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Abstract: Food computing has recently attracted considerable research attention due to its significance for health 
risk analysis. In the literature, the majority of research efforts are dedicated to food recognition. Relatively few works 
are conducted for food counting and segmentation, which are essential for portion size estimation. This paper 
presents a deep neural network, named SibNet, for simultaneous counting and extraction of food instances from an 
image. The problem is challenging due to varying size and shape of food as well as arbitrary viewing angle of 
camera, not to mention that food instances often occlude each other. SibNet is novel for proposal of learning seed 
map to minimize the overlap between instances. The map facilitates counting and can be completed as an instance 
segmentation map that depicts the arbitrary shape and size of individual instance under occlusion. To this end, a 
novel sibling relation sub-network is proposed for pixel connectivity analysis. Along with this paper, three new 
datasets covering Western, Chinese and Japanese food are also constructed for performance evaluation. The three 
datasets and SibNet source code are publicly available. 
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1. Introduction 

Understanding diet patterns is helpful for the 
analysis of long-term health trends. In clinical practices, 
food intake is usually logged manually by 24-hour recall 
or food frequency questionnaire. The paper-based 
logging process is cumbersome and time-consuming. In 
addition to specifying food type, a user is also requested 
to quantify the serving sizes of food taken. As reported 
in the clinical study [1], under and over estimation of 
consumption is common in food logging. With the rapid 
progress in deep learning, there have been various 
research devoted to automating food logging through 
image processing. These efforts include food 
segmentation [2], detection [3], ingredient recognition 
[4], food recognition [5], portion [6], weight [7], volume 
[8] or calories [9], [10] estimation, and recipe retrieval 
[11]. Some of these techniques have been deployed to 
mobile applications [12].1 

This paper addresses the problem of counting and 
extracting food items on a plate. Counting is essential 
because the number of servings is defined upon 
countable units, such as “piece and “slice. Counting is 

essential because the number of servings is defined upon 
countable units, such as “piece and “slice. Extraction of 

food items, on the other hand, facilitates the estimation 
of serving size. In food industry, the correlation between 
area and weight of food is measurable [7]. Assuming 
that camera is calibrated, for example by using a fiducial 

 
1 https://github.com/alannguyencs/sibnet. 

marker, food area can be estimated by simply counting 
the number of pixels. Therefore, serving size, or more 
specifically the weight of a food item, is possible to be 
calculated by segmenting the image region 
corresponding to food. Most of nutrition databases, 
usually being referred to as food composition table 
(FCT) (e.g., CFC [13], USDA [14]), specify the 
nutrients and calories of food. By knowing the number 
of servings and their sizes through food counting and 
segmentation, as well as the names of food through dish 
recognition, the food consumption in terms of nutrition 
content and calories can be quantified by mapping this 
information to FCT. 

The challenge of food counting and segmentation 
comes from diverse visual appearance, severe occlusion, 
perspective distortion and obscure food boundary. Fig. 
1 shows four examples to illustrate these challenges. In 
Fig. 1a, each sushi is topped with different ingredients, 
resulting in different appearances. In Fig. 1b, some 
cookies are partially visible due to vertical stacking. In 
Fig. 1c, the egg tarts are not only occluded but also 
changed in size and shape due to camera perspective 
distortion. In Fig. 1d, the contour of each pancake slice 
is not clearly depicted, especially for slices that are 
farther away from camera. The existing state-of-the-art 
object detection techniques [15], [16], which bound 
objects in rectangular boxes, are incapable of dealing 
with food items in arbitrary shape  
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Fig. 1. Challenges in food instance counting and segmentation. 

Fig. 2. The architecture of SibNet. 

(e.g., Fig. 1 d) or largely overlapped (e.g., Fig. 1 b). Counting based 

on the number of detected bounding boxes in an image is likely 

to perform unsatisfactorily. On the other hand, semantic segmen- 

tation [17] , which labels pixels based on semantic categories, re- 

quires post-processing to extract instances of food with the same 

category. Occlusion, such as those depicted in Fig. 1 (b)-(d), which 

are common in food presentation, demands sophisticated image 

post-processing for instance segmentation. 

This paper proposes a novel network architecture, named Sib- 

ling Network (SibNet), for counting and segmentation of food in- 

stances on a plate. Fig. 2 provides an overview of SibNet, which is a 

multi-task neural network. Given a food image, fully convolutional 

network (FCN) [17] first labels the pixels into food and non-food 

regions. Different from the conventional FCN, nevertheless, the 

generated segmentation map occupies partial regions of food in- 

stances only, aiming to reduce the overlapping between instances. 

This map inherently provides instance seeds as priori knowledge 

for regression-based convolutional neural network (CNN) to per- 

form counting. Such architecture, by simultaneous instance seed- 

ing and counting, is effective in alleviating the counting problems 

depicted in Fig. 1 . Another novelty of SibNet is the proposal of 

a sibling detection sub-network, which performs pixel connectiv- 

ity analysis to complete a full instance segmentation map. The 

sub-network detects sibling relation between neighbouring pixels 

and assigns labels to pixels based on the number of instances 

found. SibNet systematically refines found instance identification 

from high level seed counting to the detailed separation between 

instances using the novel sibling relation. 

The main contribution of this paper is the proposal of SibNet 

that addresses the unique challenges of counting and segmenta- 

tion in food domain. To the best of our knowledge, there is no 

work yet to systematically explore this problem for food items of 

arbitrary shape, often with severe occlusion and obscure bound- 

ary. The existing works are mostly based on CRF [9] , FCN [17] or 

saliency analysis [10] , which can only deal with food items that 

are well separated. The rest of this paper are organized as fol- 

lows. Section 2 discusses related works in object counting and 

food segmentation. Section 3 presents the baseline frameworks for 

counting based on single and multi-task learnings, respectively. 

Section 4 details the proposed SibNet, particularly the networks for 

generation of seed map and detection of pixel sibling relation. Sec- 

tions Sections 5 and 6 describe the datasets and empirical findings 

to justify the merit of SibNet over other existing works. Finally, 

Section 7 concludes this paper. 

2. Related works 

Instance counting is prevalent for different applications, includ- 

ing counting crowd in surveillance videos [18,19] , cells [20] and 

bacterial colonies [21] in medical images, maize tassels [22] and 

fruits-on-tree [23] for agriculture, and animal counting [24] for 

natural reserve. Counting everyday objects is also recently explored 

in [25] . These applications differ mainly in terms of camera view- 

point and visual property. For instance, the viewing angle of a 

camera is assumed to be perspective in crowd counting [18,19] , 

bird view in cell counting [20] and front view in fruit count- 

ing [23] . Cells and fruits are treated as blobs of equal size, while 

crowds are treated as small dots of elliptical shape. In contrast 

to these applications, food images can be captured from any ar- 

bitrary viewing angles. For everyday objects [25] , the shapes and 

visual presentations of food instances vary across categories and 

cannot be predefined. As the number of counts is much smaller 

than crowds, for example, the perspective distortion could exag- 

gerate the appearance change in size and shape. 

Glance-based counting, which predicts counts without the 

knowledge of instance locations, is widely adopted in different 

applications [20,21,23,25] . A solution can be as simple as a CNN 

with input as an image and output as a continuous number 

[20,23,25] or a counting category [21] . Nevertheless, when the 

count is a large number, precise prediction could be challenging. 

In surveillance applications, this problem is addressed by the pre- 

diction of density [18,22] and count maps [19] . Specifically, each 

pixel indicates a local density of population. Summing up all the 

pixel values in a map is equivalent to population counting. As den- 

sity map has predefined assumption on instance size and camera 

angle, directly applying for counting food is expected to yield sub- 

optimal performance. A more generalized approach is proposed in 

[25] for both the recognition and counting of everyday objects. Its 

key idea is to subitize small counts locally at image regions be- 

fore integrating them into final counts. Two subitizing techniques, 

Aso-Sub and Seq-Sub, are proposed. The former estimates local 

count using regression-based CNN. The latter further considers the 

notion of spatial context by using a recurrent network to propa- 

gate the local counts to neighbouring image regions. Nevertheless, 

2 
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as the number of food items on a plate is usually small, using 

subitizing techniques may unnecessarily complicate the counting 

procedure. 

In contrast to glance-based counting, detection-based ap- 

proaches perform counting-by-detection. LC-FCN [24] , imple- 

mented on top of fully convolutional network (FCN) [17] , is pro- 

posed to count by producing a segmentation blob for each in- 

stance. To expedite annotations, each instance is marked with a 

dot for training. While performing excellently for counting a vari- 

ety of objects, LC-FCN is not applicable for instance segmentation 

due to the absence of instance shape and size in its blob represen- 

tation. In addition to LC-FCN, object detection techniques such as 

[15,16,26–28] have also been directly applied for counting. These 

techniques predict bounding boxes or octagon to localize instances 

by visual features such as objectness (Mask-RCNN [15] , Yolact [26] ), 

4D object vectors (FCOS [16] ), corners (CornerNet [27] ) and ex- 

treme points (ExtremeNet [28] ). Due to the assumption of prede- 

fined shape representation, nevertheless, these techniques are gen- 

erally limited in detecting objects of irregular shapes and severely 

occluded, which are common in food images. To address this prob- 

lem, Mask-RCNN [15] and Yolact [26] are equipped with semantic 

segmentation [17] to extract instances from boxes, at the expense 

of annotating instances masks for model training. The problem is 

addressed by Park et al. [29] , which generates synthetic images and 

their instance masks using a computer graphics software for train- 

ing Mask-RCNN. The work is applied for food instance segmenta- 

tion to extract dishes on a tray, which are usually well separated. 

SibNet is closely relevant to instance segmentation [30–36] , 

which first labels pixels based on visual properties and then spa- 

tially cluster pixels into instances. Due to the bottom-up process- 

ing without shape assumption, these approaches can flexibly han- 

dle arbitrary shapes of food instances. These approaches are mostly 

based on FCN-like backbone and differ in ways in which visual fea- 

tures are exploited and how pixels are clustered. In [30] , a water- 

shed method is proposed by predicting distance transform energy 

to quantify the distance between a pixel and its instance bound- 

ary. The energy values are grouped into 16 levels from an instance 

centroid towards its border to facilitate pixel clustering. Terrace 

[36] models the shape of food as a terrace map with different con- 

tour levels of height. The height corresponds to object attention 

while the evolution of contours signifies the difficulty of segmen- 

tation. A multi-task learning neural network is proposed, showing 

a performance superior to the watershed method. SECB [31] per- 

forms spatial embedding such that a pixel value predicts the po- 

sition of an instance centroid that the pixel belongs to. Each pixel 

is also predicted with a margin value indicating the instance size 

for clustering. Similar in spirit, TextMountain [32] also predicts a 

centre-boundary probability map and a direction-to-centroid map. 

For each instance, four directional vectors are used to generate the 

two ground-truth maps. The generalization of this method to han- 

dle arbitrary shapes of food instances is unclear. Instead of group- 

ing pixels as watershed [30] , PSENet [33] predicts the instance cen- 

troids as seeds and progressively expands the size of seeds towards 

the instance boundaries by breadth-first search. PAN [35] targets 

for real-time segmentation and replaces the network for progres- 

sive expansion of seeds in PSENet with a lightweight backbone. 

Pixel affinity learning is also explored in [34] , by using a neu- 

ral network to predict the 8-directional pixel connectivity as fea- 

ture maps, which will be further fused for pixel clustering. SibNet 

shares some properties of these approaches, such as using seeding 

as PSENet [33] and learning pixel affinity as PixelLink [34] . Differ- 

ent from these algorithms, nevertheless, SibNet leverages counting 

to enhance the robustness of instance segmentation. Furthermore, 

SibNet is computationally more efficient than PixelLink and PSENet 

due to different learning procedures as will be elaborated in the 

latter section. 

3. Food counting and segmentation 

We begin by introducing a standard regression-based count- 

ing network. The network is then extended for multi-task learning 

such that food regions are segmented to constrain counting. 

3.1. Single-task counting 

Food items are generally large in size due to camera captur- 

ing angle. The shapes differ considerably not only due to vari- 

ations across food categories, but also perspective distortion be- 

cause of camera-to-food distance. A baseline method is by estimat- 

ing counts based on the feature maps generated by CNN. Specif- 

ically, the output layer of CNN is replaced with one neuron for 

regression-based counting. Denote N as the number of training ex- 

amples. The loss function of regression-based counting (RC) min- 

imizes the mean absolute error between the actual ( r n ) and pre- 

dicted ( ̂ r n ) counts over training examples, as following: 

L RC = 
1 

N 

N ∑ 

n =1 

∣∣r n − ˆ r n 
∣∣ (1) 

3.2. Multi-task counting and segmentation 

Single-task counting could be sensitive to background clutter. A 

more robust way is by segregating non-food regions from count- 

ing. We formulate this problem as a multi-task learning problem, 

with one path for food counting and the other for two-class se- 

mantic segmentation. The semantic segmentation targets generat- 

ing a map that encloses food regions while masking out non-food 

regions. 

Fully convolutional network (FCN) [17] is employed as the back- 

bone network. The counting pathway is branched out from the last 

convolution layer of the FCN. Due to the sharing of the same layer 

with a large receptive field as the segmentation pathway, count- 

ing is expected to be beneficial by attending to only food regions. 

The entire network is end-to-end trained with both pathways be- 

ing updated simultaneously. The loss function consists of two parts 

for counting and segmentation respectively, as follows: 

L MUL = λRC L RC + λSEG L SEG (2) 

where λRC and λSEG are trade-off parameters. The function L SEG is 

based on the cross-entropy loss enumerated over all the pixels of 

a segmentation map. As pixels belonging to food regions are gen- 

erally less than that of non-food regions, the loss of each pixel 

is weighted according to the proportion of food and non-food re- 

gions. Specifically, denote N and M as the number of training im- 

ages and the number of pixels per image respectively, the propor- 

tion of pixels labelled as food is defined as follows: 

W = 

∑ N 
n 

∑ M 
m t n,m 

NM 
(3) 

where t n,m = { 0 , 1 } is the ground-truth label of the m th pixel in 

the n th image, with the value of 1 indicates a pixel belonging to 

food category, and the value of 0 otherwise. Further denote W 0 = 

W and W 1 = 1 − W as the weights for food and non-food pixels 

respectively, the segmentation loss is defined as: 

L SEG = 
−∑ N 

n 
∑ M 

m W s log ( ̂ t n,m,s ) 

NM 
(4) 

where ˆ t n,m,s , produced by softmax activation function, represents 

the probability score of a pixel with ground-truth label as s = 

{ 0 , 1 } . 

3 
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Fig. 3. The semantic segmentation (b) and seed map (c) of a food image (a). Food 
items are well-separated in (c). 

4. SibNet 

By the multi-task approach, food regions may connect to each 

other, then hinder the counting and extraction of food instances. 

Therefore, a new network, named Sibling Network (SibNet) as 

shown in Fig. 2 , is proposed. SibNet has an additional path to gen- 

erate a multi-instance map, where each pixel is labelled with an 

identifier indicating the instance to which it belongs. The task is 

similar to panoptic segmentation [37] , where the objective is to 

jointly label pixels (i.e., semantic segmentation) and extract object 

instances (i.e., instance detection). 

4.1. Instance seeding 

Despite effective in alleviating the influence of background 

noise, segmentation map does not help in separating food items 

that occlude each other. Seeding is proposed to locate the instance 

seeds by shrinking the mask of each food item towards its cen- 

tre of mass. Fig. 3 shows an example where food items are well- 

separated and readily for counting when their masks are reduced 

by half. In this way, segmentation and counting take advantage of 

each other by simultaneous counting and generation of a reduced 

map. To this end, SibNet counts by learning to generate a seed map 

that well separates food items with partially visible areas. With 

this learning strategy, ideally, the network pays more attention to 

the centre of a food item and grows the mask to a size that facil- 

itates counting. During learning, we fix the ground-truth size of a 

food item as 50% of its original size since this ratio basically guar- 

antees all food items are separable. Multi-task architecture as de- 

scribed in Section 3.2 is employed by using the seed maps of pos- 

itive examples for training. 

The idea of instance seeding originates from Adams and Bischof 

[38] . Recently, PSENet [33] formulates the idea with neural net- 

works to generate multiple scales of an instance seed for text de- 

tection. Progressive expansion of a seed from the lowest scale to- 

wards its entire instance size is required. The procedure dramati- 

cally increases the network design complexity. Different from [33] , 

our proposed instance seeding is more computationally efficient by 

not considering multi-scale processing. Instead, the network for in- 

stance seeding is trained end-to-end simultaneously with instance 

counting for robustness consideration, rather than as a singleton 

network as in PSENet [33] . 

4.2. Sibling relation detection 

SibNet generates a multi-instance map by analysis of sibling 

relation between pixels. For counting and segmentation, the task 

of sibling detection is branched out from the last convolutional 

layer of the FCN and followed by a deconvolution module. The 

design is the same as FCN [17] with deconvolution of 3 layers 

and skipped connections. The output is a sibling map of resolu- 

tion 256 × 256 with C channels. Given a pixel pair p i and p j in the 

Fig. 4. The 8-neighbourhood configuration of a centre pixel (marked with 0). Four 
different types of neighbours are defined based on pairwise pixel direction. 

Fig. 5. Illustration of shifting (top right direction) and concatenation of feature 
maps to detect the sibling relations between pixel pairs ( P 0 , P 7 ) and ( P 3 , P 0 ). 

map, SibNet considers the sibling relationship, S i, j , between them. 

Specially, S i, j = 1 if both pixels belong to the same instance and 

S i, j = 0 otherwise. As the number of pixel pairs can be huge, the 

sibling relations are recursively determined by considering the 8- 

neighbourhood configuration as shown in Fig. 4 . Denote p i b as a 

neighbour of pixel p i based on this configuration. The relation be- 

tween p i and any pixel p j is recursively defined as: 

S i, j = 

{
1 if (S i,i b = 1 and S i b , j = 1) for any b ∈ [1 , 8] 
0 otherwise 

(5) 

SibNet models the sibling relation using convolutional-like net- 

work, producing a matrix where each element indicates the sib- 

ling relation, i.e., S i,i b , between two neighbouring pixels. Referring 

to Fig. 4 , four different types of neighbours are defined based on 

the spatial direction between pixels p i and p i b . The convolution is 

performed separately on each type of neighbour. For simplicity, we 

assume that each feature map only has one channel. Initially, an 

input feature map is shifted by a pixel distance to align p i with 

p i b based on their type. For each type, the original feature map is 

stacked with its shifted version to form a 2-channel feature map. 

Referring to Fig. 5 , after shifting to top-right, all neighbouring pixel 

pairs along this direction (e.g., p 0 and p 7 , p 3 and p 0 ) share the 

same spatial location in their respective channels. With this align- 

ment, a 3 × 3 convolution kernel is learned to detect the sibling 

relation S 0 , 7 . The process is repeated for four different types of 

neighbours, where the sibling relations of a pixel with its 8 neigh- 

bours are altogether classified. 

4.3. Instance extraction 

Architecture . Fig. 6 shows the architecture design of SibNet as 

a multi-task learning network. Note that there are five branches 

rooted on the sibling map. The first four detect sibling relations 

in different spatial directions while the last branch performs se- 

mantic segmentation to generate a mask that labels each pixel as 

either food or non-food. The sibling relation between two pixels is 

represented by two scores produced after the softmax layer, corre- 

sponding to the probabilities of S i, j = 1 and S i, j = 0 respectively. 

4 
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Fig. 6. SibNet architecture with multiple pathways for counting, seeding and sibling 
detection. The pathway for sibling detection consists of four branches for sibling 
relation (the arrow defines the direction of conv shifting operator to the top of 
deconv layer). 

To model the difference between the predicted and ground- 

truth sibling relations, it is sufficient to use the weighted cross- 

entropy loss in Eq. (4) as the loss function. Nevertheless, as the 

number of sibling and non-sibling pixels are highly imbalanced, 

pixel-wise comparison like cross-entropy loss tends to produce a 

thick layer for non-sibling detection, which is a phenomenon also 

observed in [39] . In addition to cross-entropy loss, we also use Dice 

function to model the set-level (or image-level) for non-sibling loss 

as [39] . Dice loss models the difference between two sets of pre- 

dicted probability ˆ U and ground-truth label U for non-sibling pixels 

(i.e., boundary pixels) as: 

L D = 

∑ 
m (U 2 m + ˆ U 2 m ) 

2 
∑ 

m U m ̂  U m 
(6) 

where the subscript m refers to index of pixel which is declared 

as a non-sibling pixel either in ground-truth label or by SibNet. 

Similar to Deng et al. [39] , the Dice loss is combined with cross- 

entropy loss L C as: 

L SD = αL C + βL D (7) 

where the trade-off parameters are empirically set as α = 0 . 01 and 

β = 1 . 0 following the suggestion of [39] . 

To this end, SibNet defines four different types of loss functions 

as follows: 

L SIB = λRC L RC + λSE E D L SE E D 

+ λSEG L SEG + 
λSD 

4 

∑ 4 
i L SD i 

(8) 

where L SD i stands for the sibling loss in one spatial direction, and 

L SE E D quantifies the loss in generating a seed map. The terms L SEG 
and L SE E D are based on the weighted cross-entropy loss computed 

by Eq. (4) , while L RC is based on the mean absolute counting error 

computed by Eq. (1) . Each function is associated with a tradeoff

parameter. In the experiment, we set λRC = λSE E D = λSEG = λSD = 

1 . 0 for simplicity. Note that SibNet is different from other panop- 

tic segmentation algorithms such as [40] that measures Kullback 

Leibler (KL) divergence on all pairs of pixels to generate multi- 

instance map. SibNet evaluates sibling relation of a pixel with its 

8 neighbours, resulting in lower memory consumption and faster 

training time. 

Algorithm . Based on the architecture, the multiple pathways in 

SibNet are jointly exploited for the extraction of food instances. 

Specifically, the sibling relations give clue for connected compo- 

nent analysis, where each component refers to a food item. With 

the aid of semantic segmentation mask, non-food pixels are ex- 

cluded from analysis. Our connected component analysis starts 

from the seeds, which are referred to as the centre-of-mass (CoM) 

of each food instance, provided by the seed map. Note that the 

number of seeds is not necessarily equal to the count predicted by 

the counting pathway. In general, the seed map is susceptible to 

noises, forming small clusters of pixels as candidate seeds. In the 

algorithm, the predicted count is leveraged to suppress those small 

clusters from being considered as seeds. In particular, the poten- 

tial food instances in a seed map are sorted in descending of their 

sizes. The number of instances being considered as seed candidates 

is set not larger than the predicted count by the counting pathway, 

and the seeds are selected based on the sorted order. To this end, 

we have identified the set of seeds � = { �i } for the desired food 

instances. 

The basic idea of instance extraction is by propagating the la- 

bels of pixels to their neighbours as in Eq. (5) . The number of 

labels directly corresponds to the food counts. As summarized in 

Algorithm 1 , the label propagation takes the set �, sibling relation 

Algorithm 1 Instance label propagation via Sibling relation. 

Require: seeds: �, sibling relation: S, semantic segmentation: F 

Ensure: Multi-instance map L 

1: function InstanceLabelling ( �, S, F ) 

2: L ← ∅ ; Q ← ∅ 
3: for �i ∈ � do � Label and push seeding pixels to queue 

4: for p ∈ �i do 

5: L [ p] = i 

6: Enqueue ( Q, p) 

7: end for 

8: end for 

9: while Q � = ∅ do 

10: p ← Dequeue ( Q) 

11: for b ∈ [1 , 8] do � Propagate label to sibling neighbours 

12: if p b �∈ L and S p,p b = 1 and F [ p b ] = 1 then 

13: L [ p b ] = L [ p] 

14: Enqueue ( Q, p b ) 

15: end if 

16: end for 

17: end while 

18: return L 

19: end function 

S and food segmentation map F as inputs, and returns a multi- 

instance map L . The algorithm is iterative and starts by assigning 

labels i to the CoMs of items { �i } in the multi-instance map. These 

seeding pixels are then pushed into a queue Q which works in 

first-come-first-serve basis. Next, every pixel in Q is retrieved iter- 

atively for label propagation. In the first iteration, the pixel p at the 

head of the queue propagates its label to the neighbours p b who 

are classified as siblings S p,p b = 1 . This process is repeated, specif- 

ically, pixels having labels take turns to propagate the labels to 

their 8-neighbour siblings in each iteration. Note that, during the 

entire process, pixels masked out by the semantic segmentation 

mask, F [ p b ] � = 1 , will not receive labels. On the other hand, pixels 

that reside in the map but receive no label will be re-classified as 

non-food pixels. 

Deep learning based connectivity analysis has been investigated 

in PixelLink [34] and PSENet [33] for text detection. Like SibNet, 
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Fig. 7. Sample examples from three datasets. 

Table 1 
Statistics on the number of food categories and images in three food datasets: 
Cookie, Dimsum, Sushi. 

Dimsum Cookie Sushi 

Food Category 27 100 11 
Counting Category 6 9 6 
Images 3760 5920 2877 
Training 2700 4050 2700 
Testing 768 1152 768 
Validation 408 612 408 

PixelLink [34] models sibling relations using CNN. Nevertheless, as 

instance seeding is not considered, the connectivity analysis in Pix- 

elLink starts from the instance border and the procedure could 

be error-prone, thereby a post filtering of segmentation being re- 

quired to suppress noises. PSENet [33] , on the other hand, consid- 

ers seeding but requires progressive analysis of pixel connectivity 

for multi-scale expansion of an instance mask. The process is com- 

putationally expensive. SibNet, inheriting the merits of PixelLink 

and PSENet, is lightweight for efficient single-scale processing and 

robust by leveraging the counting result and seeds for segmenta- 

tion. 

5. Experimental setup 

5.1. Data collection 

As there is no public dataset available for food counting, we 

collect three datasets covering different kinds of cookie, dimsum 

and sushi for experiments. These datasets, respectively, represent 

Western, Chinese and Japanese food, which are popular worldwide. 

Table 1 summarizes the numbers of images and food categories, 

and the proportions of images for training, validation and testing 

for each dataset. Fig. 7 further shows sample images of different 

datasets, highlighting the difficulties of counting and segmenta- 

tion due to challenges such as size variation, occlusion and food 

stacking. Cookie dataset has food items in a variety of rigid shapes 

ranging from star, heart, and animal contour. The food items in 

Dimsum dataset are not as rich as cookies in texture and shape. 

Counting becomes a challenge, in particular, when items occlude 

or connect with each other. The items in Sushi dataset are usu- 

ally rice wrapped in different shapes and topped with ingredients 

rich in colour and texture. The shape of item is not rigid as cookie 

but deformable and will exhibit larger appearance change under 

different camera perspectives. The samples in three datasets repre- 

sent various challenges, for example, counting of food with various 

shapes (Cookie dataset) and varying visual appearances under dif- 

ferent camera perspectives (Sushi), and segmenting occluded food 

instances lacking texture pattern (Dimsum). 

The lists of food categories are compiled based on their popu- 

larity. These names were issued as keywords to commercial search 

engines including Google and Baidu. We used different languages 

as keywords for different kinds of food, Chinese for dimsum and 

English for cookie and sushi. The crawler, icrawler 2 , was employed 

to download 500 images per food category. The collected data was 

cleaned by removing images of resolution lower than 300 × 300 . In 

addition, we manually screened every image under a food category 

to get rid of false positives, cartoon images and advertisements. Fi- 

nally, the number of food items in a picture was manually anno- 

tated. 

Fig. 8 shows the distributions of images across different count- 

ing categories. The distributions are unbalanced. For example, 

Cookie dataset is peaked at images with one item and Dimsum 

dataset is peaked at images with three items. As machine learning 

with unbalanced data distribution remains an open problem and 

will create bias in estimation, we used 646 images per counting 

category in the experiment. The sample images for a counting cat- 

egory with more than 646 images were randomly drawn. On the 

other hand, new images were augmented by flipping and rotation 

and then added to the categories with less than 646 images. For 

fair comparison, we made sure that an image and its augmented 

versions were kept in one folder only, either training, validation or 

test set. 

In addition to manual labelling of counting categories, the food 

instance masks were semi-automatically generated. We created 

three kinds of masks: pixel-wise instance mask, polygon mask 

and bounding box. For training data, a polygon was created by 

first having an annotator to mark the corners of a food instance. 

The corners were then connected with straight lines as a poly- 

gon mask. The seed mask of an instance was generated by shrink- 

ing the boundary of a polygon mask towards its centre of mass. 

Shrinking was performed automatically by reducing the shortest 

distance between a boundary pixel and the centre by half. For 

testing data, nevertheless, precise instance masks were created by 

2 https://pypi.org/project/icrawler/ . 

6 

https://pypi.org/project/icrawler/


H.-T. Nguyen, C.-W. Ngo and W.-K. Chan Pattern Recognition 124 (2022) 108470 

Fig. 8. Distribution of images across counting categories, with x -axis as category and y -axis indicates the number of images. 

Fig. 9. Different instance masks created for experiment. 

pixel labelling with the aid of the GrabCut algorithm [41] . For ex- 

periment comparison, a bounding box is also created for each in- 

stance. Fig. 9 shows the three types of masks. 

5.2. Performance evaluation 

Instance counting . We employ mean absolute error (MAE) for 

evaluation. Denote ˆ p c j as the predicted count for a sample j be- 

longing to category c. MAE measures the estimation error as fol- 

lowing: 

MAE = 
1 

C 

C ∑ 

c=1 

N c ∑ 

j=1 

| ̂  p c j − c| 
N c 

(9) 

where C is the number of counting categories and N c is the num- 

ber of testing samples under category c. Note that ˆ p c j can be a real 

number with floating point precision. 

Instance segmentation . We employ Panoptic Quality (PQ) 

[37] for evaluation. PQ first performs one-to-one matching be- 

tween ground-truth and segmented instances, and then measures 

the intersection over union (IoU) of two matched instances. A 

match is qualified as true positive ( TP ) if the IoU between two 

instances is more than 0.5. Otherwise, the ground-truth instance 

is regarded as a false negative ( FN ), and a segmented instance is 

treated as false positive ( FP ). Specifically, denoting p and g as the 

segmented and ground-truth instances respectively, PQ of an im- 

age is defined as: 

PQ = 

∑ 
(p,g) ∈ T P IoU (p, g) 

| T P | + 1 
2 | F P | + 1 

2 | F N| (10) 

where the denominator is to penalize the result with missing and 

falsely detected instances. The function IoU measures the percent- 

age of overlapping pixels. The value of PQ is then averaged over all 

the testing images. Note that this formula is slightly different from 

Kirillov et al. [37] , where the average is taken over the instances of 

all images. 

Fig. 10. The varying sizes of instance seed ( x -axis) in impacting the performance 
of SibNet ( y -axis) on Dimsum dataset. The x -axis shows the proportion of size w.r.t 
the original instance in percentage. Note that MAE is scaled up 20 times for better 
visualization. 

5.3. Model training 

All the proposed models were trained using ResNet-50 [42] as 

backbone. These models were pre-trained on ImageNet 3 dataset. 

Inspired by [43] , a “cosine strategy was employed to adjust the 

learning rate in the ranges of [10 −6 , 10 −4 ] and [10 −6 , 8 × 10 −4 ] for 

single and multi-task respectively. The cycle length was set to 8 

times higher than the batch size per epoch. All the models were 

trained with Adam optimizer and the batch size of 16. In the ex- 

periment, the model training was stopped after 128 epochs when 

training loss converged. 

SibNet was implemented by first end-to-end training the multi- 

task counting and seeding network. The two tasks were then de- 

tached from the model, and the architecture for both sibling de- 

tection and semantic segmentation was plugged in for the second 

round of model training. Finally, all the tasks were integrated and 

the model parameters were simultaneously updated for the third 

round of training. 

6. Experimental results 

6.1. Ablation and variant study 

We first investigate the impact of instance seeding. Fig. 10 

shows the performances of instance counting and segmentation 

when seeds varying between 10% to 90% of their original instance 

sizes were used as training examples. The result indicates that seed 

size should be kept within the range of 20% to 70% for satisfac- 

tory performances. When food instances are highly crowded, the 

predicted seeds could remain close in proximity if the seed size 

is reduced by less than 30% during training. On the other hand, 

when the size of an instance is small due to either occlusion or 

perspective distortion, further shrinking its size by more than 70% 

will result in a dot of few pixels, which increases the difficulty of 

predicting seeds during testing. In the remaining experiments, we 

set the seed size at 50%. Varying the seed size will not significantly 

3 http://www.image-net.org/ . 
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Table 2 
MAE for three variants of instance counting methods in SibNet. 

Method Dimsum Cookie Sushi 

Counting branch 0.14 0.11 0.14 
Segmentation branch 0.17 0.18 0.20 
Counting + Segmentation 0.15 0.13 0.15 

impact the performances adversely so long as the size is within a 

reasonable range. 

Next, we investigate the options for counting in SibNet. Note 

that there are three variants of counting methods. With reference 

to Fig. 6 , the first method is based on the regression counting per- 

formed by the two-task network for counting and seeding. The 

second method is carried out by enumerating the number of in- 

stances outputted by the instance extraction algorithm. The third 

method is a hybrid approach adopted by SibNet, which leverages 

the count regressed by the counting branch to safeguard the num- 

ber of seeds to be considered for pixel connectivity analysis. The 

result is listed in Table 2 , where regression approach outperforms 

the remaining two methods across three datasets. The instance 

segmentation approach is susceptible to small clusters of pixels 

due to decoration and shadow surrounding food. The hybrid ap- 

proach, by using the regressed count as a prior, is effective in noise 

removal. 

6.2. Instance counting 

We compare SibNet to five major groups of approaches: glance- 

based [25] , density map [18] , count map [19] , object detection 

[15,16,24,26–28] and instance segmentation [30,31,33–36] . Glance- 

based approaches perform regression counting on either image or 

region level. The comparison is made against two subitizing tech- 

niques (Aso-Sub and Seq-Sub) [25] for region-level counting and 

the two baselines (single and multi-task counting in Section 3 ) 

for image-level counting. There is a variety of approaches using 

density map generation for crowd counting. We compare SibNet 

to the classic approach in [18] , which generates a density map 

by representing each object instance as a Gaussian distribution. 

The number of instances is counted by integrating the pixel val- 

ues of a map. Instead of using density map, a count map, which 

is produced by performing block-wise classification of counts at 

region level, is proposed in [19] . As impressive performance is 

demonstrated, comparison is also made against this method (B- 

classification). Object detection techniques can be directly applied 

for counting by enumerating the number of instances being de- 

tected. We compare to the recent approaches which locate ob- 

jects with bounding boxes [15,16,26–28] and blobs (LC-FCN) [24] . 

Different from object detection, instance segmentation generates a 

mask for each object instance. We compare SibNet to different ap- 

proaches that are based on spatial embedding (SECB [31] ), seeding 

(PSENet [33] , PAN [35] ), watershed [30] or terrace [36] algorithms 

and pixel affinity learning (PixelLink [34] ). 

Table 3 lists the counting performance of different approaches. 

SibNet outperforms all the approaches across the three tested 

datasets. Density map as well as count map, which are proven suc- 

cessful for crowd and vehicle counting [18,19] , turn up to be sub- 

optimal in enumerating food items of varying shapes and sizes. 

The glance-based approaches, either count at image or region level, 

generally perform better. For food images with crowded items, as 

shown in Fig. 11 a, subitizing techniques do not perform as well as 

the single and multi-task baselines. When there are multiple par- 

tial portions of different items in an image region, the regressed 

count is fuzzy (see Seq-Sub [25] in Fig. 11 a) and even human has 

problem judging the correct mass of count. 

Table 3 
MAE performance of different branches of counting approaches. 

Method Dimsum Cookie Sushi 

Glance-based 

Single-task 0.21 0.18 0.26 
Multi-task 0.19 0.17 0.22 
Aso-Sub [25] 0.24 0.23 0.27 
Seq-Sub [25] 0.24 0.23 0.26 

Density map Hydra CCNN [18] 0.30 0.33 0.37 

Count map B-classification [19] 0.39 0.39 0.51 

Object detection 

CornerNet [27] 0.42 0.77 0.56 
FCOS [16] 0.33 0.25 0.43 
Mask R-CNN [15] 0.29 0.38 0.48 
Yolact [26] 0.30 0.55 0.39 
ExtremeNet [28] 0.52 0.64 0.66 
LC-FCN [24] 0.46 0.92 0.73 

Instance Segmentation 

Watershed [30] 0.56 0.36 0.56 
PixelLink [34] 0.53 0.38 0.54 
PSENet [33] 0.25 0.30 0.45 
PAN [35] 0.58 0.45 1.06 
SECB [31] 0.33 0.28 0.46 

Terrace [36] 0.17 0.17 0.19 

Ours SibNet 0.15 0.13 0.15 

As reported in other works [25] , localization-based approaches, 

which count by explicitly detecting object instances, do not per- 

form better than simpler glance-based approaches. These ap- 

proaches are sensitive to food presentation, and hence perfor- 

mances vary across different datasets. For example, the bounding- 

box-based instance detection performs worse on Cookie and Sushi 

than Dimsum due to the diverse non-rectangle shapes of items. 

Predicting blobs, as by LC-FCN [24] , does not show advantage over 

predicting boxes. LC-FCN tends to over-count when food items are 

decorated and under-count when food items differ in size due to 

camera capturing angle. Labelling pixels for instance segmenta- 

tion and counting also does not necessarily result in better perfor- 

mance. Among them, SECB [31] , PSENet [33] and Terrace [36] are 

the most competitive approaches to SibNet. SECB, which assigns 

a score to every pixel based on its offset vector to the predicted 

instance centroid, is sensitive to obscure boundary effect. Hence, 

the result is relatively poor on Sushi dataset. PSENet, although per- 

forming seeding as SibNet, is susceptible to noisy clusters pro- 

duced by seeding. Attributed to counting branch, SibNet performs 

relatively more robustly than PSENet. The performance of Terrace 

depends on the number of contour levels. While more levels are 

helpful for locating complex shapes, it also leads to false positive 

counting. Fig. 11 b shows examples contrasting various localization- 

based approaches. 

6.3. Instance segmentation 

We compare the performance of SibNet against proposal-based 

methods (Mask-RCNN [15] , Yolact [26] , ExtremeNet [28] ), and vari- 

ous clustering approaches based on spatial embedding (SECB [31] ), 

seeding (PSENet [33] , PAN [35] , Terrace [36] ), affinity learning (Pix- 

elLink [34] ) and watershed [30] . Table 4 shows their performance 

in terms of panoptic quality (PQ). Proposal-based approaches rely 

heavily on the accuracy of object detection and hence, in gen- 

eral, are not as superior as clustering-based approaches in dealing 

with diverse instance shapes. The bottom-up strategy by group- 

ing extreme and centre points as the quadrangles of instances, 

as adopted by ExtremeNet [28] , also does not offer advantage. 

Clustering-based approaches, by bottom-up pixel-level analysis, are 

more capable of tackling the problems of shape variation and 

occlusion. Similar to the result of counting, SECB [31] , PSENet 

[33] and Terrace [36] are the most competitive approaches of Sib- 
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Fig. 11. Comparison of SibNet with (a) non-localization based and (b) localization based approaches. The number shown below an image is the predicted count. The 
segmented (multi-task, PixelLink, SECB) or detected (Mask R-CNN) food regions, seeds (SibNet, PSENet, Terrace), mass (Seq-Sub) and density (Hydra CCNN) are highlighted 
with overlaid colour or local count. 

Fig. 12. Instance segmentation results on various scenarios. 

Table 4 
Instance segmentation performance (PQ). 

Method Dimsum Cookie Sushi 

Mask R-CNN [15] 82.81% 81.10% 78.87% 
Yolact [26] 82.34% 81.83% 78.15% 
ExtremeNet [28] 82.65% 79.75% 73.03% 
Watershed [30] 78.62% 85.36% 76.00% 
PixelLink [34] 76.06% 82.60% 74.55% 
PSENet [33] 85.71% 87.75% 81.17% 
PAN [35] 81.52% 85.52% 74.57% 
SECB [31] 84.38% 87.88% 80.22% 
Terrace [36] 87.29% 89.15% 84.98% 
SibNet 88.06% 89.83% 85.51% 

Net. These four methods start by predicting the candidate instance 

centroids and then expanding the instances. The differences in per- 

formances rely on the stability of the underlying algorithms for in- 

stances of varying sizes and complex shapes. Fig. 12 contrasts the 

performances of different approaches by visualizing the results of 

instance segmentation for five different common scenarios. Com- 

pared with other three methods, PSENet is not always robust in 

centroid prediction, resulting in either false or miss instance de- 

tection. SECB and Terrace, on the other hand, suffer from impre- 

cise detection of boundary pixels. The prediction of margin value 

as cluster size in SECB is prone to error when the shape is irreg- 

ular, while using a fixed number of layers makes Terrace not reli- 

able in boundary detection across different shapes and sizes of in- 

stances. SibNet, which locally considers pixel connectivity in differ- 

ent directions and uses Dice loss to penalize the misclassification 

of boundary pixels specifically, is empirically shown to be resilient 

to various challenges in food segmentation. 

6.4. Speed efficiency 

We further compare the computational efficiency of different 

approaches, as shown in Fig. 13 . Except ExtremeNet whose back- 

bone network is Hourglass, the other approaches are based on 

ResNet-50. Among these approaches, SibNet, Terrace [36] , PAN 

[35] and Yolact [26] are considerably faster with processing speed 

of 18–19 frames per second. SibNet, although is slightly slower 

than PAN and Yolact, shows much better accuracy in MAE and PQ. 

Compared to PSENet [33] which performs multi-scale seeding and 

pixel connectivity analysis, SibNet is 8 times faster. Compared to 

SECB [31] , SibNet is also superior in both speed and accuracies. 

6.5. Generalization 

To evaluate the generalizability of instance counting and seg- 

mentation techniques in processing food images outside of training 

data, a new dataset “Extra is constructed for testing. The dataset 
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Fig. 13. Speed versus counting and segmentation accuracies for various approaches. 

Table 5 
Performance of Terrace [36] and SibNet for within and cross-dataset generalization 
test. “Extra” is a novel dataset without Dimsum, Cookie and Sushi items.“All” pools 
all the examples in Dimsum, Cookie and Sushi for training. 

Training Testing Counting (MAE) Segmentation (PQ) 

Terrace [36] SibNet Terrace [36] SibNet 

Dimsum 

Dimsum 

0.17 0.15 87.29% 88.06% 
Cookie 0.62 0.47 75.28% 78.64% 
Sushi 0.60 0.51 75.19% 76.63% 
All 0.18 0.14 87.35% 88.99% 

Dimsum 

Cookie 

0.67 0.56 77.51% 79.72% 
Cookie 0.17 0.13 89.15% 89.83% 
Sushi 0.84 0.92 75.21% 74.94% 
All 0.22 0.14 88.48% 89.75% 

Dimsum 

Sushi 

0.85 0.58 63.97% 68.93% 
Cookie 0.72 0.63 63.75% 68.14% 
Sushi 0.19 0.15 84.98% 85.51% 
All 0.27 0.15 84.11% 86.53% 

Dimsum 

Extra 

0.67 0.49 74.08% 77.48% 
Cookie 0.91 0.46 72.92% 78.71% 
Sushi 0.75 0.62 74.19% 74.93% 
All 0.53 0.36 78.24% 81.68% 

comprises 180 images uniformly distributed across 60 new food 

categories not existed in the three presented datasets. We compare 

the generalization of SibNet with Terrace [36] , the most competi- 

tive approach in terms of MAE, PQ and speed. Table 5 shows their 

performances on four datasets, including “Extra”, using the models 

trained by different training sets. 

For both SibNet and Terrace, the models trained using the ex- 

amples having the same food categories (within-dataset) are con- 

siderably better than the models trained using examples of differ- 

ent categories (cross-dataset). In contrast to SibNet, Terrace records 

a significant drop in performance in cross-dataset evaluation, even 

when the training examples from all three datasets are pooled for 

model training. The result indicates that SibNet is less dataset- 

dependent in both counting and instance segmentation compared 

to Terrace. Particularly, considering their performances on the 

novel “Extra” dataset, SibNet exhibits much higher accuracies con- 

sistently across the models trained with different examples. When 

using “All” as training dataset, SibNet outperforms Terrace by 17% 

in MAE and 3.5% in PQ on “Extra” dataset. Fig. 14 shows three ex- 

amples demonstrating SibNet in conquering the general challenges 

of obscure boundary, occlusion, background clutter, diverse size 

and shape in the novel dataset. 

Fig. 14. Examples showing generalizability effectiveness of SibNet compared to Ter- 
race [36] in performing instance segmentation for raw and cooked food outside of 
the food categories in the training datasets. SibNet produces the near-perfect seg- 
mentation and correct counting for all the three examples. 

7. Conclusion 

We have presented SibNet along with three food datasets to 

evaluate the performance. Empirical studies show that SibNet out- 

performs the existing approaches in both food instance counting 

and segmentation. Seeding is a critically important step in re- 

ducing the adverse effects due to instance occlusion and obscure 

boundary. When learning end-to-end together with counting, seed- 

ing can be implemented efficiently using single-scale image pro- 

cessing. Furthermore, the result of counting is also empirically 

shown to be effective in removing noisy seeds for instance seg- 

mentation. Further through the pixel connectivity analysis for sib- 

ling relation detection, SibNet provides three essential information 

(count, seed, affinity), resulting in a highly efficient algorithm for 

instance segmentation. With considerably better performance in 

counting and segmentation, the speed is comparable to the fastest 

algorithms (PAN, Yolact) in the literature. Last but not least, SibNet 

also generalizes well to food images of novel categories compared 

to Terrace. 

While the results are encouraging, the current work can be ex- 

tended in two directions. First, fractional counting, such as two and 

a half pieces of biscuits, is currently not considered. The issue is 

not trivial for requiring the correction of perspective distortion or 

even the estimation of food volume. Second, this paper considers 

homogeneous food counting and segmentation. Specifically, each 

image is assumed to contain one food category. A realistic exten- 

sion of the current work is to summarize an image with food cate- 

gories along with quantity information. SibNet may also be revised 

by extending from 2-class to multi-class semantic segmentation. 

The algorithm stated in Section 4.3 also needs to be revisited to 

consider not only pixel connectivity but also semantic coherency 

when propagating instance labels to neighbouring pixels. 
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