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Achieving High MAP-Coverage through Pattern
Constraint Reduction

Yingquan Zhao, Zan Wang, Member, IEEE, Shuang Liu, Member, IEEE, Jun Sun, Member, IEEE, Junjie
Chen, Member, IEEE, Xiang Chen, Member, IEEE

Abstract—Testing multi-threaded programs is challenging due to the enormous space of thread interleavings. Recently, a code
coverage criterion for multi-threaded programs called MAP-coverage has been proposed and shown to be effective for testing
concurrent programs. Existing approaches for achieving high MAP-coverage are based on random testing with simple heuristics, which
is ineffective in systematically triggering rare thread interleavings. In this study, we propose a novel approach called pattern constraint
reduction (PCR), which employs optimized constraint solving to generate thread interleavings for high MAP-coverage. The idea is to
iteratively encode and solve path conditions to generate thread interleavings which are guaranteed to improve MAP-coverage.
Furthermore, we effectively apply interpolation techniques to reduce the efforts of constraint solving by avoiding solving infeasible
constraints. The experiment results on 20 benchmark programs show that our approach complements existing random testing based
approaches when there are rare failure-inducing interleaving in the whole search space. Specifically, PCR finds concurrency bugs
faster in 18 out of 20 programs, with an average speedup of 4.2x and a maximum speedup of 11.4x.

Index Terms—Concurrency bug detection, Constraint solving, Coverage criteria, Thread-safe class.

1 INTRODUCTION

ONCURRENCY bugs are notoriously hard to detect and de-

bug [1], [2], and would lead to high-profile system vulner-
ability [3]. Therefore, concurrent programs must be thoroughly
tested. One of the fundamental challenges of testing concurrent
programs is how to selectively explore the enormous search space
of thread interleavings, which grow exponentially with the number
of threads and the number of executed instructions.

Recently, a set of 17 generic memory-access patterns [4] has
been shown to be associated with the root cause of concurrency
bugs [4]. Based on this observation, several approaches based
on memory-access patterns have been proposed for concurrent
program testing [5] and fixing [6]. In particular, Wang ef al. [5]
proposed a new coverage criterion called MAP-coverage, for con-
current programs based on memory-access patterns. Intuitively,
MAP-coverage measures the percentage of memory-access pat-
terns covered on a set of test executions. Their evaluation results
show that MAP-coverage is positively correlated with the bug-
revealing effectiveness of a set of test executions. Inspired by
the result, they also proposed a method called MAPTest, which
randomly explores the space of thread interleavings based on
heuristics to iteratively improve MAP-coverage.
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However, random testing of concurrent programs may result
in exploring the same or similar thread interleavings many times,
which have limited contribution to improve MAP-coverage, and
may miss rare failure-inducing interleaving. Thus, it is desirable
to have a systematic testing method, which avoids redundant
thread interleavings and achieves high MAP-coverage. In the
previous studies, researchers proposed some methods to solve
the problem of redundant thread interleavings, including stateless
model checking, partial order reduction (POR) [7], and maximal
causality reduction (MCR) [8]. In particular, POR is applied (with
stateless model checking for instance) to avoid thread interleavings
that are stutter-equivalent to others. The latest proposed method
called MCR [8] applies constraint solving techniques to system-
atically identify thread interleavings that are state-changing, i.e.,
that would result in a program state which is different from the
explored ones. MCR has been shown to be effective in generating
rare thread interleavings that reveal concurrency bugs. However,
MCR still suffers from the scalability issue. The reason is that
MCR aims to generate all state-changing thread interleavings,
which is often enormous. Moreover, it may repeatedly solve
constraints that have been proved to be unsatisfiable.

In this study, we propose a systematic approach to achieve
high MAP-coverage. Our approach works as follows. It takes a
concurrent program in the form of a thread-safe class and a set of
test cases where multiple threads execute concurrently to access a
shared object as inputs. Next, it systematically explores different
interleavings of the threads in order to achieve high MAP-coverage
with the provided test cases. In particular, each time it constructs
and solves a constraint to generate an interleaving that is guaran-
teed to satisfy maximal causality reduction as well as exhibiting
an unseen memory-access pattern. Furthermore, it records reasons
of unsatisfiable constraints (in the form of interpolates) to avoid
solving infeasible constraints. Our work can be viewed as an
improvement of both MAPTest [5] and MCR [8]. Compared
with MCR [8], we reduce the search space further by focusing



on generating different memory-access patterns. Moreover, we
reduce the efforts of constraint solving with recorded infeasible
constraints. Compared with MAPTest [5], our approach does
not rely on ‘chances’ but rather systematically explores different
memory-access patterns to achieve high MAP-coverage.

We conduct experiments with a benchmark consisting of 20
real-world concurrent programs. Compared with MAPTest [5],
PCR achieves high MAP-coverage much faster on 13 programs.
Moreover, PCR also exposes concurrency bugs faster. In partic-
ular, PCR is significantly better than MAPTest on 17 programs,
achieving an average speedup of 4.2x and a maximum speedup of
11.4x.

In summary, we highlight our contributions as follows.

e We propose the approach PCR, which aims at achieving
high MAP-coverage and concurrent bug detection effi-
ciency.

e We evaluate PCR on 20 real-world concurrent programs,
and the evaluation results demonstrate the efficiency and
the effectiveness of our proposed approach.

o We implement our approach in a self-contained toolkit and
make it open source for other researchers to replicate and
follow our study'.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the relevant background of this study. Section 3
presents a motivating example to illustrate the main idea of our
approach. Section 4 describes the details of the PCR algorithm.
Section 5 reports our implementation details, the experiment
settings, evaluation results, and the threats to validity. Section 6
discusses the related work and Section 7 concludes the paper.

2 PRELIMINARY

In this section, we review the relevant background.

2.1

The test object of our approach is a thread-safe class cl. A
class is thread-safe if it behaves correctly when multiple threads
are allowed to access methods in the class concurrently without
additional synchronization or other coordination on the part of the
calling code [9]. In our study, correctness refers to the absence of
data races and atomicity violations. Without loss of generality, we
assume the class ¢l is composed of a set of mutable (instance or
static) variables V' and a set of public methods M. Each method
m € M takes an optional sequence of input parameters, and
accesses some variables in V' for either reading or writing (which
includes reading). We use R,, (and W,,) to denote the set of
variables read (and written) by the method m.

Thread-safe Class

2.2 Test cases

A test case for a class is a concurrent program, which invokes one
or more public methods in M possibly through multiple threads.
A test suite is a collection of multiple test cases. For instance,
Fig. 1(a) shows a test case for the class in Fig. 2. It is written in the
form of one prefix and multiple suffixes. Intuitively, the prefix is
a sequential part of the test case, which is executed first, and then
multiple suffixes are executed afterward by executing different
threads concurrently. In the example of Fig. 1(a), there are two

1. https://github.com/sail-repos/PCR

TABLE 1: Generic memory-access patterns [4]

ID  Memory-Access Pattern

1 (tavsh{x}v@)v(tbvsj7®7{$})

2 (ta,si,0,{z}), (to, sj, {z},0)

3 (tmsiv@v{m})v(tb7575®7{$})

4 (ta, Si, {:L‘}7 (Z)), (tb, S5, @, {l’}), (ta, Sk {(L‘}, @)

5 (t075i7®7{$})7(tbvsj7®7{w})7(ta75k7{x}7®)

6 (ta,si,0,{z}), (t, s, {z},0), (ta, sx, 0, {z})

7 (tas 81, {:D}, @), (tbv 555 0, {x})’ (ta, s, 0, {‘T})

8 (ta,si,(i),{a:}),(tb,§7,®,{x}),(ta,sk,ﬁ,{m})

9 (tav Si, ®7 {J}}), (tb7 S5 ®7 {x})v (tbv Sk 07 {y})7 (tm Sy ®7 {y})
10 (tav Si, Q)v {1‘}), (tb7 Sjy Q)v {y})’ (tb7 Sk 0’ {{E}), (tm Sl Q)r {y})
11 (tas 81, 0, {x})’ (tbv 555 0, {y})’ (tm sk, 0, {y})a (tbv 51,0, {x})
12 (tdv Si, Q)a {I})v (t?H Sjs {I}7 @), (t’H Sk {y}a Q))v (tﬂa Sy Q)a {y})
13 (tm Si, @, {:(}}), (tb’ Sjy {Z/}, @)7 (tb’ Sk {$}7 Q))? (tm Sl ®7 {y})
14 (ta, si,{z},0), (1, 55, 0, {z}), (v, sk, 0, {w}), (ta, 51, {y}, 0)
15 (t,,,, Si, {ZD}, Q))’ (tb, S, 07 {y})’ (tb7 Sk 0’ {{)3}), (tﬂv Sy {y}v (Z))
16 (ta, si, {z}, 0), (Lo, 35, 0, {y}), (tas 35, {9}, 0), (to, 51,0, {=})
17 (ta> Siy @7 {37})7 (tb, 855 {y}7 Q))v (tm Sk Q)’ {y})’ (tbz Sy {ﬂ,‘}, Q))

threads ¢; and ts; t; executes the first suffix, and t» executes
the second suffix. Note that although this test case potentially
reveals the bug. For instance, the Prefix in Fig. 1(a) first declares
an instance of the tested class Appender AttachableImpl and
does some initialization. Subsequently, the is Attached method in
Suffix1 is called by a thread. The removeAll Appenders method
in Suffix2 is called by a different thread. This test case triggers a
NullPointer Exception bug which we will describe in detail in
Section 3. However, it is unlikely to always reveal this bug, if we
just run this test case multiple times. The reason is that revealing
this bug requires a strict constraint, i.e., the thread ¢, must be
executed after thread ¢; executes line 6 and before ¢; executes
line 8 or line 11, which is not easy to satisfy in a random way.
Note that a test execution is a particular execution of a test case,
i.e., a total order of statements in the test cases according to a
specific thread interleaving.

2.3 Memory-Access Patterns

A memory-access pattern is a pattern describing how multiple
threads access one or more shared variables. It has been shown
that memory-access patterns are often associated with the essence
of concurrency bugs [4]. Memory-access patterns can be viewed
as an abstraction of the test execution, which allows us to ig-
nore irrelevant information, yet preserve the root cause of the
concurrency bug. We adopt the set of 17 memory-access patterns
defined by Park et al. [4], shown in Table 1. A memory-access
pattern is represented in the form of a sequence of steps, as shown
in the second column of Table 1. Taking the fourth pattern in
Table 1 as an example, it contains three steps. First, thread ¢,
reads the variable x at instruction s;. Second, thread ¢, writes x
at s;. Finally, thread ¢, reads = again at s;. Note that this pattern
presents in the execution trace in Fig. 1(b) and is relevant to the
bug. Vaziri et al. [11] prove that this set is complete under a
certain assumption. That is, the root cause of concurrency bugs
can be attributed to one or more of these patterns [6].



gid thread ¢;: thread t5:
1. Prefix: i1 (t17357{aL}7®)
2. AppenderAttachableImpl var0 = new AppenderAttachableImpl () ; 1o (t27 S19, {aL}7 @)
3. ConsoleAppender varl = new ConsoleAppender(); . I @
. 13 (tl,Sg,{a }7 )
4. var0.addAppender (varl) ; i
5. iy (t2,520,{al},0)
6. Suffixl: is | (t1,s11,{aL},0)
7. boolean var3 = var0O.isAttached (varl); i to.s al
8. Suffxi2: 5 (t2, 522, L}’g)
9. var0.removeAllAppenders () ; 2‘7 (tg’ 525, {a }’ )
is (t2,526,0,{aL})
(a) The test case (b) The test execution trace
Fig. 1: An example test case and a test execution trace for Fig. 2
l.public class AppenderAttachableImpl ... {
2.
3. protected Vector aL; To =Ygev2* ‘Ix,R‘ * |Im,W‘ Patterns 1-2
‘ + Ypev | Lew | Pattern 3
5 public boolean isAttached (Appender appender) 9
{ + Xoeviierl® * [ Lo,w] Pattern 4
6. if( al == null || appender == null) 2
* * —
7. return false; + Xzev3 |Ix:R‘ |Iz,W| Pattern 5-7
8. int size = aL.size(); +Ez€V‘Iz,W‘3 Pattern 8
9. Appender a; 2 2
10. for(int i = 0; i < size; i++) { + B yycvd # [ Lewl” * |1, w] Patterns 9-11
11. a = aL.elementAt (i); + 3% 6 x| % |I % |I % | I
12, if(a == appender) {z,y}CV Lo,w| * [ La,r| * | Iy,w| * |1y Rl
13. return true; Patterns 12—-17
14. }
15. return false; Definition 1: (MAP-Coverage) Let TP be a concurrent program;
13- } V be a set of shared mutable variables in 7'P; and TF be a set of
18. public void removeAllAppenders () { FCSt CXCCUU(?HS. We say that a memory-access pat.tern p 1S covered
19. if(al != null) { if and only if there exists at least one test execution ¢t € TFE such
20. int len = aL.size(); that p € patterns(t). The MAP-coverage of T'E is defined as:
21. for(int i = 0; i < len; i++) {
22. Appender a = alL.elementAt (i); | UteTE patterns(t)|
23. a.close(); 2)
24. } Tc
25. aL.removeAllElemeznts () ; where TC is defined as above.
26. alL = null;
27. }
28. }
291 3 MOTIVATING EXAMPLE

Fig. 2: An example class adopted from Log4 j1 [10]

2.4 MAP-Coverage

Given a thread-safe class, the MAP-coverage of a set of test
executions T'F is calculated by the number of patterns covered
by T'E over the total number of memory-access patterns. Due to
the difficulty of precisely identifying the total number of memory-
access patterns (just like the difficulty of knowing how many
statements are reachable when we compute statement coverage),
the total number of memory-access patterns are over-estimated as
the number of all read operations multiply the number of all write
operations. The number of the first pattern in Table 1 is estimated
as:

Yoev e r] * |1z w] (D

where z is a variable in V'; I, p is the set of atomic instructions in
the program which read x; I, w is the set of atomic instructions
in the program which write z; |S| is the size of a set S. With a
similar (over) estimation on the other patterns, the total number of
patterns T'¢ is then computed as follows.

Fig. 2 shows a motivation example adopted from Log4j1 [10]
which is supposedly thread-safe. For the sake of space, we only
show two methods that are related to the concurrency bug. At line
6, method is Attached checks whether a L and appender are null.
If neither is null, aL is read at lines 8 and 11 of the method. At
line 19, method remove All Appenders first checks whether a L is
null. If it is not null, the elements in a L are cleared through lines
20, 22, and 25 of the method, and then set aL to null at line 26.
Therefore, if a thread checks that a L and appender are not null at
line 6 of the method isAttach and has not yet executed line 8 or
line 11, another thread executes method removeAll Appenders
and sets aL to null at line 26, a NullPointer Exception is
generated when line 8 or line 11 is executed.

The existing approach MAPTest [5] first statically analyzes
the test class’s bytecode instructions and then finds the potential
memory-access patterns. In this example, there are three read
instructions on aL in the isAttached method (lines 6, 8 and 11),
four read instructions (lines 19, 20, 22 and 25) and one write
instruction on aL (line 26) in the remove All Appenders method.
Therefore, MAPTest estimates that there are nine memory-access
patterns, as shown in Fig. 3, and then generates test cases which
are randomly executed in order to trigger the patterns. However,
due to the limitation of static analysis, there are redundant and



Pattern of length 2

p1: ((t1,86,{aL},0), (t2, s26,0,{aL}))
Pp2: (t278257®7{aL})1(t17557{aL}7®))
Dps: (t],SS,{O,L},@),(tQ,SQ@,@,{GL}))
ps: ((t2,526,0,{aL}), (t1, ss,{aL},0))
ps: (t178117{aL}70)a(t275267®7{aL}))

(t2> 526, @7 {aL})7 (tl ;811 {aL}7 Q))

(
(
(
(
ps: (
Pattern of length 3
p7 ((tl ) 56,5 {O’L}7 0)7 (t27 526, 0, {aL}) (tl ) 88, {G’L}7 Q)))
ps: ((tl ) 565 {aL}7 @), (t27 526, 07 {aL})7 (tl ) 811, {G’L}7 @))
b9 ((tl ) 58,5 {G‘L}7 @), (t27 526, ®7 {CLL})7 (tl y 11, {U‘L}v @))
Fig. 3: The memory-access patterns generated for the example
class by MAPTest (p; - pg) and PCR (highlited in blue)

(11 <iz)
(12 <ig ), (14 <tg ), (16 <ir), (i7 <ig)
(11 <ig), (g <i3z)

t1 happens-before :
to happens-be fore :
Pattern Constraint :

Fig. 4: Constraints generated based on Fig. 1(b) and p; of Fig. 3

meaningless memory-access patterns in the estimated results. For
patterns of length 3, ps represents a relaxed set of constraints,
which can be replaced by the situations of p7; and pg. We refer
to this situation as the interrupted pattern, and the details are
introduced in Section 4.2. Furthermore, since MAPTest is based
on random testing, it can not guarantee to cover any of the
patterns. For instance, given the test case shown in Fig. 1(a), which
can potentially cover all the memory-access patterns in Fig. 3
with proper scheduling. However, we conduct an experiment with
MAPTest on this test case and MAPTest fails to cover any of the
patterns in most runs. As a result, MAPTest took 97.7% more
scheduling than PCR to trigger the failure.

In the following, we show how PCR works to cover as many
patterns as possible from a given test case. Fig. 1(a) is an example
test case for the class in Fig. 2. PCR obtains the given test case’s
execution information from the dynamic execution results and then
identifies the memory-access patterns that have not been covered
yet. PCR first randomly executes the test case, and gets an initial
execution trace, as is shown in Fig. 1(b), the gid indicates the
global id of each event in the execution trace. With the execution
trace, PCR constructs five memory-access patterns, i.e., pa2, P4,
D6, D7, and pg which are highlighted in blue in Fig. 3. Thanks to
dynamic execution, PCR is able to precisely identify the memory-
access patterns, in contrast to the over-estimation of MAPTest.

After obtaining all patterns, PCR first selects a target un-
covered pattern and constructs the constraints required to cover
the pattern. Note that the longer patterns are selected first since
the more constraints contained in the pattern the more specific the
generated schedule is. The complete list of constraints that are
required to cover the pattern are shown in Fig. 4, including the
happens-before constraints of ¢, the happens-before constraints
of t2 and the pattern constraints. The happen-before constraint
restricts the execution order of events from the same thread, i.e.,
those events must follow the same order as that of the original
execution trace. For example, the happens-before constraint of ¢,
requires that ¢; <¢3, which means that ¢; must be executed before
i3. According to the sequential consistency memory model [8],
the execution results of i3 depends on the execution results of
i1. PCR also constructs pattern constraints based on the patterns
that are generated from the given execution trace. In this example,

Algorithm 1: PCR: overall algorithm

1 given a testcase tc for cl;

2 let @, < () be the set of unsatisfiable constraints, initially
empty;

3 let F'T + patternConstraintExplore(tc, ), $,,);

4 print F'T}

Algorithm 2: patternConstraint Explore(tc,schedule,®,,)

1 let trace < execute(tc, schedule);

2 let P < patternConstraintCreation(trace);

3 for each pattern p in P do

4 let ® be the constraints obtained for ¢race on p;
5 let s <— patternConstraintSolving(®, ®,,);

6 schedules.add(s)

7 for each schedule s in schedules do
8 L let F'T < patternConstraintExplore(tc,s, ®y,);

9 return I'T

according to pattern p7, ig needs to be executed in between 7
and i3. Therefore, PCR generates two constraints, i.e., 11 <ig and
1g<i3. After obtaining all the above constraints, PCR applies an
SMT-Solver [12] to compute a new schedule that satisfies all
the constraints. A feasible schedule obtained from the constraint
solving result is shown as follows:

to < iy < tg <ty <11 <tg <13

According to this schedule, after the thread ¢; checks that a L is not
NULL at ¢4, the thread ¢, assigns aL to NULL at ig, and when the
thread t; is scheduled to execute i3, a Null Pointer Exception
will be triggered.

4 APPROACH

In this section, we introduce the details of our proposed approach
called Pattern Constraint Reduction (PCR). PCR aims to generate
effective thread scheduling to achieve high MAP-coverage and
consequently expose bugs in thread-safe classes. In particular,
given a test case for a thread-safe class, PCR first executes it
randomly to obtain an execution trace (i.e., thread scheduling) and
then generates a set of constraints to explore uncovered patterns
to achieve higher MAP-coverage. The input of PCR is a test case
for a class that is supposed to be thread-safe. The output is a
test execution that triggers the concurrency bug, which violates
thread-safety and a test report that summarizes the achieved MAP-
coverage.

The overall algorithm of PCR is shown in Algorithm 1. The
input is a test case tc designed to expose concurrency bugs in
the thread-safe class cl. The test case can be obtained in different
ways. One is to manually design test cases by randomly calling
methods in the thread-safe class under test. In this work, we
adapt existing test case generation tools (e.g., which is a part of
MAPTest [5]), which automatically generates test cases. Each test
case consists of a prefix and two suffixes, as is shown in Fig. 1(a).
Specifically, the prefix is used to instantiate an object ¢l for the
thread-safe class and randomly call some methods to change the
declared object’s state. The two suffixes are used to set up two
threads ¢, and ¢ to call methods in a method pair correspondingly
and iteratively generate the parameters needed for all methods.
The two threads access the shared object ¢l declared in the prefix



Algorithm 3: patternConstraintCreation(trace)

1 identify all shared variables V' in trace;
2 let patterns < 0;
3 for each variable x in V do

4 identify I, r and I, w for each variable x;

5 //Add patterns of length 2

6 for each s; in I r and each s; in I, w do

7 if thread(s;) # thread(s;) then

8 add (s;,s5) into patterns;

9 L add (s;,s;) into patterns;
10 for each pair of s; and sj in I w do

11 if thread(s;) # thread(s;) and s; != s; then
12 add (s;,55) into patterns;

13 L add (s;,s;) into patterns;

14 //Add patterns of length 3
15 for each pair of patterns < p1,p2 > in patterns(z) do

16 if thread(p1.s1) == thread(p2.s2) and
17 P1.81 7 p2.S2 and p1.s2 == p2.s1 then
18 L add (p1.s1, p1.S2, p2.s1) into patterns;

19 //Add patterns of length 4
20 for each variable x, y € V do

21 for each pattern p1 € patterns(x) and each pattern p2 €
patterns(y) do

22 if p1.length == 2 and p2.length == 2 and

23 thread(p1.s1) == thread(p2.s2) and

24 thread(p1.s2) == thread(p2.s1) then

25 X, X, y, y

26 add (p1.s1, p1-S2, P2.51, p2.S2) into patterns;

27 /1X,y, X, y

28 add (p1.s1, p2.S1, p1.S2, p2.S2) into patterns;

29 11X, y, Y, X

30 add (p1.s1, p2.S1, p2.S2, p1.S2) into patterns;

31 for each pattern p in patterns do
32 if p satisfies the filtering rules in Table 2 then
33 | remove p in patterns;

34 return patterns;

TABLE 2: Memory-access pattern filtering rules

No. Rules  Description
1 Non-defined  The pattern is not defined in Table 1
2 Covered  The pattern has been covered in the current or

previous trace
The events originated from the same thread
violate the happens-before relation

3 Happens-before

4 Old-state  The pattern can not generate a new program
state

5 Interrupted The pattern was interrupted by a write in-
struction

6 Redundant  The pattern is redundant

concurrently. We use ®,, to store unsatisfiable constraints (line 2)
to avoid infeasible thread interleavings. Then the given test case
is explored with the patternConstraint Explore algorithm (i.e.,
Algorithm 2).

4.1 Test Case Exploration

Algorithm 2 first executes the given test case with a random
schedule to obtain a test execution, then identifies patterns from
the test execution, which may change the program states, and
then generates schedules guided by the patterns. In particular,

Algorithm 4: patternConstraintSolving (®, ®,,)

1 if 3¢, € Py, such that ¢, € O then
2 L return null;

3 let s, ¢, < SolveConstraints (P);
if s # null then
5 | returns;

'S

6 else

L ®,.add(¢u) ;

return null;

=

it first executes the test case tc on the program according to
the given schedule (initially empty) and obtains an execution
trace trace (line 1). Then we obtain a set of patterns P with
Algorithm 3 (line 2). The patterns in P do not occur in trace,
and they involve instructions, which read/write a different value
on a shared variable. For each pattern p € P, we obtain the
set of pattern constraint ® for ¢race according to p (line 4).
The pattern constraint is constituted with the must-happen-before
constraint, the lock-mutual-exclusion constraint, and the data-
validity constraint. Intuitively, the happen-before constraints make
sure that the correct execution order of events from the same
thread. The lock-mutual-exclusion constraints make sure that the
correct acquisition and release of synchronization locks. The data-
validity constraints ensure that the newly generated schedule is
feasible. We refer to the readers to MCR [13] for details on
how these constraints can be systematically obtained. We also
add the pattern constraint, which is in essence a happens-before
constraint on the instructions of the pattern. For each of the
patterns, PCR explores the possible thread interleavings through
the patternConstraintSolving algorithm (line 5), which returns
the generated thread schedule on the given test case, if any. The
generated schedule is added to the set of schedules (line 6) for
each pattern in P. Then we execute the test case tc on all of the
generated schedules until a failing test execution F'T is triggered
or all of the schedules are explored (lines 7-8). The test execution
results are returned (line 9). Note that the for loop in lines 3-6
and lines 7-8 can be executed in parallel. In addition, we maintain
a pool of explored schedules and check on the newly generated
schedules to avoid duplicated executions.

4.2 Pattern Constraint Creation

Algorithm 3 shows the steps of identifying patterns that satisfy the
pattern constraints shown in Table 1. Our algorithm first identifies
all read and write instructions on all shared variables (line 4), and
then constructs pattern candidates of length 2 (lines 6-13). I,
represents the instruction reads on variable x, and I, y represents
the instruction writes on variable x. We add all read-write, write-
read and write-write instruction pairs on the same shared variable
from different threads into the set of pattern candidates. Based on
the pattern candidates of length 2, we construct pattern candidates
of length 3 (lines 15-18) and pattern candidates of length 4 (lines
20-30). Note that patterns of length 3 and 4 are constructed only
based on feasible length-2 patterns, i.e., lines 16-17, lines 22-24
where s; and so are the first and second instruction in a length 2
pattern candidate. p;.s; is the first instruction of the first pattern
candidate of length 2. This allows us to reduce the implementation
cost and runtime overhead of constructing patterns of length 3 and
4. In general, it can be easily shown that all the patterns of length
3 and 4 can be obtained by combining two patterns of length 2
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in general. For instance, pg is the combination of two instances
of p3 in Table 1. After obtaining all the pattern candidates, We
then check the pattern candidates with the pattern constraints and
remove those patterns that do not satisfy the constraints (lines 31-
33).

To reduce the cost of constraint solving, we propose six
filtering rules, based on which the generated pattern constraints
are filtered. We check the pattern constraint candidates following
the order of the rules listed in Table 2. We first use Rule 1 to filter
the patterns that are not defined in Table 1 (Non-defined), and use
Rule 2 to filter the patterns that are already covered in existing
traces (Covered). Then we further use the other four rules to filter
the patterns with the following steps.

Rule 3: Satisfy the happens-before relation. The instruc-
tions from the same thread in the generated pattern must sat-
isfy the happens-before relation, i.e., the instructions from the
same thread must obey the original sequential order. For in-
stance in Fig. 5(a), we can construct a pattern of length 3
(s3, RY), (82, I/Vgé’/)7 (s1, R;/) (i.e., (2) of Fig. 5(a)) based on the
length 2 patterns (ss, RY), (s3, W) and (s2, W*'), (s1, RY ),
and this pattern has not been covered. (s1, RY) represents the read
operation on the variable 2 by the instruction s;, which reads the
value v. However, based on the happens-before relation rule, the
newly constructed pattern is invalid since the two read instructions
(s, RY) and (s, RY) are from the same thread. Under the
sequential consistent memory model [8], the instructions of the
same thread must satisfy the happens-before relation rule, i.e., the
read operation s; must happen before the read operation ss.

Rule 4: Generate a new program state. The generated thread
interleaving should have a different output value, i.e., the read
instruction reads a different value (on the targeted shared variable)
from the original test execution, or the write operation changes
orders. One example is illustrated in Fig. 5(b), where the read
operation (s, RY') reads the value v/ from the write operation
(s9, W¥'). To guarantee the read operation (ss, RY') can read a
different value (i.e., v # V'), we need to construct a pattern of
length 3 to ensure that the read operation of (s, R;l) is executed
after (s1, W) and before (sy, W2).

Rule 5: Skip interrupted patterns. The generated patterns should
avoid being interrupted by other patterns. Take the execution trace
shown in Fig. 5(c) as an example, suppose we want to construct

a pattern of length 3, e.g., (s1, WY), (s4, W), (s3, R), which
allows (s3, R¥) to read the value p from (sq, W#). The value
read by s3 is p since it is executed after s4, which writes p to x
(which is different from the original value read by s3). However,
this pattern does not restrict the execution order of (s, W*') and
(s4, W1). Specifically, if s, is executed before so, this pattern
can not generate a new program state since the value read by
sg is still the value written by so; if s4 is executed after ss, a
new program state is generated. However, such a situation can
be replaced by (sq, WY'), (s4, WH), (s3, R"). Therefore, we do
not allow interrupted patterns, i.e., the instructions from the same
thread must be consecutive in the generated pattern.

Rule 6: Remove redundant exchange. For some patterns of
length 4, which involve operations on two shared variables, chang-
ing from one pattern to the other does not result in new values
of the shared variable, and the changed behavior between two
variables do not affect each other. We thus filter such redundant
patterns. For instance in Fig. 5(d), suppose we generate a new
pattern of length 4, i.e., (s2, W), (51, R}), (84, I/Vyfl)7 (s3, RY) as
shown in (2), according to the original pattern in (1). The new
generated pattern does not lead to a new program state since both
z and y read the same value. Therefore it is redundant and can be
removed from the generated patterns.

For each of the executed trace, we construct all candidate
patterns, and try to match them with the generic patterns shown in
Table 1 as many as possible. In this way, we maximize the pattern
coverage of the given test case, whilst filtering patterns that
cannot introduce a new program state, with the aim of uncovering
concurrency bugs efficiently. Finally, the patterns that satisfy all
pattern constraints (i.e., patterns) are returned.

In the following, we discuss the soundness of PCR. PCR takes
a test case of thread-safe class as input, and iteratively identity all
potential memory-access patterns that can be formed by executing
the test case with different interleaving of the threads. Given an
execution trace (of a test case), Algorithm 3 is used to identify
all potential patterns. We define the soundness of Algorithm 3
as follows: given a test case, if there exists an interleaving such
that the test execution exhibits a memory-access pattern pt and
results in a set of program state ST, Algorithm 3 generates at
least one execution trace that exhibits pt unless all program states



TABLE 3: Benchmarks Description

ID  Project Version Package Class Name Fields Methods LOC Bug
Vi Apache DBCP 14 org.apache.commons.dbcp.datasources ~ PerUserPoolDataSource 35 65 682  Data race
V2 P ’ org.apache.commons.dbcp.datasources ~ SharedPoolDataSource 30 51 516  Atomicity
V3 Apache Tomeat 7.0 org.apache.catalina.connector InputBuffer 20 22 575  Data race
v4 7.0 org.apache.catalina.connector Request 59 143 3736  Datarace
V5 1.1 java.io BufferedInputStream 7 9 237  Atomicity
Vo6 1.6.0 java.util ConcurrentHashMap 15 29 1007  Atomicity
V7 1.6.0 java.util HashTable 14 31 558  Data race
V8 JDK 1.4.1 java.util.logging Logger 18 44 530  Atomicity
Vo 1.6.0 java.lang StringBuffer 5 52 845  Atomicity
V10 1.1.7 java.util Vector 3 22 177  Atomicity
V1l 142 java.util Vector 5 51 660  Atomicity
V12 0.9.12 org.jfree.chart.axis NumberAxis 43 110 1637  Atomicity
V13 1.01 org.jfree.chart.axis PeriodAxis 45 125 1681  Data race
V14  JFreeChart 0.98 org.jfree.data.time TimerSeries 12 41 331  Data race
V15 1.09 org.jfree.chart.plot XYPlot 84 217 2788  Datarace
V16 0.98 org.jfree.data XYSeries 7 25 198  Data race
V17 org.apache.log4j.helpers AppenderAttachableImpl 1 8 92 Data race
V18  Log4j 1.2.13 org.apache.log4j FileAppender 7 33 410  Atomicity
V19 org.apache.log4j.varia NullAppender 8 19 138  Atomicity
V20  Xstream 14.1 com.thoughtworks.xstream Xstream 88 66 798  Atomicity

ID is the unique identity of the tested class. Project, Version and Package are the corresponding project, version and package that
the thread-safe classes being tested are originated; Class Name is the name of the tested class; Fields and Methods are the number
of variables defined in the class, including those from its super class, and the number of public methods, respectively; LOC shows the
number of lines of code in the class. The concurrency bugs in these classes mainly include data race and atomicity violation, as shown

in the Bug column.

in ST have been explored (by execution traces generated by
Algorithm 3). Intuitively, Algorithm 3 is sound if it never misses
any pattern which results in a new program state.

The soundness of Algorithm 3 depends on whether the filtering
rules are sound, i.e., given a test case, applying the rules does not
prevent us from exploring a new memory-access pattern which
results in a new program state if a different interleaving is adopted.
A new program state means that a read instruction reads a different
value [13]. Note that a branch that is not covered may become
covered only if a new program state is reached. Our soundness
discussion follows in spirit that of MCR presented [13]. In fact,
MCR may be regarded a special case of our approach, i.e., only
Rule 4 are applied. From another point of view, our approach
further filters those interleaving ‘selected’ that exhibit the same
memory-access patterns.

In terms of each specific rule, the effect of Rule 1 is that
we only focus on the set of 17 memory-access patterns shown in
Table 1. We refer the readers to [4], [5] for reasons on why these
memory-access patterns are useful. Rule 3 filters out infeasible
patterns that do not satisfy happens-before relation. Since our
happens-before relation is an under-approximation in general, only
infeasible patterns are filtered. The soundness of Rule 4 follows
that of MCR [13]. The soundness of Rule 5 and Rule 6 have been
argued above, i.e., they only filter out those patterns that do not
result in new program states. The only rule that is not sound is Rule
2. That is, Rule 2 may filter out interleavings that result in different
program states but have the same memory access patterns. This is
a price that we pay to reduce the number of interleavings to be
explored. Intuitively, this is justified in practice as it has been
shown that different behaviors are often associated with different
memory-access patterns, i.e., while in theory Rule 2 is not sound,
in practice, the missed behaviors due to Rule 2 may be few. This
is partly evidenced through our empirical evaluation.

4.3 Pattern Constraint Solving

Algorithm 4 generates a valid thread schedule based on the given
constraint set, or returns if the constraints are unsatisfiable. To
further reduce the invocation of the constraint solver, which is
often the performance bottleneck, we make use of the unsatisfiable
core as a further filter. That is, for each constraint which is proven
unsatisfiable, we record its unsatisfiable core, which is then used
to filter those pattern constraints which have the same set of
constraints in any of the unsatisfiable cores. For instance, our
algorithm first checks whether there exists an unsatisfiable core
using the SMT solver, which is a subset of the constraints to be
solved (line 1). If it is the case, we will return without solving
the constraints (lines 2). Otherwise, we will solve the constraints,
which returns either a valid schedule s or an unsatisfiable core ¢,,
(line 3). If s is valid (not null), we return s (line 4-5). Otherwise,
the unsatisfiable core ¢, is added to the set of unsatisfiable core
®,, and return null (lines 6-8).

5 IMPLEMENTATION AND EVALUATION

In this section, we first present the implementation details of
our proposed approach. Then, we evaluate its effectiveness and
efficiency.

5.1 Implementation

We implement our approach as a self-contained toolkit for testing
Java programs. PCR is built upon the bytecode analysis and
modification tool ASM [14]. The instrumented class dynamically
records the execution trace of the test case and controls the thread
schedule. To generate a new program schedule, PCR constructs
a constraint file by analyzing execution trace and solves the con-
straints through a popular constraint solver Z3 [12]. MAPTest [5]
is adopted to generate the test cases used in the experiment.



5.2 Evaluation Settings

Table 3 lists all the programs we used for evaluation. The bench-
mark contains a set of 20 buggy ‘thread-safe’ classes derived from
real-world applications and have been widely adopted in previous
studies [5], [15], [16].

Since there are no available test cases, we adopt MAPTest [5]
to generate a set of 1,000 test cases for each class in Table 3.
We explicitly mark those test cases which trigger thread-safe
violations. We ensure there is at least one such test case in the
generated test case set by keep executing MAPTest until a thread-
safety violation is triggered which often takes hours. To check
whether PCR successfully exposes a concurrency bug, we use a
simple oracle which monitors unexpected exceptions and assertion
failures.

All our experiments are conducted on a server with two octa-
core CPUs Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz and
125G RAM. The operating system is Ubuntu 18.04.2 LTS (64 bit).
The time limit is set to be 3,600s for each run. To reduce the effect
of randomness, we run each experiment 10 times independently
and report the average result.

Our experiment is designed to evaluate two aspects. First,
we explore and analyze the ability of MAPTest in covering the
specified memory-access patterns (RQ1). Second, we explore
whether PCR can improve existing work on achieving high MAP-
coverage (RQ2) and generate failure-inducing schedules (RQ3).

5.3 Evaluation Results

RQ1: Are existing random testing based approaches effective
in covering the intended pattern?

The main idea of MAPTest is generating a set of test cases that
can achieve high MAP-coverage, and then to reveal concurrency
bugs?. To achieve the goal, each time MAPTest selects a memory-
access pattern that is not covered or less frequently covered to
construct a test case, and tries to generate a schedule execution that
covers the intended pattern. However, it relies on simple heuristics
for schedule generation and may miss the intended pattern. To
evaluate how effective MAPTest can cover the intended pattern,
for each thread-safe class, we randomly select a test case to
execute 50 times and record the number of times that MAPTest
successfully covers the intended pattern.

The evaluation results are shown in Column “RQ1-CIP(M.)”
of Table 4, where CIP is short for Cover Intended Pattern,
and M. represents the results of MAPTest. Among the 20 test
programs, MAPTest covers the intended pattern sometimes for
only 5 test programs. For all the other programs, MAPTest fails
to cover the intended pattern for all 50 runs. The reason for the
poor performance is that MAPTest matches patterns by statically
analyzing the bytecode instructions of the test class, which is
inaccurate (e.g., the program path for covering the pattern might
be infeasible). Furthermore, MAPTest tries to cover the intended
pattern by utilizing random testing with simple heuristics, which
very relies on “chance”. Therefore, the generated schedule may
not be able to cover the intended pattern.

RQ2: Is PCR effective in achieving high MAP-coverage?

We design this experiment to observe whether the proposed
PCR approach is effective in achieving high MAP-coverage. In
particular, for each thread-safe class under test, we apply PCR and
MAPTest to a set of 1,000 test cases. Note that, for fairness, we run

2. Given that MAP-coverage is shown to be positively correlated with the
bug revealing capability [5]
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MAPTest to randomly generate 1,000 test cases as test subjects,
and run each method on the same set of ordered test cases® to
observe the MAP-coverage changes. Moreover, MAPTest tries
to cover the pre-matched pattern through simple scheduling. As
the results of RQ1 shows, MAPTest has a relatively limited
capability of covering intended patterns due to the randomness in
the heuristics. We run 10 times on each test case for MAPTest to
improve its chance of covering the intended pattern. The timeout
is set to 10 minutes, and the MAP-coverage is recorded every 500
ms. We run 1,000 test cases repeatedly until the timeout. To reduce
the effect of randomness, we repeat the experiment 5 times and
report the average result. Then we plot the MAP-coverage change
with the increasing number of test cases for PCR and MAPTest.
The experimental results are shown in Fig. 6, where the horizontal
axis represents the running time, and the vertical axis shows the
MAP-coverage achieved over time. Since it is nontrivial to know
exactly how many patterns there are in the program, we use the
highest number of patterns obtained in the two methods as an
estimation of the total number of patterns when calculating the
MAP-coverage.

From Fig. 6, we can observe that for PCR, the MAP-coverage
increases monotonically over time for most programs. For some
programs, such as XStream, there are few write operations on the
shared variables and most of the write operations are in private
and protected methods. Therefore, the total number of patterns is
small, which explains why the MAP-coverage jumps rather than
increasing gradually. Compared with MAPTest, PCR can obtain
higher MAP-coverage faster on 13 projects. PCR also achieves
higher or equal MAP-coverage than MAPTest after 10 minutes
on 19 programs. The only exception is the StringBuffer class
(V9 in Fig. 6), where MAPTest achieves higher MAP-coverage
faster. By a close inspection of the class, we find that most of the
pattern constraints generated by PCR are due to a large number
of write operations to a char array defined in the class, and the
pattern constraints do not generate new program states, which are
filtered by the Old-state rule by PCR. Those filtered patterns are
not considered as covered by PCR, and thus MAPTest achieves
higher coverage in this case. From the results, we can observe that
PCR is able to achieve higher MAP-coverage faster, as compared
with MAPTest.

RQ3: Is PCR effective in generating failure-inducing schedules
on a given test case?

To answer this question, we randomly select a test case, which
can potentially expose thread-safety violations in the tested class
from the test cases that are marked as bug-inducing, and report
the time elapsed before the first bug is revealed. For a baseline
comparison, we compare PCR with the state-of-the-art approach
MAPTest, which has been proved to significantly better than
CovCon [15], Contege [16], and AutoConTest [17]. For each test
case, we run MAPTest repeatedly until a bug is found or the time
limit is reached. We additionally record the number of schedules of
MAPTest and the number of schedules of PCR before the first bug
is revealed. Schedule reduction is calculated with formula 3, which
measures the ratio of schedules reduced by PCR (P.) compared
to MAPTest (M.) if Schedulesy;. is larger than Schedulesp;
otherwise, formula 4 is used.

Schedulesy; — Schedulesp.
Schedules ;.

3)

3. We sort the test cases randomly and use the same order for both methods
for comparison purposes.



TABLE 4: Results on comparison of PCR with MAPTest

RQ1-CIP(M.) PCR (10 times avg.) MAPTest (10 times avg.) RQ3-Comparison (P. over M.)
D Freq. (runs) Schedules Suclg;:: Time(ms)  Schedules Sucﬁ::: Time(ms) Re dl?cctlilzg}l‘l?ﬁ j p-value  Speedup p-value
Vi 0.68 5.0 100% 482.5 152 100% 1180.8 67.1 0.006 2.4 0.006
V2 1.00 6.4 100% 684.0 411.6 100% 7769.2 98.4 0.005 114 0.032
V3 0.00 5.0 100% 2685.9 35.1 100% 6230.2 85.8 0.010 2.3 0.014
V4 0.00 9.5 100% 3607.8 10 100% 31143 5.0 0.858 -1.2 0.067
V5 0.00 2.0 100% 325.7 4.8 100% 418.0 58.3 0.021 2.3 0.011
V6 0.00 2.8 100% 5953.3 1.0 100% 411.9 -64.3 0.003 -14.5 0.006
\%i 0.00 2.0 100% 1174.0 31.4 100% 3202.1 93.6 0.006 2.7 0.006
V8 0.00 5.0 100% 3744.6 9.0 100% 3763.7 44.4 0.051 1.0 1.000
V9 0.00 1.0 100% 168.5 6.3 100% 645.5 84.1 0.014 3.8 0.006
V10 0.00 2.0 100% 241.2 14.0 100% 2083.1 85.7 0.006 8.6 0.006
Vil 0.00 3.0 100% 1421.7 44.9 100% 49445 93.3 0.004 3.5 0.006
V12 0.00 11.0 100% 1060.4 149.0 100% 6997.6 92.6 0.004 6.6 0.006
V13 0.26 6.8 100% 2583.7 22.0 100% 3624.5 69.1 0.007 1.4 0.008
vi4 0.00 2.0 100% 267.8 1.0 100% 348.7 -50.0 0.001 1.3 0.006
V15 0.50 3.0 100% 776.1 24.6 100% 2355.5 87.8 0.004 3.0 0.006
vie 0.00 49 100% 3447 17.0 100% 1038.7 71.2 0.006 3.0 0.006
V17 0.00 2.0 100% 1235.2 86.2 100% 12328.7 97.7 0.004 10.0 0.006
V18 0.72 3.0 100% 418.5 21.7 100% 1458.2 86.2 0.005 3.5 0.006
V19 0.00 2.0 100% 211.1 20.4 100% 1056.0 90.2 0.004 5.0 0.006
V20 0.00 3.0 100% 5981.5 670.3 100% 67461.8 99.6 0.004 11.3 0.006

RQ1-CIP (M.) reports the number of times that MAPTest successfully matches the intended pattern among 50 independent runs; Schedules
is the average number of schedules used before the first bug is revealed; Success Rate reports the number of times a bug is successfully
revealed among 10 independent runs; Time is the average time (ms) spent before the first bug is revealed; RQ3-Comparison(P. over
M.) shows the results of PCR compared to MAPTest on the percentage of Schedule Reduction, Speedup and statistical testing results of
p-value. A negative number indicates that MAPTest performs better than PCR on the corresponding class and the corresponding metric.

TABLE 5: Bugs detection effectiveness comparison

Bugs (10 times avg.) Comparison (P. over M.)

PCR MAPTest Difference p-value
Vi 4.0 2.3 1.7 0.008
V2 5.0 0.5 4.5 0.005
V3 3.0 14 1.6 0.005
v4 13.0 20.1 -7.1 0.003
V5 6.6 4.4 2.2 0.005
V6 2.6 11.5 -8.9 0.005
\% 11.6 5.8 5.8 0.006
V8 42 14 2.8 0.005
V9 344 2.1 32.3 0.005
V10 4.0 1.3 2.7 0.004
Vi1 5.0 0.4 4.6 0.005
Vi2 3.0 0.5 2.5 0.005
Vi3 1.6 0.0 1.6 0.005
Vi4 3.0 2.0 1.0 0.002
V15 7.0 2.9 4.1 0.005
V16 2.0 1.7 0.3 0.233
V17 207 0.0 20.7 0.005
Vi8 11.0 33 7.7 0.005
V19 4.8 2.0 2.8 0.005
V20 1.0 0.1 0.9 0.003

B Schedulesp. — Schedules ;.
Schedulesp.

“)

A negative number indicates that the schedules of PCR are larger
than that of MAPTest. The Speedup is calculated with formula 5
if Timeyy. is larger than Timep ; otherwise formula 6 is used.

TimeM, (5)
Timep,
Timep, ©)

TimeM_

The Speedup measures the improvement in execution time by
PCR (compared to MAPTest). A negative number indicates that
MAPTest is faster than PCR in triggering the first bug.

To examine whether there is a statistically significant differ-
ence between the two methods, we use the Wilcoxon signed-rank
test [18]. We set the significance level to be 0.05, which means if
p-value is smaller than 0.05, we reject the null hypothesis, i.e., the
difference between the two methods is statistically significant; oth-
erwise, we accept the null hypothesis, which means the difference
is not statistically significant.

The results are shown in Table 4. We can observe from the
results that: (1) MAPTest needs more schedules (79.78 times
on average) to find the first bug compare to PCR (4.07 times
on average). PCR shows a schedule reduction on 18 out of 20
programs and a maximum reduction of 99.6% over MAPTest. (2)
PCR is better than MAPTest on 18 programs in terms of execution
time used to reveal the first bug and achieves the maximum
speedup of 11.4 times. (3) Both MAPTest and PCR find concurrent
bugs in all run. However, the results of PCR are consistently and
significantly better than MAPTest, as indicated by the p-value.

As shown in Table 4, due to the small number of bugs in these
programs, both PCR and MAPTest can achieve a 100% success
rate. To further evaluate the effectiveness of PCR, we design a new
experiment to see whether PCR can find more buggy traces than
MAPTest given the same amount of time. As shown in Table 5,
Bugs (10 times avg.) shows the average number of buggy traces
found in 10 independent runs. Note that each run is set to be 10s.
Difference shows the difference between the average number of
buggy traces found by PCR and MAPTest. A negative number
indicates that MAPTest can find more bugs than PCR. Based on
this result, we observe that PCR can find more buggy traces than
MAPTest in 18 programs, which is consistent with the results of
Table 4. Moreover, the significant analysis results show that PCR
is significantly better than MAPTest on 17 programs.
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Fig. 6: MAP-coverage achieved over time

RQ4: Can PCR effectively reduce the efforts of constraint
solving?

MCR [13] relies on applying constraint solving to generate
failure-inducing schedules for concurrent programs to reveal con-
currency bugs. The main idea is to require a read operation (on
a shared variable) to obtain a different value compared to the
original schedule. This rule can be represented by po in Table 1.
As MAP-coverage [5] has been shown to be positively correlated
with the bug revealing capability (of a set of schedules), PCR aims
at focusing on a much smaller set of thread interleavings (than
those explored using MCR) that achieve high MAP-coverage.
Meanwhile, PCR utilizes six heuristic rules to reduce redundant
constraints to reduce constraint solving efforts. In this research
question, we report the number of schedules, the number of
constraints generated, and the time taken to expose the first
bug by PCR and MCR, respectively. The aim is to show that
PCR reduces the effort of constraining solving without sacrificing
the capability of exposing bugs. We also report the schedule
reduction, constraint reduction, and speedup of PCR over MCR.
The calculation formulas are the same as those used in RQ3.

The evaluation results are shown in Table 6. From the exper-

imental results, we can observe that the results on the number
of schedules, constraints, and the execution time of PCR and
MCR are relatively close to each other. In terms of the generated
schedules, PCR shows a reduction in nine programs compared to
MCR and a maximum reduction ratio of 90.6%. MCR shows a
reduction in seven programs compared to PCR, with a maximum
reduction ratio of 53.1%. In terms of the generation constraints,
PCR shows a reduction in ten programs compared to MCR and
a maximum reduction ratio of 94.9%. MCR shows the reduction
in eight programs compared to PCR, with a maximum reduction
ratio of 73.2%. In general, PCR performs better than MCR on
10 programs and achieved a maximum speedup of 3.4 times. For
V17, i.e., the AppenderAttachableImpl class, PCR achieves high
schedule reduction and constraint reduction as compared to MCR.
We further analyze the experimental results. In all ten independent
runs, PCR successfully generates a schedule from the constraints
synthesized based on p,4 in Table 1 with the initial execution trace,
and triggers the bug. However, MCR was unable to synthesize
such constraints and does not generate the schedule that triggers
the bug in the initial execution trace, which leads to a large number
of constraints to be generated.



11

TABLE 6: Results on comparison of PCR with MCR

PCR (10 times avg.)

MCR (10 time avg.)

Comparison (PCR over MCR)

D Schedule Constraint Time(ms) Schedule Constraint Time(ms) Re duc?ic(?;?‘;: ; Re ducc(:?g::‘(a%l ; Speedup
Vi 5.0 15.2 482.5 3.0 5.0 758.0 -40.0 -67.1 1.6
V2 6.4 29.9 684.0 3.0 8.0 126.0 -53.1 -73.2 -5.4
V3 5.0 16.1 1543.8 11.6 70.5 2321.5 56.9 77.2 1.5
V4 9.5 20 3607.8 43 14.5 854.1 -54.7 -27.5 -4.2
V5 2.0 52 325.7 5.0 12.9 705.2 60.0 59.7 2.2
A 2.8 36.9 5953.3 6.8 24.8 3863.7 58.8 -32.8 -1.5
\%i 2.0 50.5 1174.0 21.3 192.1 3967.3 90.6 73.7 34
V8 5.0 24.0 3744.6 4.7 39.6 2078.8 -6.0 394 -1.8
\ 1.0 1.0 168.5 1.0 1.1 528.8 0.0 0.0 3.1
V10 2.0 3.0 241.2 3.0 14.0 398.7 333 78.6 1.7
\28! 3.0 9.1 1421.7 4.0 5.0 559.6 25.0 -45.1 -2.5
Vi2 11.0 419 1060.4 7 12 520.3 -36.4 7114 -2.0
V13 6.8 26.0 2583.7 5.8 23.0 269.8 14.7 -11.5 -9.6
Vi4 2.0 2.0 267.8 2.0 2.0 682.3 0.0 0.0 2.5
V15 3.0 8.2 776.1 3.0 17.9 196.0 0.0 54.2 -4.0
V16 4.9 14.3 344.7 3.1 5.1 239.7 -36.7 -64.3 -1.4
V17 2.0 9.0 1235.2 8.2 176.0 2634.5 75.6 94.9 2.1
Vi8 3.0 8.0 418.5 2.8 19.4 523 -6.7 58.8 1.2
V19 2.0 5.5 211.1 33 6.4 257.1 39.4 14.1 1.2
V20 3.0 8.0 5981.5 3.0 11.0 5018.8 0.0 27.3 -1.2

Schedule is the average number of schedules generated for a given test case to trigger the first bug. Constraint shows the
average number of constraint solving processes required. Time shows the average time required before the first bug is found.
The last three columns show how much PCR has reduced on Schedules and Constraints compared to MCR, and how much

speedup PCR achieves.

Note that the constraints generated by MCR require the
read operation to read a different value, which always happens
following a write operation. Therefore, MCR can be considered
to synthesize constraints based on pattern p and partially p7 in
Table 1 and the results of MCR are very close to PCR. In general,
PCR performs better than MCR.

5.4 Threats to Validity

First, the experiment is conducted with a test suite of 20 Java
thread-safe classes, which are widely adopted by existing related
approaches [5], [15], [16]. The evaluation results show the effec-
tiveness of our approach. The results may be a bit conservative
due to the test suite adopted for evaluation. However, we follow
existing related approaches [5] for the test suite selection. More
thread-safe classes are desirable to further evaluate our approach.

Second, the test case used for each thread-safe class may also
affect the evaluation results. Due to the fact that there are no
available test cases for the thread-safe classes adopted for our
evaluation, we adopt MAPTest to generate 1,000 test cases for
each thread-safe class and use those test cases for both methods for
fairness. The automatically generated test cases may be different
from manually designed test cases. High-quality, manual crafted
test cases could help better evaluate the methods on different
experiment settings.

6 RELATED WORK

Our study is closely related to studies on concurrent bug detection,
in particular, on concurrent program test case generation and
testing schedule exploration.

6.1

Since writing test case manually is time-consuming and laborious,
there have been various methods for test case generation. One way
is generating new test cases by randomly generating parameters

Test Case Generation

and calling methods through random seeds, such as Contege [16].
However, random test case generation approaches do not provide
termination criteria. A widely studied approach is the coverage-
guided generation approach. Those approaches rely on coverage
criteria, which are used to measure the adequacy of testing and
provide guidance for generating test cases [19], [20].

For instance, method-pair coverage [15] matches the combi-
nation of all method pairs in the test class and extracts method
pairs that have not been covered or rarely covered by analyzing
the execution trace of test cases. AutoConTest [17] collects con-
text information, dynamically and iteratively calculates coverage
requirements, and generates new test cases based on sequential
coverage. Maple [21] uses thread interleaving idioms to define
coverage metrics. Heuristics are proposed to predict untested
interleavings based on the recorded interleavings. HaPSet [22]
utilizes ordering constraints from good test runs as a metric to
cover important concurrency scenarios, and guide the testing of the
program by gathering and analyzing the ordering constraints in the
program. ConSuite [23] uses thread interleaving of test cases and
generates test cases to cover the specific thread interleaving that
is not covered. Similar studies include Narada [24], Intruder [25]
and Omen [26], etc. Def-use pair coverage [27] was built based
on alldu-path coverage. Kena et al. [28] design a method to
generate new coverage criteria based on existing dynamic and
static analysis methods such as Eraser [29], and GoldiLocks [30],
and expand multiple existing concurrent test coverage criteria,
e.g., ConcurPairs, definition-use coverage, and synchronization
pair coverage. Recently, researchers have proposed some coverage
criteria for concurrency programs and corresponding test case
generation methods. MAP-coverage [5] is the latest development.
MAP-coverage uses a memory-access pattern to abstract the
thread interleaving in execution trace, and design MAPTest to
preferentially select patterns that have not been covered or rarely
covered (guided by MAP-coverage) to generate new test cases.

Different from the previous studies, MAPTest tries to achieve



higher MAP-coverage by generating new test cases. PCR gen-
erates new schedules to increase the coverage of a single test
case. Note that PCR can also be combined with existing test case
generation tools.

6.2 Schedule Space Exploration

Our work is related to the work of detecting concurrency
bugs [31], [32], [33]. Research on the detection of concurrency
bugs usually focuses on improving the efficiency and effectiveness
of exploring the state space. Commonly used exploration ap-
proaches include completely random, heuristic-guided or thorough
exploration. In concurrency bug detection, the most common
way is random testing. However, random testing is limited by
redundant exploration, which increases the overhead of testing.
Some previous studies [34], [35], [36], [37] try to optimize
random scheduler to detect concurrency bug deterministically.
For instance, PCT [38] uses a disciplined schedule-randomization
technique to force the program along with buggy schedules.
CHESS [39] controls thread scheduling and uses effective search
technology to drive programs through possible thread interleav-
ings. Heuristic-guided methods usually use heuristic algorithms
to guide the execution of test cases or reduce the state space
of the test case. Commonly used approaches include Happens-
before analysis [40], [41] and lockset algorithms [42], [43], [44].
RaceChecker [40] uses happens-before relation to prune infeasible
races that are reported by imprecise detectors. Eraser [29] uses a
lockset algorithm to detect concurrency bugs by monitoring every
shared memory reference and verifying locking behaviors. There
are some studies [42], [44], [43], [45] that try to further improve
the lock set algorithm to reduce overhead, and others [46], [32],
[30], [47], [48] try to combine lockset algorithm with happens-
before analysis. However, these methods often suffer from false
positives, since the static analysis cannot capture runtime infor-
mation to determine the happens-before and alias information
correctly.

Based on trace theory [49], many dynamic partial-order reduc-
tion methods have been proposed to mitigate the state explosion
program in multi-threaded programs [50], [51], [52], [53], [54].
Optimal-DPOR [51] defines a novel class of sets, called source
sets, to make each exploration is the minimal number of execu-
tions. Nguyen et al. [53] proved that an optimal DPOR exploration
is NP-complete, and proposed a hybrid approach Quasi-Optimal
POR (QPOR) to turn a non-optimal DPOR into an optimal one.
Aronis et al. [54] enhance DPOR by introducing the concept
of observability to refine which operations are considered as
interference. In addition, symbolic execution tests concurrent pro-
grams by simultaneously exploring multiple paths that a program
could take under different inputs [55]. For instance, KLEE [56]
utilizes various of constraints to design search heuristics to obtain
high code coverage to test complex system programs. Based on
KLEE, Schemmel et al. [57] combines symbolic execution and
QPOR [53] to systematic test multi-threaded programs. Moreover,
symbolic execution can be combined with concrete execution to
form the concept of concolic testing [58]. Sen et al. [59] proposed
two automated concolic testing tools, namely CUTE for C and
JCUTE for Java. Farzan et al. [50] proposed a systematic testing
method for concurrent programs called con2colic testing, which
derives test inputs and schedules to systematically explore the
execution space of concurrent programs.

The false positives of static analysis approaches can be allevi-
ated by introducing dynamic execution and constraint solving. In
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general, constraints are constructed based on dynamic executions,
and then constraint solving is used to generate new schedules to
explore the state space. ConcBugAssist [60] proposes a constraint-
based method for diagnosing concurrency bugs and presents a
constraint-based method to compute repairs. Mahmoud Said et
al. [61] propose a symbolic method based on SMT to provide
guidance for the debugging of a data race. Zheng et al. [62]
propose to use race manifestation to characterize the behavior
of concurrency bugs, thereby constructing constraints to solve
new schedules, and finally triggering data race in the program.
Jeff et al. [13] propose MCR, which uses the existing execution
trace to construct new read and write constraints, and tries to
make read operations read different values from write operations
to explore the state space of concurrent programs. Similar work
include [63], [64], [65], [66], [67], [68], which are also based
on constraint solving. Our approach proposes new constraints
based on memory-access patterns, adopts constraint solving to
generate new schedules, with the purpose of achieving higher
MAP-coverage.

In addition, our work also related to the work of software
system testing, such as compiler testing [69], [70], [71], [72], deep
learning library testing [73], [74], etc.

7 CONCLUSION

Testing concurrency bugs is notoriously challenging due to its
huge state space and non-determinism, therefore how to effectively
test them with improved test coverage is an important research
problem. In this work, we propose a novel approach PCR to max-
imize MAP-coverage of a thread-safe class based on constraint
solving. We construct constraints based on uncovered memory-
access patterns in an execution trace, and use SMT-solver to
compute new schedules to explore the state space of concurrent
programs. To avoid the repeated solution of infeasible constraints,
we use interpolation to get the unsat-core constraints, and filter out
the solutions containing these constraints in the next generation.
Moreover, our approach can also be combined with existing test
case generation tools to further optimize concurrent testing. We
have implemented our method and evaluated it on a set of Java
programs. Experimental results show that our method can obtain
higher MAP-coverage and expose concurrency bugs faster than
the state-of-the-art method MAPTest.
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