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Abstract: This research is motivated by a scheduling problem arising in the ion implantation process of wafer fabrication. 
The ion implementation scheduling problem is modeled as an unrelated parallel machine scheduling (UPMS) problem with 
sequence-dependent setup times that are subject to job release time and expiration time of allowing a job to be processed on 

a specific machine, defined as: . The objective is first to maximize the number of processed jobs, then 
minimize the maximum completion time (makespan), and finally minimize the maximum completion times of the non-
bottleneck machines. A mixed-integer programming (MIP) model is proposed as a solution approach and adopts a hybrid 
tabu search (TS) algorithm to acquire approximate feasible solutions. The MIP model has two phases and attempts to achieve 
the first two objectives. The hybrid TS algorithm has three phases and attempts to achieve all three objectives. In a real 
setting, computational results demonstrate that the maximum number of processed jobs can be acquired within a short time 
utilizing the hybrid TS algorithm (average 8 s). By comparing the two approaches, the TS outperforms the MIP model 
regarding solution quality and computational time for the second objective, minimizing the makespan. Furthermore, the third 
phase of the hybrid TS algorithm shows the effectiveness further to enhance the utilization of the ion implantation equipment. 

Keywords: Ride-hailing surge pricing, Taxi demand, Cross-price elasticity of taxi bookings, Taxi demand prediction 

 

1. Introduction 
 

The semiconductor industry is one of the world’s 

most capital-intensive and time-consuming industries 
(Johri, 1993), with over $481 billion annual sales 
revenue by 2018. There are four stages in the 
semiconductor manufacturing process: wafer 
fabrication, wafer probe (sort), assembly (packaging), 
and final test. It costs around $4 billion to build a new 
wafer fabrication facility (fab), and the cost of the 
equipment is over 75% (Gupta & Sivakumar, 2006). On 
the other hand, enhancing the fabs’ equipment 

utilization becomes increasingly important because of 
the enormous cost of wafer fabrication and intensive 
competition in the semiconductor industry. Therefore, 
proper utilization of the equipment via scheduling is 
undoubtedly critical. 

In wafer fabrication, ion implantation is a 
process where ions of dopant elements are accelerated 
into the silicon substrate. Any improved efficiency in the 
ion implantation process will contribute to the fab’s 

efficiency. When the previous machine completes a 
jobin the ion implantation process, it will release the job

to the implantation machine (implanter). The processing 
time is dependent on product types and machines which 
are processed in an implant step. Moreover, between 
two jobs processed on the same implanter, a setup time 
should be considered regarding the product types and 
the gap used to implant these two jobs. The ion 
implantation process can be modeled as a parallel 
machine scheduling problem (PMS) with sequence-
dependent setup times. In the ion implantation process, 
the process times are expected to be different for the 
same job on different machines. Thus, this problem 
should be categorized as an unrelated PMS (UPMS) 
problem. Every job has a release time, and every 
machine has an available time. As the wafer should be 
processed at a specified time, every job has an expired 
time. Each job will be expired and be scrapped if it 
cannot be processed before the expired time. Therefore, 
a job can only be processed on a set of machines rather 
than all the machines. 

Only a few studies in this field look into the 
UPMS problem with sequence-dependent setup time. 
For instance, Vallada and Ruiz, 2011, 
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and Tamimi & Rajan (1997) presented a hybrid heuristic approach using 
the genetic algorithm (GA). Kim et al. (2003) proposed a four-phase 
heuristic model to minimize the total weighted tardiness with tabu 
search (TS). 

However, only one paper has investigated this problem for the ion 
implantation process to the best of our knowledge. Horng et al. (2000) 
dealt with the ion implantation process as a UPMS problem with 
sequence-dependent setup times and job release times. However, the 
study does not consider the job expired times, available machine times, 
and different process times on different machines. 

In this study, we focus on the problem of scheduling unrelated par-
allel machines with sequence-dependent setup times subject to job 
release times and expired times for allowing a job processed on a 
particular machine. According to the practical requirement of the ion 
implantation, a three-phase objective problem is set to firstly maximize 
the number of processed jobs, then minimize the maximum completion 
time (makespan), and finally minimize the maximum completion times 
of the non-bottleneck machines. We implement the mixed integer pro-
gramming (MIP) model, and a hybrid TS algorithm is utilized to solve 
the problem. 

The remainder of the paper is organized as follows. A literature re-
view on ion implantation and popular approaches to solving scheduling 
problems is discussed in Section 2. The problem is described in detail, 
and assumptions are stated in Section 3. In Section 4, a two-phase MIP 
model is proposed, and the efficiency considerations for this model are 
presented. Section 5 discusses the hybrid TS algorithm and the rules for 
generating new solutions and algorithm procedures. In Section 6, 
empirical data is employed to test the proposed approaches, and a 
computational comparison between the proposed methods and other 
studies is undertaken. Finally, the conclusion and future work are pre-
sented in Section 7. 

2. Literature review 

In wafer fabrication literature, many studies mainly focus on 
scheduling the whole wafer fab, generally modeled as a job shop prob-
lem (Chiang, 2013; Wein, 1988). As the only evidence in modeling the 
ion implantation process, Horng et al. (2000)’s approach is a very 
simplified model, while the production environment is very compli-
cated. Job scheduling for ion implantation has salient features of ma-
chine aging and maintenance, different from typically formalized 
problems in the scheduling research literature. Compared with research 
problems in job scheduling literature, the scheduling problem for ion 
implantation has the following unique features (Chou & Huang, 2013):  

1. Maintenance is achieved by running complementary part types. 
Complementary part types have a self-healing effect on the machine. 
Maintenance is not treated as a separate activity. Instead, mainte-
nance is online, and the health of the machine is gradually restored 
during production. Therefore, job scheduling, and maintenance 
schedules are integral tasks.  

2. Filament aging increases the probability of machine failure. When a 
machine fails, repair time is incurred. In contrast, when a decision is 
made to change the ion type, setup changeover time is incurred, but 
the filament age is renewed. There are trade-offs between saving 
setup time and saving machine repair time. 

Therefore, more constraints should be considered given the above 
circumstances, and a more precise model should be proposed. 

According to Mönch et al. (2011), except for rework, most of the flow 
in the fab is deterministic instead of being probabilistic as it is in a job 
shop. In addition, the processing time per wafer or lot is very nearly 
deterministic. Therefore, the focus of this study is on the area of 

deterministic scheduling problems (DSP), attempting to reduce the 
complexity in the problem formulation. 

This paper focuses on the UPMS problem with sequencing-dependent 
setup times subject to the job release time and expired time of allowing a 
job to be processed on a machine, defined as: R|rj, eij, STsd|Cmax, where eij 
means the expired time depends on the job Jj and the machine Mi. To the 
best of our knowledge, no literature has studied this specific problem so 
far. Therefore, the problem can be regarded as the basic P|STsd|Cmax 
problem with additional constraints, and the approaches to the P|
STsd|Cmax problem can be considered and adapted to solve the R|
rj, eij, STsd|Cmax problem. The UPMS is very complex and considered an 
NP-hard problem (Baker, 1974). Therefore, in recent years, different 
heuristic and meta-heuristics approaches have been applied to solve the 
complexity of UPMS, such as the firefly algorithm (Ezugwu & Akutsah, 
2018), simulated annealing (Hamzadayi & Yildiz, 2016), artificial bee 
colony (Lei et al., 2021), smart pool (Cota et al., 2021), TS algorithm 
(Wang & Alidaee, 2019), particle swarm optimization (PSO) (Salehi & 
Rezaeian, 2016), and ant colony optimization (ACO) (Behnamian et al., 
2009). 

According to the results in the literature, the MIP model can yield a 
high-quality solution if the computational time is long enough. Never-
theless, the long computational time is not allowed in the production 
environment. In this study, for the exact algorithms, the MIP model is 
considered based on the research on R|STsd|

∑
(ejEj + tjTj) (Zhu & 

Heady, 2000), R|rj, STsd|
∑

wjTj (Lin & Hsieh, 2014), and P|rj, STsd|Cmax 

(Kurz & Askin, 2001). Table 1 summarizes the new trends in the UPMS 
problem with sequencing-dependent setup times considering their 
objective function and some specific features and exact and meta-heu-
ristics solution approaches. In the search results presented in Table 1, we 
focus on literature that at least one of their objective functions is to 
minimize the makespan. As shown in Table 1, regardless of the appli-
cation of proposed methods in the literature, the third objective goal in 
this study for minimizing the makespan of non-bottleneck machines is a 
novel approach and unique contribution among UPMS literature. In 
addition, only in few studies, the number of processed jobs has been 
considered in the objective function, which mainly they plan to mini-
mize the load of each machine instead of maximizing the total processed 
job, which is one of the goals in our study. 

According to our search among literature in the UPMS discipline, out 
of many possible choices of meta-heuristic approaches (as shown in 
Table 1), in this study, we employed the TS algorithm as a local search- 
based solution to deal with the NP-hardness of the UPMS problem. The 
main reasons for selecting the TS algorithm are summarized as follows:  

• Metaheuristic algorithms are commonly divided into two groups: 
local search-based and population-based algorithms. While local 
search-based algorithms usually start with a random initial solution 
and iteratively try to improve it using a fitness function, population- 
based algorithms start with more than one solution and search a 
more extensive area of the search space, combining current solutions 
to obtain new ones. Population-based solutions suffer from a lack of 
precision in comparison with local search. In addition, local-search 
components and constraint handling flexibility making the algo-
rithm attractive for problems with many constraints (Jaeggi et al., 
2008).  

• Selecting the TS algorithm generally proceeds more aggressively to 
the local optimum, relying on the premise that a slow descent will 
lead to a local optimum closer to a global one. This rationale of the TS 
algorithm derives from two considerations: (i) optimization prob-
lems can be solved by making the best available move at each iter-
ation; (ii) rather than spending more time in regions with less 
appealing solutions, the TS algorithm spends more time exploring 
regions with reasonable solutions (Glover, 1989). 

C. Chen et al.                                                                                                                                                                                                                                    
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• The iterative nature of the TS algorithm may allow it to be stopped 
after a feasible solution is found. However, methods like the SA al-
gorithm may not be stopped at any desired moment since the control 
parameter has to converge to a value close to zero to obtain a 
meaningful implementation (Michiels et al., 2007).  

• The TS algorithm, considering neighboring moves, does not need 
objective function gradient information as some methods like GA 
(Kulturel-Konak et al., 2003).  

• The TS algorithm uses deterministic moves, which reduce variability 
due to initial solutions and other parameters. In addition, the TS 
algorithm is designed to prevent repetition rather than a reversal of 
moves that seem not to work well. Also, the deterministic nature of 
the TS algorithm may make it feasible to reproduce the results 
(Brandão & Eglese, 2008).  

• Our problem has constraints like feasible job-machine pairs, expired 
time. The TS algorithm enables us to generate solutions with domain 
knowledge. For example, we use heuristics 1 and 2 in section 5.1 of 
our paper to generate solutions. However, other algorithms that 
exploit information from other solutions may not even generate 
feasible solutions. For instance, if we use the GA algorithm, crossover 
or mutation may assign a job to an infeasible machine as operations 
in GA do not consider domain knowledge. Although some can use 
unique encoding methods to solve this problem, the TS algorithm 
seems to have advantages.  

• Some algorithms necessitate encoding techniques, such as modeling 
the key concept velocity in PSO, which adds complexity to the so-
lution approach. However, TS does not have requirements for the 
encoding of solutions. 

According to the aforementioned reasons, we could not find an 
alternative solution approach that could be compatible with the TS al-
gorithm; therefore, the TS algorithm has been selected for constructing 
the hybrid meta-heuristic solution in this study. 

3. Problem description and assumptions 

3.1. Description of the problem 

The DSPs with setup times can be divided into four classifications in 
terms of batch (family) or non-batch setup times and independent or 
dependent setup times (Allahverdi et al., 2008). The schedule of unre-
lated parallel machines is considered with sequence-dependent setup 
times subject to job release times and expired times of allowing a job 
processed on a certain machine, defined as: R|rj, eij, STsd|Cmax. The three- 
phase objectives are defined to firstly maximize the number of processed 
jobs, then minimize the maximum completion time (makespan), and 
finally minimize the maximum completion times of the non-bottleneck 
machines. It is noted that the objective is to satisfy the requirements 
of ion implantation. 

The number of processed jobs should be maximized because the 
machines may not necessarily process all the jobs due to the constraint of 
the expired time. Minimizing the makespan is adopted to improve the 
utilization of the equipment. As a result of available times of the ma-
chine, we find that a distinct bottleneck usually appears on the same 
machine, leading to high total setup times for non-bottleneck machines. 
From the perspective of the whole ion implantation process, this may 
reduce the utilization of the equipment. Thus, minimizing the maximum 
completion times of the non-bottleneck machines is set as the third- 
phase objective. 

Table 1 
Summary of some recent trends in UPMS problems with sequencing-dependent 
setup times.  

No Source Objective Main Features Solution 
Method 

1 Behnamian 
et al. (2009) 

1. Minimize of 
makespan 

– ACO, SA, 
VNS 

2 Kuo et al. 
(2011) 

1. Minimize the total 
absolute deviation 
of makespan 
2. Minimize the total 
load on all machines 

Learning effects MIP 

3 Salehi & 
Rezaeian 
(2016) 

1. Minimize total 
machine load 

Release dates, 
deteriorating jobs, 
learning effects 

PSO, GA 

4 Fanjul-Peyro 
et al. (2019) 

1. Minimize 
makespan 

Renewable 
resources, machine- 
dependent setup 
times 

MIP 

5 Santos et al. 
(2019) 

1. Minimize 
makespan 

Machine-dependent 
processing time with 
additional setup- 
time 

SA, ILS, 
LAHC, 
SCHC 

6 Ezugwu 
(2019) 

1. Minimize 
makespan 

Non-pre-emptive 
machine, machine- 
dependent setup 
times 

GA 

7 Yunusoglu & 
Topaloglu 
Yildiz (2021) 

1. Minimize 
makespan 

Precedence 
constraint, machine 
eligibility, release 
dates, renewable 
resources 

CP 

8 Zhang et al. 
(2021) 

1. Minimize 
makespan 
2. Minimize setup 
time 

Worker resources, 
learning effect 

LS 

9 Bitar et al. 
(2021) 

1. Maximize the 
number of 
completed products 
2. Minimize number 
of auxiliary 
resources 
3. Minimize 
makespan 

Auxiliary resources, 
machine-dependent 
setup times 

MIP 

10 Yepes-Borrero 
et al. (2020) 

1. Minimize 
makespan 

Renewable resource GRASP 

11 Khanh Van & 
Van Hop 
(2021) 

1. Minimize total 
weighted earliness, 
tardiness, and 
maximum 
completion time 

Capacity constraint 
of the machines 

GA 

12 Cota et al. 
(2021) 

1. Minimize the 
makespan 
2. Minimize total 
consumption of 
electricity 

Independent and 
non-preemptible 
jobs 

Smart 
Pool 

13 Current study 1. Maximize the 
number of processed 
jobs 
2. Minimize the 
makespan 
3. Minimize the 
makespan of the 
non-bottleneck 
machines 

Job release time and 
expiration time 

TS 

VNS: variable neighborhood search; GRASP: Greedy randomized sdaptive search 
procedure; LS: List scheduling; CP: Constraint programming; ILS: Iterated Local 
Search; LAHC: Late Acceptance Hill-Climbing; SCHC: Step Counting Hill- 
Climbing. 

C. Chen et al.                                                                                                                                                                                                                                    
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The scheduling process can be represented in Fig. 1. 

3.2. Assumptions 

The assumptions of the problem are as follows:  

1. Each job can only be processed on a maximum of one machine (for 
models with multiprocessor tasks, this assumption can be relaxed).  

2. No preemption is allowed. In other words, a machine must 
complete a current job before it processes other jobs.  

3. Processing times are independent of sequencing.  
4. Processing times for a job can be varied on different machines.  
5. The job waiting zone is allowed. Jobs can stay in the waiting zone 

before all the machines are busy.  
6. No cancellation. Every job must be completed.  
7. Machine idle time is allowed.  
8. The failure and breakdown of the machines are ignored.  
9. Each machine can only process one job at a time.  

10. Every job has a release time.  
11. Every machine has available time.  
12. Every match of a job and a machine has an expired time.  
13. Every machine can only process part of a job.  
14. There is no randomness, and all specifications are known and 

fixed, including the number of jobs (n), the number of machines 
(m), and the processing times. 

4. Mixed integer programming 

In this study, the problem of unrelated parallel machines with sequence- 
dependent setup times is tackled by a three-phase optimization. The MIP 
model is applied to tackle the first two objectives, maximizing processed 
jobs, and minimizing the makespan. Furthermore, the last objective, mini-
mizing the maximum completion times of the non-bottleneck machines, is 
satisfied by changing the sequence of the jobs on every single machine, 
which is a classic single-machine scheduling problem and has been inves-
tigated by many researchers. For every non-bottleneck machine, a MIP 
model must be formulated to solve the single-machine scheduling problem 
according to the result from phase 2, which is complicated. Therefore, a 
hybrid TS algorithm is proposed to solve the problem with all three objec-
tives, and the MIP model will only tackle the problem with the first two 
objectives. 

4.1. The R|rj, eij,STsd|Cmax formulation 

The MIP model uses notations as follows:  
Sets and 

indexes:  
i  Index of a machine (i = 1, ...,m), where m is the number of 

machines.  
j,k  Index of job (j = 1,...,n), where n is the number of jobs. Subscripts 

j and k stand for two adjacent Jj , and Jk. In this study, index J 
denotes the job.  

M j  The set of machines, M , that can process Jj, j ∈ J .

J i  The set of jobs, J that can be processed on the machine Mi, i.e., 
{

j : i ∈ M j , j ∈ J
}

.  
Parameters  
Pij  The processing time of Jj, on the machine Mi, i ∈ M , j ∈ J i.  
Sijk  The setup time of switching from Jj to Jk on the machine Mi, i ∈

M , j,k ∈ J i, j ∕= k.  
S0

ij  The setup time of switching from an existing job to Jj on the 
machine Mi, i ∈ M , j ∈ J i.  

Sjk  The setup time of switching from job Jj to job Jk, j,k ∈ J , j ∕= k.  
Ai  The available date of the machine Mi, i ∈ M .  
Rj  The release date of the job Jj , j ∈ J .  
eij  The expired time of allowing job Jj to be processed on the 

machine Mi, i ∈ M , j ∈ J i.  
L  A large number. 
Variables:  
yij  Binary variable, 1 if Jj is assigned to the machine Mi and 

0 otherwise. i ∈ M , j ∈ J i.  
x0

ij  Binary variable, 1 if Jj is assigned to the machine Mi as the first 
job and 0 otherwise. i ∈ M , j ∈ J i.  

xijk  Binary variable, 1 if Jj precedes Jk on the machine Mi and 
0 otherwise. i ∈ M , j,k ∈ J i, j ∕= k.  

bj  Continuous variable, the starting setup time of Jj.  
cj  Continuous variable, the completion time of Jj.  
Cmax  Continuous variable, the maximum completion time for all jobs.  

The mathematical model for phase 1 is as follows: 

Phase 1 Model : Max
∑

j∈J

∑

i∈M j

yij (1)  

Subject to :

∑

i∈M j

yij ≤ 1 ∀j ∈ J (2) 

Fig. 1. The Scheduling Process.  

C. Chen et al.                                                                                                                                                                                                                                    
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x0
ik +

∑

j∈J i ,j∕=k

xijk = yik ∀i ∈ M , k ∈ J i (3)  

∑

k∈J i k∕=j

xijk ≤ yij ∀i ∈ M , j ∈ J i (4)  

∑

j∈J i

x0
ij ≤ 1 ∀i ∈ M (5)  

bj − Rj + L

(

1 −
∑

i∈Mj

yij

)

≥ 0 ∀j ∈ J (6)  

bj − max
(
Rj,Ai

)
+ L
(

1 − x0
ij

)
≥ 0 ∀i ∈ M , j ∈ J i (7)  

cj − bj +L
(

1 − x0
ij

)
≥ Pij + S0

ij ∀i ∈ M , j ∈ J i (8)  

bk − cj + L
(
1 − xijk

)
≥ 0 ∀i ∈ M , j, k ∈ J i , j ∕= k (9)  

ck − bk + L
(
1 − xijk

)
≥ Pik + Sijk ∀i ∈ M , j, k ∈ J i , j ∕= k (10)  

bj − eij − L
(
1 − yij

)
≤ 0 ∀i ∈ M , j ∈ J i (11)  

yij ∈ {0, 1} ∀i ∈ M , j ∈ J i (12)  

x0
j ∈ {0, 1} ∀i ∈ M , j ∈ J i (13)  

xijk ∈ {0, 1} ∀i ∈ M , j, k ∈ J i , j ∕= k (14)  

bj ≥ 0 ∀j ∈ J (15)  

cj ≥ 0 ∀j ∈ J (16) 

The decision variables yij, x0
ij, xijk ∈ {0,1} are non-negative and bi-

nary variables, and the decision variables, bj and cj, are non-negative 
and continuous variables. In phase 1, the objective function in (1) 
maximizes the number of processed jobs. Constraint (2) indicates that 
one job should not be processed by any machine or can be processed by 
only one machine. Constraint (3)–(4) represent that if xijk = 1, Jk must 
come immediately after Jj on the machine Mi, when both yij and yik 

equals to 1. Constraint (5) ensures that each machine can process at most 
one job as the first job. Constraint (6) indicates that the starting setup 
time of Jj should be later than its release time. Constraint (7) ensures 
that if Jj is the first job processed on machine Mi, its starting setup time 
should be larger than both its release time and the available time of 
machine Mi. Constraints (8) and (10) represent the time interval be-
tween the starting setup and completion time of Jj should be larger than 
the sum of its setup time and processing time. Constraint (9) states that 
the starting setup time of successor Jk should be later than the 
completion time of Jj. Constraint (11) ensures that Jj can begin pro-
cessing before its expired time on machine Mi. Constraints (12)–(16) 
indicate the non-negativity restrictions. 

The mathematical model of phase 2 is as follows: 

Phase 2 Model: MinCmax (17)  

Subject to :

Constraints (2)–(16) in phase 1 

Cmax ≥ Cj ∀j ∈ J (18)  

∑

j∈J

∑

i∈M j

yij = Phase 1 Model
(

objective  value
)

(19)  

cmax ≥ 0 (20) 

In phase 2, the objective is to minimize the makespan (equation 
(17)). Constraint (18) ensures that Cmax is the maximum completion time 
for all the jobs. Constraint (19) indicates the number of processed jobs is 
from the objective value of phase 1. 

4.2. Efficiency considerations 

It is easy to implement the formulation above using commercial 
solvers such as CPLEX. However, some trade-offs are also considered in 
the development of the model. Firstly, a one-phase model has been 
considered to simplify the model’s procedure and form, although the 
two-phase model is chosen at the end. Second, the time interval between 
the starting setup time and the completion time of a job should equal the 
sum of the process time and setup time, while a slack form is chosen at 
last (see constraints (8) and (10)). Third, the sets, M j and J i , sharply 
decrease the number of binary variables, which enables us to improve 
the numerical efficiency of the model. These three considerations will be 
discussed as follows. 

When formulating the problem, the efficiency and the simplification 
of the model are the prior factors to be considered. The model can be 
formulated into a one-phase model by combining two objectives in one 
objective function. There are two methods under consideration:  

1. Minimize (
∑

j∈J 1 −
∑

j∈J

∑
i∈M j

yij)Cmax  
2. Minimize -W

∑
j∈J

∑
i∈M j

yij+Cmax 

The first objective function makes the model a mixed-integer 
nonlinear programming model. Compared with linear programming 
problems, nonlinear programming problems are intrinsically more 
difficult to solve (Bradley et al., 1977). Although this method simplifies 
the procedure, it will reduce the numerical efficiency and take more 
time to solve this large-scale problem. For the second function, a weight 
factor W is introduced to depict the relative importance of the number of 
the processed jobs since the number of the processed jobs is generally 
less than one hundred and the maximum completion time is usually 
greater than ten thousand. The number of processed jobs is more 
important than the maximum completion time, while the W is empiri-
cally determined, and it varies from case to case. Therefore, this method 
is challenging to implement. 

In contrast, the two-phase MIP model has the advantage of high 
numerical efficiency and is easy to implement. The average solution 
times in phase 1 are about 8 s for a problem with 90 jobs and 30 ma-
chines. Moreover, it can derive an acceptable solution in 5 min in phase 
2. 

A slack form is introduced for the time interval between the job 
starting setup and completion time to simplify the model (see constraints 
(8) and (10)). For instance, in constraint (10), if the xijk = 0 then the left- 
hand side (LHS) should be greater than the right-hand side (RHS), while 
LHS should be equal to RHS if the xijk = 1. Nevertheless, these two 
constraints can be combined into one constraint, a slack form, because 
the time interval between the starting setup time and the completion 
time tend to be smaller due to the objectives, maximizing the number of 
processed jobs and minimizing the makespan. The strict constraints and 
their slack form are presented below: 

Strict constraints: 

ck − bk +L ≥ Pik + Sijk,

ck − bk = Pik + Sijk.

Slack form: 

ck − bk +L
(
1 − xijk

)
≥ Pik + Sijk.

The slack form is more comfortable to implement than the strict 
constraints, simplifying the procedure when programming. 

The sets, M j and J i , are introduced to reduce the number of vari-
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ables and improve numerical efficiency. In this problem of unrelated 
parallel machines with sequence-dependent setup times, a certain Jj can 
only be processed on several machines rather than all the machines. 
Similarly, a certain machine Mi can only process several jobs rather than 
all the jobs. Therefore, the set of jobs processed on the machine Mi and 
the set of machines processing Jj can directly depict this relationship 
rather than adding constraints to restrict unmatched jobs and machines 
after generating the binary variables for every job and machine. 

5. Proposed hybrid tabu search 

The P|STsd|Cmax is a difficult and complex combinatorial problem 
that can be considered an NP-hard problem because it is equivalent to 
the TSP when the number of machines is equal to one (Baker, 1974). In 
addition, the problem discussed in this study is subject to the job release 
times and expired times of allowing a job to be processed on a certain 
machine, which makes this problem more complex. 

The meta-heuristic algorithm has the advantage of high computa-
tional efficiency, while the quality of the solutions varies from the 
models and the parameters. The TS algorithm has outstanding perfor-
mance among the meta-heuristic algorithms because the TS neighbor-
hoods are generated by the rules associated with specific problems, 
which leads to a smaller solution space. The proposed MIP model in this 
study can derive an acceptable solution in a reasonable time (within 5 
min) using commercial software. In the meantime, a hybrid TS algo-
rithm is proposed to tackle this problem with a three-phase objective. 

Phase 1: An initial solution to maximize the number of processed jobs 
is derived from phase 1 of the MIP model. 
Phase 2: A TS algorithm is conducted to achieve enhanced solutions 
for makespan-moving jobs between various machines. An improved 
sequence for the machine-implemented removal and insertion is 
derived by the local search heuristic for every movement. 
Phase 3: A heuristic algorithm is adopted to resequence non- 
bottleneck machines’ jobs and minimize the maximum completion 
times for all the non-bottleneck machines. 

The first section in this chapter indicates the heuristic procedures for 
selecting jobs removed from a certain machine and machines receiving 
the removed job. After phase 1, all the processed jobs are assigned to all 
machines, then reassigned from one machine to another during phase 2. 
In Section 5.2, a detailed interpretation of these three phases will be 
stated. 

5.1. Insertion and removal procedures 

How jobs are inserted and removed from the machines will be 
described in this section. Two heuristics are adopted in the following 
procedure. The main heuristic algorithm applies the local neighborhood 
concept to generate high-quality solutions (França et al., 1996). The 
second heuristic algorithm employs randomness to enable some solu-
tions to escape from the local optima. 

Consider q as an input parameter to evaluate the local neighborhood 
of a job. The local neighbors of a Jj, relative to a machine, are its closest 

successors and predecessors among the jobs assigned to this machine. 
The closest successor of Jj means the Jk with sjk less than q, and the 
closest predecessor is Ji with sij less than q. Now, selecting the best job to 
be removed is constrained to the job with the least local neighbors. 
Therefore, the local neighborhood is determined for each machine, i.e., 
every job has m local neighbors. The concept is represented through the 
following example. Consider the matrix [sjk] in Table 2. An additional 
column should be inserted in the matrix in which the element s0j rep-
resents the setup time of Jj, the first job in the sequence. Assume that 
sj0 = 0, I = 1, ...,n. 

Presume that there are two machines and the sequences assigned to 
them are: 

M1 : − 0 − 2 − 5 M2 : − 0 − − 3 − − 1 − − 4 − 6 

The local neighborhood structure for J1 and q = 23 is then: 

M1 : successors = {0, 5}; predecessors = {2, 5}

M2 : successors = {0}; predecessors = {3}

The principle of every movement (removal and insertion) is to 
choose a job from the busiest machine and then insert it into another 
machine. The maximum completion time can iteratively be reduced by 
conducting the movement repeatedly. The detailed procedure of the 
heuristics is shown below: 

Heuristic 1:  

• Removal: On the busiest machine, choose the job that has the least 
number of local neighbors.  

• Insertion: For the chosen job, compute the number of local neighbors 
on every possible machine. Then, select the machine with the 
greatest number of local neighbors. 

Heuristic 2:  

• Removal: On the busiest machine, randomly choose a job as the 
removal job.  

• Insertion: For the selected job, randomly insert it into a machine that 
can process the job. 

Heuristic 1 is proposed to make the total setup time as small as 
possible after implementing the removal and insertion procedures. Be-
sides, if the jobs on the machine Mi are determined, the maximum 
completion time of these jobs mainly depends on the total setup time, as 
the process times for these jobs on the machine Mi are fixed. The local 
neighbors for the Jj are the jobs whose setup times with the Jj are less 
than q. Therefore, in theory, more local neighbors every job on the 
machine Mi has, more likely, a sequence with less total setup time is 
derived. 

The removal of the job with the least local neighbors from the busiest 
machine means the remaining jobs have more local neighbors than the 
removed ones. The insertion makes the removed job is taken to the 
machine with the largest number of its local neighbors. In other words, 
these two procedures are applied to reduce the total setup time for the 
jobs on the machine related to removal and on the machine related to 
insertion, which have a high number of local neighbors. 

Generally, Heuristic 1 can generate a solution with a higher possi-
bility of approaching the optimal solution than randomly generated 
solutions. Nevertheless, Heuristic 2 can avoid trapping in the local op-
tima. Combining these two heuristics will contribute to an efficient and 
high-quality search. 

5.2. A tabu search algorithm 

TS, first developed by Glover (1989, 1990), is a global optimization 
meta-heuristic algorithm. One critical difference from the so-called hill- 

Table 2 
The Matrix of sjk.  

sij  0 1 2 3 4 5 6 

0 – 30 32 54 9 38 42 
1 0 – 35 25 47 7 89 
2 0 21 – 76 38 86 25 
3 0 9 38 – 30 32 54 
4 0 49 49 23 – 8 45 
5 0 23 29 18 36 – 61 
6 0 74 82 61 25 38 –  
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climbing algorithms is that the TS algorithm can jump out of the local 
minima and give better solutions. A mechanism equips the search pro-
cess to allow the objective function to deteriorate. Furthermore, by 
doing this, the mechanism enables the solution to escape from the local 
optima. The movement with a minimum cost will be chosen as the next 
generation. If the solution is a local minimum, this means accepting an 
unimproved perturbation. The solution might also fall back into the 
local optimum where it previously escaped because the search always 
selects the best movement of one iteration. The recently conducted 
movement is forbidden (tabu) and appended into a constantly updated 
tabu list to avoid this situation. Over the past few years, several 
combinatorial problems have been well solved using the TS algorithm 
(Glover, 1990). 

The TS algorithm implemented in this study is an adapted version of 
the TS algorithm for P|STsd|Cmax problems without the constraints of the 
job release time and the expired time of allowing a job processed on a 
certain machine developed by França et al. (1996). The TS algorithms 
are open-ended, and they should be formulated in terms of the charac-
teristics of one specific problem. The key features which can enhance the 
implementation of the TS algorithm are presented as follows (França 
et al., 1996):  

1. The neighborhood structure.  
2. The initial solution.  
3. The tabu tenure, i.e., how long a tabu move will be forbidden.  
4. The stopping criterion. 

A neighbor solution is derived by removing jobs from the busiest 
machine and inserting them into another machine in our approach for 
implementing the TS algorithm to tackle the R|rj, eij, STsd|Cmax problem. 
The concepts of a local neighborhood are applied to construct all the 
neighbors. There are several methods to construct the neighborhood. 
One main method (Heuristic 1) is to take the Jj belonging to the busiest 
machine and then insert it into one of the machines from the set M (Jj ) to 
form a new solution. The set M (Jj ) includes the machines that may 
process the Jj and is defined as M (Jj ) ={Mi|Mi ∕= Mi,Mi ∈ M j }, where 
Mi is the busiest machine. 

C(Mi) is introduced to be the completion time for processing all the 
jobs assigned to the machine Mi. The movement which leads to the 
minimum value of C(Mi) looking at every insertion/removal heuristic 
algorithm stated in the preceding section when referring to insertion or 
removal of jobs is called the optimal movement. A vector (Jj,Mi,M*

i ) is 
introduced to indicate a move which states the Jj that is removed from 
the busiest machine and inserted into the machine M*

i that has been 
chosen from the candidate set M (Jj ). After a movement is conducted, 
the solution is forbidden until it is removed from the tabu list. How long 
a solution will stay in the tabu list depends on the tabu tenure, which is 
the key performance indicator in most implementations of the TS al-
gorithm (França et al., 1996). If it is too small, the TS algorithm may be 
cycling and trapped in the local optima. 

In contrast, if it is too huge, it may lead to more neighbors being 
forbidden and fewer neighbors available, and the TS approach may 
execute poorly because the constraints are too strict to search for a better 
solution. We will discuss the appropriate choice for the tabu tenure and 
other parameters at the end of the section. The number of iterations, T, is 
chosen to be the stop criterion of the TS algorithm. 

Phase 1 is the same as phase 1 in the MIP model. The solution will be 
stored and transformed to phase 2 as the initial solution. The solution 
contains the schedule on every machine, the completion time of every 
machine, and the makespan. 

For Phase 2, setup times are independent of the machine; therefore, 
suppose that Mi is the busiest machine and consider the following no-
tations (França et al., 1996): 

C(Mi, Jj) = completion time associated with the machine Mi if Jj is 
inserted in it. 
C(Mi, Jj) = completion time associated with the machine Mi if Jj is 
removed from it. 

The detailed procedure of phase 2 is as follows: 
Step 1: Set the iteration counter t = 0. 
Step 2: Set the candidate solution counter s = 1. 
Step 3: Generate the candidate solutions using Heuristic 1 and Heu-

ristic 2 as proposed in section 5.1.  

a. Determine the Jj to be moved and received by the machine M*
i , using 

Heuristic 1 or 2. If s = 1, Heuristic 1 will be applied; otherwise, 
Heuristic 2 will be applied. 

b. Compute the minimum completion time among p randomly gener-
ating sequences for the single machine M*

i after the insertion of Jj, 
defined a: 

C*(M*
i , Jj
)
= min

{
C
(
M*

i , Jj
)⃒
⃒p  sequences  of  the  machine M*

i

}

c. Consider p as iteration number for re-optimization in every iteration; 
compute the minimum completion time among p randomly gener-
ated sequences for the busiest machine Mi after the removal of Jj, 
defined as: 

C*(M i, Jj
)
= min

{
C
(
M i, Jj

)⃒
⃒p  sequences  of  the  machine  M i

}

d. Compute the maximum completion time if Jj is moved from Mi to M*
i , 

defined a: 

Ts = max{C(Mi)|∀i ∈ M }

e. If the yielded solution is tabu, go back to action a at step 3 and 
generate another solution (ensure every candidate solution is not 
tabu).  

f. Set s = s + 1. If s < 100, go back to action a at step 3 and generate the 
next candidate solution. Otherwise, go to step 4. 

Step 4: Select the solution* as solution*
= argmin{Ts}, and append 

solution* in the tabu list. 
Step 5: Determine the busiest machine and update the best solution, 

optimal makespan, and incumbent solution. 
Step 6: Set t = t + 1. If T, the number of iterations has not been 

satisfied, go to Step 2. Otherwise, complete the optimization and export 
the solution. 

The problem in phase 3 can be considered as a single-machine 
scheduling problem. The objective is to minimize the maximum 
completion time of every non-bottleneck machine separately. Based on 
the cases investigated in this study, the number of processed jobs on a 
machine is small as the optimization result shows, generally less than 
five jobs, barely up to 10 jobs. Therefore, a simple heuristic is applied. 

For every non-bottleneck machine, consider the following steps: 

Step 1: If the number of processed jobs is nonzero, implement step 2; 
otherwise, ignore this machine and consider the next machine. 
Step 2: Generate p random solutions (p job sequences) and select the 
solution with the shortest completion time. The random solution is 
the randomly generated sequence of the jobs on a machine. 

For the values of parameters, comments on them are shown below. 
The number of randomly generated sequences, p, for a single machine to 
yield a minimum completion time is defined as p = min{100,ni!}, where 
ni is the number of jobs on the under optimization machine. The tabu 
tenure can be determined according to specific cases, and 12 is set as the 
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tabu tenure for the case investigated in this study. The number of iter-
ations, T, is set to be 1.2n. The proposed algorithm is tested for 90 jobs 
and 30 machines and has an acceptable numerical efficiency. 

6. Empirical study 

In this study, real instances from a wafer fab were employed to 
evaluate the efficiency of the proposed MIP model and the hybrid TS 
algorithm. The software is halted for the MIP model and exported a 
feasible solution if the implementation time exceeded 300 s in phase 2 
since an acceptable solution derived in a reasonable time was expected. 
For the TS algorithm, the best solution was chosen among the five ex-
ecutions. Because of the same phase 1, the two algorithms derived the 
same maximum number of processed jobs. All problems were solved on a 
Surface Pro (5th Gen) with Intel Core i5-7300U, and the MIP model was 
solved by CPLEX (v12.7.1), a standard commercial solver developed by 
IBM. 

6.1. Data 

The data applied in the experiment is from the ion implantation 
process of a wafer fab. The sample period was from 8:00 AM to 12:00 PM 
on August 8th, 2019, and 10 cases were investigated in this study. Be-
sides, a set of 100 synthesized data is generated based on these 10 cases 
to validate the performance of the proposed algorithm on a larger scale. 
Moreover, the data structure is organized by presenting attributes of a 
job processed on a machine and the machine’s attributes in a row. Every 
combination of a job and a machine occupies a row. The attributes are as 
follows:  

• AppId: the job id that can exclusively identify a job.  
• Ppid: an attribute of the job which will be used to determine the setup 

time.  
• Process time: the processing time of a job on a machine.  
• Gas: the gas type for processing a job.  
• Job release time: the estimated release time of a job.  
• EqpId: the machine identification value that can exclusively identify 

a machine  
• Running AppId: the identification value of the already-existing job on 

this machine. This attribute is employed to determine the setup time 
of the first job on the machine.  

• Running Gas: the type of the already existing gas on this machine. 
This attribute is employed to determine the setup time of the first job 
on the machine.  

• Machine availability: the amount of time a machine is available to 
process jobs. 

• RtdReason: the reason why this machine-job combination is infea-
sible. Only the rows where RtdReason is empty will be kept in the 
experiment, and others will be deleted.  

• Expired time: the expired time of this machine-job combination, 
which means the job will expire if it cannot be processed before this 
time. 

The setup time is determined by the job existing on the machine and 
its successor:  

• If these two jobs have the same ppid, the setup time is 0 s.  
• If these two jobs have different ppid but the same gas, the setup time 

is 60 s.  
• If these two jobs have different gas, the setup time is 900 s. 

6.2. Computational results 

The MIP model is applied to solve the problem with the first two 
objectives, and the hybrid TS algorithm is applied to tackle the problem 
with all three objectives. The comparison between the results of the MIP 

model and the hybrid TS algorithm in phase 2 is conducted. Then, the 
comparison between the results in phase 2 and phase 3 of the hybrid TS 
algorithm is undertaken. In addition, in order to validate the perfor-
mance of the proposed algorithm and evaluate the adequacy of the 
model under a higher number of cases, relying on the empirical data, we 
generated 100 instances of synthesized data when randomly selected 
lot-machine pairs from 10 cases of empirical data were changed. The 
average performance of synthesized data has been calculated for 
comparing the maximum completion time of the MIP model and TS al-
gorithm on a larger scale. 

Table 3 represents the maximum number of processed jobs, the 
average computational time for various cases using the MIP model and 
TS, and the objective value of the MIP model and TS algorithm after 
phase 2 optimization. When implementing these two algorithms, the 
average computational time is the sum of the time on phase 1 and phase 
2. Fig. 2 shows the maximum completion time comparison of the MIP 
model and TS algorithm. Fig. 3 shows the relative improvement of 
objective values using the TS algorithm compared with the MIP model. 
The relative improvement is calculated using the equation: 

(ZMIP − ZTS)/ZMIP. (21) 

The terminology used in Table 3 is as follows:  
CI  case index 
NJ  maximum number of processed jobs 
TMIP  average computational time using the MIP model (s) 
TTS  average computational time using the TS algorithm (s) 
ZMIP  MIP solution value (s) 
ZTS  TS solution value (s)  

The results in Table 3, Fig. 2, and Fig. 3 indicate that TS outperforms the 
MIP model in computational time and solution quality. If implementing 
more time, the MIP will give a better solution, while the longer 
computational time is not reasonable in the production environment. 
The hybrid TS algorithm yields a better solution in a shorter computa-
tional time, from 9 s to 56 s than the MIP model, more than 300 s. Fig. 3 
presents that the results have improvements from 0% to 54%, on 
average 29%, varying from case to case. Focusing on the computational 
time of the TS algorithm, such short times show that the TS algorithm is 
quite suitable for production applications. 

The problem investigated in this study has quite a bit of computa-
tional complexity. The UPMS problem, which is related to the problem 
in this study, is proven to be NP-hard (Baker, 1974). Therefore, solving 
the MIP model of this problem is difficult and time-consuming. The 
hybrid TS algorithm generates potential solutions for the practical 
problem, where the insight is to make the total setup time as short as 
possible; therefore, it could outperform the MIP. 

Table 4 indicates the differentiation of the results of non-bottleneck 
machines between phase 2 and phase 3 using the TS algorithm. Table 4 
shows the maximum completion times of non-bottleneck machines in 
phase 2 and phase 3 using the TS algorithm, respectively. It is noted that 
the non-bottleneck machines processing no jobs will not be presented in 

Table 3 
MIP and TS Computational Results.  

CI NJ TMIP  TTS  ZMIP  ZTS  

1 74  305.74  19.99 13,104 12,400 
2 77  307.4  23.37 11,555 11,555 
3 76  305.45  25.95 20,065 14,232 
4 77  305.34  18.84 13,852 9702 
5 75  304.87  19.52 14,687 8795 
6 72  302.25  12.49 13,460 9045 
7 69  303.74  9.44 13,255 11,290 
8 68  303.37  9.84 15,681 14,965 
9 89  306.34  20.09 15,173 12,632 
10 80  310.01  55.23 20,136 9320 
Synthesized data 79  305.45  23.48 15,794 11,294  
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Table 4. The relative improvement is calculated using the equation: 

Rphase3 =
Z2 − Z3

Z2
. (22) 

The terminology used in Table 4 is as follows:  
MI  machine index 
Z2  maximum completion time of the machine in phase 2 
Z3  maximum completion time of the machine in phase 3 
Rphase3  relative improvement from phase 2 to phase 3  

According to Table 4, the heuristic applied in phase 3 of the TS algorithm 
effectively enhances the utilization of the equipment based on a mini-
mum makespan in phase 2, while this heuristic is also efficient as the 
computational cost is within 1 s. Meanwhile, it is noted that the 
maximum completion times on several machines cannot be reduced. 
Two possible reasons are considered: the solution yielded from phase 2 
of the TS algorithm is optimal. It is possible because the strict constraints 
of this problem make a few feasible solutions on certain machines. In 
addition, in phase 2 of the TS algorithm, the insertion or removal is 
implemented on certain machines, and the heuristic in phase 3 is used in 
the insertion and removal procedures. Therefore, the heuristic becomes 
ineffective after it has been applied in phase 2. 

More complex methods are not used in phase 3 of the TS algorithm 
because the optimization problem is simple (single-machine-scheduling 
with the number of jobs less than 5 for most non-bottleneck machines). 
At the same time, computational efficiency should be considered, and 
this heuristic can be implemented within 1 s. 

7. Conclusion 

This study investigates the scheduling of ion implantation in wafer 
fabrication. To the best of our knowledge, only one paper has studied 
this problem and modeled it as a UPMS problem with sequence- 
dependent setup times and job release times. This paper proposes a 
more precise model by considering the job expired times, available 
machine times, and different process times on different machines and 
two approaches to solve this problem. The contributions of this study 
can be concluded as follows: 

Fig. 2. Comparison of the Solution Values for MIP/TS.  

Fig. 3. Relative improvement of the TS algorithm compared with the MIP model.  

Table 4 
The Computational Results in Phase 2 and Phase 3 Using TS.  

MI Z2  Z3  Rphase3  

2 7477 6552 0.124 
3 1045 1045 0 
4 4317 4317 0 
12 11,080 11,080 0 
13 10,646 10,646 0 
14 10,325 10,325 0 
15 8643 7803 0.097 
16 5755 4300 0.253 
17 9470 9470 0 
20 8666 8666 0 
22 6142 5025 0.182 
28 8621 8621 0 
29 5340 4940 0.075 
32 5362 5135 0.042  
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1. Model the scheduling of the ion implantation as a UPMS problem 
with sequence-dependent setup times subject to job release times and 
expired times of allowing a job processed on a certain machine, 
defined as:R|rj, eij, STsd|Cmax.  

2. Propose a MIP model to satisfy the first two objectives of the problem 
and solve the MIP model by CPLEX. Some considerations are intro-
duced to simplify the model, and at the same time, enhance 
computational efficiency.  

3. Propose a hybrid TS algorithm to satisfy all the three objectives of the 
problem. The effectiveness and efficiency are tested to be higher than 
that of the MIP model. 

The two algorithms have tested real cases from a wafer fab to 
compare their performance. The hybrid TS algorithm outperforms the 
MIP model in computational time and solution quality for the first two 
optimization phases. The makespan yielded from the hybrid TS algo-
rithm shortens from 0% to 54%, compared to the MIP model’s make-
span. The hybrid TS algorithm shows a shorter computational time, from 
9 to 56 s, than the MIP model, with more than 300 s. The heuristic 
applied in phase 3 of the hybrid TS algorithm effectively enhances the 
utilization of the equipment based on a minimum makespan in phase 2. 
Phase 3 optimization can be completed in a short time (within 1 s). The 
proposed hybrid TS algorithm effectively and efficiently solves the ion 
implantation’s scheduling problem from the above discussion. The 
proposed MIP model in this study can be employed to generate the 
benchmark and evaluate other algorithms. 

On the other hand, there are still some limitations in this study:  

1. Distinct bottleneck machine. This study proposes a heuristic in phase 
3 of the hybrid TS algorithm to reduce the total setup times of the 
non-bottleneck machines caused by the machine’s available times. 
Nevertheless, the effectiveness of the heuristic heavily relies on the 
practical situation where the number of jobs on the non-bottleneck 
machines is generally less than 5 in the tested cases.  

2. Limited complexity. The approaches proposed in this study are 
mainly tested by the cases of 30 machines and 90 jobs. It remains to 
be investigated if the approaches are effective and efficient when the 
problem gets more complex.  

3. The hybrid TS algorithm can be further improved. For the hybrid TS 
algorithm, only one job will move in one iteration. It remains to be 
investigated if an algorithm can move more jobs in an iteration and 
more effectively generate solutions. 

The following future research directions are recommended as fol-
lows:  

1. Other ways to model the problem: this paper proposes to model the ion 
implantation process as a R|rj, eij, STsd|Cmax problem and to achieve 
three objectives: first, maximize the number of processed jobs; sec-
ond, minimize the maximum completion time (makespan); and 
finally, minimize the maximum completion times of the non- 
bottleneck machines. Moreover, it is encouraged to study modeling 
the ion implantation process in other ways.  

2. The heuristic in phase 3 of the hybrid TS algorithm: other heuristics for 
phase 3 of the hybrid TS algorithm can be investigated to solve 
problems with more jobs on non-bottleneck machines.  

3. More complex cases: In the practical situation, the problem may 
become more complex. More jobs or more machines should be 
considered. How to effectively solve the problem with a large size is 
another research direction.  

4. Solution generation strategy: The hybrid TS algorithm is suggested to 
move multiple jobs in an iteration to yield a better solution and in-
crease efficiency. 
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