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Abstract
This paper concerns the staffing optimization problem in multi-skill call centers. The
objective is to find a minimal cost staffing solution while meeting a target level for the
quality of service (QoS) to customers. We consider a staffing problem in which joint
chance constraints are imposed on the QoS of the day. Our joint chance-constrained
formulation is more rational capturing the correlation between different call types,
as compared to separate chance-constrained versions considered in previous studies.
We show that, in general, the probability functions in the joint-chance constraints
display S-shaped curves, and the optimal solutions should belong to the concave
regions of the curves. Thus, we propose an approach combining a heuristic phase
to identify solutions lying in the concave part and a simulation-based cut generation
phase to create outer-approximations of the probability functions. This allows us to
find good staffing solutions satisfying the joint-chance constraints by simulation and
linear programming.We test our formulation and algorithm using call center examples
of up to 65 call types and 89 agent groups, which shows the benefits of our joint-chance
constrained formulation and the advantage of our algorithm over standard ones.

Keywords Call center · Staffing optimization · Joint chance constraint · Cutting
plane · Concave-identification

1 Introduction

This paper concerns themanagement of staffing in a call center, which can be generally
defined as a central office used for receiving or transmitting customers’ requests by
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telephone. In a call center, an inbound call is used for the purposes of purchase,
troubleshooting, repair request, emergency call, etc., while an outbound call is for
the purposes of consulting, recruiting, telemarketing, market research, and so on. Call
centers are quite popular in society and can be found in customer care services, fire
alarms, telemarketing, etc. The call center industry is growing and playing an important
role in society. For instance, in the United States, the number of call center agents rose
from 2.1 million in 2004 to 2.7 millions in 2016 with an estimated annual salary
cost of US $95.2 billion (according to the Bureau of Labor Statistics in 2016 (https://
www.bls.gov/oes/2016/may/naics5_561420.htm). Nowadays, with the development
of technology, the call center provides services not only on phones but also via email
and chat. For more details about call centers, we refer the reader to Gans et al. (2003),
Wallace and Whitt (2005), Ingolfsson et al. (2010).

The aim of this paper is to develop mathematical models and optimization algo-
rithms for workforce planning in telephone call centers, for the purpose of improving
their operations. More precisely, we study the staffing optimization problem in mul-
tiskill call centers, in which we aim at minimizing an operating cost while delivering
a high quality of service (QoS) to customers. This is one of the essential problems in
the management of a call center. We propose a new optimization model in which joint
chance constraints are imposed on some performance measures, and develop a new
optimization algorithm to solve the problem practically. We also provide numerical
experiments to show the advantage of our model and algorithm.

In call center systems, performance measures are used to access the quality of
service (QoS) and efficiency of a call center. The main purpose of these performance
measures is to ensure that the call center is meeting its goal and objectives. Service
level (SL) is one of the most popular QoS measures. It can be defined as the fraction
of calls that are answered within an acceptable waiting time. The constraint on the SL
is mostly stated as s percent of calls answered within τ seconds, where τ is a given
parameter. The SL can be measured and controlled separately by call types, or in an
aggregated day. In practice, SL can be defined as an expectation over an infinite time
horizon, or as a random variable over a given time period. In the latter case, one may
use chance constraints to ensure that the probability of meeting an SL requirement is
above a certain level. Various closed-form formulas have been proposed to compute
SL values in different settings (Buist and L’Ecuyer 2005; Jouini et al. 2012). However,
in the case of multi-skill call centers, it is not possible to exactly calculate the SLs.
Instead, one needs to use simulation to approximate them (Çezik and L’Ecuyer 2008).

There are many problems that need to be considered in the management of a call
center. One of them is the staffing optimization problem that deals with a decision on
selecting a number of agents of each skill group at each period of the day to satisfy
QoS constraints while minimizing an operational cost. One might be also interested
in a scheduling problem (Avramidis et al. 2010), in which a set of admissible shift
schedules is first specified and one needs to choose a number of agents of each group
in each shift. The number of decision variables and data in a scheduling problem is a
combination of work shifts, breaks, training time, etc, so it is much larger as compared
to the staffing optimization one. Call routing is also an optimization issue (Chan et al.
2014; Kooley et al. 2015). In this paper, we focus on the staffing optimization problem.
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To ensure the target of SL over finite duration we can use chance constraints. These
constraints are adequate when the performance is measured over a short time inter-
val and QoS measures are random variables in a given period off time. In addition,
the chance-constrained approach does not require that the decisions are feasible for
(almost) every outcome of random parameters, but ensures that the probability of
satisfying a certain set of SL constraints is above a certain level. A general and popu-
lar way to deal with chance-constrained programs is to build sample approximations
of chance constraints using the SAA method (Nemirovski and Shapiro 2006b). The
advantages of the chance constraints in the context of the call center staffing optimiza-
tion have been discussed thoroughly in some recent studies (Chan et al. 2014, 2016; Ta
et al. 2019), to which we refer the reader for more details. Separate chance constraints
widely-used in previous work (Chan et al. 2014, 2016; Ta et al. 2019). The use of
such constraints would however be problematic if the SL values from different call
types are strongly correlated and a joint chance-constrained formulation could be used
to overcome this issue. To illustrate the advantage of joints chance constraints over
separate chance constraints, we give the following example. Suppose that X and Y are
two random variables following a uniform distribution in [0, 1] such that X = 1− Y .
Clearly, P[X ≥ 0.5] = P[Y ≥ 0.5] = 0.5. However, the joint probability value
P[X ≥ 0.5 & Y ≥ 0.5] is equal to zero. Thus, the joint probability value would be
much lower than each individual probability value if the random variables are highly
correlated. This is also the case in the context ofmulti-skill centers with SL constraints,
as we will show later in the experiential section that a joint probability value can be
very small (close to zero) even though all the individual probability values are larger
than 0.8.

Optimization problems with joint chance constraint have received much atten-
tion in the operations research and management science literature. Nemirovski and
Shapiro (2006a) proposes a general class of convex conservative approximations of
chance constrained problems. They also create a convex and efficiently solvable large
deviation-type approximation of chance-constrained problems, known as the “Berstein
approximation”. Zan et al. (2014) consider the staffing problem of large-scale service
systems with multiple customer classes and multiple dedicated server pools. They
obtain asymptotically optimal solutions to the staffing problem by using the Janssen–
Van Leeuwaarden–Zwart bounds.Bonferroni approximation is one of themost popular
approximations of joint chance constraints, which replaces the joint chance constraint
with a set of single-chance constraints such that their sum does not exceed a certain
threshold. Some variations of Bonferroni approximation for joint chance constraint
have been recently proposed to solve different problems (Xie et al. 2017; Singh and
Watson 2019). Besides, there are several studies using joint chance constraint for
problems relating to call centers. Gurvich et al. (2010) considers the staffing problem
with uncertain demand forecasts in multi-skill call centers. They propose a two-step
solution for the staffing problem under joint chance constraints. In step 1, they solve a
random static planning problem (RSPP), i.e., they aim to obtain a staffing vector and a
set of arrival rate vectors thatminimize the total staffing cost andmeet some probability
targets. In step 2, they use the staffing vector obtained at step 1 as the initial solution
and perform a simulation-based search with a fixed routing rule to find an optimal
staffing solution that is feasible to the joint chance constraints. Excoffier et al. (2015)
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propose a one-stage stochastic program involving joint chance constraints as a solu-
tion to deal with a staffing and shift-scheduling problem. Excoffier et al. (2016) then
construct a stochastic programming-based approach to deal with arrival rate uncer-
tainty in a shift-scheduling problem. This approach is the combination of two steps:
(1) reformulating the joint chance constraint program into a deterministic program
with a set of non-linear terms and (2) building a numerical representation for these
non-linear terms.

The staffing optimization problems in multi-skill contact centers is challenging as it
involves non-linear constraints that can only be approximated by simulation. The liter-
ature has seen a number of studies making use of simulation and linear programming
to practically solve the problem. Atlason et al. (2004) propose a method that combines
cut generation and linear programming to solve a scheduling problem in a single call
type and single-skill call center with long-term expected SL constraints. Çezik and
L’Ecuyer (2008) adapt the cutting plane method to solve large-size staffing problems
in a single time period for multi-skill call centers and Atlason et al. (2008) have also
developed a cutting plane method in conjunction with simulation and analytic call
centers to solve the scheduling problem with more factors such as work requirements
and shift construction. Another algorithm based on the cutting plane method to solve
the scheduling problem in multiple time periods and constraints on work schedules
is developed in Avramidis et al. (2010). Some other algorithms based on the cutting
plane method and simulation have been recently proposed to solve staffing problems
under separate chance constraints with arrival rate uncertainty (Chan et al. 2016; Ta
et al. 2020, 2019). It is important to note here that the use of the cutting plane method
is supported by the observation that the QoS functions often display “S-shaped” forms
and good solutions typically belong to the concave regions of the QoS functions. Thus,
to make sure the cutting plane returns good staffing/scheduling solutions, one needs
to well eliminate the non-concave parts. This is a crucial issue when using the cutting
plane method in the context.

Contributions: In this work, we consider a joint chance-constrained staffing opti-
mization model in multi-skill centers. As being said, this model can take advantage of
the chance-constrained approach over models based on classical long-term expected
SLs. On the other hand, our joint chance-constrained model is also advantageous in
accounting for the correlation between different call types. Nevertheless, it is well-
known in the literature that joint chance-constrained problems are typically more
difficult to solve, even numerically (Ahmed and Shapiro 2008). To address the chal-
lenge, we examine some essential properties of the joint chance-constrained problem,
which suggests that existing algorithms used to solve separate chance-constrained ver-
sions would be no-longer efficient. We then show that the joint probability functions
would also display S-shaped curves, but the non-concave regions may be difficult
to be eliminated. We, therefore, develop a new algorithm based on simulation and
cut generation to find good staffing solutions. To support the cutting plane method,
we develop a concave-identification procedure to efficiently identify staffing solutions
that belong to the concave regions.We also develop a local-search procedure to further
improve a solution returned by the cutting plane method. Our approach allows finding
good staffing solutions satisfying the joint chance constraints through simulation and
linear programming. We also provide numerical results using call center examples of

123



Journal of Combinatorial Optimization

up to 89 call types and 65 agent groups to show the advantages of our proposed joint
chance-constrained model and solution algorithm.

The rest of this paper is structured as follows.We present the formulation of the joint
chance-constrained problem in Sect. 2. In Sect. 3, we present our main methodology
to solve the problem, including a sample average approximation (SAA) formulation
of the joint chance-constrained problem and an investigation of the shapes of the joint
probability functions, and details about the cutting plane method. We then present our
numerical results in Sect. 4, and finally, Sect. 5 concludes.

2 Joint chance-constrained staffing optimization

In a staffing optimization problem, we aim at minimizing the total cost of agents while
satisfying some constraints on the performance measures, i.e., QoS. We consider a
multi-skill call center in which many call types are handled by different agent groups.
There are K call types, indexed from 1 to K , I agent groups, numbered from 1 to I . For
notational convenience, for any integer number N ∈ N, we denote the set {1, . . . , N }
by [N ]. The separate chance-constrained (CC) staffing optimization problem (Ta et al.
2020; Chan et al. 2016) is given as

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x

cTx =
I∑

i=1

ci xi

subject to Fk(x) = P[Sk(x) ≥ sk] ≥ 1 − δk, k = 1, . . . , K

P[S0(x) ≥ s0] ≥ 1 − δ0

x ≥ 0 and integer

(1)

where x = (x1, . . . , xI ) is a staffing vector representing the number of agents in each
group, c = (c1, . . . , cI ) is a cost vector, Sk(x) is the SL of call type k, Fk(x) is the
separate chance-constrained function of call type k, S0 is the aggregated SL, sk is the
SL target of call type k, s0 is the target for the aggregated SL and δk, δ0 is the risk level
selected by the managers. Accordingly, the joint CC version requires a target level for
the probability that all the SL requirements are satisfied simultaneously.

minimize
x

cTx =
I∑

i=1

ci xi

subject to P

⎡

⎢
⎢
⎢
⎣

S1(x) ≥ s1
S2(x) ≥ s2

...

SK (x) ≥ sK

⎤

⎥
⎥
⎥
⎦

≥ 1 − δ

P[S0(x) ≥ s0] ≥ 1 − δ0

x ≥ 0 and integer,
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or a compact version

(P2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x

cTx =
I∑

i=1

ci xi

subject to F(x) = P

[

min
k

{Sk(x) − sk} ≥ 0

]

≥ 1 − δ

P[S0(x) ≥ s0] ≥ 1 − δ0

x ≥ 0 and integer.

where F(x) is the joint chance constrained function.
As we can see, both models have constraints for the aggregated service level. In the

separate CC formulation, each call type is considered independently but in the joint CC
version (P2), all individual requirements are combined into a single constraint. The
joint CC formulation has the advantage of being able to account for the relationship
between SLs from different call types. However, this advantage also makes the joint
CC problem more difficult to handle (Ahmed and Shapiro 2008).

Before exploring a method to solve (P2), we show some properties of the joint CC
problem (P2) in the property below, which indicates that the joint CC formulation
is more conservative but would be robust than the separate CC versions (P1), in the
sense that a solution to the separate CC problem would give a low probability that all
the SL requirements are meting simultaneously as mentioned in part (i) of Theorem
1 of Xie et al. (2017). More precisely, any feasible solution of the joint CC problem
(P2) is also feasible to the separate CC problem (P1). On the other hand, if a solution
x is feasible to the separate CC problem (P1), then the probability value in the joint
chance constraint can be bounded as

min
k

{
P [Sk(x) ≥ sk]

}
≥ P

[

min
k

{Sk(x) − sk} ≥ 0

]

≥ 1 − K δ. (2)

In our context, these above statements can be easily proved as follows. Let assume
that a staffing solution x satisfies the separate constraints, we have the chain

1 − P

[

min
k

{Sk(x) − sk} ≥ 0

]

= P

[
∃k ∈ [K ]

∣
∣
∣{Sk(x) − sk} < 0

]

≤
K∑

k=1

P [{Sk(x) − sk} < 0]

=
K∑

k=1

(1 − P [{Sk(x) − sk} ≥ 0])

≤ K δ,
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where the last inequality is due to P [{Sk(x) − sk} ≥ 0] ≥ 1 − δ for all call type
k ∈ [K ]. So, we have inequality 1 − P [mink{Sk(x) − sk} ≥ 0] ≤ K δ, which is also
the desired result.

Inequality (2) tells us that the joint CCversion ismore conservative than the separate
CC version, in the sense that all solutions being feasible to the joint CC problem are
also feasible to the separate CC counterpart. It also says that, in theory, a solution to
the separate CC problem would give a low joint probability value, especially when
the number of call types becomes large. This is an important property of the joint CC
problem, which we will illustrate in more detail by the following simple example. We
use a small call center example with 2 call types and 2 agent groups and we refer
the reader to the experimental section for a detailed description of the example. The
target of the SL for each call type is sk = 0.8. We set risk targets as δ = δk = 0.4
for all k ∈ [K ]. We chose a staffing vector x = (12, 16) and use simulation to
estimate the probability values. We see that, P[S1 ≥ s1] = 0.665 for call type 1
and P[S1 ≥ s1] = 0.6 for call type 2. However, the joint probability of the two call
type requirements is P[S1 ≥ s1 & S2 ≥ s2] = 0.55, which is lower than the target
1 − δ = 0.6. Moreover, for some instances of the extra-large call center example
considered in Sect. 4, we observe that the joint probability value could be less than
0.1 even all the individual probability values are above 0.8.

It is also interesting to look at the differences between the joint probability function
F(x) and separate probability functions Fk(x) as well as expected SLs Sk . We have
the following proposition.

Proposition 1 For any call type k ∈ [K ] served by group i ∈ [I ], we have
limxi →∞ Fk(x) = 1 and limxi →∞ Sk(x) = 1. This is however not the case for the
joint probability function, i.e., for any group i ∈ [I ] and staffing solution x, if group
i does not serve all call types and F(x) < 1 then F(x) may be bounded from above
by a constant that is less than one.

Proof Clearly, if group i can serve call type k, then if we increase the number of
agents in the group to infinity, we will have enough agents to serve all customers
instantly, so the corresponding long-term expected SL value should approach one, and
the probability value P [Sk(x) ≥ sk] approaches one as well. On the other hand, for the
joint probability function, assume that there is a call type h that cannot be served by
group i , then adding agents to group i would not affect (or the influence is very small)
Sh , then would not affect P [Sh(x) ≥ sh]. Since we have P [Sh(x) ≥ sh] ≥ F(x), i.e.,
the value of F(x) is bounded by P [Sh(x) ≥ sh], which could be less than 1 when
xi → ∞. Note that for most of the realistic call center systems that we are aware of,
there is no group that is able to serve all call types. �	

In general, the joint probability function has some properties distinguishing it with
the separate chance-constraints and expected SL constraints, raising a question that
whether standard methods used to solve the separate CC and expected SL problems
(Atlason et al. 2008; Ta et al. 2020) still apply. We discuss this in the next section,
where we show that the joint probability function still displays a S-shaped curve, but
identifying the concave region of the function is more challenging, thus requires new
investigations.
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3 Solutionmethod

In this section, we describe a simulation-based method to solve the joint CC staffing
optimization problem. Similar to previous studies (Atlason et al. 2008; Çezik and
L’Ecuyer 2008; Ta et al. 2020), to make the problem practical, we use simulation
to approximate the joint probability function. We then show that the joint probability
function also has an S-shaped curve, suggesting that the standard cutting planemethod
(Atlason et al. 2008; Çezik and L’Ecuyer 2008) would be still useful. This method only
works if all the solutions used to generate linear cuts belong to the concave region of
the joint probability function.We, therefore, develop a heuristic approach to efficiently
identify the concave region of the joint probability function.

3.1 Sample average approximation

In multi-skill call centers, it is not possible to exactly compute the joint probability
functions, so we approximate the joint CC problem (P2) using the sample average
approximation (SAA) approach and solve the SAA problem instead. More precisely,
using simulation, we generate N independent scenarios of the random SL to obtain
an estimate of the joint probability function F(x). The SAA version of (P2) can be
formulated as

(P3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x

cTx =
I∑

i=1

ci xi

subject to F̂N (x) = 1

N

N∑

n=1

I

[

min
k

{Ŝn
k (x) − sk} ≥ 0

]

≥ 1 − δ

F̂0
N (x) = 1

N

N∑

n=1

I[Ŝn
0 (x) ≥ s0] ≥ 1 − δ0

x ≥ 0 and integer

(3)

where Ŝn
k (x) is a realization of the service level of call type k, for the n-th simulated

scenario, under a staffing vector x . The SAA problem is an integer program with
nonlinear constraints. As shown in Ta et al. (2020), a solution found by the SAA
version will converge to an optimal solution of the original problem when the samples
size N goes to infinity. In other words, one can find a good solution by solving the
SAA version using appropriate sample sizes.

Since we always need to solve SAA problems to find solutions, we investigate
the relation between the SAA version of the joint CC and separate CC problems. To
facilitate our exposition, let us first consider the SAA counterpart of the separate CC
problem (P1) as
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(P4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
x

cTx =
I∑

i=1

ci xi

subject to F̂k
N (x) = 1

N

N∑

n=1

I
[
Ŝn

k (x) ≥ sk
] ≥ 1 − δ, k = 1, . . . , K

F̂0
N (x) = 1

N

N∑

n=1

I[Ŝn
0 (x) ≥ s0] ≥ 1 − δ0

x ≥ 0 and integer

The following proposition shows the probability that an SAA solution to the joint CC
problem is also feasible to the SAA problem of the separate CC problem.

Proposition 2 If the joint probability function in (P3) and the separate probability
functions in (P4) are approximated by the same set of realizations {Ŝn

k (x)| n ∈ [N ], k ∈
[K ]}, then any feasible solution of (P4) is also feasible to (P3). Otherwise, if they are
using independent sets of realizations, then for any solution x being feasible to the
SAA problem (P3), for any k ∈ [K ] and any ε > 0, we have

P

[
F̂k

N (x) ≥ 1 − δ − ε
]

≥ 1 − exp

(−2Nε2

9

)

.

Proof The first claim is obvious. For the second claim, since x is feasible to (P3), we
have F̂N (x) ≥ 1 − δ. Thus,

P

[
F̂k

N (x) ≥ 1 − δ − ε
]

≥ P

[
F̂k

N (x) − F̂N (x) ≥ −ε
]

= P

[
F̂k

N (x) − Fk(x) + Fk(x) − F(x) + F(x) − F̂N (x) ≥ −ε
]

≥ P

[
F̂k

N (x) − Fk(x) − (F̂N (x) − F(x)) ≥ −ε
]
, (4)

where the last inequality is due to the fact that Fk(x) ≥ F(x). Now we define a
random variable Z = I [Sk(x) ≥ sk] − I

[
mink{S′

k(x) − sk} ≥ 0
] + F(x) − Fk(x).

Here we assume that the random SL Sk(x) in the first indicator function and S′
k(x) in

the second indicator are independent. We see that F̂k
N (x)−Fk(x)− (F̂N (x)−F(x))

is a sample approximation of E[Z ] and E[Z ] = 0 and Z ∈ [−2, 1]. Thus, using the
Hoeffding’s inequality (Hoeffding 1994) we have

P

[
F̂k

N (x) − Fk(x) − (F̂N (x) − F(x)) < −ε
]

≤ exp

(−2Nε2

9

)

. (5)

Combining (4) and (5) we obtain the desired inequality. �	
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Proposition 2 implies that the probability that an SAA solution of the joint CC problem
(P3) is ε-feasible to the separate CC problem (P4) converges to one exponentially fast
when the sample size N goes to infinity, for any ε > 0. So if we select an arbitrarily
small ε, then with a sample size N sufficiently large, an SAA solution of the (P3)
will be “almost” feasible to the separate CC problem (P4). Moreover, as a result of
Proposition 2, the probability that a solution give by (P3) is ε-feasible to (P4) is
greater than 1 − ρ, for any ρ > 0, if we select N ≥ −9 ln(ρ)/(2ε2). For example,
if we use N > 8300 samples, then with a probability of 0.95, any solution to (P3) is
0.99-feasible to (P4).

3.2 Concavity of the joint probability function

The main challenge when solving the staffing optimization problem in multiskill call
centers is the nonlinearity of the probability functions. Previous studies (Çezik and
L’Ecuyer 2008; Atlason et al. 2008; Avramidis et al. 2010; Ta et al. 2020) make use
of the cutting plane method, which is based on the observation that the probability
or expected SL functions display S-shaped curves and optimal solutions typically lie
in the concave parts. Note that in practice, the management would always wants the
risk level to be at a low value (e.g, δ ≤ 0.3) so that optimal solutions always lie
in the concave part. In our context, we also investigate the use of the cutting plane
method due to its practical viability. Nevertheless, as shown in the previous section,
the joint CC problem has some properties that make it different from the separate CC
and expected long-term SL versions studied in previous studies. So, it is crucial to
verify the S-shaped property in the context. We do it in the following.

We first take the example of a medium call center with 6 call types and 8 agent
groups considered in Sect. 4 and we refer the reader to the section for a detailed
description. Figure 1 shows how the joint probability function F̂N (x) varies when
we increase the number of agents in group 4. Starting from an initial staffing vector
x0 = (18, 21, 16, 18, 20, 18, 17, 19), we keep adding agents to x4 from 18 to 69.
As we can see, the joint probability value increases from 0 to 1, and the probability
function displays an “S-shaped” form. We also try to vary the numbers of agents in
two groups. In Fig. 2 we plot a 3D graph of the joint probability function as a function
of the numbers of agents in Groups 4 and 7. For this 3D graph, we start from initial
staffing x0 = (18, 20, 19, 18, 17, 20, 21, 19) and increase the number of agents in
the fourth group x4 from 18 to 58 and the seventh group x7 from 21 to 61. When the
number of agents in two groups increases, the probability value increases very quickly
from 0 to 1. We also see that the joint probability also displays an “S-shaped” curve.

However,when investigating the shape of the joint probability function numerically,
we also observe that the joint probability function does not always vary fromzero to one
and has the “S-shape” form. It happens sometimes thatwhenwe increase the number of
agents in a group that does not serve all call types, the joint probability value increases
very slowly, or there is almost no increase. In Fig. 3, we also take the example of 6 call
types and 8 agent groups with initial staffing x0 = (18, 21, 16, 18, 20, 18, 17, 19) and
plot the values of F̂N (x) when x2 varies from 21 to 61. We see that when the number
of agents increases from 21, the joint probability value increases very slowly from
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Fig. 1 S-shaped form of the joint probability function

Fig. 2 A 3D surface plot of the joint probability function

zero and then fluctuates around 0.05. The value of 0.05 is very small and that means
the joint probability value is almost unchanged, noting that the difference between the
probability values at each staffing point is very small so we can consider the zigzag
pattern as a result of simulation-noises. Therefore, in this context, to improve the joint
probability value, one needs to add more agents groups that really affect the joint
probability function. This observation is also consistent with (2) and Observation 1
and drives the design of the concave-identification method in the next section.

We also provide a comparison of the joint probability and a separate probability
function using the large call center with 20 call types and 15 agent groups (see the
experimental section for more details). We start from an initial staffing x0 = (28, 0,
16, 16, 0, 0, 18, 11, 13, 0, 12, 6, 0, 0, 0) and increase the fifth agent group x5 from 0
to 53 while keeping the agent numbers in the other groups unchanged. We simulate
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Fig. 3 Non “S-shaped” curve example

Fig. 4 Comparison between joint and separate probability values

and estimate the value of both joint probability and separate probability functions. As
expected, the values given by the joint probability function are always smaller or equal
to the minimum value of separate probability functions at each point of x5, leading to
a lower curve.

3.3 Cut generation

In this section, we discuss the cutting plane method in detail. In analogy to previous
studies (Atlason et al. 2008; Çezik and L’Ecuyer 2008; Chan et al. 2016), the method
is supported by the S-shaped forms of the probability functions and the concavity of
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the probability functions in the region of interest, i.e., the region containing feasible
staffing solutions. The method is based on an iterative procedure in which at each
iteration if the chance constraints are unsatisfied, i.e., there is a probability value
smaller than the target, and the current staffing solution lies in the concave region,
then we can create linear cuts based on subgradient information to construct outer-
approximations of the probability functions. The iterative procedure stops when we
find a solution satisfying all the chance constraints.

The cutting plane method requires that all the points used to generate linear cuts
need to belong to the concave regions of the probability functions, otherwise the
procedure would return bad solutions. To eliminate the non-concave region, previous
studies (Çezik and L’Ecuyer 2008; Chan et al. 2016) make use of a fluid scheduling
model (Bassamboo et al. 2006). This model has heuristic linear constraints to cover a
fraction of αk of the arrival rate of call type k, as described in Chan et al. (2016). New
additional variables ωk,i ≥ 0 are required in this model which defines the number of
agents of group i handling calls of type k. One can construct some constraints for the
staffing problem before adding subgradient cuts using the fluid scheduling model

�
i∈Gk

μk,iωk,i ≥ αk	k k ∈ [K ]
�

k∈Si
ωk,i ≤ xi i ∈ [I ]

ωk,i ≥ 0 k ∈ [K ] i ∈ [I ]

where 	k is the arrival rate of call type k, {αk} are some parameters that should be
selected to get an initial solution lying in the concave region of F̂N (x), Gk is the set
of groups that can handle call type k and Si is the set of call types that can be handled
by group i .

It has been shown that the fluid scheduling model works well for staffing optimiza-
tion problems under separate chance constraints or long-term expected SL constraints
(Çezik and L’Ecuyer 2008; Ta et al. 2020). However, it is not the case in our context.
More precisely, we observe that it is not easy to select good parameters αk to identify
the concave regions of F̂N (x). This model often results in too low staffing solutions,
i.e., fails to eliminate the non-concave part, or results in too high staffing solutions,
i.e., it eliminates good staffing solutions. This issue will be seen more clearly in our
experimental section. Thus, we propose a heuristic phase to overcome this issue. The
idea is that we start from low values of αk , k ∈ [K ], to make sure that we do not
eliminate good solutions. We then iteratively use simulation to compute probability
values, and if there is a too small joint probability value, i.e, less than a given threshold,
then we add more agents to improve the joint probability value. In the experiments,
we will show that this method is really beneficial in tackling the aforementioned issue
of the fluid model.

In the following, we describe in detail how to create linear cuts based on the concept
of subgradient. First, we consider a probability function f (x). Let x∗ be the current
solution and q(x∗) be a subgradient vector of f (x) at point x∗. This subgradient vector
can be estimated numerically as follows. For each given x∗, we generate I staffing
vectors x∗

1 , . . . , x∗
I where x∗

i = x∗ + dei where ei is a vector of size I with a value
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of 1 at the i-th position and 0 elsewhere, and d ∈ N+ is a step size. Then, we use
simulation to compute f (x) and f (x∗

i ), i ∈ [I ] and estimate the i-th element qi (x∗)
as follows.

qi (x∗) = [ f (x∗
i ) − f (x∗)]/d. (6)

As in previous papers (Chan et al. 2016; Ta et al. 2019), d is usually set to 1, and
sometimes d may be increased to 2 or 3 to deal with simulation noises (e.g., the
number of scenarios N is small) or the subgradient is not computed as expected, e.g.,
qi (x∗) < 0 for some i . In our context, to better understand how the value of d affects
the performance of our algorithm, we will test with d = 1, 2, or 3. Details can be
found in the experimental section.

Now, suppose that we have q(x∗) as an estimation of the subgradient vector of
function f at point x∗. From the assumption that x∗ belongs to the concave region of
f and the properties of a subgradient vector, we obtain the following valid inequality
f (x∗) + q(x∗)(x − x∗) ≥ f (x). We want to find x such that f (x) ≥ 1 − δ, leading
to the following valid inequality

q(x∗)Tx ≥ 1 − δ − f (x∗) + q(x∗)Tx∗, (7)

which is linear. These linear cuts can be added after each iteration to obtain linear
programs of the form

min
x∈NI

ω∈RK×I
�

{
cT x | Ax ≤ b, H x + Kω ≤ h

}
, (8)

where Ax ≤ b refers to the set of subgradient cuts and H x + Kω ≤ h are constraints
given by the fluid model. The problem in (8) is a mixed-integer linear program and can
be solved conveniently by a general-purpose solver, e.g., CPLEX or Gurobi. Further-
more, one can show that the cutting plane method will return an optimal solution to the
SAA problem if all the assumptions perfectly hold, i.e., all the points used to generate
cuts belong to the concave regions of the probability functions, and all sub-gradients
q(x∗) are well estimated, in the sense that f (x∗) + q(x∗∗)(x − x∗) ≥ f (x) for any x
in the concave region of f (·). These assumptions, however, may not hold in practice,
leading to sub-optimal solutions. Hence, in the next section, we develop a local-search
procedure to partially address the issue.

3.4 Simulation-based algorithm

In this section, we describe our algorithm in detail. Algorithm 1 describes the detailed
steps of our algorithm. First, we need to choose a threshold ρ ∈ [0, 1] to identify the
concave regions of the probability functions, a step size d, parameters αk , k ∈ [K ] for
the fluid scheduling model. Then, we construct some preliminary constraints using
the fluid scheduling model and add them to the mixed-integer linear program (MILP)
in (8). Solving this problem by a MILP solver gives us an initial staffing solution.
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Algorithm 1: Simulation-based cutting plane for the joint CC staffing problem
# Set up some parameters and preliminary constraints
Select a threshold ρ to define “concave regions”, a step size d. Set a limit value for the step size dmax,
choose αk and add preliminary constraints using the fluid scheduling model to the linear model (8).
# Simulation-based cutting plane
Solve the linear model (8) to get an initial staffing x0.
Simulate with x0 to get probability values and set x = x0.
while F̂N (x) < 1 − δ or F̂0

N (x) < 1 − δ0 do
# Identify points in the concave regions
x̄ ← Concave-Identification(x). # Algorithm 2
for each probability function f (·) that does not satisfy the chance constraints do

Estimate a subgradient vector q(x̄) using simulation and (6).
Add linear cut q(x̄)Tx ≥ 1 − δ − f (x̄) + q(x̄)T x̄ to the linear programming model (8).

Solving linear model (8) to get a new staffing candidate x .
Simulate to get new probability values.

# Local search to further improve the solution
x ← Local-search(x) # Algorithm 3
Return x .

As being said, it is crucial in our algorithm to add cuts based on points that are in
the concave regions. To do so, we need to check whether the probability values are
large enough. If there is any probability value less than the chosen threshold ρ, we
need to add more agents to improve the joint probability value. In the cases of separate
CC or expected SLs, it can be done simply by adding more agents to groups that serve
unsatisfied call types. For our joint CC problem, it is not straightforward to choose
groups that we should add agents to, in order to improve the joint probability values.
To this end, we look closely at the joint probability function and write

P

[

min
k

{Sk(x)−sk} ≥ 0

]

=
∑

h∈[K ]
P

[
h =argmink∈[K ]{Sk(x) − sk} & Sh(x) − sh ≥0

]
.

So, to effectively improve P [mink{Sk(x) − sk} ≥ 0], we select

h = argmaxh∈[K ]P
[
h = argmink∈[K ]{Sk(x) − sk} & Sh(x) − sh ≥ 0

]
.

In other words, we select a call type that affects the most the joint probability value.
Note that, in the context of the SAA method, h can be selected as follows.

h = argmaxh∈[K ]

{
N∑

n=1

I
[
h = argmink∈[K ]{Ŝn

k (x) − sk} & Ŝn
h (x) − sh ≥ 0

]
}

. (9)

So, the idea is that we keep selecting h and increasing the number of agents and
simulating the probability functions until there is no probability value that is less than
threshold ρ. We describe this procedure in Algorithm 2, where s is a step size. Note
that s can be chosen adaptively according to the joint probability values, e.g., we can
choose a large s when the joint probability value is small, and small s when the joint

123



Journal of Combinatorial Optimization

probability value is close to ρ.We discuss different ways to select s in our experimental
section.

Algorithm 2: Concave-Identification (x)
Input: Staffing vector x
Output: Staffing vector x̄ lying in the concave region of F̂N (·).
while F̂N (x) ≤ ρ or F̂0

N (x) ≤ ρ do
# Select the call type that affects the most the joint probability function.
Compute gh = ∑N

n=1 I
[
h = argmink∈[K ]{Ŝn

k (x) − sk } & Ŝn
h (x) − sh ≥ 0

]
for all h ∈ [K ].

Select h = argmaxh{gh}.
# Add more agents to improve F̂N (x)

Select a group i that serves call type h.
xi ← xi + s.
Simulate with the new staffing x to obtain new F̂N (x), F̂0

N (x).
end
Return x .

Algorithm 3: Local-search (x)
Input: Staffing vector x
Output: Staffing vector x that yields a better cost while being feasible to the constraints
while F̂N (x) ≥ 1 − δ & F̂0

N (x) ≥ 1 − δ0 do
# Select the call type that affects the least the joint probability function.
Compute gh = ∑N

n=1 I
[
h = argmink∈[K ]{Ŝn

k (x) − sk } & Ŝn
h (x) − sh ≥ 0

]
for all h ∈ [K ].

Select h = argminh{gh}.
# Remove agents
Select a group i that serves call type h
xi = xi − s
Simulate with the new staffing vector x .

end
Return the best staffing solution found.

In the main part of the algorithm, we use the cutting plane method and simulation
to find a good solution to the SAA problem. We keep adding linear cuts for violated
chance constraints and solve the linear program (8) until we find a feasible solution.
At each iteration, we use simulation to verify whether the current solution belongs
to the concave regions by comparing the probability values to the chosen threshold
ρ. If it is not the case, we use Algorithm 2 to shift the current solution to a new one
that yields probability values above ρ. Then, for each unsatisfied chance constraint,
we estimate the subgradient vector by (6). As mentioned in previous work (Çezik and
L’Ecuyer 2008; Ta et al. 2020), even under the right conditions, subgradient estimates
may have non-positive elements, which could lead to bad cuts. An additional step is
required to check the quality of such subgradient estimates carefully. If the subgradient
vectors satisfy some basic requirements, i.e., having non-negative entries, we create
linear cuts by (7) and add them to the linear program (8). We then solve this program
with a general-purpose solver (e.g. CPLEX) to get a new solution candidate. Using
simulation, we check if that solution is feasible to the chance constraints. If it is the
case, we quit the loop and return the best solution found. Otherwise, we move to the
next iteration with the new solution candidate.
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The last step of Algorithm 1 involves a local search procedure to further improve
a solution returned by the cutting plane method. The idea is to see whether one can
remove agents while keeping all the constraints satisfied. In analogy to the concave-
identification procedure, we identify a call type h̄ that affect the least the joint
probability value as

h = argminh∈[K ]

{
N∑

n=1

I
[
h = argmink∈[K ]{Ŝn

k (x) − sk} & Ŝn
h (x) − sh ≥ 0

]
}

.

(10)
Then, we can choose a group that serves call type h̄ and has the largest cost, and
remove agents from that group. This can be done iteratively until we no-longer can
remove agents while keeping all the chance constraints satisfied.

4 Numerical experiments

In this section, we provide experimental results based on three call center examples
(medium, large, and real-life extra-large call centers). These examples have been used
in previous studies (Çezik and L’Ecuyer 2008; Chan et al. 2014, 2016; Ta et al. 2019).
The objective is to numerically illustrate the advantage of the joint CC formulation,
as compared to its separate CC counterpart, and evaluate the performance of our
algorithm.

4.1 Experimental settings

We test our algorithm using targets: 1 − δ = 0.8 (i.e. 80%) and 1 − δ0 = 0.85 (i.e.
85%) and three step sizes d ∈ {1, 2, 3}. We denote the set of targets as (80%, 85%).
We set the agent costs based on the number of skills in the agent’s skill set Si (the
number of call types that agent can serve) as ci = 1+ 0.1(|Si | − 1), where |Si | is the
cardinality of Si and c = (c1, . . . , ci )

T .
We choose a sample size N = 1000 for all the examples. Previous studies have

shown that these sample sizes are sufficient to provide good approximations to the
probability/expected SL functions (Chan et al. 2014; Ta et al. 2019). We vary the
arrival rate, leading to 10 instances for each example. Each instance corresponds to an
arrival-rate scenario in the two-stage staffing optimizationmodel considered in Ta et al.
(2019) andwe refer the reader to this paper formore details. For each instance,we solve
the joint CC problem by Algorithm 1 and the separate CC counterpart by the classical
algorithms in (Çezik and L’Ecuyer 2008; Ta et al. 2019). For each solution obtained
from the separate CC problem, we compute resulting joint probability values. The
idea is to show how such solutions perform in the context of joint chance constraints.

In the following, we describe in detail our heuristic method used to identify staffing
solutions that belong to the concave regions, i.e., Algorithm 2. As mentioned, this
method is important, motivated by the fact that adjusting the parameters αk in the fluid
scheduling model is neither easy nor efficient, even manually, especially for large-size
examples with many call types and agent groups. To effectively perform this task, we

123



Journal of Combinatorial Optimization

consider three heuristic approaches to increase the number of agents in the group h̄
identified in (10):

• Method #1: We increase the number of agents in the chosen group by 1.
• Method #2: We consider two cases

– If F̂N (x) < 0.2 or F̂0
N (x) < 0.2, increase the number of agents in the chosen

group by 2.
– Otherwise, increase the number of agents in the chosen group by 1.

• Method #3: We consider 4 levels of the probability functions

– If min{F̂N (x), F̂0
N (x)} < 0.1, increase the number of agents by 4.

– If min{F̂N (x), F̂0
N (x)} ∈ [0.1, 0.2], increase the number of agents by 3.

– If min{F̂N (x), F̂0
N (x)} ∈ [0.2, 0.3], increase the number of agents by 2.

– Otherwise, increase the number of agents by 1.

For each data set, we run Algorithm 1 with the three heuristic methods above and
choose the best method to provide comparisons of the joint CC and separate CC
formulations. To evaluate the performance of our concave-identification method, we
run Algorithm 1, with and without the concave-identification phase, and compare the
solutions obtained.

The experiments are done using a personal computer with Intel(R) Core(TM) i5-
9500 CPU @ 3.00GHz processor and 8192 MB of RAM. We use MATLAB 2017
to implement, run and link to IBM ILOG CPLEX 12.10 to solve mixed-integer lin-
ear programs with a time budget of 2 min. The simulation is performed using the
Contact-Centers simulation library (Buist and L’Ecuyer 2005) developed under the
SSJ simulation package (L’Ecuyer et al. 2003).

4.2 Medium example

First, we test our approach using a medium-size call center of 6 call types and 8 agent
groups. We use the same settings as in previous studies (Chan et al. 2014, 2016; Ta
et al. 2019), i.e., (i) the callers do not abandon immediately in case they have to wait,
(ii) patience times follow an exponential distribution with means between 36 and 52
min, and (iii) all service times follow Log-Normal distributions with means between
5.1 and 11.3min. The acceptable waiting times are chosen as τk = τ0 = 120 (seconds)
and the target for SLs are sk = s0 = 80%. We choose step size d = 2 for all test
cases. We choose the fluid parameters α = (1, 4, 1.2, 1, 3) and choose Method #2
for identifying the concave regions, as it performs the best among those proposed, in
terms of CPU time and solution quality.

We show comparison results for the 10 instances in Table 1. As we can see, in
terms of agent cost and running time, the separate CC model performs better than the
joint CC model, in the sense that the cutting plane algorithm returns better costs for
the separate CC than for the joint CC model in 9/10 instances and has better running
time in 9/10 instances. This is not surprising because, as shown in Sect. 2, the joint
CC formulation is more conservative. However, the percentage gaps between the final
costs given by the joint CC and separate CC models are quite low (less than 1%).

123



Journal of Combinatorial Optimization

Table 1 CPU times, probability values, agent costs for the medium call center example

Instance Joint CC solutions Separate CC solutions Gap (%)

Time (s) Joint prob. values Cost Time (s) Joint prob. values Cost

F̂N (x) F̂0
N (x) F̂N (x) F̂0

N (x)

1 985 0.81 0.87 196.7 777 0.77 0.85 195.6 0.56

2 1313 0.81 0.86 190.4 742 0.79 0.86 190.1 0.16

3 863 0.83 0.87 189.6 473 0.72 0.86 188.8 0.42

4 1450 0.81 0.86 196.5 752 0.76 0.85 196.5 0.00

5 805 0.81 0.87 182.9 676 0.76 0.86 182.1 0.44

6 862 0.81 0.88 190.2 951 0.80 0.86 189.7 0.26

7 1027 0.80 0.87 175.3 220 0.73 0.85 174.0 0.74

8 978 0.80 0.86 160.7 520 0.77 0.85 159.5 0.75

9 924 0.82 0.87 193.5 702 0.78 0.85 192.7 0.41

10 1356 0.80 0.85 210.0 618 0.75 0.85 209.5 0.38

Table 2 Comparison results for
the cutting plane method without
using the concave-identification
procedure

Set of {αk } Instance Time Prob. values Cost Gap (%)

F̂N (x) F̂0
N (x)

1 1 175 1.00 1.00 321.4 63.40

2 156 1.00 1.00 311.3 63.50

3 149 1.00 1.00 309.8 63.40

2 1 596 1.00 1.00 551.4 180.33

2 272 0.95 1.00 235.6 23.74

3 693 1.00 1.00 1150.6 506.86

3 1 849 0.80 0.87 196.8 0.05

2 1126 0.81 0.86 190.7 0.16

3 234 0.83 0.97 220.5 16.30

Furthermore, solutions from the joint CC model have better quality, in the sense that
solutions given by the separate CC model always give joint probability values that are
significantly lower than the target.

We evaluate the efficiency of our concave-identification methods as compared to
the widely-used fluid scheduling model and report comparison results in Table 2. We
use three sets of {αk, k ∈ [K ]}, from small to large values, for the fluid scheduling
model.Whenwe run the algorithmwith only the fluid schedulingmodel, the CPU time
is very low because it does not need to perform simulations to identify the concave
regions of the probability functions. However, it also gives very high final costs and
probability values. The percentage gaps between the costs given by the algorithm
with and without our concave-identification method vary from 0.05 to 506.86%. This
indicates the benefit of using Algorithm 2 to avoid bad solutions.

In Table 3, we also provide numerical results comparing the three implementations
of the concave-identification method: Method #1, Method #2 and Method #3 (or
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Table 3 Comparison results
between three
concave-identification
implementations for the medium
example

Instance CPU time (s) Cost

M.#1 M.#2 M.#3 M.#1 M.#2 M.#3

1 1034 985 928 196.7 196.7 198.0

2 1295 1313 1065 190.4 190.4 190.0

3 884 863 1024 189.6 189.6 189.4

4 1484 1450 1717 196.5 196.5 198.2

5 786 805 1008 182.9 182.9 183.0

6 880 862 1156 190.2 190.2 190.8

7 1040 1027 1312 175.3 175.3 175.0

8 983 978 952 160.7 160.7 160.7

9 903 924 925 193.5 193.5 193.5

10 1364 1356 1563 210.3 210.3 210.5

M.#1, M.#2 and M.#3 for short). We indicate in bold the best running times and
the best costs obtained by the three methods. As we can see, in terms of CPU time,
M.#1 has 2/10 instances,M.#2 has 5/10 instances andM.#3 has 3/10 instances having
the best running times. Therefore, M.#2 is faster than the other two methods. More-
over, in terms of cost, M.#1 and M.#2 give quite similar costs. M.#1 and M.#2 have
7/10 instances and M.#3 has 2/10 instances having the best costs. However, the gaps
between costs given by the three methods are relatively small. In general, the second
method is better than the other ones.

4.3 Large example

In this section, we report numerical results for a large call center of K = 20 call types
and I = 15 agent groups. Similar to previous studies, we assume that (i) immediate
call abandonment has an odd of 0.001, (ii) the patience times follow exponential
distributions with means of 10 min for all call types, and (iii) the service times follow
exponential distributions withmeans of 8min for all call types. The acceptable waiting
times are chosen as τk = τ0 = 20 (seconds) and the target for SLs are sk = s0 =
80%(0.8). We choose step size d = 2 for all call types.

In Table 4, we show numerical results for 10 instances with targets (80%, 85%).We
use M.#3 as the concave-identification implementation. For this large call center, the
separate CC model gives lower agent costs and requires less running times in all 10
instances. We may need up to 1800 s (30 min) to solve a joint CC instance. Also, the
percentage gaps between the agent costs returned by the twomodels are around 5%and
they are significantly larger than those reported for the medium call center example.
However, solutions from the joint CC model seem to have much better “joint” quality
than those given by the separate CCmodel, in the sense that the joint probability values
given by separate CC solutions are just around 0.6, which are remarkably lower than
the targets.

In Table 5, we report comparison results obtained by running our algorithm with
and without the concave-identification step. We test on three sets of α for the fluid
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Table 4 CPU times, probability values, agent cost with the second increase method for the large call center

Instance Joint CC solutions Separate CC solutions Gap (%)

Time Prob. values Cost Time Prob. values Cost

F̂N (x) F̂0
N (x) F̂N (x) F̂0

N (x)

1 3136 0.80 0.95 198.9 234 0.64 0.88 190.1 4.42

2 2211 0.80 0.96 198.7 297 0.64 0.85 190.5 4.13

3 2622 0.80 0.96 188.3 189 0.63 0.88 179.0 4.94

4 1802 0.81 0.95 190.7 169 0.61 0.87 181.2 4.98

5 2581 0.80 0.95 190.2 225 0.64 0.90 183.1 3.73

6 2669 0.80 0.95 202.4 340 0.64 0.86 193.6 4.35

7 1817 0.80 0.95 200.1 235 0.64 0.88 190.8 4.65

8 3014 0.80 0.95 196.9 375 0.64 0.85 186.7 5.18

9 1881 0.80 0.95 195.8 248 0.61 0.86 186.6 4.70

10 1723 0.81 0.95 198.7 143 0.59 0.86 189.2 4.78

Table 5 Comparison results for
the cutting plane method without
using the concave-identification
procedure, symbol “–” indicates
the algorithm cannot return a
feasible solution after reaching
the step-size limit dmax

Set of {αk } Instance Time Joint prob. values Cost Gap (%)

F̂N (x) F̂0
N (x)

1 – – – – – –

– – – – – –

– – – – – –

2 1 39 0.84 1.00 324.5 63.15

2 403 0.85 1.00 326.3 64.22

3 262 0.88 1.00 305.1 62.03

3 1 131 0.81 1.00 229.8 15.54

2 419 0.80 1.00 237.7 19.63

3 678 0.82 1.00 221.6 17.68

scheduling model: (1) α = 1 for all call types, (2) α = 2 for all call types, (3)
α1 = 0.4, α2 = 0.6, α5 = 0.6, α6 = 0.3, α7 = 0.5, α12 = 0.4, α17 = 0.5, α19 = 1.2
and the remaining parameters are set to 1.5. The latter vector was chosen manually
to achieve the best performance. We compare the final costs obtained when running
the algorithm with our concave-identification method and with the fluid scheduling
model alone based on the above sets of {αk}. For the first set {αk}, the algorithm is not
able to return any feasible solution. This is due to the fact that the values of αk are too
small, leading to too low initial staffing solutions and all the subgradient estimates are
zero. In these cases, the step size reaches the step limit dmax but the staffing solution
is still small and the algorithm is not able to compute subgradient vectors as expected,
hence, cannot add linear cuts to the linear program. However, if we use the concave-
identification method, the issue is resolved and the algorithm is always able to give
good solutions.
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Table 6 Comparison results
between three
concave-identification
implementations for the large
example

Instance Time (s) Cost

M.#1 M.#2 M.#3 M.#1 M.#2 M.#3

1 3520 2485 3136 199.9 198.6 198.9

2 2716 2695 2211 200.0 200.3 198.7

3 2456 2206 2622 187.6 187.6 188.3

4 2291 2363 1802 190.5 191.2 190.7

5 3105 3004 2581 190.3 190.3 190.2

6 2772 3132 2669 202.4 202.9 202.4

7 1984 1861 1817 199.8 198.9 200.1

8 3126 3249 3014 195.8 196.1 196.9

9 2046 1924 1881 196.8 196.1 195.8

10 1992 2340 1723 197.6 198.5 198.7

We report comparison results of the three concave-identification implementations
in Table 6. We indicate in bold the best CPU times and the best costs. In terms of CPU
time,M.#3 performs faster thanM.#1 andM.#2when it has 8/10 instances with better
running times, and for the other 2 instances, M.#2 performs the best. This happens
because M.#3 requires a smaller number of simulations. In terms of cost,M.#1 gives
better results in 5/10 instances whileM.#2 returns better results in 2/10 instances and
M.#3 performs better in 5/10 instances. Thus, in general, M.#3 performs better than
the other two methods.

4.4 Extra-large example

In this section, we test on an extra-large call center example of K = 89 call types and
I = 65agent groups. Similar to previous studies,we also assume that (i) immediate call
abandonment does not occur, (ii) the patience times follow exponential distributions
with means of 3 min for all call types, and (iii) the service times follow exponential
distributionswithmeans varying from 4.32 to 12.79min. The acceptable waiting times
for all call types are τk = τ0 = 20 seconds and the targets of SLs are sk = 50%(0.5)
for all k = 1, . . . , 89 and s0 = 80%(0.8). This example is also used in Çezik and
L’Ecuyer (2008) and can be found at http://www.iro.umontreal.ca/~lecuyer/myftp/ld-
example2/. To achieve good performance, we choose step size d = 3 and the third
concave-identification implementation (M.#3) and αk = 1 for all call types.

Table 7 reports our results for the extra-large call center. As we can see, there are
significant differences between the joint probability values and costs given by the
joint CC model and the separate CC model. The CPU times for the joint CC model
are over 70,000 s (19.4 h) while the running times for the separate CC model are less
than 17,000 s (4.7 h). Moreover, the percentage gaps (between costs given by the two
formulations) are large and vary from 9.35 to 11.22%. These gaps are much larger
than those from the medium and large examples. However, the joint probability values
given by the solutions of the separate CC model are very small, from 0.08 to 0.16,
and much smaller than the target of 80%. This indicates a clear advantage of the joint
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Table 7 CPU times, probability values, agent cost for the extra-large call center example

Instance Joint CC Separate CC Gap (%)

Time (s) Joint prob. values Cost Time (s) Joint prob. values Cost

F̂N (x) F̂0
N (x) F̂N (x) F̂0

N (x)

1 81,438 0.80 1.00 914.7 9603 0.08 0.90 829.2 9.35

2 82,220 0.80 0.98 893.3 12,119 0.10 0.85 804.4 9.95

3 80,596 0.80 0.99 926.1 16,632 0.09 0.88 822.2 11.22

4 91,645 0.80 0.96 875.0 13,838 0.10 0.90 789.4 9.78

5 71,005 0.81 0.97 923.3 15,077 0.08 0.91 835.9 9.47

6 73,477 0.80 0.98 885.6 11,123 0.05 0.91 798.1 9.88

7 98,055 0.81 0.99 947.3 14,480 0.16 0.91 852.4 10.02

8 72,152 0.80 0.99 888.7 14,756 0.07 0.92 799.3 10.06

9 76,965 0.80 1.00 887.0 15,039 0.09 0.89 801.6 9.63

10 79,959 0.80 0.99 920.0 13,293 0.11 0.89 823.3 10.51

CC model, as compared to the separate CC one. In fact, if the number of call types
is large, the probability that the service levels are simultaneously high for all the call
types should be low. Thus, as the number of call types I increases, a solution to the
separate CC model would give low joint probability values. We have theoretically
explored this fact through Inequality (2) in Sect. 2.

InTable 8,we also report comparison results obtained by running our algorithmwith
and without the concave-identification step.We use three sets of α to test: (i) α = 1 for
all call type, (ii) α = 2 for all call types, (iii) α1 = 1.3, α6 = 1, α8 = 1.8, α19 = 1.2,
α20 = 1.7, α26 = 1.6, α31 = 1.1, α45 = 1.6, α53 = 1.4 and the remaining parameters
are set to 1.5.We report the percentage gaps between the final costs obtained by running
our algorithm with the concave-identification method (those reported in Table 7) and
with only the fluid scheduling model based on the above sets of α. As we can see, for
the first set of α, the costs are very high with gaps varying from 131.70 to 402.48%.
For the second set of α, the values of α are larger and we can find better solutions.
For the final set, we adjust it manually to achieve the best performance. When using
the fluid model alone, the algorithm runs very fast on all three sets of α. However, it
also returns very high final costs. The percentage gaps are always above 60%. This
indicates that the efficiency of the fluid scheduling model depends on the coefficients
α chosen. If the number of call types is large, it is typically difficult to choose a good
set of α, leading to bad performance of the fluid scheduling model. We also note that
all the solutions obtained by solving the joint CC problem satisfy the separate chance-
constraints. This is consistent with our theoretical finding in Proposition 2, saying
that the probability that a SAA solution of the joint CC problem is “ε-feasible” to the
separate CC problem converges to one exponentially fast. In other words, if we select
a large enough number of samples N , a SAA solution of the joint CC problem will be
almost feasible to the separate CC counterpart.

In this example, since the experiments are costly to perform, we do not provide
comparison results for the three non-concave identification implementations as in the
medium and large examples.
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Table 8 Comparison results for the cutting plane method without using the concave-identification step, for
the extra-large example

Set of {αk } Instance Time (s) Prob. values Cost Gap (%)

F̂N (x) F̂0
N (x)

1 1 49, 077 0.80 0.99 2119.4 131.70

2 12, 754 0.82 1.00 3813.8 326.93

3 79, 072 0.80 0.99 4653.5 402.48

2 1 3145 0.83 1.00 1560.1 70.56

2 2006 0.82 1.00 1518.3 69.97

3 2436 0.81 1.00 1550.4 67.41

3 1 3321 0.81 1.00 1516.5 65.79

2 2587 0.84 1.00 1480.0 65.68

3 3168 0.80 1.00 1507.4 62.77

5 Conclusion

We have studied a joint CC staffing optimization model in multi-skill call centers.
The main advantage of the model, as compared to the separate versions considered
in previous studies, is that our joint CC model allows to account for the correlation
between different call types, thus would be of interest to the manager. We show some
properties of the joint CCmodel that distinguishes it from the separate CC counterpart
and long-term expected SL models studied previously, which leads to the issue that
standard solution algorithms may not work well under the joint CC formulation. We
have shown that the joint probability function still displays an “S-shaped” curve, but the
concave region might be difficult to well identify. We thus proposed a new algorithm
based on simulation and linear programming tofind a good solution.We also developed
a concave-identification to help shift a staffing solution to the concave region, and a
local-search procedure to further improve a solution returned by the cutting plane
method. Our numerical results based on three call center examples of up to 89 call
types and 65 agent groups clearly showed the benefits of the joint CC model over
the separate CC counterpart. Furthermore, we showed the advantage of our concave-
identificationmethods as compared to the standard approaches. In futureworks, we are
interested in staffing optimization models accounting for uncertainty issues occurring
in the modeling of call centers, e.g. arrival rate or service rate uncertainty.
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