. The MIP model has two phases and attempts to achieve
the first two objectives. The hybrid TS algorithm has three phases and attempts to achieve all three objectives. In a real
setting, computational results demonstrate that the maximum number of processed jobs can be acquired within a short time
utilizing the hybrid TS algorithm (average 8 s). By comparing the two approaches, the TS outperforms the MIP model
regarding solution quality and computational time for the second objective, minimizing the makespan. Furthermore, the third
phase of the hybrid TS algorithm shows the effectiveness further to enhance the utilization of the ion implantation equipment.

Keywords: Ride-hailing surge pricing, Taxi demand, Cross-price elasticity of taxi bookings, Taxi demand prediction

1. Introduction

The semiconductor industry is one of the world’s

most capital-intensive and time-consuming industries
(Johri, 1993), with over $481 billion annual sales
revenue by 2018. There are four stages in the
semiconductor manufacturing process: wafer
fabrication, wafer probe (sort), assembly (packaging),
and final test. It costs around $4 billion to build a new
wafer fabrication facility (fab), and the cost of the
equipment is over 75% (Gupta & Sivakumar, 2006). On
the other hand, enhancing the fabs’ equipment

utilization becomes increasingly important because of
the enormous cost of wafer fabrication and intensive
competition in the semiconductor industry. Therefore,
proper utilization of the equipment via scheduling is
undoubtedly critical.

In wafer fabrication, ion implantation is a
process where ions of dopant elements are accelerated
into the silicon substrate. Any improved efficiency in the
ion implantation process will contribute to the fab’s

efficiency. When the previous machine completes a
jobin the ion implantation process, it will release the job

to the implantation machine (implanter). The processing
time is dependent on product types and machines which
are processed in an implant step. Moreover, between
two jobs processed on the same implanter, a setup time
should be considered regarding the product types and
the gap used to implant these two jobs. The ion
implantation process can be modeled as a parallel
machine scheduling problem (PMS) with sequence-
dependent setup times. In the ion implantation process,
the process times are expected to be different for the
same job on different machines. Thus, this problem
should be categorized as an unrelated PMS (UPMS)
problem. Every job has a release time, and every
machine has an available time. As the wafer should be
processed at a specified time, every job has an expired
time. Each job will be expired and be scrapped if it
cannot be processed before the expired time. Therefore,
a job can only be processed on a set of machines rather
than all the machines.

Only a few studies in this field look into the
UPMS problem with sequence-dependent setup time.
For instance, Vallada and Ruiz, 2011,

Computers & Industrial Engineering 165 (2022) 107915

2

and Tamimi & Rajan (1997) presented a hybrid heuristic approach using
the genetic algorithm (GA). Kim et al. (2003) proposed a four-phase
heuristic model to minimize the total weighted tardiness with tabu
search (TS).

However, only one paper has investigated this problem for the ion
implantation process to the best of our knowledge. Horng et al. (2000)
dealt with the ion implantation process as a UPMS problem with
sequence-dependent setup times and job release times. However, the
study does not consider the job expired times, available machine times,
and different process times on different machines.

In this study, we focus on the problem of scheduling unrelated par-
allel machines with sequence-dependent setup times subject to job
release times and expired times for allowing a job processed on a
particular machine. According to the practical requirement of the ion
implantation, a three-phase objective problem is set to firstly maximize
the number of processed jobs, then minimize the maximum completion
time (makespan), and finally minimize the maximum completion times
of the non-bottleneck machines. We implement the mixed integer pro-
gramming (MIP) model, and a hybrid TS algorithm is utilized to solve
the problem.

The remainder of the paper is organized as follows. A literature re-
view on ion implantation and popular approaches to solving scheduling
problems is discussed in Section 2. The problem is described in detail,
and assumptions are stated in Section 3. In Section 4, a two-phase MIP
model is proposed, and the efficiency considerations for this model are
presented. Section 5 discusses the hybrid TS algorithm and the rules for
generating new solutions and algorithm procedures. In Section 6,
empirical data is employed to test the proposed approaches, and a
computational comparison between the proposed methods and other
studies is undertaken. Finally, the conclusion and future work are pre-
sented in Section 7.

2. Literature review

In wafer fabrication literature, many studies mainly focus on
scheduling the whole wafer fab, generally modeled as a job shop prob-
lem (Chiang, 2013; Wein, 1988). As the only evidence in modeling the
ion implantation process, Horng et al. (2000)’s approach is a very
simplified model, while the production environment is very compli-
cated. Job scheduling for ion implantation has salient features of ma-
chine aging and maintenance, different from typically formalized
problems in the scheduling research literature. Compared with research
problems in job scheduling literature, the scheduling problem for ion
implantation has the following unique features (Chou & Huang, 2013):

1. Maintenance is achieved by running complementary part types.
Complementary part types have a self-healing effect on the machine.
Maintenance is not treated as a separate activity. Instead, mainte-
nance is online, and the health of the machine is gradually restored
during production. Therefore, job scheduling, and maintenance
schedules are integral tasks.

2. Filament aging increases the probability of machine failure. When a
machine fails, repair time is incurred. In contrast, when a decision is
made to change the ion type, setup changeover time is incurred, but
the filament age is renewed. There are trade-offs between saving
setup time and saving machine repair time.

Therefore, more constraints should be considered given the above
circumstances, and a more precise model should be proposed.

According to Mönch et al. (2011), except for rework, most of the flow
in the fab is deterministic instead of being probabilistic as it is in a job
shop. In addition, the processing time per wafer or lot is very nearly
deterministic. Therefore, the focus of this study is on the area of

deterministic scheduling problems (DSP), attempting to reduce the
complexity in the problem formulation.

This paper focuses on the UPMS problem with sequencing-dependent
setup times subject to the job release time and expired time of allowing a
job to be processed on a machine, defined as: R|rj, eij, STsd|Cmax, where eij
means the expired time depends on the job Jj and the machine Mi. To the
best of our knowledge, no literature has studied this specific problem so
far. Therefore, the problem can be regarded as the basic P|STsd|Cmax
problem with additional constraints, and the approaches to the P|
STsd|Cmax problem can be considered and adapted to solve the R|
rj, eij, STsd|Cmax problem. The UPMS is very complex and considered an
NP-hard problem (Baker, 1974). Therefore, in recent years, different
heuristic and meta-heuristics approaches have been applied to solve the
complexity of UPMS, such as the firefly algorithm (Ezugwu & Akutsah,
2018), simulated annealing (Hamzadayi & Yildiz, 2016), artificial bee
colony (Lei et al., 2021), smart pool (Cota et al., 2021), TS algorithm
(Wang & Alidaee, 2019), particle swarm optimization (PSO) (Salehi &
Rezaeian, 2016), and ant colony optimization (ACO) (Behnamian et al.,
2009).

According to the results in the literature, the MIP model can yield a
high-quality solution if the computational time is long enough. Never-
theless, the long computational time is not allowed in the production
environment. In this study, for the exact algorithms, the MIP model is
considered based on the research on R|STsd|

∑
(ejEj + tjTj) (Zhu &

Heady, 2000), R|rj, STsd|
∑

wjTj (Lin & Hsieh, 2014), and P|rj, STsd|Cmax

(Kurz & Askin, 2001). Table 1 summarizes the new trends in the UPMS
problem with sequencing-dependent setup times considering their
objective function and some specific features and exact and meta-heu-
ristics solution approaches. In the search results presented in Table 1, we
focus on literature that at least one of their objective functions is to
minimize the makespan. As shown in Table 1, regardless of the appli-
cation of proposed methods in the literature, the third objective goal in
this study for minimizing the makespan of non-bottleneck machines is a
novel approach and unique contribution among UPMS literature. In
addition, only in few studies, the number of processed jobs has been
considered in the objective function, which mainly they plan to mini-
mize the load of each machine instead of maximizing the total processed
job, which is one of the goals in our study.

According to our search among literature in the UPMS discipline, out
of many possible choices of meta-heuristic approaches (as shown in
Table 1), in this study, we employed the TS algorithm as a local search-
based solution to deal with the NP-hardness of the UPMS problem. The
main reasons for selecting the TS algorithm are summarized as follows:

• Metaheuristic algorithms are commonly divided into two groups:
local search-based and population-based algorithms. While local
search-based algorithms usually start with a random initial solution
and iteratively try to improve it using a fitness function, population-
based algorithms start with more than one solution and search a
more extensive area of the search space, combining current solutions
to obtain new ones. Population-based solutions suffer from a lack of
precision in comparison with local search. In addition, local-search
components and constraint handling flexibility making the algo-
rithm attractive for problems with many constraints (Jaeggi et al.,
2008).

• Selecting the TS algorithm generally proceeds more aggressively to
the local optimum, relying on the premise that a slow descent will
lead to a local optimum closer to a global one. This rationale of the TS
algorithm derives from two considerations: (i) optimization prob-
lems can be solved by making the best available move at each iter-
ation; (ii) rather than spending more time in regions with less
appealing solutions, the TS algorithm spends more time exploring
regions with reasonable solutions (Glover, 1989).

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

3

• The iterative nature of the TS algorithm may allow it to be stopped
after a feasible solution is found. However, methods like the SA al-
gorithm may not be stopped at any desired moment since the control
parameter has to converge to a value close to zero to obtain a
meaningful implementation (Michiels et al., 2007).

• The TS algorithm, considering neighboring moves, does not need
objective function gradient information as some methods like GA
(Kulturel-Konak et al., 2003).

• The TS algorithm uses deterministic moves, which reduce variability
due to initial solutions and other parameters. In addition, the TS
algorithm is designed to prevent repetition rather than a reversal of
moves that seem not to work well. Also, the deterministic nature of
the TS algorithm may make it feasible to reproduce the results
(Brandão & Eglese, 2008).

• Our problem has constraints like feasible job-machine pairs, expired
time. The TS algorithm enables us to generate solutions with domain
knowledge. For example, we use heuristics 1 and 2 in section 5.1 of
our paper to generate solutions. However, other algorithms that
exploit information from other solutions may not even generate
feasible solutions. For instance, if we use the GA algorithm, crossover
or mutation may assign a job to an infeasible machine as operations
in GA do not consider domain knowledge. Although some can use
unique encoding methods to solve this problem, the TS algorithm
seems to have advantages.

• Some algorithms necessitate encoding techniques, such as modeling
the key concept velocity in PSO, which adds complexity to the so-
lution approach. However, TS does not have requirements for the
encoding of solutions.

According to the aforementioned reasons, we could not find an
alternative solution approach that could be compatible with the TS al-
gorithm; therefore, the TS algorithm has been selected for constructing
the hybrid meta-heuristic solution in this study.

3. Problem description and assumptions

3.1. Description of the problem

The DSPs with setup times can be divided into four classifications in
terms of batch (family) or non-batch setup times and independent or
dependent setup times (Allahverdi et al., 2008). The schedule of unre-
lated parallel machines is considered with sequence-dependent setup
times subject to job release times and expired times of allowing a job
processed on a certain machine, defined as: R|rj, eij, STsd|Cmax. The three-
phase objectives are defined to firstly maximize the number of processed
jobs, then minimize the maximum completion time (makespan), and
finally minimize the maximum completion times of the non-bottleneck
machines. It is noted that the objective is to satisfy the requirements
of ion implantation.

The number of processed jobs should be maximized because the
machines may not necessarily process all the jobs due to the constraint of
the expired time. Minimizing the makespan is adopted to improve the
utilization of the equipment. As a result of available times of the ma-
chine, we find that a distinct bottleneck usually appears on the same
machine, leading to high total setup times for non-bottleneck machines.
From the perspective of the whole ion implantation process, this may
reduce the utilization of the equipment. Thus, minimizing the maximum
completion times of the non-bottleneck machines is set as the third-
phase objective.

Table 1
Summary of some recent trends in UPMS problems with sequencing-dependent
setup times.

No Source Objective Main Features Solution
Method

1 Behnamian
et al. (2009)

1. Minimize of
makespan

– ACO, SA,
VNS

2 Kuo et al.
(2011)

1. Minimize the total
absolute deviation
of makespan
2. Minimize the total
load on all machines

Learning effects MIP

3 Salehi &
Rezaeian
(2016)

1. Minimize total
machine load

Release dates,
deteriorating jobs,
learning effects

PSO, GA

4 Fanjul-Peyro
et al. (2019)

1. Minimize
makespan

Renewable
resources, machine-
dependent setup
times

MIP

5 Santos et al.
(2019)

1. Minimize
makespan

Machine-dependent
processing time with
additional setup-
time

SA, ILS,
LAHC,
SCHC

6 Ezugwu
(2019)

1. Minimize
makespan

Non-pre-emptive
machine, machine-
dependent setup
times

GA

7 Yunusoglu &
Topaloglu
Yildiz (2021)

1. Minimize
makespan

Precedence
constraint, machine
eligibility, release
dates, renewable
resources

CP

8 Zhang et al.
(2021)

1. Minimize
makespan
2. Minimize setup
time

Worker resources,
learning effect

LS

9 Bitar et al.
(2021)

1. Maximize the
number of
completed products
2. Minimize number
of auxiliary
resources
3. Minimize
makespan

Auxiliary resources,
machine-dependent
setup times

MIP

10 Yepes-Borrero
et al. (2020)

1. Minimize
makespan

Renewable resource GRASP

11 Khanh Van &
Van Hop
(2021)

1. Minimize total
weighted earliness,
tardiness, and
maximum
completion time

Capacity constraint
of the machines

GA

12 Cota et al.
(2021)

1. Minimize the
makespan
2. Minimize total
consumption of
electricity

Independent and
non-preemptible
jobs

Smart
Pool

13 Current study 1. Maximize the
number of processed
jobs
2. Minimize the
makespan
3. Minimize the
makespan of the
non-bottleneck
machines

Job release time and
expiration time

TS

VNS: variable neighborhood search; GRASP: Greedy randomized sdaptive search
procedure; LS: List scheduling; CP: Constraint programming; ILS: Iterated Local
Search; LAHC: Late Acceptance Hill-Climbing; SCHC: Step Counting Hill-
Climbing.

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

4

The scheduling process can be represented in Fig. 1.

3.2. Assumptions

The assumptions of the problem are as follows:

1. Each job can only be processed on a maximum of one machine (for
models with multiprocessor tasks, this assumption can be relaxed).

2. No preemption is allowed. In other words, a machine must
complete a current job before it processes other jobs.

3. Processing times are independent of sequencing.
4. Processing times for a job can be varied on different machines.
5. The job waiting zone is allowed. Jobs can stay in the waiting zone

before all the machines are busy.
6. No cancellation. Every job must be completed.
7. Machine idle time is allowed.
8. The failure and breakdown of the machines are ignored.
9. Each machine can only process one job at a time.

10. Every job has a release time.
11. Every machine has available time.
12. Every match of a job and a machine has an expired time.
13. Every machine can only process part of a job.
14. There is no randomness, and all specifications are known and

fixed, including the number of jobs (n), the number of machines
(m), and the processing times.

4. Mixed integer programming

In this study, the problem of unrelated parallel machines with sequence-
dependent setup times is tackled by a three-phase optimization. The MIP
model is applied to tackle the first two objectives, maximizing processed
jobs, and minimizing the makespan. Furthermore, the last objective, mini-
mizing the maximum completion times of the non-bottleneck machines, is
satisfied by changing the sequence of the jobs on every single machine,
which is a classic single-machine scheduling problem and has been inves-
tigated by many researchers. For every non-bottleneck machine, a MIP
model must be formulated to solve the single-machine scheduling problem
according to the result from phase 2, which is complicated. Therefore, a
hybrid TS algorithm is proposed to solve the problem with all three objec-
tives, and the MIP model will only tackle the problem with the first two
objectives.

4.1. The R|rj, eij,STsd|Cmax formulation

The MIP model uses notations as follows:
Sets and

indexes:
i Index of a machine (i = 1, ...,m), where m is the number of

machines.
j,k Index of job (j = 1,...,n), where n is the number of jobs. Subscripts

j and k stand for two adjacent Jj , and Jk. In this study, index J
denotes the job.

M j The set of machines, M , that can process Jj, j ∈ J .

J i The set of jobs, J that can be processed on the machine Mi, i.e.,
{

j : i ∈ M j , j ∈ J
}

.
Parameters
Pij The processing time of Jj, on the machine Mi, i ∈ M , j ∈ J i.
Sijk The setup time of switching from Jj to Jk on the machine Mi, i ∈

M , j,k ∈ J i, j ∕= k.
S0

ij The setup time of switching from an existing job to Jj on the
machine Mi, i ∈ M , j ∈ J i.

Sjk The setup time of switching from job Jj to job Jk, j,k ∈ J , j ∕= k.
Ai The available date of the machine Mi, i ∈ M .
Rj The release date of the job Jj , j ∈ J .
eij The expired time of allowing job Jj to be processed on the

machine Mi, i ∈ M , j ∈ J i.
L A large number.
Variables:
yij Binary variable, 1 if Jj is assigned to the machine Mi and

0 otherwise. i ∈ M , j ∈ J i.
x0

ij Binary variable, 1 if Jj is assigned to the machine Mi as the first
job and 0 otherwise. i ∈ M , j ∈ J i.

xijk Binary variable, 1 if Jj precedes Jk on the machine Mi and
0 otherwise. i ∈ M , j,k ∈ J i, j ∕= k.

bj Continuous variable, the starting setup time of Jj.
cj Continuous variable, the completion time of Jj.
Cmax Continuous variable, the maximum completion time for all jobs.

The mathematical model for phase 1 is as follows:

Phase 1 Model : Max
∑

j∈J

∑

i∈M j

yij (1)

Subject to :

∑

i∈M j

yij ≤ 1 ∀j ∈ J (2)

Fig. 1. The Scheduling Process.

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

5

x0
ik +

∑

j∈J i ,j∕=k

xijk = yik ∀i ∈ M , k ∈ J i (3)

∑

k∈J i k∕=j

xijk ≤ yij ∀i ∈ M , j ∈ J i (4)

∑

j∈J i

x0
ij ≤ 1 ∀i ∈ M (5)

bj − Rj + L

(

1 −
∑

i∈Mj

yij

)

≥ 0 ∀j ∈ J (6)

bj − max
(
Rj,Ai

)
+ L
(

1 − x0
ij

)
≥ 0 ∀i ∈ M , j ∈ J i (7)

cj − bj +L
(

1 − x0
ij

)
≥ Pij + S0

ij ∀i ∈ M , j ∈ J i (8)

bk − cj + L
(
1 − xijk

)
≥ 0 ∀i ∈ M , j, k ∈ J i , j ∕= k (9)

ck − bk + L
(
1 − xijk

)
≥ Pik + Sijk ∀i ∈ M , j, k ∈ J i , j ∕= k (10)

bj − eij − L
(
1 − yij

)
≤ 0 ∀i ∈ M , j ∈ J i (11)

yij ∈ {0, 1} ∀i ∈ M , j ∈ J i (12)

x0
j ∈ {0, 1} ∀i ∈ M , j ∈ J i (13)

xijk ∈ {0, 1} ∀i ∈ M , j, k ∈ J i , j ∕= k (14)

bj ≥ 0 ∀j ∈ J (15)

cj ≥ 0 ∀j ∈ J (16)

The decision variables yij, x0
ij, xijk ∈ {0,1} are non-negative and bi-

nary variables, and the decision variables, bj and cj, are non-negative
and continuous variables. In phase 1, the objective function in (1)
maximizes the number of processed jobs. Constraint (2) indicates that
one job should not be processed by any machine or can be processed by
only one machine. Constraint (3)–(4) represent that if xijk = 1, Jk must
come immediately after Jj on the machine Mi, when both yij and yik

equals to 1. Constraint (5) ensures that each machine can process at most
one job as the first job. Constraint (6) indicates that the starting setup
time of Jj should be later than its release time. Constraint (7) ensures
that if Jj is the first job processed on machine Mi, its starting setup time
should be larger than both its release time and the available time of
machine Mi. Constraints (8) and (10) represent the time interval be-
tween the starting setup and completion time of Jj should be larger than
the sum of its setup time and processing time. Constraint (9) states that
the starting setup time of successor Jk should be later than the
completion time of Jj. Constraint (11) ensures that Jj can begin pro-
cessing before its expired time on machine Mi. Constraints (12)–(16)
indicate the non-negativity restrictions.

The mathematical model of phase 2 is as follows:

Phase 2 Model: MinCmax (17)

Subject to :

Constraints (2)–(16) in phase 1

Cmax ≥ Cj ∀j ∈ J (18)

∑

j∈J

∑

i∈M j

yij = Phase 1 Model
(

objective value
)

(19)

cmax ≥ 0 (20)

In phase 2, the objective is to minimize the makespan (equation
(17)). Constraint (18) ensures that Cmax is the maximum completion time
for all the jobs. Constraint (19) indicates the number of processed jobs is
from the objective value of phase 1.

4.2. Efficiency considerations

It is easy to implement the formulation above using commercial
solvers such as CPLEX. However, some trade-offs are also considered in
the development of the model. Firstly, a one-phase model has been
considered to simplify the model’s procedure and form, although the
two-phase model is chosen at the end. Second, the time interval between
the starting setup time and the completion time of a job should equal the
sum of the process time and setup time, while a slack form is chosen at
last (see constraints (8) and (10)). Third, the sets, M j and J i , sharply
decrease the number of binary variables, which enables us to improve
the numerical efficiency of the model. These three considerations will be
discussed as follows.

When formulating the problem, the efficiency and the simplification
of the model are the prior factors to be considered. The model can be
formulated into a one-phase model by combining two objectives in one
objective function. There are two methods under consideration:

1. Minimize (
∑

j∈J 1 −
∑

j∈J

∑
i∈M j

yij)Cmax
2. Minimize -W

∑
j∈J

∑
i∈M j

yij+Cmax

The first objective function makes the model a mixed-integer
nonlinear programming model. Compared with linear programming
problems, nonlinear programming problems are intrinsically more
difficult to solve (Bradley et al., 1977). Although this method simplifies
the procedure, it will reduce the numerical efficiency and take more
time to solve this large-scale problem. For the second function, a weight
factor W is introduced to depict the relative importance of the number of
the processed jobs since the number of the processed jobs is generally
less than one hundred and the maximum completion time is usually
greater than ten thousand. The number of processed jobs is more
important than the maximum completion time, while the W is empiri-
cally determined, and it varies from case to case. Therefore, this method
is challenging to implement.

In contrast, the two-phase MIP model has the advantage of high
numerical efficiency and is easy to implement. The average solution
times in phase 1 are about 8 s for a problem with 90 jobs and 30 ma-
chines. Moreover, it can derive an acceptable solution in 5 min in phase
2.

A slack form is introduced for the time interval between the job
starting setup and completion time to simplify the model (see constraints
(8) and (10)). For instance, in constraint (10), if the xijk = 0 then the left-
hand side (LHS) should be greater than the right-hand side (RHS), while
LHS should be equal to RHS if the xijk = 1. Nevertheless, these two
constraints can be combined into one constraint, a slack form, because
the time interval between the starting setup time and the completion
time tend to be smaller due to the objectives, maximizing the number of
processed jobs and minimizing the makespan. The strict constraints and
their slack form are presented below:

Strict constraints:

ck − bk +L ≥ Pik + Sijk,

ck − bk = Pik + Sijk.

Slack form:

ck − bk +L
(
1 − xijk

)
≥ Pik + Sijk.

The slack form is more comfortable to implement than the strict
constraints, simplifying the procedure when programming.

The sets, M j and J i , are introduced to reduce the number of vari-

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

6

ables and improve numerical efficiency. In this problem of unrelated
parallel machines with sequence-dependent setup times, a certain Jj can
only be processed on several machines rather than all the machines.
Similarly, a certain machine Mi can only process several jobs rather than
all the jobs. Therefore, the set of jobs processed on the machine Mi and
the set of machines processing Jj can directly depict this relationship
rather than adding constraints to restrict unmatched jobs and machines
after generating the binary variables for every job and machine.

5. Proposed hybrid tabu search

The P|STsd|Cmax is a difficult and complex combinatorial problem
that can be considered an NP-hard problem because it is equivalent to
the TSP when the number of machines is equal to one (Baker, 1974). In
addition, the problem discussed in this study is subject to the job release
times and expired times of allowing a job to be processed on a certain
machine, which makes this problem more complex.

The meta-heuristic algorithm has the advantage of high computa-
tional efficiency, while the quality of the solutions varies from the
models and the parameters. The TS algorithm has outstanding perfor-
mance among the meta-heuristic algorithms because the TS neighbor-
hoods are generated by the rules associated with specific problems,
which leads to a smaller solution space. The proposed MIP model in this
study can derive an acceptable solution in a reasonable time (within 5
min) using commercial software. In the meantime, a hybrid TS algo-
rithm is proposed to tackle this problem with a three-phase objective.

Phase 1: An initial solution to maximize the number of processed jobs
is derived from phase 1 of the MIP model.
Phase 2: A TS algorithm is conducted to achieve enhanced solutions
for makespan-moving jobs between various machines. An improved
sequence for the machine-implemented removal and insertion is
derived by the local search heuristic for every movement.
Phase 3: A heuristic algorithm is adopted to resequence non-
bottleneck machines’ jobs and minimize the maximum completion
times for all the non-bottleneck machines.

The first section in this chapter indicates the heuristic procedures for
selecting jobs removed from a certain machine and machines receiving
the removed job. After phase 1, all the processed jobs are assigned to all
machines, then reassigned from one machine to another during phase 2.
In Section 5.2, a detailed interpretation of these three phases will be
stated.

5.1. Insertion and removal procedures

How jobs are inserted and removed from the machines will be
described in this section. Two heuristics are adopted in the following
procedure. The main heuristic algorithm applies the local neighborhood
concept to generate high-quality solutions (França et al., 1996). The
second heuristic algorithm employs randomness to enable some solu-
tions to escape from the local optima.

Consider q as an input parameter to evaluate the local neighborhood
of a job. The local neighbors of a Jj, relative to a machine, are its closest

successors and predecessors among the jobs assigned to this machine.
The closest successor of Jj means the Jk with sjk less than q, and the
closest predecessor is Ji with sij less than q. Now, selecting the best job to
be removed is constrained to the job with the least local neighbors.
Therefore, the local neighborhood is determined for each machine, i.e.,
every job has m local neighbors. The concept is represented through the
following example. Consider the matrix [sjk] in Table 2. An additional
column should be inserted in the matrix in which the element s0j rep-
resents the setup time of Jj, the first job in the sequence. Assume that
sj0 = 0, I = 1, ...,n.

Presume that there are two machines and the sequences assigned to
them are:

M1 : − 0 − 2 − 5 M2 : − 0 − − 3 − − 1 − − 4 − 6

The local neighborhood structure for J1 and q = 23 is then:

M1 : successors = {0, 5}; predecessors = {2, 5}

M2 : successors = {0}; predecessors = {3}

The principle of every movement (removal and insertion) is to
choose a job from the busiest machine and then insert it into another
machine. The maximum completion time can iteratively be reduced by
conducting the movement repeatedly. The detailed procedure of the
heuristics is shown below:

Heuristic 1:

• Removal: On the busiest machine, choose the job that has the least
number of local neighbors.

• Insertion: For the chosen job, compute the number of local neighbors
on every possible machine. Then, select the machine with the
greatest number of local neighbors.

Heuristic 2:

• Removal: On the busiest machine, randomly choose a job as the
removal job.

• Insertion: For the selected job, randomly insert it into a machine that
can process the job.

Heuristic 1 is proposed to make the total setup time as small as
possible after implementing the removal and insertion procedures. Be-
sides, if the jobs on the machine Mi are determined, the maximum
completion time of these jobs mainly depends on the total setup time, as
the process times for these jobs on the machine Mi are fixed. The local
neighbors for the Jj are the jobs whose setup times with the Jj are less
than q. Therefore, in theory, more local neighbors every job on the
machine Mi has, more likely, a sequence with less total setup time is
derived.

The removal of the job with the least local neighbors from the busiest
machine means the remaining jobs have more local neighbors than the
removed ones. The insertion makes the removed job is taken to the
machine with the largest number of its local neighbors. In other words,
these two procedures are applied to reduce the total setup time for the
jobs on the machine related to removal and on the machine related to
insertion, which have a high number of local neighbors.

Generally, Heuristic 1 can generate a solution with a higher possi-
bility of approaching the optimal solution than randomly generated
solutions. Nevertheless, Heuristic 2 can avoid trapping in the local op-
tima. Combining these two heuristics will contribute to an efficient and
high-quality search.

5.2. A tabu search algorithm

TS, first developed by Glover (1989, 1990), is a global optimization
meta-heuristic algorithm. One critical difference from the so-called hill-

Table 2
The Matrix of sjk.

sij 0 1 2 3 4 5 6

0 – 30 32 54 9 38 42
1 0 – 35 25 47 7 89
2 0 21 – 76 38 86 25
3 0 9 38 – 30 32 54
4 0 49 49 23 – 8 45
5 0 23 29 18 36 – 61
6 0 74 82 61 25 38 –

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

7

climbing algorithms is that the TS algorithm can jump out of the local
minima and give better solutions. A mechanism equips the search pro-
cess to allow the objective function to deteriorate. Furthermore, by
doing this, the mechanism enables the solution to escape from the local
optima. The movement with a minimum cost will be chosen as the next
generation. If the solution is a local minimum, this means accepting an
unimproved perturbation. The solution might also fall back into the
local optimum where it previously escaped because the search always
selects the best movement of one iteration. The recently conducted
movement is forbidden (tabu) and appended into a constantly updated
tabu list to avoid this situation. Over the past few years, several
combinatorial problems have been well solved using the TS algorithm
(Glover, 1990).

The TS algorithm implemented in this study is an adapted version of
the TS algorithm for P|STsd|Cmax problems without the constraints of the
job release time and the expired time of allowing a job processed on a
certain machine developed by França et al. (1996). The TS algorithms
are open-ended, and they should be formulated in terms of the charac-
teristics of one specific problem. The key features which can enhance the
implementation of the TS algorithm are presented as follows (França
et al., 1996):

1. The neighborhood structure.
2. The initial solution.
3. The tabu tenure, i.e., how long a tabu move will be forbidden.
4. The stopping criterion.

A neighbor solution is derived by removing jobs from the busiest
machine and inserting them into another machine in our approach for
implementing the TS algorithm to tackle the R|rj, eij, STsd|Cmax problem.
The concepts of a local neighborhood are applied to construct all the
neighbors. There are several methods to construct the neighborhood.
One main method (Heuristic 1) is to take the Jj belonging to the busiest
machine and then insert it into one of the machines from the set M (Jj) to
form a new solution. The set M (Jj) includes the machines that may
process the Jj and is defined as M (Jj) ={Mi|Mi ∕= Mi,Mi ∈ M j }, where
Mi is the busiest machine.

C(Mi) is introduced to be the completion time for processing all the
jobs assigned to the machine Mi. The movement which leads to the
minimum value of C(Mi) looking at every insertion/removal heuristic
algorithm stated in the preceding section when referring to insertion or
removal of jobs is called the optimal movement. A vector (Jj,Mi,M*

i) is
introduced to indicate a move which states the Jj that is removed from
the busiest machine and inserted into the machine M*

i that has been
chosen from the candidate set M (Jj). After a movement is conducted,
the solution is forbidden until it is removed from the tabu list. How long
a solution will stay in the tabu list depends on the tabu tenure, which is
the key performance indicator in most implementations of the TS al-
gorithm (França et al., 1996). If it is too small, the TS algorithm may be
cycling and trapped in the local optima.

In contrast, if it is too huge, it may lead to more neighbors being
forbidden and fewer neighbors available, and the TS approach may
execute poorly because the constraints are too strict to search for a better
solution. We will discuss the appropriate choice for the tabu tenure and
other parameters at the end of the section. The number of iterations, T, is
chosen to be the stop criterion of the TS algorithm.

Phase 1 is the same as phase 1 in the MIP model. The solution will be
stored and transformed to phase 2 as the initial solution. The solution
contains the schedule on every machine, the completion time of every
machine, and the makespan.

For Phase 2, setup times are independent of the machine; therefore,
suppose that Mi is the busiest machine and consider the following no-
tations (França et al., 1996):

C(Mi, Jj) = completion time associated with the machine Mi if Jj is
inserted in it.
C(Mi, Jj) = completion time associated with the machine Mi if Jj is
removed from it.

The detailed procedure of phase 2 is as follows:
Step 1: Set the iteration counter t = 0.
Step 2: Set the candidate solution counter s = 1.
Step 3: Generate the candidate solutions using Heuristic 1 and Heu-

ristic 2 as proposed in section 5.1.

a. Determine the Jj to be moved and received by the machine M*
i , using

Heuristic 1 or 2. If s = 1, Heuristic 1 will be applied; otherwise,
Heuristic 2 will be applied.

b. Compute the minimum completion time among p randomly gener-
ating sequences for the single machine M*

i after the insertion of Jj,
defined a:

C*(M*
i , Jj
)
= min

{
C
(
M*

i , Jj
)⃒
⃒p sequences of the machine M*

i

}

c. Consider p as iteration number for re-optimization in every iteration;
compute the minimum completion time among p randomly gener-
ated sequences for the busiest machine Mi after the removal of Jj,
defined as:

C*(M i, Jj
)
= min

{
C
(
M i, Jj

)⃒
⃒p sequences of the machine M i

}

d. Compute the maximum completion time if Jj is moved from Mi to M*
i ,

defined a:

Ts = max{C(Mi)|∀i ∈ M }

e. If the yielded solution is tabu, go back to action a at step 3 and
generate another solution (ensure every candidate solution is not
tabu).

f. Set s = s + 1. If s < 100, go back to action a at step 3 and generate the
next candidate solution. Otherwise, go to step 4.

Step 4: Select the solution* as solution*
= argmin{Ts}, and append

solution* in the tabu list.
Step 5: Determine the busiest machine and update the best solution,

optimal makespan, and incumbent solution.
Step 6: Set t = t + 1. If T, the number of iterations has not been

satisfied, go to Step 2. Otherwise, complete the optimization and export
the solution.

The problem in phase 3 can be considered as a single-machine
scheduling problem. The objective is to minimize the maximum
completion time of every non-bottleneck machine separately. Based on
the cases investigated in this study, the number of processed jobs on a
machine is small as the optimization result shows, generally less than
five jobs, barely up to 10 jobs. Therefore, a simple heuristic is applied.

For every non-bottleneck machine, consider the following steps:

Step 1: If the number of processed jobs is nonzero, implement step 2;
otherwise, ignore this machine and consider the next machine.
Step 2: Generate p random solutions (p job sequences) and select the
solution with the shortest completion time. The random solution is
the randomly generated sequence of the jobs on a machine.

For the values of parameters, comments on them are shown below.
The number of randomly generated sequences, p, for a single machine to
yield a minimum completion time is defined as p = min{100,ni!}, where
ni is the number of jobs on the under optimization machine. The tabu
tenure can be determined according to specific cases, and 12 is set as the

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

8

tabu tenure for the case investigated in this study. The number of iter-
ations, T, is set to be 1.2n. The proposed algorithm is tested for 90 jobs
and 30 machines and has an acceptable numerical efficiency.

6. Empirical study

In this study, real instances from a wafer fab were employed to
evaluate the efficiency of the proposed MIP model and the hybrid TS
algorithm. The software is halted for the MIP model and exported a
feasible solution if the implementation time exceeded 300 s in phase 2
since an acceptable solution derived in a reasonable time was expected.
For the TS algorithm, the best solution was chosen among the five ex-
ecutions. Because of the same phase 1, the two algorithms derived the
same maximum number of processed jobs. All problems were solved on a
Surface Pro (5th Gen) with Intel Core i5-7300U, and the MIP model was
solved by CPLEX (v12.7.1), a standard commercial solver developed by
IBM.

6.1. Data

The data applied in the experiment is from the ion implantation
process of a wafer fab. The sample period was from 8:00 AM to 12:00 PM
on August 8th, 2019, and 10 cases were investigated in this study. Be-
sides, a set of 100 synthesized data is generated based on these 10 cases
to validate the performance of the proposed algorithm on a larger scale.
Moreover, the data structure is organized by presenting attributes of a
job processed on a machine and the machine’s attributes in a row. Every
combination of a job and a machine occupies a row. The attributes are as
follows:

• AppId: the job id that can exclusively identify a job.
• Ppid: an attribute of the job which will be used to determine the setup

time.
• Process time: the processing time of a job on a machine.
• Gas: the gas type for processing a job.
• Job release time: the estimated release time of a job.
• EqpId: the machine identification value that can exclusively identify

a machine
• Running AppId: the identification value of the already-existing job on

this machine. This attribute is employed to determine the setup time
of the first job on the machine.

• Running Gas: the type of the already existing gas on this machine.
This attribute is employed to determine the setup time of the first job
on the machine.

• Machine availability: the amount of time a machine is available to
process jobs.

• RtdReason: the reason why this machine-job combination is infea-
sible. Only the rows where RtdReason is empty will be kept in the
experiment, and others will be deleted.

• Expired time: the expired time of this machine-job combination,
which means the job will expire if it cannot be processed before this
time.

The setup time is determined by the job existing on the machine and
its successor:

• If these two jobs have the same ppid, the setup time is 0 s.
• If these two jobs have different ppid but the same gas, the setup time

is 60 s.
• If these two jobs have different gas, the setup time is 900 s.

6.2. Computational results

The MIP model is applied to solve the problem with the first two
objectives, and the hybrid TS algorithm is applied to tackle the problem
with all three objectives. The comparison between the results of the MIP

model and the hybrid TS algorithm in phase 2 is conducted. Then, the
comparison between the results in phase 2 and phase 3 of the hybrid TS
algorithm is undertaken. In addition, in order to validate the perfor-
mance of the proposed algorithm and evaluate the adequacy of the
model under a higher number of cases, relying on the empirical data, we
generated 100 instances of synthesized data when randomly selected
lot-machine pairs from 10 cases of empirical data were changed. The
average performance of synthesized data has been calculated for
comparing the maximum completion time of the MIP model and TS al-
gorithm on a larger scale.

Table 3 represents the maximum number of processed jobs, the
average computational time for various cases using the MIP model and
TS, and the objective value of the MIP model and TS algorithm after
phase 2 optimization. When implementing these two algorithms, the
average computational time is the sum of the time on phase 1 and phase
2. Fig. 2 shows the maximum completion time comparison of the MIP
model and TS algorithm. Fig. 3 shows the relative improvement of
objective values using the TS algorithm compared with the MIP model.
The relative improvement is calculated using the equation:

(ZMIP − ZTS)/ZMIP. (21)

The terminology used in Table 3 is as follows:
CI case index
NJ maximum number of processed jobs
TMIP average computational time using the MIP model (s)
TTS average computational time using the TS algorithm (s)
ZMIP MIP solution value (s)
ZTS TS solution value (s)

The results in Table 3, Fig. 2, and Fig. 3 indicate that TS outperforms the
MIP model in computational time and solution quality. If implementing
more time, the MIP will give a better solution, while the longer
computational time is not reasonable in the production environment.
The hybrid TS algorithm yields a better solution in a shorter computa-
tional time, from 9 s to 56 s than the MIP model, more than 300 s. Fig. 3
presents that the results have improvements from 0% to 54%, on
average 29%, varying from case to case. Focusing on the computational
time of the TS algorithm, such short times show that the TS algorithm is
quite suitable for production applications.

The problem investigated in this study has quite a bit of computa-
tional complexity. The UPMS problem, which is related to the problem
in this study, is proven to be NP-hard (Baker, 1974). Therefore, solving
the MIP model of this problem is difficult and time-consuming. The
hybrid TS algorithm generates potential solutions for the practical
problem, where the insight is to make the total setup time as short as
possible; therefore, it could outperform the MIP.

Table 4 indicates the differentiation of the results of non-bottleneck
machines between phase 2 and phase 3 using the TS algorithm. Table 4
shows the maximum completion times of non-bottleneck machines in
phase 2 and phase 3 using the TS algorithm, respectively. It is noted that
the non-bottleneck machines processing no jobs will not be presented in

Table 3
MIP and TS Computational Results.

CI NJ TMIP TTS ZMIP ZTS

1 74 305.74 19.99 13,104 12,400
2 77 307.4 23.37 11,555 11,555
3 76 305.45 25.95 20,065 14,232
4 77 305.34 18.84 13,852 9702
5 75 304.87 19.52 14,687 8795
6 72 302.25 12.49 13,460 9045
7 69 303.74 9.44 13,255 11,290
8 68 303.37 9.84 15,681 14,965
9 89 306.34 20.09 15,173 12,632
10 80 310.01 55.23 20,136 9320
Synthesized data 79 305.45 23.48 15,794 11,294

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

9

Table 4. The relative improvement is calculated using the equation:

Rphase3 =
Z2 − Z3

Z2
. (22)

The terminology used in Table 4 is as follows:
MI machine index
Z2 maximum completion time of the machine in phase 2
Z3 maximum completion time of the machine in phase 3
Rphase3 relative improvement from phase 2 to phase 3

According to Table 4, the heuristic applied in phase 3 of the TS algorithm
effectively enhances the utilization of the equipment based on a mini-
mum makespan in phase 2, while this heuristic is also efficient as the
computational cost is within 1 s. Meanwhile, it is noted that the
maximum completion times on several machines cannot be reduced.
Two possible reasons are considered: the solution yielded from phase 2
of the TS algorithm is optimal. It is possible because the strict constraints
of this problem make a few feasible solutions on certain machines. In
addition, in phase 2 of the TS algorithm, the insertion or removal is
implemented on certain machines, and the heuristic in phase 3 is used in
the insertion and removal procedures. Therefore, the heuristic becomes
ineffective after it has been applied in phase 2.

More complex methods are not used in phase 3 of the TS algorithm
because the optimization problem is simple (single-machine-scheduling
with the number of jobs less than 5 for most non-bottleneck machines).
At the same time, computational efficiency should be considered, and
this heuristic can be implemented within 1 s.

7. Conclusion

This study investigates the scheduling of ion implantation in wafer
fabrication. To the best of our knowledge, only one paper has studied
this problem and modeled it as a UPMS problem with sequence-
dependent setup times and job release times. This paper proposes a
more precise model by considering the job expired times, available
machine times, and different process times on different machines and
two approaches to solve this problem. The contributions of this study
can be concluded as follows:

Fig. 2. Comparison of the Solution Values for MIP/TS.

Fig. 3. Relative improvement of the TS algorithm compared with the MIP model.

Table 4
The Computational Results in Phase 2 and Phase 3 Using TS.

MI Z2 Z3 Rphase3

2 7477 6552 0.124
3 1045 1045 0
4 4317 4317 0
12 11,080 11,080 0
13 10,646 10,646 0
14 10,325 10,325 0
15 8643 7803 0.097
16 5755 4300 0.253
17 9470 9470 0
20 8666 8666 0
22 6142 5025 0.182
28 8621 8621 0
29 5340 4940 0.075
32 5362 5135 0.042

C. Chen et al.

Computers & Industrial Engineering 165 (2022) 107915

10

1. Model the scheduling of the ion implantation as a UPMS problem
with sequence-dependent setup times subject to job release times and
expired times of allowing a job processed on a certain machine,
defined as:R|rj, eij, STsd|Cmax.

2. Propose a MIP model to satisfy the first two objectives of the problem
and solve the MIP model by CPLEX. Some considerations are intro-
duced to simplify the model, and at the same time, enhance
computational efficiency.

3. Propose a hybrid TS algorithm to satisfy all the three objectives of the
problem. The effectiveness and efficiency are tested to be higher than
that of the MIP model.

The two algorithms have tested real cases from a wafer fab to
compare their performance. The hybrid TS algorithm outperforms the
MIP model in computational time and solution quality for the first two
optimization phases. The makespan yielded from the hybrid TS algo-
rithm shortens from 0% to 54%, compared to the MIP model’s make-
span. The hybrid TS algorithm shows a shorter computational time, from
9 to 56 s, than the MIP model, with more than 300 s. The heuristic
applied in phase 3 of the hybrid TS algorithm effectively enhances the
utilization of the equipment based on a minimum makespan in phase 2.
Phase 3 optimization can be completed in a short time (within 1 s). The
proposed hybrid TS algorithm effectively and efficiently solves the ion
implantation’s scheduling problem from the above discussion. The
proposed MIP model in this study can be employed to generate the
benchmark and evaluate other algorithms.

On the other hand, there are still some limitations in this study:

1. Distinct bottleneck machine. This study proposes a heuristic in phase
3 of the hybrid TS algorithm to reduce the total setup times of the
non-bottleneck machines caused by the machine’s available times.
Nevertheless, the effectiveness of the heuristic heavily relies on the
practical situation where the number of jobs on the non-bottleneck
machines is generally less than 5 in the tested cases.

2. Limited complexity. The approaches proposed in this study are
mainly tested by the cases of 30 machines and 90 jobs. It remains to
be investigated if the approaches are effective and efficient when the
problem gets more complex.

3. The hybrid TS algorithm can be further improved. For the hybrid TS
algorithm, only one job will move in one iteration. It remains to be
investigated if an algorithm can move more jobs in an iteration and
more effectively generate solutions.

The following future research directions are recommended as fol-
lows:

1. Other ways to model the problem: this paper proposes to model the ion
implantation process as a R|rj, eij, STsd|Cmax problem and to achieve
three objectives: first, maximize the number of processed jobs; sec-
ond, minimize the maximum completion time (makespan); and
finally, minimize the maximum completion times of the non-
bottleneck machines. Moreover, it is encouraged to study modeling
the ion implantation process in other ways.

2. The heuristic in phase 3 of the hybrid TS algorithm: other heuristics for
phase 3 of the hybrid TS algorithm can be investigated to solve
problems with more jobs on non-bottleneck machines.

3. More complex cases: In the practical situation, the problem may
become more complex. More jobs or more machines should be
considered. How to effectively solve the problem with a large size is
another research direction.

4. Solution generation strategy: The hybrid TS algorithm is suggested to
move multiple jobs in an iteration to yield a better solution and in-
crease efficiency.

CRediT authorship contribution statement

Changyu Chen: Data curation, Writing – original draft, Visualiza-
tion, Validation. Mahdi Fathi: Writing – review & editing, Supervision.
Marzieh Khakifirooz: Writing – review & editing, Validation. Kan Wu:
Conceptualization, Methodology, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This research is supported in part by the Ministry of Science and
Technology, Taiwan, R.O.C. under Grant no. MOST 110-2622-8-182-
002.

References

Allahverdi, A., Ng, C., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling
problems with setup times or costs. European Journal of Operational Research, 187(3),
985–1032.

Baker, K. R. (1974). Introduction to sequencing and scheduling. John Wiley & Sons.
Behnamian, J., Zandieh, M., & Ghomi, S. F. (2009). Parallel-machine scheduling

problems with sequence-dependent setup times using an ACO, SA and VNS hybrid
algorithm. Expert Systems with Applications, 36(6), 9637–9644.

Bitar, A., Dauzère-Pérès, S., & Yugma, C. (2021). Unrelated parallel machine scheduling
with new criteria: Complexity and models. Computers & Operations Research, 132,
Article 105291.

Bradley, S. P., Hax, A. C., & Magnanti, T. L. (1977). Applied mathematical programming.
Addison-Wesley.

Brandão, J., & Eglese, R. (2008). A deterministic tabu search algorithm for the
capacitated arc routing problem. Computers & Operations Research, 35(4),
1112–1126.

Chiang, T.-C. (2013). Enhancing rule-based scheduling in wafer fabrication facilities by
evolutionary algorithms: Review and opportunity. Computers & Industrial Engineering,
64(1), 524–535.

Chou, Y. C., & Huang, P. H. (2013). Integrating machine scheduling and self-healing
maintenance by job-mix pull control. International Journal of Production Research, 51
(20), 6194–6208.

Cota, L. P., Coelho, V. N., Guimarães, F. G., & Souza, M. J. (2021). Bi-criteria formulation
for green scheduling with unrelated parallel machines with sequence-dependent
setup times. International Transactions in Operational Research, 28(2), 996–1017.

Ezugwu, A. E. (2019). Enhanced symbiotic organisms search algorithm for unrelated
parallel machines manufacturing scheduling with setup times. Knowledge-Based
Systems, 172, 15–32.

Ezugwu, A. E., & Akutsah, F. (2018). An improved firefly algorithm for the unrelated
parallel machines scheduling problem with sequence-dependent setup times. IEEE
Access, 6, 54459–54478. https://doi.org/10.1109/ACCESS.2018.2872110

Fanjul-Peyro, L., Ruiz, R., & Perea, F. (2019). Reformulations and an exact algorithm for
unrelated parallel machine scheduling problems with setup times. Computers &
Operations Research, 101, 173–182.

França, P. M., Gendreau, M., Laporte, G., & Müller, F. M. (1996). A tabu search heuristic
for the multiprocessor scheduling problem with sequence dependent setup times.
International Journal of Production Economics, 43(2–3), 79–89.

Glover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.
Glover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.
Gupta, A. K., & Sivakumar, A. I. (2006). Job shop scheduling techniques in

semiconductor manufacturing. The International Journal of Advanced Manufacturing
Technology, 27(11–12), 1163–1169.

Hamzadayi, A., & Yildiz, G. (2016). Event driven strategy based complete rescheduling
approaches for dynamic m identical parallel machines scheduling problem with a
common server. Computers & Industrial Engineering, 91, 66–84.

Horng, S.-M., Fowler, J. W., & Cochran, J. K. (2000). A genetic algorithm approach to
manage ion implantation processes in wafer fabrication. International Journal of
Manufacturing Technology and Management, 1(2–3), 156–172.

Jaeggi, D. M., Parks, G. T., Kipouros, T., & Clarkson, P. J. (2008). The development of a
multi-objective Tabu Search algorithm for continuous optimisation problems.
European Journal of Operational Research, 185(3), 1192–1212.

Johri, P. K. (1993). Practical issues in scheduling and dispatching in semiconductor
wafer fabrication. Journal of Manufacturing Systems, 12(6), 474.

Kim, S.-S., Shin, H., Eom, D.-H., & Kim, C.-O. (2003). A due date density-based
categorising heuristic for parallel machines scheduling. The International Journal of
Advanced Manufacturing Technology, 22(9–10), 753–760.

Khanh Van, B., & Van Hop, N. (2021). Genetic algorithm with initial sequence for
parallel machines scheduling with sequence dependent setup times based on
earliness-tardiness. Journal of Industrial and Production Engineering, 38(1), 18–28.

C. Chen et al.

http://refhub.elsevier.com/S0360-8352(21)00819-6/h0005
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0005
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0005
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0010
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0015
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0015
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0015
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0025
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0025
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0025
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0030
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0030
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0035
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0035
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0035
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0040
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0040
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0040
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0045
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0045
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0045
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0050
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0050
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0050
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0055
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0055
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0055
https://doi.org/10.1109/ACCESS.2018.2872110
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0060
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0060
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0060
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0065
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0065
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0065
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0075
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0080
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0085
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0085
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0085
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0090
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0090
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0090
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0100
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0100
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0100
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0105
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0105
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0105
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0110
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0110
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0115
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0115
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0115
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0120
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0120
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0120

Computers & Industrial Engineering 165 (2022) 107915

11

Kulturel-Konak, S., Smith, A. E., & Coit, D. W. (2003). Efficiently solving the redundancy
allocation problem using tabu search. IIE Transactions, 35(6), 515–526.

Kuo, W. H., Hsu, C. J., & Yang, D. L. (2011). Some unrelated parallel machine scheduling
problems with past-sequence-dependent setup time and learning effects. Computers
& Industrial Engineering, 61(1), 179–183.

Kurz, M., & Askin, R. (2001). Heuristic scheduling of parallel machines with sequence-
dependent set-up times. International Journal of Production Research, 39(16),
3747–3769.

Lei, D., Yuan, Y., & Cai, J. (2021). An improved artificial bee colony for multi-objective
distributed unrelated parallel machine scheduling. International Journal of Production
Research, 59(17), 5259–5271.

Lin, Y.-K., & Hsieh, F.-Y. (2014). Unrelated parallel machine scheduling with setup times
and ready times. International Journal of Production Research, 52(4), 1200–1214.

Michiels, W., Aarts, E., & Korst, J. (2007). Theoretical aspects of local search. Springer
Science & Business Media.

Mönch, L., Fowler, J. W., Dauzere-Peres, S., Mason, S. J., & Rose, O. (2011). A survey of
problems, solution techniques, and future challenges in scheduling semiconductor
manufacturing operations. Journal of Scheduling, 14(6), 583–599.

Salehi, M. S., & Rezaeian, J. (2016). A robust hybrid approach based on particle swarm
optimization and genetic algorithm to minimize the total machine load on unrelated
parallel machines. Applied Soft Computing, 41, 488–504.

Santos, H. G., Toffolo, T. A., Silva, C. L., & Vanden Berghe, G. (2019). Analysis of
stochastic local search methods for the unrelated parallel machine scheduling
problem. International Transactions in Operational Research, 26(2), 707–724.

Tamimi, S. A., & Rajan, V. N. (1997). Reduction of total weighted tardiness on uniform
machines with sequence dependent setups. Paper presented at the Industrial
Engineering Research-Conference Proceedings.

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine
scheduling problem with sequence dependent setup times. European Journal of
Operational Research, 211(3), 612–622.

Wein, L. M. (1988). Scheduling semiconductor wafer fabrication. IEEE Transactions on
Semiconductor Manufacturing, 1(3), 115–130.

Wang, H., & Alidaee, B. (2019). Effective heuristic for large-scale unrelated parallel
machines scheduling problems. Omega, 83, 261–274.

Yepes-Borrero, J. C., Villa, F., Perea, F., & Caballero-Villalobos, J. P. (2020). GRASP
algorithm for the unrelated parallel machine scheduling problem with setup times
and additional resources. Expert Systems with Applications, 141, Article 112959.

Yunusoglu, P., & Topaloglu Yildiz, S. (2021). Constraint programming approach for
multi-resource-constrained unrelated parallel machine scheduling problem with
sequence-dependent setup times. International Journal of Production Research, 1–18.

Zhang, L., Deng, Q., Lin, R., Gong, G., & Han, W. (2021). A combinatorial evolutionary
algorithm for unrelated parallel machine scheduling problem with sequence and
machine-dependent setup times, limited worker resources and learning effect. Expert
Systems with Applications, 175, Article 114843.

Zhu, Z., & Heady, R. B. (2000). Minimizing the sum of earliness/tardiness in multi-
machine scheduling: A mixed integer programming approach. Computers & Industrial
Engineering, 38(2), 297–305.

C. Chen et al.

http://refhub.elsevier.com/S0360-8352(21)00819-6/h0125
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0125
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0130
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0130
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0130
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0135
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0135
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0135
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0140
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0140
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0140
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0145
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0145
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0155
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0155
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0160
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0160
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0160
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0165
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0165
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0165
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0170
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0170
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0170
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0175
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0175
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0175
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0190
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0190
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0190
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0195
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0195
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0200
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0200
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0205
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0205
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0205
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0210
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0210
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0210
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0215
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0215
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0215
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0215
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0220
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0220
http://refhub.elsevier.com/S0360-8352(21)00819-6/h0220

	Hybrid tabu search algorithm for unrelated parallel machine scheduling in semiconductor fabs with setup times, job release, and expired times
	Citation

	tmp.1646373557.pdf.uxczf

