
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2020

A performance-sensitive malware detection system using deep A performance-sensitive malware detection system using deep

learning on mobile devices learning on mobile devices

Ruitao FENG

Sen CHEN

Xiaofei XIE
Singapore Management University, xfxie@smu.edu.sg

Guozhu MENG

Shang-Wei LIN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the OS and Networks Commons, and the Software Engineering Commons

Citation Citation
FENG, Ruitao; CHEN, Sen; XIE, Xiaofei; MENG, Guozhu; LIN, Shang-Wei; and LIU, Yang. A performance-
sensitive malware detection system using deep learning on mobile devices. (2020). IEEE Transactions on
Information Forensics and Security. 16, 1563-1578.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6937

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6937&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ruitao FENG, Sen CHEN, Xiaofei XIE, Guozhu MENG, Shang-Wei LIN, and Yang LIU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6937

https://ink.library.smu.edu.sg/sis_research/6937

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 1

A Performance-Sensitive Malware Detection System
Using Deep Learning on Mobile Devices

Ruitao Feng, Sen Chen∗, Xiaofei Xie, Guozhu Meng, Shang-Wei Lin and Yang Liu

Abstract—Currently, Android malware detection is mostly
performed on server side against the increasing number of
malware. Powerful computing resource provides more exhaustive
protection for app markets than maintaining detection by a single
user. However, apart from the applications (apps) provided by
the official market (i.e., Google Play Store), apps from unofficial
markets and third-party resources are always causing serious
security threats to end-users. Meanwhile, it is a time-consuming
task if the app is downloaded first and then uploaded to the
server side for detection, because the network transmission has
a lot of overhead. In addition, the uploading process also suffers
from the security threats of attackers. Consequently, a last line
of defense on mobile devices is necessary and much-needed.

In this paper, we propose an effective Android malware
detection system, MobiTive, leveraging customized deep neural
networks to provide a real-time and responsive detection envi-
ronment on mobile devices. MobiTive is a pre-installed solution
rather than an app scanning and monitoring engine using after
installation, which is more practical and secure. Although a
deep learning-based approach can be maintained on server side
efficiently for malware detection, original deep learning models
cannot be directly deployed and executed on mobile devices due
to various performance limitations, such as computation power,
memory size, and energy. Therefore, we evaluate and investigate
the following key points: (1) the performance of different feature
extraction methods based on source code or binary code; (2) the
performance of different feature type selections for deep learning
on mobile devices; (3) the detection accuracy of different deep
neural networks on mobile devices; (4) the real-time detection
performance and accuracy on different mobile devices; (5)
the potential based on the evolution trend of mobile devices’
specifications; and finally we further propose a practical solution
(MobiTive) to detect Android malware on mobile devices.

Index Terms—Android malware, Malware detection, Deep
neural network, Mobile platform, Performance

I. INTRODUCTION

W ITH the currently increasing number of Android de-
vices and applications (apps), plenty of Android users

are benefited from that. The security and privacy concerns
are also increasingly becoming the focus point to various
mobile users and stakeholders. For example, more and more
users store their personal data in mobile devices [1], [2]
through various popular apps such as shopping, banking, and
social apps. Consequently, since the last decade, attackers shift
their attention to mobile apps. That makes Android malware
∗Sen Chen is the corresponding author. Email: chensen@ntu.edu.sg
Ruitao Feng, Xiaofei Xie, Shang-Wei Lin and Yang Liu are with the School

of Computer Science and Engineering, Nanyang Technological University,
Singapore. Email: {rtfeng, xfxie, shang-wei.lin, yangliu}@ntu.edu.sg

Sen Chen is with the College of Intelligence and Computing, Tianjin
University, China and Nanyang Technological University, Singapore.

Guozhu Meng is with the Institute of Information Engineering, Chinese
Academy of Sciences, China. Email: mengguozhu@iie.ac.cn

undoubtedly become one of the most important security threats
in this security field [3], [4].

Therefore, how to detect Android malware becomes a
severe problem. End-users always expect a secure environment
which is maintained by the app markets. In other words, they
consider their app sources are all trustable and secure enough.
It is not surprising that the demands of Android malware
detection approaches have been proposed, such as signature-
based approaches [5], [6], behavior-based approaches [7],
[8], data-flow analysis-based approaches [9], [10]. We note
that machine learning-based approach [11]–[18] is one of
the most promising techniques in detecting Android malware.
With the available big data and hardware evolution over the
past decade, deep learning has achieved tremendous success
in many cutting-edge domains, including Android malware
detection. Actually, all of the above protecting solutions are
mostly on server side for app markets. However, when a new
Android malware family is reported, not all the app markets
are able to respond in a responsive time. The current analysis
workflow always follows analyzing malicious behaviors within
apps, building the detection models with the generated features
and then performing the detection on the entire apps. Since
the number of the real-world Android apps is extremely
large, e.g., there are more than 3 million Android apps on
Google Play Store, it is a time-consuming task to perform the
complete detection with that large number of apps. Moreover,
the apps from unofficial markets and third-party resources like
XDA [19] are more vulnerable in the wild. The security of
these kinds of apps is indeed unpredictable and uncontrollable.

The traditional server-side based malware detection surely
has unignorable drawbacks when detecting such apps, because
(1) it is a time-consuming task to upload the apps to server
before the installation, especially for large apps; (2) the
uploading process via the Internet is not secure. For example,
attackers may modify the malware during the uploading period
such that an incorrect “benign” result is returned. As a result,
the users will install the malware. Hence, a last line of defense
on mobile devices is necessary and much-needed. To address
the severe problem, we intend to conduct Android malware
detection on mobile devices instead of server side.

Actually, machine learning-based approaches have achieved
better performance compared with other approaches in An-
droid malware detection [11], [13], [17], [20], [21]. In this
paper, we intend to deploy the trained deep learning (DL)
models from server-side to mobile devices. While a compu-
tationally intensive deep learning software could be executed
efficiently on server-side with the GPU support, such deep
learning models usually cannot be directly deployed and

ar
X

iv
:2

00
5.

04
97

0v
3

 [
cs

.C
R

]
 3

 S
ep

 2
02

0

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 2

executed on other platforms supported by small mobile devices
due to various computation resource limitations such as the
computation power, memory size, and energy. In our previous
work [22], we leverage TensorFlow Lite [23] to migrate the
deep learning models. We proposed a convolutional neural
network (CNN)-based Android malware detection system on
mobile platform, which leveraged three kinds of features from
decompiled Android apps according to the performance-based
feature selection mechanism. We have substantially extended
our previous work from the following aspects:
• In the conference version [22], we only focused on the

performance of different feature types extracted from
decompiled files such as smali files. To reach the best
performance on mobile devices, we take the installation
mechanism in the Android operation system into account.
Specifically, we analyze and extract two types of features
(i.e., manifest properties and API calls) from Dalvik
binary files directly instead of the decompiled files.

• Meanwhile, to enrich the malicious behavior coverage of
our selected features, we perform an empirical analysis
to understand the existing malicious behaviors, most of
which are collected from industrial malware analysis
reports (e.g., Symantec Threats [24]). According to the
understanding, we further update the feature inputs with
the matching results between text-based behavior descrip-
tions and code level features (details on our website [25]).

• To figure out the potential detection accuracy promotion
of different deep neural networks, we not only apply our
new extracted features with CNN models, but also present
six more kinds of recurrent neural networks models
(e.g., LSTM and GRU). Finally, we customized one
RNN model to adopt the device-based detection scenario.
Moreover, we further compare with four other existing
Android malware detection approaches to demonstrate the
effectiveness and efficiency of our approach.

• To investigate the effectiveness of our system on multi-
class classification task, we demonstrate the result on
classifying 701,300 Android malware into 21 families
with our system.

• To peek into the average usability and best practice
for our new system, we evaluate our system on six
real mobile devices from different manufacturers such
as Google, Huawei, and Samsung, which released be-
tween 2015 and 2019. Meanwhile, we conduct a run-time
performance evaluation with other device-end solution
such as dynamic behavior analysis to demonstrate the
effectiveness of our approach. We also investigate the
development trend of Android mobile phones to further
understand the system usability.

According to the evaluation metrics of accuracy and time
cost from different features and neural networks, we propose
an effective and efficient Android malware detection system
on mobile devices, named MobiTive. MobiTive leverages (1)
a newly-proposed feature extraction method from binary code;
(2) a performance-based feature type selection mechanism; (3)
a novel feature updating method through malicious behavior
mining and understanding; (4) a customized deep neural

network for classification. So that, MobiTive can provide a
real-time and fast responsive environment on mobile devices.

In our comprehensive experiments, (1) we first divide
the feature preparation procedure into two steps, which are
raw data extraction and feature extraction, and evaluate the
performance (time cost) separately to decide the feature se-
lection. (2) With the selected features, we then provide an
accuracy comparison between different feature categories. (3)
The behavior-based feature updating method performs around
1%∼5% accuracy increase. (4) We provide a comprehensive
comparison between seven different neural networks (e.g.,
CNN, LSTM, and GRU) to show the potential improvement
of our customized DL models on network definition. (5) We
further evaluate the performance and accuracy of MobiTive on
different real mobile devices by using our customized RNN
model and compare with dynamic device-end solutions. (6)
In the last part of our experiments, we perform an analy-
sis of the performance trend on mobile devices from three
different aspects and integrate the results to provide a strong
evidence on the potential of MobiTive in practice. Specifically,
MobiTive achieves a relatively higher classification accuracy
(i.e., 96.78% accuracy) on real testing data in the wild and
mobile devices with relatively lower overhead (i.e., less than
3 seconds on average for one app).

In summary, we make the following main contributions.
• We propose MobiTive, a device-end solution to protect

mobile devices from malware threats in real-time effi-
ciently by leveraging customized deep neural networks
and binary features. This research work aims to detect
malware directly on mobile devices as a pre-installed and
run-time solution rather than detecting them on common
servers or monitoring them after installation.

• We propose a new feature extraction method from binary
code, as well as a feature updating method based on
the understanding of malicious behaviors. Due to the
high performance demand of mobile devices, we evaluate
the different performance (time cost) and accuracy with
various feature types and neural networks, and further
provide a comparison against four existing Android mal-
ware detection approaches. Besides, we also investigate
the accuracy on multi-class classification task.

• We evaluate and investigate the different performance on
multiple devices from different manufacturers, and further
provide insights of the current quality and potential for
our approach according to the feature extraction and
prediction time cost on six real mobile devices. Mean-
while, an additional comparison on run-time efficiency
and discussion on effectiveness is provided to show the
advantages against dynamic malware detection system
based on behavior analysis.

II. PRELIMINARIES

In this section, we briefly introduce the structure of An-
droid apps and Dalvik executable, the existing Android secu-
rity mechanisms, and the migration/quantization procedure of
trained DL models on PC/Server side.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 3

A. Android Apps

To execute the code of Android apps, Android developers
compile their source code and other components, like applica-
tion structure files and other resources, etc., into an Android
application package (APK). APK is a compressed application
file for Android platform, which is used to deliver Android
mobile applications. For each APK, it contains a manifest file
(i.e., AndroidManifest.xml), Dex files, resources, assets, etc.

The manifest file contains the meta-data for Android apps,
which defines the package name and application ID, app
components like Intent filters, activities, and services, etc., per-
missions, device compatibility, like uses-feature and uses-sdk,
etc. Dex files as extension are Dalvik executable code, which
can be executed on Dalvik virtual machine in Android OS and
converted from Java bytecode via an alternative instruction set.
To make them more accessible, Dex files are often decompiled
into smali files by reverse engineering, which contain the
same meaning contents, but have a better syntax format before
manual analysis. However, the decompiling procedure will
always cost considerable time.

B. Dalvik Executable

Dalvik executable file contains 21 kinds of contents, which
can be mainly divided into metadata and program information,
etc. The metadata information of Dalvik executable file is
provided by the header, checksum, signature, etc. After them,
it follows with the size and offset values of program informa-
tion, like class definition identifiers, method identifiers, type
identifiers, string identifiers, etc. Besides the above program
information, the map offset is also an important component.
It provides concrete mappings between static information, like
strings and method names, etc. With the given offsets, we can
easily access the defined static program information without
decompiling the binary executable into human readable for-
mat. Other than the static information, we can also get the
compiled code contents with the offset of each method.

C. Security Mechanisms

The existing security mechanisms can be mainly divided
into three categories, which are application market, Android
OS platform, and device-end aspects in practice.

From the aspect of Android market, the official market
(i.e., Google Play Store) provides a security verification when
the APK uploaded. For instance, Google provides protec-
tion backed by its machine learning algorithm. Some high-
quality third-party markets also present security check for
the uploaded applications. For example, ApkMirror [26] not
only provides the signature verification, but also performs a
protection service provided by GuardSquare. However, most of
current security check service provided by third-party markets
is very simple and limited. Some of them only contain a sig-
nature verification, which can be bypassed easily. Therefore,
the users, who download applications from the third-party
markets, have to install and use it at their own security risk.

On the mobile devices, there exists a lot of antivirus
applications provided. The most famous security applications,
like Avast and AVG, mainly provide their antivirus services

by monitoring the privacy-sensitive components (e.g., run-time
permission requests), and scanning the signature of suspicious
apps with their local or on-cloud virus database. Besides
the protection from outside, Android OS also provides some
strong built-in security mechanisms, like application sandbox,
etc. Application sandbox mechanism provides an independent
execution environment for every application. Hence, the attack
from an application can only work on its own requested com-
ponents. For instance, if Bluetooth permissions and actions
liked activities are not required in the application, the attack
can never access the functions provided by Bluetooth.

D. Deep Learning Model Migration and Quantization

After a DL model finishes the training process and is ready
to deploy to a target device, it oftentime goes through either
quantization, or platform migration, or both, before deployed
to end-user applications. This is because the training phase
requires a vast amount of computation and energy resources.
As the model size and the complexity of the tasks grow, more
data are needed to train the network till reaching optimality,
which could spend days, if not weeks, in training on high-
performance GPU clusters. On the other hand, the deployment
of the DNN models is usually faced with the resource-
constrained environment with limited computation, power, etc.

Due to environment differences of a target platform (e.g.,
mobile phones, green energy embedded systems) and training
platform (e.g., often equipped with GPUs), a DL model often
goes through a customization phase to cater specific software
and hardware constraints of a target platform. Quantization
reduces the precision of a DL model so as to improve
the computation efficiency, reduce memory consumption and
storage size, which has become a common practice when
migrating a large DL model trained on the cloud system to
a mobile or IoT devices with low computation power.

Recently, the rapid development of system-on-chip (SoC)
acceleration (e.g., Qualcomm Snapdragon, Kirin 970, Sam-
sung Exynos9) for AI applications provides the hardware sup-
port and foundation for universal deployment across platforms,
especially on mobile device, edge computing device. Some
lightweight solutions are proposed for mobile platforms such
as CoreML [27], TensorFlow Lite [23], Caffe2 Mobile [28]
and PyTorch Android [29]. It proposes a chance to deploy the
DL-based malware detection task on a mobile device directly.

III. APPROACH

A. Overview of MobiTive

To achieve our target, we propose MobiTive, whose func-
tionality could be divided into two main parts (i.e., parts of
server side and mobile side), as shown in Fig. 1. The first
part of our system contains feature preparation, DL model
training, model migration and quantization. The second part
is the deployment phase on mobile devices by using the
migrated/quantized models.

In our previous work [22], we involved multiple features
(i.e., manifest properties, API calls, and opcode sequences)
extracted from decompiled apps. In this paper, to improve
the performance of MobiTive, we propose a new feature

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 4

Raw Data Feature Dictionary

Deep Neural Network

Feature Vectors

Training

Data

Model

1 2

3

4

Migration &

Quantization

Extracted Features

Feature Vectors

Prediction

TensorFlow-Lite Model

APK

A

B

D

C

E

Malware/Benign

Updated

Feature

Dictionary

Behavior

Feature

Extraction

Industrial

Malware

Report

6
5 7

Server Side Mobile Side

2

Fig. 1. Overview of MobiTive

extraction method. Instead of decompiling APK into source
code, like smali code, we extract and vectorize the manifest
properties and API calls from binary code directly (step 1©).
We combine a performance-based feature selection mechanism
and behavior-based feature updating method to generate the
feature dictionary (step 2©). With the customized deep neural
networks and extracted feature vectors (steps 3© and 4©), the
first part allows to provide a trained DL model and a feature
dictionary for the second part (step 5©). To make the model
adaptive to mobile devices, we then migrate the pre-built
DL model to a TensorFlow Lite model. Also, a quantization
phase [30], which is a general technique to reduce model size
while also providing lower latency with little degradation in
accuracy, is presented as a performance optimization for the
mobile devices (step 6©).

Fig. 1 shows that the second part loads the quantized DL
model and feature dictionary into mobile devices. After that,
when an application is downloaded from market or third-
party market, MobiTive can extract feature vectors from it and
deliver the result to MobiTive (steps A©→ C©). After predicting
with the loaded DL model, we obtain a certain level of
confidence based on predictive output to know whether the
downloaded Android app is a malware or not. (steps D©→ E©).

B. Feature Preparation
To determine the features used in MobiTive, we perform a

comparison of the extracting performance for most commonly-
used features in previous malware detection approaches [11],
[13], [17], [31], [32]. Based on the performance-based feature
selection method, manifest properties and API calls are se-
lected in our device-end scenario (Feature Selection). Also, to
update the feature dictionary and improve the representatives,
we propose a behavior-based method based on industrial
malware reports (Feature Updating). To get the features from
APK, we unzip the package instead of decompiling it to reduce
time cost. Among the unzipped binary files, we can extract the
features from raw data (Feature Extraction).

1) Feature Selection: Manifest properties such as used
permissions, intents, and hardware features are widely-used
features to detect Android malware [11], [13], [17]. An-
droidManifest.xml file can be easily decoded from APK file
through existing tools, which benefits the feature extraction
procedure. It is belonging to a lightweight feature type, which

TABLE I
SELECTED FEATURES

#API calls #Manifest properties
Collected from samples or
by Android documentation 2,989,011 613

Pruning by manual 1,509 613
Updated by

behavior-based analysis 2,290 625

Feature lists can be found on [25].

would be adopted by the performance-sensitive system, like
MobiTive. In terms of the usefulness, API calls are more
representative and important feature types because almost all
malicious behaviors would be demonstrated by API callings.
Apart from the individual API call, API call sequence may
contains more semantics, such as opcode code sequence.
However, the extraction procedure of these two feature types
causes a lot of time due to analyzing source code or smali
code. A novel feature extraction method for API calls is much-
needed due to the energy limitation of mobile devices. Besides
the above two widely-used feature types, we also evaluate
other potential structural features by their performance be-
haviors, such as inter-procedural control-flow graph (ICFG)
and call graph (CG). ICFG not only provides the control-
flow graph but also contains the inter-procedural between the
components within apps. CG represents the calling relations
between different methods. By evaluating the performance
(time cost) of all these potential feature types based on the
two different extraction steps, which are raw data and feature
vector extraction (steps 1© and 3©), we select unzipping APK
to extract raw data first and select API calls and manifest
properties as our feature types due to the better extraction
performance compared with others (details in §IV-B).

To get the feature vectors (step 3©), we build a feature
dictionary (step 2©) according to the two types of features
selected by performance comparison. Specifically, we build the
manifest property dictionary by following the official Android
documentation. As shown in Table I, the manifest properties
contain 613 features in total, including 324 used permissions,
213 intents, and 76 hardware features. In terms of the API call
dictionary, we conduct a data-driven analysis to determine the
feature lists. Specifically, by parsing the API calls from more
than 60k real-world Android apps collected from Google Play
Store and malware, we collect 2,989,011 unique API calls in
total. We summarize three rules to reduce the size of API calls

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 5

through manual analysis. Firstly, we remove the obfuscated
API calls. Secondly, we delete the API calls that are not related
to potential malicious behaviors, such as View loading API.
Last, we remove the third-party API calls, because these API
calls exist and customize in an app, may rarely appear in
other apps. As shown in Table I, after pruning, the number
of selected API calls is only 1,509. The details of feature lists
can be found on our website [25]. We build a feature dictionary
based on the 1,509 API calls and 613 manifest properties for
matching on the features of permission, intent, hardware, and
API calls (step 2©).

2) Feature Updating: The quality of machine learning-
based detection approaches highly depends on the selected
features, which means that a more comprehensive feature cov-
erage of malicious behaviors makes more benefits MobiTive.
To enrich the feature coverage of malicious behaviors, we
collect hundreds of industrial malware reports from Symantec
Threats [24]. With the collected text-based reports, we perform
a manual analysis and summarize 23 kinds of basic potential
malicious behaviors as a supplement for the selected features.
Note that, the malware reports detail the malicious behaviors
and the core code level features, including both API calls
and manifest properties. Also, a behavior-based feature under-
standing and verification by three co-authors are performed
to ensure the manual results. As a result, except the features
in the original feature dictionary, there are 46 new API calls
and 12 new manifest properties in total, which are updated for
a new feature dictionary. We also extend the new API calls
with their package name. For example, if a new API call has
package name as “android/net/Uri”, we extract all the API
calls under this package. As shown in Table I, there are 781
API calls extended according to the 46 new API calls. Finally,
we supplement our feature dictionary and update to 2,290 API
calls and 625 manifest properties. The new feature dictionary
is used to get the feature vector of each app for model training.

3) Feature Vector Extraction: As we mentioned in feature
selection, the traditional feature vector extraction methods
cause a lot of time due to the cost of decompiling and
extracting from source code such as Java code and smali code.
To improve the extraction performance, we propose a novel
feature vector extraction method from binary code instead of
source code. Specifically, by analyzing the inner architecture
of Dalvik binary file (classes.dex), we find there exists an API
table, which is used to match the executable symbols and
API strings. We extract API calls by parsing the API table
in classes.dex file based on the address and offset defined in
the metadata. Meanwhile, to get access to the information
in binary format AndroidManifest.xml, we firstly generate
a standard output with a XML decoder, Axmldec [33]. By
analyzing the decoded manifest file, the manifest properties
can be extracted.

C. DL Model Construction

1) DL Model Training: To discover the potential accuracy
improvement and usability for different deep neural networks,
we present seven widely-used networks to train the classifier,
with the input feature vectors generated by step 3©. As shown

TABLE II
DEEP NEURAL NETWORK ARCHITECTURE: GRU AND LSTM

Input

Reshape input (None, 2915,)
output (None, 1, 2915)

GRU/LSTM input (None, 1, 2915)
output (None, 128)
Dropout

Softmax Classification

TABLE III
DEEP NEURAL NETWORK ARCHITECTURE: STACKED GRU AND LSTM

Input

Reshape input (None, 2915,)
output (None, 1, 2915)

GRU/LSTM input (None, 1, 2915)
output (None, 1, 128)
Dropout

GRU/LSTM input (None, 1, 128)
output (None, 128)
Dropout

Softmax Classification

in Table II, III and IV, we customize the RNN models
to adopt the device-end scenario and improve performance.
For simple RNNs in Table II, the first computational layer
is a LSTM/GRU layer with 128 neural units. After the
computation, the dimension of input tensor will reduce to
128 from (1, 2,915). Then, there will be a dropout layer, the
dropout rate is 0.5. At last, the result is passed to a softmax
classifier function to get the final training result. For stacked
RNNs in Table III, there will two stacked LSTM/GRU with
dropout layers instead. For bidirectional RNNs in Table IV, we
apply a bidirectional LSTM/GRU layer instead of the original
LSTM/GRU layer.

Moreover, we build the convolutional neural network (CNN)
with reference to the conference version [22]. As shown in
Table V, the first layer of the CNN model is Zero Padding
Layer. With input feature vectors, we need to fit it to the
training part. Hence, we add two nonsense dimensions to the
end of input since the kernel size of our convolutional layer
is 3. Then, the resulting vector is reshaped to a matrix, whose
horizontal dimension is 3, and send to the next layer. The
second layer is the convolution layer with a 3 kernel, which
receives the embedded matrix as its input and applies the
convolution filter to produce activation maps for each batch.
Before delivering the batches to the hidden layer, a global
max pooling is used after activation to reduce the dimensions.
Finally, the vector is passed to a hidden full layer, which is a
multi-layer perception, for classification. To detect the relation
between the result vector, we construct two sub-layers in the
hidden layer, each of them contains a Rectified Linear Unit
activation function. At last, the result from the hidden layer is
passed to a softmax classifier function to get the final training
result.

TABLE IV
DEEP NEURAL NETWORK ARCHITECTURE: BIDIRECTIONAL GRU AND

LSTM

Input

Reshape input (None, 2915,)
output (None, 1, 2915)

Bidirectional (GRU/LSTM) input (None, 1, 2915)
output (None, 256)

Dropout
Softmax Classification

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 6

TABLE V
DEEP NEURAL NETWORK ARCHITECTURE: CNN

Input

Reshape input (None, 2915,)
output (None, 1, 2915)

Zero Padding Layer input (None, 1, 2915)
output (None, 1, 2916)

Reshape input (None, 1, 2916)
output (None, 3, 708)

Convolutional Layer input (None, 3, 708)
output (None, 64, 706)

Relu

Global Max Pooling input (None, 64, 706)
output (None, 64)

Linear Dense Layer input (None, 64)
output (None, 16)

Relu

Linear Dense Layer input (None, 16)
output (None, 2)

Softmax Classification

2) DL Model Migration and Quantization: To deploy our
pre-trained DL model on mobile devices, we convert and
migrate the pre-trained model to a TensorFlow Lite model,
which is supported by Android operating system (step 6©).
Specifically, we migrate the TensorFlow model to a mobile
readable TensorFlow Lite model with a TensorFlow Lite con-
verter [23]. Apart from the model migration, we also quantize
our pre-trained model to improve the performance on mobile
devices, which does not affect the accuracy of detection much.
In the experiments, we measure the performance of accuracy
and time cost affected by the model migration and quantization
(details in §IV-C3).

D. Real-Time Detection System

Before conducting a real-time detection, the quantized Ten-
sorFlow Lite model and feature dictionary should be deployed
to the detection system in advance (step 7©). There are three
main steps before completing the prediction. The first step
of MobiTive is feature preparation. When an APK file is
received in step A©, MobiTive first unzips it into original
assembly files such as AndroidManifest.xml, classes.dex, and
other resources. Features of API calls and manifest properties
will be extracted accordingly. We implement an API parser to
extract the API calls from classes.dex directly based on the
understanding of Dalvik binary code. Since the raw binary
AndroidManifest.xml cannot be analyzed directly, we use a
third-party decoder library, AXML [34], to get the decoded
manifest file. By analyzing the decoded manifest file, the three
kinds of manifest properties will be extracted from the XML
tag. Hence, we can get both the manifest property vector and
API call vector in step B©. All the two types of features are
transformed into a vector, we connect them together as the
input of TensorFlow Lite model (step C©). With the quantized
model, MobiTive can perform the prediction in step D© and
show the final prediction result as a feedback in step E©. With
the prediction result, the system can raise a warning to help
users blocking the installation of the detected malware and
further save its information (e.g., name, version, checksum)
in local database. Also, besides the actions on local devices,
reporting the malicious applications’ information to the corre-

sponding market and synchronizing the malware information
to the updating server can be another two options.

To deploy an update for the MobiTive in practice, the ser-
vice provider firstly need to collect the new detected malware
and update the training dataset. After updating, it will be
able to obtain a new pre-trained model on server. Then, the
new model can be packed as a system patch and deployed
to devices within an update directly. As a result, the updated
system surely will improve the effectiveness and robustness of
the protection on device based on the new delivered model.
More implementation details. The AXML version used in
MobiTive is v1.0.1. The API parser used in MobiTive on
Android devices is implemented based on the Dex2jar [35]
(2.1-nightly-28). Unlike the original Dex2jar project, we do
not decompile the Dalvik executable files (i.e., .dex files)
back into .smali files or .class files. Instead, we only involve
the binary formatting functions in Dex2jar and collect the
API calls from the decoded API table. The API parser is
served as an external lib file in the MobiTive. Technically, the
classification functionality of MobiTive on Android devices is
consist of 3 main parts. Different from the well established
high level API provided in Keras (2.2.4), the basic data
structure used in the computation with TensorFlow Lite (0.0.0-
nightly) on Android devices is bytebuffer. Thus, firstly, there
will be a step to convert the input vector and model into
bytebuffer format. Secondly, by loading the model into a
TensorFlow Lite interpreter, we can feed the input bytebuffer
into the interpreter and get the result matrix. At last, by using
an argmax function on the result matrix, the final prediction
result can be obtained.

IV. EXPERIMENTS

In this section, our experiments are technically organized
into three subsections based on the model deployment envi-
ronments (i.e., PC/server and mobile). First, the goals of our
experiments on PC/server are to investigate: (1) the perfor-
mance of extraction time of different raw data (techniques)
and feature types; (2) the effectiveness of behavior-based fea-
ture updating method; (3) the detection accuracy of different
deep neural networks; (4) the comparison with other existing
learning-based Android malware detection solutions; (5) the
accuracy of multi-class classification on malware families.

Second, based on the observed findings and obtained results,
we further evaluate: (1) the performance of feature preparation
on six different real devices with six different app sizes
from 5MB to 50MB; (2) the efficiency of detecting with
different RNN models on real devices; (3) the usability (i.e.,
performance and accuracy) of MobiTive on six different real
mobile devices; (4) the efficiency of MobiTive by comparing
to dynamic behavior-based run-time detection systems.

In the end, we conduct a study on the hardware performance
trend of Android mobile devices to provide insights into the
future usability of MobiTive.

A. Experiment Environment

The experiments on server side are run on a Ubuntu 16.04
server with two Intel Xeon E5-2699 V3 CPUs, 192GB RAM,
and NVIDIA GeForce 2080Ti GPU. To evaluate our approach,

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 7

we select 6 different Android mobile devices to evaluate the
performance and accuracy of our approach on real mobile
devices. Among them, there are four common specification
devices (Nexus 6P, Huawei Mate 10, HTC U11, and LG
G6), a flagship device (Huawei P30), and a low-profile device
(Samsung Galaxy J7 Pro) (detailed specifications provided
on our website [25]). The implementation language of our
system on server is Python 3. To get access to the raw
data and features, we use seven different kinds of existing
tools, which are axmldec [33], AXML [34], ApkTool [36],
AndroGuard [37], Dex2jar [35], Soot [38], and FlowDroid [9].
axmldec is a C++ project which can be used to decode binary
manifest file into readable XML format file. AXML is a
library designed to parse binary Android XML files. It is
written in Java and can be used in an Android app as an
external library. ApkTool is a tool for reverse engineering,
which can decompile the apk file and generate the resources,
which contains manifest, smali files, and etc. AndroGuard is
a Python tool, which cannot only decode the resources but
also disassemble bytecode to Java code. Also, with the help
of AndroGuard, we can easily generate the call graphs (CG)
and data-flow graph for an Android app. Dex2jar is a project
which contains tools to work with Android .dex and Java .class
files. Soot is a Java optimization framework, which can be
used to extract the call graph (CG). FlowDroid is a static taint
analysis tool for Android apps. It is applied to generate inter-
procedural control-flow graph (ICFG). Apart from the above
existing tools for feature extraction, JitPack is a novel package
repository for JVM and Android projects, which can build
the project to a ready-to-use artifacts (i.e., jar and aar). The
deep neural networks and training projects are implemented
with Keras [39], Numpy, Scikit-learn [40], and TensorFlow
libraries [41].

B. Effectiveness of Feature Extraction, Feature Updating, Fea-
ture Category Selection, and Neural Network Selection

1) Performance evaluation of feature extraction: In this
experiment, we split the feature extraction time into two parts
respectively (i.e., APK→raw data→feature) along with the
technical procedures in feature preparation phase to show the
performance advantages of our selected features.

a) Dataset: To mitigate the uncertain influence from
apps’ size on the time cost of feature extraction, we randomly
collect 60 Android apps among 6 different sizes (i.e., 5MB,
10MB, 20MB, 30MB, 40MB, and 50MB) to provide a clear
performance comparison between different extraction methods
such as feature extraction from source code and binary code.

b) Setup: In this experiment, we first evaluate the ex-
traction time (APK→raw data) of 3 different raw data types,
which are widely-used in the existing static analysis based
malware detection work (i.e., ICFG extracted by FlowDroid,
CG extracted by Soot and AndroGuard, decompiled files
obtained by ApkTool), together with our selected extracting
method (i.e., binary code obtained by unzipping).

Secondly, apart from the above raw data extracting meth-
ods, we further evaluate the extracting performance (raw
data→feature) of 3 different feature types (i.e., manifest prop-
erties, API calls, and opcode sequence [42]) that generated

1
7

.9
6

3

5
7

3
.4

9
8

2
.8

8
7

0
.0

3
7

3
3

.9
1

8

7
1

4
.1

2
4

2
.9

3
5

0
.0

6
7

7
8

.9
2

8 1
0

5

1
4

.0
4

1

3
.4

1
9

0
.1

3
5

1
2

6
.3

4
3

1
1

0

1
8

.1
8

6

3
.8

8
9

0
.3

8
3

1
2

7
.9

2
2

1
1

8

1
9

.4
3

3

4
.1

3

0
.4

0
2

1
9

6
.8

6
8

1
2

6

3
2

.1
3

4
.8

3
8

0
.5

9
4

ICFG

(FLOWDROID)

CG (SOOT) CG

(ANDROGUARD)

SMALI

(APKTOOL)

BINARY (UNZIP)

0 sec

50 sec

100 sec

150 sec

200 sec

250 sec

5MB

10MB

20MB

30MB

40MB

50MB

Fig. 2. Extraction time of different raw data types

from two kinds of raw data types (i.e., decompiling and un-
zipping). We do not further evaluate the graph-related features
due to the large time cost of raw data extracting.

For the decompiled manifest and smali files, we use a XML
tag parser to extract manifest properties from manifest file
decompiled by ApkTool. To extract API calls, we obtain the
result by matching the API call dictionary and smali files
directly. We extract the opcode sequences for each smali file by
matching it to the opcode list [43]. For the unzipped binary
manifest and Dalvik binary files, we evaluate the extraction
time of 2 different feature types (i.e., manifest properties and
API calls). To extract manifest properties from the binary
manifest file, we apply Axmldec to extract manifest properties.
We extract API calls by loading the API table directly with the
offset and size defined in the metadata of the Dalvik binary
file.

c) Results: We demonstrate the results from the 2 aspects
(APK→raw data and raw data→feature) as below.
(1) Raw data extraction. Fig. 2 shows the extraction time
of ICFG and CG is too large to be accepted performance-
sensitive approach like MobiTive. Specifically, extracting ICG
via FlowDroid takes 196.868 seconds on 50MB apps and even
17.963 seconds on 5MB apps on average. Generating CG with
Soot takes 126 seconds on 50MB apps and 57 seconds on
5MB apps, and it costs 32.13 seconds and 3.498 seconds
accordingly when prepared with AndroGuard. AndroGuard
achieves a better performance than Soot on CG extraction.
As for MobiTive, the detection should be performed in a
responsive period comparing to the app installing time, users
cannot buy it if the reacting time takes too long. The extraction
time costs of decompiling, which applied in our previous
work [22], is acceptable but also limited, by comparing with
the app installing time on average. Considering the time cost
of extracting raw data by unzipping, 5MB apps take only
0.037 seconds and 50MB apps take 0.594 seconds, which
reaches a much better performance than the processing time
of decompiling. Therefore, we decide to use unzipping as our
raw data extraction method.
(2) Feature extraction. Fig. 3 shows that the time consumption
of features extracted from decompiled files is much longer
than the same features generated directly from unzipped binary
files. Specifically, in terms of the time cost of API calls,
extracting them from 5MB apps only takes only 0.042 seconds
on average. However, if we extract the API calls from decom-
piled smali files, it takes 2.923 seconds. For the 50MB apps,

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 8

0
.2

6
1

0
.1

7
8

0
.2

6
4

0
.1

3
3

0
.1

1
9

0
.0

4
60

.4
9

3

0
.3

5
7

0
.3

5
5

0
.1

7
5

0
.1

4
8

0
.0

7
5

0
.7

6
9

0
.5

6
5

0
.5

2
4

0
.2

8
5

0
.2

2
6

0
.1

1
7

1
.4

5
1

0
.9

7
8

0
.8

7
5

0
.4

9

0
.3

8

0
.2

5
6

2
.1

9
3

1
.5

2
1

1
.3

8
6

0
.8

4
6

0
.7

1
1

0
.3

2

3
.9

1
8

2
.5

8
6

2
.4

0
9

1
.3

2
5

1
.0

2
3

0
.5

6
5

SAMSUNG

GALAXY J7

PRO

LG G6 NEXUS 6P HTC U11 HUAWEI

MATE 10

HUAWEI P30

0 sec

1 sec

1 sec

2 sec

2 sec

3 sec

3 sec

4 sec

4 sec

5 sec

5MB

10MB

20MB

30MB

40MB

50MB

Fig. 3. Extraction time of different feature types

it will cost 0.601 and 5.002 seconds for extracting the API
calls. Considering the extraction time of manifest properties,
5MB and 50MB apps will take 2.89 and 4.841 seconds, when
we extract the manifest properties from the decoded manifest
file by ApkTool. When we extract them from the unzipped
binary manifest file, the time is reduced to 0.041 and 0.599.
Apart from manifest properties and API calls, we find that the
extraction time of opcode sequence is much larger than the
other two feature types. For 50MB apps, it will take over 6
seconds on average. Therefore, to improve the performance
of MobiTive in feature extraction, we decide to use the two
feature types with shorter extraction time as our model inputs.

2) Accuracy evaluation of behavior-based feature updating
method: In this experiment, we evaluate the effectiveness
of the behavior-based feature updating method presented in
§III-B2 by comparing the results between the features used in
our previous work [22] (MobiDroid) and MobiTive.

a) Dataset: As shown in Table VI, we collect more
than 70k Android apps in total as our evaluation subject.
Specifically, these apps consist of 29,010 Android malware,
and others are benign apps crawled from Google Play Store.
However, these might be malware on the official market. To
filter the potential malware as far as possible, we upload them
to VirusTotal [44], which is an online antivirus service with
over 60 security scanners, to make a verification. The 29,010
malicious samples contain 5,560 apps that downloaded from
Drebin [11], 1,260 apps validated in Genome project [3],
20,000 crawled from VirusShare, and the remaining are used
in KuafuDet [17], including 360 from Contagio Mobile Web-
site [45] and 1,830 from Pwnzen Infotech Inc. [46]. In sum-
mary, we collect a large-scale dataset of benign and malicious
samples for the following experiments. Since our dataset
comes from multiple sources, there have a lot of duplicated
samples. Therefore, we perform a hash check for eliminating
redundant apps among malicious and benign apps. During
the data prepossessing, which has raw data decompiling and
feature vector generation steps, we receive some failed cases
due to the capabilities of API parser. The rest of the failures are
just caused by the broken APK packages, we also remove them
directly. As a result, we choose 18,000 benign and malicious
samples respectively from our dataset to conduct the following
experiments. In training stage, we divide these 18,000 malware
and 18,000 benign apps into three parts, 80% of them are
configured as training data, other 20% are equally split into
validating and testing data.

TABLE VI
USED DATASET

Datasets Labels Original Size Deduplicated Size
Drebin Malware 5,560 3,561
Genome Malware 1,260 1,009
Contagio Malware 360 198
Pwnzen Malware 1,830 572
VirusShare Malware 20,000 12,660
Total Malware 29,010 18,000
Total Benign 45,284 18,000

TABLE VII
DETECTION RESULTS OF FEATURE UPDATING

Feature Dictionary Size Networks Accuracy Precision Recall

1509 API + 613 Manifest CNN 90.03% 91.00% 89.26%
2290 API + 625 Mniafest CNN 95.11% 95.06% 95.16%
1509 API + 613 Manifest LSTM 95.44% 95.56% 95.34%
2290 API + 625 Mniafest LSTM 96.56% 96.72% 96.40%
1509 API + 613 Manifest GRU 95.56% 95.22% 95.86%
2290 API + 625 Mniafest GRU 96.75% 96.78% 96.72%

b) Setup: Because our previous work MobiDroid [22]
applied three types of features (i.e., API calls, manifest prop-
erties, and opcode sequence), in this experiment, we determine
to take API calls and manifest properties (i.e., 1,509 and 613),
which our behavior-based feature updating method may benefit
on, as the feature of MobiDroid to reveal the improvement on
detection. Meanwhile, the updated version used in MobiTive
has 2,290 API calls and 625 manifest properties. For each
feature version, we apply three kinds of deep neural networks,
which presented in §III-C1, to investigate whether the feature
updating method can improve the accuracy of our system.

c) Results: In Table VII, the accuracy of updated feature
version on CNN, LSTM and GRU is 95.11%, 96.56% and
96.75%. Comparing to the previous results, there is around
1%∼5% improvement after feature updating. Therefore, based
on the result, we accept updating features summarised from
potential malicious behaviors a part of our input feature set.

3) Accuracy evaluation of feature category selection and
deep neural network selection: In this experiment, to find out
the correlation between selected features and the effectiveness
of different deep neural networks on detection accuracy, we
first evaluate the effect of two newly-updated feature cate-
gories (Table I) on detection accuracy separately. Second, we
investigate the effect of computational architecture in different
deep neural networks on detection accuracy.

a) Dataset: The dataset configuration used in this exper-
iment is same as §IV-B2a (Table VI).

b) Setup: To find out the correlation between the two
selected features (i.e., manifest properties and API calls), we
investigate their corresponding accuracy by accepting both

TABLE VIII
DETECTION RESULTS OF FEATURE CATEGORIES AND NETWORKS

Categories Neural Networks Accuracy Precision Recall

Manifest CNN 79.89% 79.50% 80.12%
API Calls CNN 93.17% 92.33% 93.90%
Two Types CNN 95.11% 95.06% 95.16%
Two Types LSTM 96.56% 96.72% 96.40%
Two Types GRU 96.75% 96.78% 96.72%
Two Types Stacked LSTM 96.64% 96.83% 96.46%
Two Types Stacked GRU 96.67% 97.00% 96.36%
Two Types Bidirectional LSTM 96.61% 96.67% 96.56%
Two Types Bidirectional GRU 96.78% 97.00% 96.57%

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 9

36567

27433

19841

18293

14889

13726

65

12231

9181

6656

6117

4999

4592

13

12231

9181

6656

6117

4999

4592

13

0 5000 10000 15000 20000 25000 30000 35000 40000

Bi-LSTM

Bi-GRU

Stacked LSTM

LSTM

Stacked GRU

GRU

CNN

MODEL SIZE (KB)

Non-quantized Quantized Original

Fig. 4. Comparison of model size changes on migration and quantization

single and combined feature categories as the input of a same
neural network with a same training data configuration. To
determine the best deep neural network, we evaluate seven
widely-used neural networks by using the combined two
feature categories.

c) Results: We demonstrate the results from the 2 aspects
(feature category selection and network selection) as below.
(1) Feature selection. As shown in Table VIII, the accuracy
of the three CNN models is 79.89%, 93.17% and 95.11%. By
comparing the accuracy of feature categories, we decide to use
manifest properties and API calls together as an input bundle
in our approach since the input with two feature types has the
best result.
(2) Network selection. In general, RNN models perform a
better accuracy than CNN models. A possible reason is that
RNN has an internal state (memory), which can also take
the correlation between the different feature positions into
consideration. In the training stage, this internal state will
make RNN be able to keep the highly potential related in
a long-term and finally keeps the most corresponding feature
positions. However, CNN considers every different feature po-
sition individually in training. In terms of RNN models, GRU
and bidirectional GRU achieve a similar accuracy (96.75% vs.
96.78%), which is better than other RNN models’ accuracy.
They also have a better recall than precision (96.78% vs.
96.72% for GRU and 97.00% vs. 96.57% for Bidirectional
GRU). Besides, we also compare the size of original pre-
trained model with the quantized and non-quantized models.
In Fig. 4, we can find that the size of the original pre-trained
model reduces 3 times on RNNs and 5 times on CNN by
migrating it to the TensorFlow Lite model. In the experiment,
whether the quantization configuration is enabled or not, the
migrated model size for both RNN and CNN models will keep
unchanged.

4) Comparison between the existing learning-based An-
droid malware detection systems and MobiTive: In this experi-
ment, we evaluate our MobiTive together with several existing
learning-based Android malware detection systems on both
two directions, effectiveness and efficiency.

a) Dataset: The dataset configuration used in this exper-
iment is same as § IV-B2a (Table VI).

b) Setup: We briefly compare our MobiTive with 4 open-
source learning-based Android malware detection approaches,
which applies different types of features (i.e., vector, sequence,
and graph) as their inputs. There are three reasons to help us

TABLE IX
COMPARISON OF MOBITIVE AGAINST EXISTING APPROACHES

Feature Type Extraction
Time (s)

Classification
Method Accuracy System

Opcode Seq 5.065 Deep
Learning(CNN) 94.79% McLaughlin

et al. [32]

API Call Seq 3.515 Deep
Learning(CNN) 96.25% MalDozer [47]

iCFG 198.920 Representation
Learning 90.98% Apk2Vec [48]

Manifest
API Call
Opcode Seq

5.892 Deep
Learning(CNN) 96.87% MobiDroid [22]

Manifest
API Call 0.051 Deep

Learning(GRU) 96.75% MobiTive

illustrating why we select these four approaches. By conduct-
ing a study on the corresponding literature which published
in recent years, we first survey them on the feature types,
and then select one representative work from each organized
column. Further, by searching on the Github and sending
emails to the authors, we obtain the source code of these
four approaches and further evaluate them with our dataset
to provide a more concrete comparison. Since one of our
basic concept in this paper is balancing the performance and
accuracy to satisfy user’s real usage, we not only evaluate the
accuracy, but also compare the average feature extraction time
for each approach on our dataset.

c) Results: As shown in Table IX, comparing to
McLaughlin et al. [32], MalDozer [47], Apk2Vec [48], there
are obvious improvements on both the accuracy and feature
extraction time cost on PC. Considering the approaches based
on sequential features, the accuracy of MobiTive is higher
than McLaughlin et al. [32] and MalDozer (96.75% vs.
94.79% and 96.25%), and the time cost of extracting feature
is almost improved for 100 and 70 times than them (0.051
vs. 5.065 and 3.515 seconds). Considering our previous work,
MobiDroid [22], the accuracy of MobiTive is a little lower
than MobiDroid (96.75% vs. 96.87%), however, with a tiny
decrease at 0.12% on the accuracy, the feature extraction time
cost of MobiTive is almost 100 times shorter than MobiDroid
(0.051 seconds vs. 5.892 seconds).

5) Accuracy evaluation of multi-class classification: In this
experiment, we evaluate the effectiveness of our MobiTive on
predicting malware in different virus types such as Spyware
and Trojan.

a) Dataset: We collect 70,130 Android applications from
VirusShare as shown in Table X and classify them with Virus-
Total [44], which is an online detection platform, to retrieve
their types as our ground truth in multi-class classification.
Finally, we have 21 virus-labels of these Android malware,
which locate in 5 types (i.e., Adware, Spyware, Riskware,
Trojan, and File-Infector). In training stage, we also accept
the same data split in binary classification (i.e., 80%, 10%
and 10%) as the train/validate/test data split portion.

b) Setup: To evaluate the effectiveness on classifying
malware into different virus types, we train a multi-class
malware classifier on our collected dataset in Table X with
the determined deep neural network (i.e., GRU).

c) Results: As shown in Table X, we reach an overall
accuracy at 94.45% in multi-class malware classification task.
Considering those families respectively, on each of the two

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 10

TABLE X
DETECTION RESULT WITH MULTI-CLASS DATASET

Name Type #Total Data #Test Data Accuracy

admogo Adware 1,918 192 84.38%
adwo Adware 3,882 388 86.08%
airpush Trojan 6,368 637 95.92%
anydown Adware 1,343 134 100.00%
baiduprotect Adware 3,026 303 98.35%
cnzz File-Infector 970 97 100.00%
commplat File-Infector 1,442 144 100.00%
domob File-Infector 5,696 570 93.33%
dowgin Adware 3,223 322 78.88%
feiwo Adware 1,694 169 95.86%
fictus Adware 1,435 144 96.53%
gappusin Adware 9,378 938 96.16%
igexin Spyware 3,911 391 99.74%
jiagu Riskware 2,662 266 100.00%
kuguo Adware 4,031 403 88.83%
kyview Adware 1,433 143 79.72%
leadbolt Adware 5,929 593 96.80%
mecor Riskware 833 83 100.00%
plankton Trojan 2,571 257 97.28%
revmob Trojan 7,517 752 97.47%
scamapp Trojan 868 87 100.00%

Overall 70,130 7,013 94.45%

Riskware families, our MobiTive performs a perfect pre-
diction, which has an accuracy at 100.00%. The detection
accuracy of Malware families, cnzz and commplat in File-
Infector type, also reach 100.00%, and the other family,
domob, has an accuracy at 93.33%. Each of the malware
types located in Trojan achieves an accuracy above 95% (i.e.,
95.92%, 97.28%, 97.47%, and 100.00%). For the only spy-
ware, the accuracy reaches 99.74% among 391 test malware
applications. For Adware families, with our selected features,
MobiTive achieves an accuracy above 95.00% in detecting
anydown, baiduprotect, feiwo, fictus, gappusin, leadbolt (i.e.,
100.00%, 98.35%, 95.86%, 96.53%, 96.16%, and 96.80%),
however, it fails to provide a dependable prediction result on
admogo, adwo, dowgin, kuguo, kyview (i.e., 84.38%, 86.08%,
78.88%, 88.83%, 79.72%).
Remark. To face the high latency during feature preparation,
we find extracting API calls and manifest properties from
unzipped Dalvik binary and binary manifest file will cost less
than 1 second. To validate the effect of our newly supple-
mented features, we find the RNNs have an improvement at
over 1% on the accuracy, and the accuracy of CNN increased
by 5%. Meanwhile, by comparing the result on different
feature categories and deep neural networks, we find that (1)
two feature types combined input has a much better result
than single feature type; (2) on average, the RNN models
have a better result than CNN. GRU models have a better
accuracy than the LSTM models on our dataset. Moreover, by
comparing 4 existing approaches with MobiTive, it achieves a
better performance with a considerable detection accuracy. To
validate the effect on multi-class classification, we find that
MobiTive can efficiently handle most malware families (i.e.,
17/21 obtain an accuracy larger than 95%).

C. Effectiveness Evaluation of MobiTive on Mobile Devices

1) Performance evaluation of feature preparation on real
devices: We evaluate the performance of feature preparation
on real mobile devices in this experiment. The time cost of

0
.5

1
6

0
.1

5
8

0
.1

4
6

0
.2

2

0
.2

0
2

0
.0

9
20
.6

4
5

0
.1

7
1

0
.1

7
3

0
.2

9
5

0
.2

1
3

0
.0

9
3

1
.5

1

0
.2

5
2

0
.2

5
4 0

.9
2

5

0
.3

1
6

0
.1

2
5

2
.3

4
7

0
.3

8
2

0
.3

6
5

1
.4

7
6

0
.4

8
1

0
.1

6
3

4
.2

4
5

3
.2

6
6

2
.8

7
9

1
.5

5
4

1
.0

6
5

0
.4

1
9

5
.4

5
2

6
.2

1
6

3
.4

8
7

3
.1

2
7

2
.0

8
9

0
.4

9

SAMSUNG

GALAXY J7

PRO

HUAWEI

MATE 10

HTC U11 LG G6 NEXUS 6P HUAWEI P30

0 sec

1 sec

2 sec

3 sec

4 sec

5 sec

6 sec

7 sec

5MB

10MB

20MB

30MB

40MB

50MB

Fig. 5. Unzipping time on different mobile devices

feature preparation step includes unzipping time and feature
extraction time.

a) Dataset: The dataset configuration used in this exper-
iment is same as §IV-B1a.

b) Setup: We first evaluate the performance of raw data
extraction by investigating the time cost of unzipping the
applications with 6 different sizes on 6 different real Android
devices. Second, with the extracted raw data (i.e., binary
manifest file and Dalvik executable file), we further evaluate
the performance of feature extraction by investigating the time
cost of extracting the features from raw data on the devices.

c) Results: We introduce the results from 2 aspects
(unzipping time and feature extraction time) as below.
(1) Unzipping time evaluation on real devices. Fig. 5 shows
the average unzipping time of 50MB apps on common specifi-
cation devices (Huawei Mate 10, HTC U11, Nexus 6P, LG G6)
locates between 1.023 and 2.586 seconds. For 5MB apps, it
locates between 0.119 and 0.264s. For the performance of low-
profile device (Samsung Galaxy J7 Pro), the unzipping time
of 5MB and 50MB apps are 0.261 and 3.918s. Considering
flagship device (Huawei P30), they are limited to less than 0.6
second. For 5MB apps, it only takes 0.046s.
(2) Feature extraction time evaluation on real devices. Apart
from the performance evaluation of unzipping time, we further
evaluate the feature extraction time. To extract the API calls,
we package our API call parser used on server side into a jar
with the help of JitPack. The API call parser is used to extract
API calls from binary code. Since the XML decoder (axmldec)
used on sever is implemented in C++, we apply AXML as a lib
to extract the manifest properties, which is more suitable on the
mobile side. Fig. 6 shows the average feature extraction time of
50MB apps on common specification devices locates between
2.089 and 6.216 seconds. For 5MB apps, it locates between
0.146 and 0.22 seconds. On low-profile device (Samsung
Galaxy J7 Pro), the extraction time of 5MB and 50MB apps
are 0.516 and 5.452 seconds. Considering flagship device
(Huawei P30), they are limited to less than 0.49 second. For
5MB apps, it only takes 0.092 second, which is very fast.

2) Performance evaluation of RNN models on real device:
Besides analyzing the performance of unzipping and extracting
features, in this experiment, we further evaluate the efficiency
of prediction with different RNN models on real devices.

a) Dataset: To make sure that the test accuracy is
comparable to the results obtained on server, the testing data
used in this mobile-end experiment is same to the testing data

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 11

0
.2

6
1

0
.1

7
8

0
.2

6
4

0
.1

3
3

0
.1

1
9

0
.0

4
60

.4
9

3

0
.3

5
7

0
.3

5
5

0
.1

7
5

0
.1

4
8

0
.0

7
5

0
.7

6
9

0
.5

6
5

0
.5

2
4

0
.2

8
5

0
.2

2
6

0
.1

1
7

1
.4

5
1

0
.9

7
8

0
.8

7
5

0
.4

9

0
.3

8

0
.2

5
6

2
.1

9
3

1
.5

2
1

1
.3

8
6

0
.8

4
6

0
.7

1
1

0
.3

2

3
.9

1
8

2
.5

8
6

2
.4

0
9

1
.3

2
5

1
.0

2
3

0
.5

6
5

SAMSUNG

GALAXY J7

PRO

LG G6 NEXUS 6P HTC U11 HUAWEI

MATE 10

HUAWEI P30

0 sec

1 sec

1 sec

2 sec

2 sec

3 sec

3 sec

4 sec

4 sec

5 sec

5MB

10MB

20MB

30MB

40MB

50MB

Fig. 6. Extraction time on different mobile devices

96.56%

96.75%

96.64% 96.67%
96.61%

96.78%

96.45%

96.50%

96.55%

96.60%

96.65%

96.70%

96.75%

96.80%

0.0 ms

0.2 ms

0.4 ms

0.6 ms

0.8 ms

1.0 ms

1.2 ms

1.4 ms

LSTM GRU Stacked

LSTM

Stacked

GRU

Bi-LSTM Bi-GRU

Prediction time Accuracy

Fig. 7. The accuracy and prediction time of RNN models on Huawei P30

generated by the data split function mentioned in §IV-B2a
(Table VI), including 1,800 malware and 1,800 benign samples
respectively. To get rid of the influence of feature preparation
phase in this performance evaluation against RNN models, we
directly use a set of feature vectors extracted from testing data
as the input.

b) Setup: We first convert and migrate the RNN models
obtained in §IV-B3 (i.e., simple RNN LSTM/GRU, stacked
LSTM/GRU, and bidirectiontal LSTM/GRU) to TensorFlow
Lite models and further deploy them on real device (e.g.,
Huawei P30). Secondly, to provide an insight for both the
prediction accuracy and performance, we investigate the pre-
diction time for each model with our dataset and organize
the result together with the accuracy obtained in §IV-B3
(Table VIII).

c) Results: As shown in Fig. 7, by comparing the pre-
diction time of different RNN models, which presented in the
histogram, we can see that the pre-trained model with GRU
has the best performance than any others. Meanwhile, from
the grey accuracy line in this figure, we can see it has the
second highest accuracy among them, which only has a small
difference comparing to the accuracy of bidirectional GRU
(96.75% vs. 96.78%). Considering all situations, we select
GRU model to evaluate the performance and accuracy of our
approach on the real mobile devices.

3) Accuracy and prediction time on different real devices:
In this experiment, we evaluate the effectiveness of MobiTive
on real Android mobile devices by conducting a comparison
experiment on test accuracy and the total prediction time on
real devices.

a) Dataset: To make sure that the test accuracy is
comparable to the results obtained on server, the testing data
used in this mobile-end experiment is same to the testing data
generated by the data split function mentioned in §IV-B2a (Ta-

TABLE XI
RUN-TIME PERFORMANCE COMPARISON OF MOBITIVE AGAINST

DYNAMIC ANDROID ANALYSIS TOOL

CPU
Usage

Memory
Usage (MB)

Energy
Usage

Execution
Time (s) System

P40% 60 QM × 0.46 0.46 MobiTive
P10% × n 130× n QL × t× n ∞ Inspeckage [50]

1. t is the execution time to finish one detection on an app.
2. n is the total number of monitored apps running in foreground or background.
3. P is the run-time CPU power usage in one detection.
4. Q is the run-time energy cost in one detection, QM and QL represent the energy
cost at level medium and light (defined by Android Profiler [51]).

ble VI), including 1,800 malware and 1,800 benign samples.
b) Setup: We first convert and migrate the GRU model

obtained in §IV-B3 to quantized/non-qunatized TensorFlow
Lite models and deploy them on real devices. Second, we
record the average prediction time and detection accuracy by
testing the quantized/non-quantized GRU models. Note that,
to provide an insight for the performance of each processing
phase, we record the time cost by 3 parts (i.e., raw data
unzipping, feature extraction, and prediction).

c) Results: With the obtained GRU model in §IV-B3 (ac-
curacy: 96.75%), in Table XII, by comparing the accuracy of
non-quantized and quantized models, we find that the accuracy
of quantized model will almost equal to the non-quantized
model for RNN (GRU). However, by comparing the prediction
time of them, it shows that the performance of predicting with
quantized model is a little better than non-quantized model.
In this experiment, the result shows that the difference of
prediction time, which brought by the quantization technique,
is less than 0.01 microseconds. As a result of the current
inadequate support for the operators in Tensorflow Lite, the
structure of current applied deep neural networks are relatively
simple. However, with a more complicated neural network, the
quantization technique will definitely provide a performance
boost during the prediction phase [49].

By calculating the unzipping, analyzing, and prediction time
together, the time is always acceptable for mobile users (i.e.,
less than 3 seconds on average, less than 1 second in best prac-
tice). By comparing the specifications of these devices used
in our experiment with the summarized devices’ specifications
(details on our website [25]), we find that the performance
benchmark result of most newly released devices are better
than the common devices selected in our experiments. Thus,
we can claim that the current mobile phones can support our
off-line prediction system smoothly.
Composition of overall time analysis. Comparing the feature
preparation and prediction time in common cases in Table XII.
we can see that the detection time only cost less than 1%
among the total time on common spec devices. Thus, reducing
the time cost in feature preparation will bring a considerable
performance improvement for our detection system. It is also
a strong motivation for us. Additionally, as a result of the
installation mechanism, the downloaded Android APK will
be always unzipped by the Android operation system. Thus,
there will be a same step between our approach and the
installing procedures, which is extracting the same raw data
from the target APK. If we can deploy our approach on the
Android operation system framework directly, the time cost

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 12

of unzipping step in our approach will be saved. It is a new
research point of this field in the future.

4) Performance comparison between MobiTive and dy-
namic run-time detection: In this experiment, we evaluate
and discuss the efficiency of our MobiTive against other tool,
which based on dynamic behavior analysis.

a) Setup: To evaluate the run-time performance of our
MobiTive against other tool, which applied dynamic behavior
analysis as the baseline technique, we select Inspeckage [50],
which is a state-of-art tool developed to offer dynamic analysis
for Android applications, as the target system in this exper-
iment. We investigate the run-time performance cost of both
Inspeckage and MobiTive on three aspects (i.e., CPU, memory,
energy) with the help of Android Profiler [51].

b) Results: In Table XI, the result shows that if detect-
ing a single application successfully in the same limited
time period, the CPU usage and energy consumption of
Inspeckage look better than MobiTive (i.e., CPU: P40% vs.
P10% and QM vs. QL), but the average memory usage is
70MB larger than ours (i.e., 60 vs. 130MB). More importantly,
the differences of Inspeckage and MobiTive on their basic
mechanisms cause that more factors need to be involved in this
evaluation. First, the protection of MobiTive is only provided
before the installation of target application. In other words,
every application will only trigger MobiTive’s detection once
in each installation and cost 0.46s on average. Considering
the protection of Inspeckage is provided by monitoring and
analyzing the behaviors of applications in real time, namely,
it will be assigned to every application, no matter running in
foreground or background. Meanwhile, unlike MobiTive can
be slept after every detection, the Inspeckage has to be kept
running all the time if any applications are running. Thus, the
CPU usage, memory usage and energy usage of Inspeckage
will turn to be P10% × n, 130×n and QL × t × n, where t
is the execution time to finish one detection on an application
and n is the total number of protected applications running in
foreground/background. In conclusion, in common scenario of
Android devices’ usage, malware detection tool using dynamic
analysis, like the Inspeckage, will definitely lead to a higher
performance cost than MobiTive.
Remark. To determine the feature preparation and predic-
tion performance on real devices, we find (1) the feature
preparation time is less than 4 seconds on average; (2) the
prediction time of RNN models is less than 2ms on average.
GRU costs 0.44ms with the best performance. Meanwhile, by
comparing the result on six mobile devices, we find MobiTive
costs (1) less than 3 seconds on common devices, (2) less
than 0.5 second on flagship device. Meanwhile, by comparing
the run-time performance of MobiTive and Inspeckage, we
find that MobiTive can serve user with a much more efficient
experience as an on-device protection system.

D. Analysis of Hardware Performance Evolution Trend of
Android Mobile Devices

In this section, we conduct a study from three different
aspects to investigate the hardware performance evolution
trend of Android mobile devices.

1744 1869 1901
3314

5260
6445 6714.5

9854

11920.5

10236

11085

21603.5

2016 2016 2017 2018

955 960 970 980

Hisilicon Kirin

1834.5 1920

2429
3506

4356

6517

8849

10999
9493

11484

16369.5

23979

2016 2017 2018 2018

821 835 845 855

Qualcomm Snapdragon

1810 2015
3688

4505.5 4550
5354

6711

8874

10374 10425.5

12915.5 13265

14760

20469.5
19021.5

2016 2017 2018 2019 2019

8890

OCTA

8895

OCTA

9810 9820 9825

Samsung Exynos

Fig. 8. Benchmark score comparison among different chipsets from Exynos,
Kirin, and Snapdragon

1560

18001800
1800

20002000
2000

2200 2200

2200

2200

2200

2200
2270 2300

2600
2700

2730
2840

2860

2960

0

5

10

15

20

25

0

500

1000

1500

2000

2500

3000

3500

Number of Mobile Phone Max Frequency(MHz)

Fig. 9. Top 21 chipsets assembled in Android mobile phones released in 2019

To provide insights into the current and future usability of
MobiTive, we study 45 widely-used chipsets, which released
between 2016 and 2019. They are collected from three well-
known brands, Exynos, Kirin, and Snapdragon We select
4–5 chipsets from each brand and compare them with 3
different kinds of benchmark test scores (i.e., Greekbench 4.4
64 Bit Single-Core score, Greekbench 4.4 64 Bit Multi-Core
score, and Octane V2 total score). As shown in Fig 8, we
present the results along time line to reveal the fast evolution
trend of the chipsets. From the polylines, which refer to the
different score results, we can see that the performance of the
chipsets has doubled during the past 5 years. We detail the
full specifications of chipsets on our website [25]. Besides the
analysis of chipsets, we also investigate the clock freqency and
RAM size on 167 Android mobile devices, which is released
in 2019, and present them on our website [25]. As shown in
Fig. 9, we can see that the current frequency of new released
Android devices are mostly located in 2000∼2500MHz and
2500∼3000MHz, which refers to common devices and flag-
ship devices respectively. As shown in Fig. 10, we can see that
the current RAM sizes of new released Android devices are
mostly larger than 3GB. The mainstream RAM sizes are 4GB,
6GB, and 8GB, which have a proportion around 72% among
the whole specification data. By investigating the hardware
performance evaluation results of real devices on chipsets and
RAM with the six devices used in our experiments, we can tell
that the most of the current Android mobile phones can support
MobiTive smoothly and achieve a responsive detection.
Remark. By collecting and analyzing the specifications of
chipsets and devices, we find the evolution trend of chipsets
will provide a better performance for MobiTive in the future.
Meanwhile, the study on device specifications released in 2019
shows that most new devices will have a performance not
worse than our 4 selected common devices.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 13

TABLE XII
ACCURACY AND PERFORMANCE OF MOBITIVE ON REAL MOBILE DEVICES

Devices Released
Year

Unzipping
Time (s)

Extraction
Time (s) Quantized Accuracy Prediction

Time (ms)
Total

Time (s)

Nexus 6P Sep 2015 0.97 0.73 No 96.75% 1.14 1.70
Yes 96.75% 1.14 1.70

LG G6 Apr 2017 1.03 1.27 No 96.75% 0.74 2.30
Yes 96.75% 0.73 2.30

Samsung Galaxy J7 Pro Jun 2017 1.51 2.45 No 96.75% 1.67 3.96
Yes 96.75% 1.66 3.96

HTC U11 Jun 2017 0.54 1.22 No 96.75% 1.10 1.76
Yes 96.75% 1.10 1.76

Huawei Mate 10 Feb 2018 0.44 1.74 No 96.75% 1.10 2.18
Yes 96.75% 1.09 2.18

Huawei P30 Mar 2019 0.23 0.23 No 96.75% 0.56 0.46
Yes 96.75% 0.55 0.46

2% 4%

12%

19%

24%

29%

10%

1GB

2GB

3GB

4GB

6GB

8GB

12GB

Fig. 10. RAM size of Android mobile devices released in 2019

V. LIMITATIONS AND DISCUSSIONS

Feature selection. As a result of the performance requirement
of MobiTive, the limited selected feature categories (i.e.,
manifest properties and API calls) surely will not cause large
overhead when it is working on an Android device. However,
the limited two feature types will also provide limited informa-
tion from the Android malware. If there will be a new malware
family, whose malicious behaviors can not be represented by
our selected feature types, the MobiTive may not be able to
detect them. In the future, we aim to add more effective feature
types with low-performance costs as well.

Meanwhile, it is very important to detect new malware fam-
ilies in practice. Actually, neither dynamic nor static methods
can fully guarantee the validity of protection against the new
malware samples. A possible solution for detecting more new
malware is that combining two types of methods. In the future,
we will try to improve the ability to detect new malware
by designing a new adaptive method, which is also an open
question for this community.
New malware family detection. For any malware detection
tool, it is no doubt that detecting new malware families in
practice is a very important task. However, neither dynamic
nor static methods can fully guarantee the validity of pro-
tection against the new malware samples. For example, due
to the limited training dataset, MobiTive would have a similar
limitation as other static analysis based malware detection sys-
tems, which is different from the dynamic analysis approaches.
Specifically, considering a new malware family, the situation
may be that the malicious features are totally different from
existing data. Consequently, as a result of lack of knowledge,
the trained classifier may not be able to make the right
decision, although learning-based approaches sometimes have
the ability to detect new malware variants. Therefore, in the
future, we can make some efforts to improve the ability to
detect new samples by combining varies techniques. We surely

will also try to improve the ability to detect new malware by
designing new adaptive methods, which will also benefit the
community by discovering the possible techniques on solving
this open question.
Against adversarial attack. Indeed, deep learning based
systems (e.g., voice/image recognition) will suffer from adver-
sarial attacks [52]–[55], so that maintaining the robustness of
deep learning based system becomes a challenging topic. How-
ever, there are several differences in the deep learning based
systems between malware detection task and voice/image
recognition. (1) First and most important, unlike voice/image
recognition, the adversarial attacks in malware detection can-
not break the entire functionality in the applications easily
in practice, so that the existing adversarial attacks against
malware detection are always generated by manipulating the
target malware application with un-triggered code snippets
(e.g., dead code) instead of changing real functionalities [56].
Although it is able to generate adversarial samples to evade
the classifier and achieve a high miss-classification rate, it is
impractical so far, because such attack can be easily detected
by leveraging other techniques such as static data flow analysis
to delete such features that are introduced by adding dead code
from attackers. Meanwhile, it is also evidenced by lacking
real adversarial malware samples in the existing researches.
(2) Secondly, different from malware detection approaches on
other system (e.g., Windows/Linux), our approach abstracts
the entire Android app with a limited feature list instead of
embedding the whole package program, so that the attackers
have to manipulate their malware applications with our defined
features to bypass MobiTive. In practice, attackers can not
obtain the accurate feature list easily. Meanwhile, considering
that most of our selected features (i.e., manifest properties
and API calls) are defined by the official/trustworthy third-
party developers, it is almost impossible to bypass MobiTive
as easily as the deep learning based voice/image recognition
systems under the restriction of maintaining the functionalities
in the malware applications. All in all, adversarial attacks on
deep learning based malware have domain-specific challenges
compared with image/voice classification, which is also be-
longing to a new research direction as an open question.
Dynamic behavior analysis. According to our knowledge and
an in-depth literature review, static analysis acts an important
in past and current cyber security research, and the number
of research publications on Android malware detection is also
larger than dynamic analysis (static analysis [11], [18], [20],

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 14

[31], [32], [57]–[65] vs. dynamic analysis [7], [66]–[70]).
Indeed, on a specific given detection task, dynamic behavior
analysis may achieve a more accurate result (e.g., lower
false positive) than static analysis, however, there are several
limitations, which undertake its applicability on specific sce-
narios, need to be discussed. (1) First and most important,
the available scenarios of dynamic behavior analysis based
malware detection systems are more limited, because the
high cost on computational resources makes dynamic behavior
analysis based systems unable to satisfy users’ requirements
on performance and energy. For example, using performance
counter [67] while doing program analysis in malware/bug
detection task is widely used. However, unlike traditional
windows/linux programs, Android application have a more
complicated HCI mechanism. In other word, generating good
quality test benchmarks with a good coverage to the corner
cases is much more difficult than programs on windows/linux.
Assuming we have the ability to obtain the benchmarks, the
time cost in generating and executing them will also bring
a conflict to the target, which is satisfying user’s demand
on efficiency. (2) Second, the detection efficiency is highly
depend on the coverage of the predefined behaviors. Namely,
once the malicious behavior in the target malware is not
specifically defined by the detection system, the security of
system will be no longer promised. (3) Third, different from
MobiTive, dynamic behavior analysis based system may suffer
from its working mechanism (i.e., before installation vs. run-
time). For example, a social engineering based spyware can
easily store the privacy information on the device and trick
the user to upload them, as a result of that most users are not
as professional as security researchers. In the end, according
to the diverse usage scenarios and targets, we think Android
malware detection approaches based on dynamic behavior and
static analysis have their own advantages and weaknesses
respectively, which both call for research on them.

VI. RELATED WORK

Some techniques are proposed based on analyzing the XML
files from the APK file. C.-Y. Huang et al. [71] classified the
benign data and malware data using the permission informa-
tion in manifest and files structure as features. Similarly, Z.
Aung et al. [72] also considered the permission. Differently,
they concentrate on the permission requests in the source code,
not only the static information. E. Chin et al. [57] proposed
ComDroid, which detects malware by analyzing the manifest
file. There are also techniques which are based on the API
[58]. L. Deshotels et al. [59] classified malware based on the
API call frequency. M. Zhang et al. [60] developed DroidSIFT
based on the API dependency graphs. Y. Zhongyang et al. [61]
introduced DroidAlarm, which analyzes the inter-procedural
call graphs constructed by the relationship between permis-
sions and the interface to identify attacks. L. K. Yan et al. [7]
proposed DroidScope, which generates semantic information
from API call and Dalvik opcode traces. D.-J. Wu et al. [62]
proposed the DroidMat to detect malware with API traces,
intent, communication and some other life-cycle information.

Another line of malware research is conducted based on
the program analysis (e.g., control flow graph), which is

more expensive than the XML-based and API-based approach.
However, the result tends to be more precise. Narayanan et
al. [31] presented an online SVM classifier, which uses the
control flow graph generated from the source code as input. W.
Enck et al. [66] proposed TaintDroid, which is a taint analysis
tool for Android apps. It detects the leakages with the data
flow analysis on target sensitive data. G. Z. Meng et al. [63]
proposed a deterministic symbolic automaton (DSA) based
detection system, in which DSA contains the corresponding
components of the target app. Furthermore, they developed
a system, DroidEcho, which detects attacks with the inter-
component communication graphs (ICCG). ICCG provides
both the call graphs and sensitive data flow in apps.

Machine learning has achieved great success in malware
detection, there exist also a lot of learning-based approaches.
D. Arp et al. [11] proposed Drebin, which is a classifier using
features from both of XML files and API calls. Z. Yuan [20] et
al. provided Droid-detector, which performs on a deep belief
network. W. Yu [18] et al. presented a malware detection
system, which uses permission and API call traces as input. N.
McLaughlin [32] et al. used the convolution neural network
in detection. The raw opcode sequences of target apps are
used as the input feature. Kim [64] et al. presented a malware
detection framework based on multiple neural networks. Every
network has a single feature input and output score. The final
detection result is a combination of all the models. K. Xu
[65] et al. proposed DeepRefiner, which is an efficient two
layer malware detection system. They involved XML features
as the first layer to perform a fast detection first. At the end
of the first layer, if it cannot promise the result with a high
rate, it will use some more complicated features, like bytecode
information, etc., in the second layer to determine whether the
target is a malware.

In addition, there are still some other techniques. A. Demon-
tis et al. [73] proposed an algorithm to mitigates attacks like
malware data manipulation. T. Blsing et al. [74] introduced
AASandbox, which performs detection with combination in-
formation of both static and dynamic analysis. A. Shabtai
et al. [68] and A.-D. Schmidt et al. [69] provided the ab-
normalities identification systems, which use run-time device
information, such as CPU usage etc. J. Sun et al. [75] trained
a machine learning based classifier, which use the distance of
keywords to detect the malware. L. Lu et al. [76], P. P. F. Chan
et al. [77], K. Lu et al. [78] and F. Wei et al. [79] focused
on detecting vulnerable components, which may hijack the
apps. W. Zhou et al. [80] provided a malware detection
system, DroidModss, which uses hash comparison to detect
repacked Apks. M. Grace et al. [70] proposed RiskRanker,
which performs detection via analyzing specific app behaviors.

Existing techniques mainly focused on detecting malware
with the information from APK or the source code on server.
However, with the rapid development of AI chips on devices,
the research about malware detection on mobile side is still
rare and on demand. Different from the existing techniques,
MobiTive concentrates on using deep learning algorithms on
malware detection according to various performance-based
experiments on the Android mobile devices.

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 15

VII. CONCLUSION

This paper presents MobiTive, a performance-sensitive An-
droid malware detection system on mobile devices as a pre-
installed solution. According to the effectiveness of selected
features and the efficiency of feature extraction, MobiTive can
provide a reliable detection accuracy and fast responsive (i.e.,
less than 3 seconds on average) detection service on mobile
devices directly. To validate the efficiency and reliability, we
evaluate MobiTive on six real mobile devices. To provide more
insights of this work, we also make an in-depth analysis of
the performance trend on over one hundred mobile phones.

ACKNOWLEDGMENTS

This work was supported by Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 (Award No. 2018-
T1-002-069), the National Research Foundation, Prime Minis-
ters Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2018 NCR-NCR005-0001), the
Singapore National Research Foundation under NCR Award
Number NSOE003-0001, NRF Investigatorship NRFI06-2020-
0022, the National Research Foundation, Prime Ministers
Office, Singapore under NCR Award Number NRF2018NCR-
NSOE004-0001, the National Natural Science Foundation of
China (No. 61902395). We gratefully acknowledge the support
of NVIDIA AI Tech Center (NVAITC).

REFERENCES

[1] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android banking
apps,” in ICSE, 2020.

[2] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? What can be improved?” in FSE, 2018.

[3] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in S&P, 2012.

[4] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A
large-scale empirical study on industrial fake apps,” in ICSE, 2019.

[5] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: detecting malicious apps in official and alternative Android
markets.” in NDSS, 2012.

[6] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of piggybacked mobile applications,” in CODASPY, 2013.

[7] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the OS
and dalvik semantic views for dynamic Android malware analysis,” in
USENIX Security, 2012.

[8] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
Automatic reconstruction of Android malware behaviors.” in NDSS,
2015.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” in PLDI, 2014.

[10] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in Android apps,” in ICSE, 2015.

[11] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of Android
malware in your pocket.” in NDSS, 2014.

[12] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer:
Automated mining and characterization of fine-grained malicious behav-
iors in Android applications,” in ESORICS, 2014.

[13] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “Stormdroid: A
streaminglized machine learning-based system for detecting Android
malware,” in AsiaCCS, 2016.

[14] E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting Android malware by building
markov chains of behavioral models,” 2016.

[15] S. Chen, M. Xue, and L. Xu, “Towards adversarial detection of mobile
malware: poster,” in MobiCom, 2016.

[16] L. Fan, M. Xue, S. Chen, L. Xu, and H. Zhu, “Poster: Accuracy vs. time
cost: Detecting android malware through pareto ensemble pruning,” in
CCS, 2016.

[17] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach,” Computers & Security, 2018.

[18] W. Yu, L. Ge, G. Xu, and X. Fu, “Towards neural network based malware
detection on Android mobile devices,” in Cybersecurity Systems for
Human Cognition Augmentation, 2014.

[19] Xda. [Online]. Available: https://forum.xda-developers.com
[20] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: Android malware char-

acterization and detection using deep learning,” Tsinghua Science and
Technology, 2016.

[21] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and L. Michael, “Why
an Android app is classified as malware? Towards malware classification
interpretation,” TOSEM, 2020.

[22] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W.
Lin, “Mobidroid: A performance-sensitive malware detection system on
mobile platform,” in ICECCS, 2019.

[23] Tensorflow Lite. [Online]. Available: https://www.tensorflow.org/lite/
[24] Symantec Security. [Online]. Available: https://www.symantec.com/

security-center/threats/
[25] Overview of MobiTive. [Online]. Available: https://sites.google.com/

view/mobitive2020
[26] Apkmirror market. [Online]. Available: https://www.apkmirror.com/
[27] Core ML. [Online]. Available: https://developer.apple.com/

documentation/coreml/
[28] Caffe2 mobile. [Online]. Available: https://caffe2.ai/docs/

mobile-integration.html
[29] Pytorch mobile. [Online]. Available: https://pytorch.org/mobile/android/
[30] Post-training Quantization. [Online]. Available: https://www.tensorflow.

org/lite/performance/post training quantization/
[31] A. Narayanan, L. Yang, L. Chen, and L. Jinliang, “Adaptive and scalable

Android malware detection through online learning,” in IJCNN, 2016.
[32] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,

S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep Android
malware detection,” in CODASPY, 2017.

[33] Axmldec. [Online]. Available: https://github.com/ytsutano/axmldec
[34] Axml. [Online]. Available: https://github.com/xgouchet/AXML
[35] Dex2jar. [Online]. Available: https://github.com/pxb1988/dex2jar
[36] Apktool. A tool for reverse engineering Android apk files. [Online].

Available: https://ibotpeaches.github.io/Apktool/
[37] Androguard. [Online]. Available: https://github.com/androguard/
[38] Soot. [Online]. Available: https://github.com/Sable/soot/
[39] Keras: Neural networks API. [Online]. Available: https://keras.io/
[40] Scikit-learn. [Online]. Available: https://scikit-learn.org/stable/
[41] Tensorflow. [Online]. Available: https://www.tensorflow.org/
[42] R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, “Seqmobile: An

efficient sequence-based malware detection system using rnn on mobile
devices,” in ICECCS, 2020.

[43] Daivik opcode. [Online]. Available: http://pallergabor.uw.hu/
androidblog/dalvik opcodes.html

[44] Virustotal. [Online]. Available: https://www.virustotal.com/
[45] Contagio Website. [Online]. Available: http://contagiominidump.

blogspot.com/
[46] Pwnzen Infotech Inc. [Online]. Available: http://www.pwnzen.com/
[47] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Au-

tomatic framework for Android malware detection using deep learning,”
Digital Investigation, 2018.

[48] A. Narayanan, C. Soh, L. Chen, Y. Liu, and L. Wang, “Apk2vec: Semi-
supervised multi-view representation learning for profiling Android
applications,” in ICDM, 2018.

[49] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,” in
ASE, 2019.

[50] Inspeckage. [Online]. Available: https://github.com/ac-pm/Inspeckage
[51] Android-profiler. [Online]. Available: https://developer.android.com/

studio/profile/android-profiler
[52] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation

as a defense to adversarial perturbations against deep neural networks,”
in S&P), 2016.

[53] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in EuroS&P, 2016.

https://forum.xda-developers.com
https://www.tensorflow.org/lite/
https://www.symantec.com/security-center/threats/
https://www.symantec.com/security-center/threats/
https://sites.google.com/view/mobitive2020
https://sites.google.com/view/mobitive2020
https://www.apkmirror.com/
https://developer.apple.com/documentation/coreml/
https://developer.apple.com/documentation/coreml/
https://caffe2.ai/docs/mobile-integration.html
https://caffe2.ai/docs/mobile-integration.html
https://pytorch.org/mobile/android/
https://www.tensorflow.org/lite/performance/post_training_quantization/
https://www.tensorflow.org/lite/performance/post_training_quantization/
https://github.com/ytsutano/axmldec
https://github.com/xgouchet/AXML
https://github.com/pxb1988/dex2jar
https://ibotpeaches.github.io/Apktool/
https://github.com/androguard/
https://github.com/Sable/soot/
https://keras.io/
https://scikit-learn.org/stable/
https://www.tensorflow.org/
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
https://www.virustotal.com/
http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/
http://www.pwnzen.com/
https://github.com/ac-pm/Inspeckage
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler

JOURNAL OF IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. XX, XX 2020 16

[54] S. Chen, M. Xue, L. Fan, L. Ma, Y. Liu, and L. Xu, “How can we
craft large-scale Android malware? an automated poisoning attack,” in
AI4Mobile, 2019.

[55] G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu, “Who
is real bob? adversarial attacks on speaker recognition systems,” S&P,
2021.

[56] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android hiv: A study of repackaging malware for evading
machine-learning detection,” TIFS, 2019.

[57] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in MobiSys, 2011.

[58] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Character-
ising deprecated Android apis,” in MSR, 2018.

[59] L. Deshotels, V. Notani, and A. Lakhotia, “Droidlegacy: Automated
familial classification of Android malware,” in ACM SIGPLAN on
program protection and reverse engineering workshop, 2014.

[60] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware An-
droid malware classification using weighted contextual api dependency
graphs,” in CCS, 2014.

[61] Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “Droidalarm: an all-
sided static analysis tool for Android privilege-escalation malware,” in
AsiaCCS, 2013.

[62] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat:
Android malware detection through manifest and api calls tracing,” in
ASIAJCIS, 2012.

[63] G. Meng, Y. Xue, Z. Xu, Y. Liu, J. Zhang, and A. Narayanan, “Semantic
modelling of Android malware for effective malware comprehension,
detection, and classification,” in ISSTA, 2016.

[64] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep
learning method for Android malware detection using various features,”
TIFS, 2018.

[65] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer
Android malware detection system applying deep neural networks,” in
EuroS&P, 2018.

[66] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones,” TOCS, 2014.

[67] K. Basu, P. Krishnamurthy, F. Khorrami, and R. Karri, “A theoretical
study of hardware performance counters-based malware detection,”
TIFS, 2020.

[68] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““andro-
maly”: a behavioral malware detection framework for Android devices,”
Journal of Intelligent Information Systems, 2012.

[69] A.-D. Schmidt, F. Peters, F. Lamour, C. Scheel, S. A. Çamtepe, and
S. Albayrak, “Monitoring smartphones for anomaly detection,” Mobile
Networks and Applications, 2009.

[70] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day Android malware detection,” in MobiSys,
2012.

[71] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation
on permission-based detection for Android malware,” in Advances in
Intelligent Systems and Applications-Volume 2, 2013.

[72] Z. Aung and W. Zaw, “Permission-based Android malware detection,”
International Journal of Scientific & Technology Research, 2013.

[73] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be more
secure! a case study on Android malware detection,” TDSC, 2017.

[74] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An Android application sandbox system for suspicious software detec-
tion,” in MALWARE, 2010.

[75] J. Sun, K. Yan, X. Liu, C. Yang, and Y. Fu, “Malware detection on
Android smartphones using keywords vector and svm,” in ICIS, 2017.

[76] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
Android apps for component hijacking vulnerabilities,” in CCS, 2012.

[77] P. P. Chan, L. C. Hui, and S.-M. Yiu, “Droidchecker: analyzing Android
applications for capability leak,” in WISEC, 2012.

[78] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, and
W. Lee, “Checking more and alerting less: detecting privacy leakages
via enhanced data-flow analysis and peer voting.” in NDSS, 2015.

[79] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of Android
apps,” in CCS, 2014.

[80] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in MobiSys, 2014.

Ruitao Feng received the bachelors degree in con-
puter science and technology from Tianjin Univer-
sity, Tianjin, China, in 2014. He is currently pursuing
the Ph.D. degree with the School of Computer
Science and Engineering, Nanyang Technological
University, Singapore. He also works as research as-
sistant in Temasek lab, Nanyang Technological Uni-
versity, Singapore, since 2014. His research interests
include solving security and performance problems
on mobile platform with software engineering and
machine(deep) learning methods.

Sen Chen received his Ph.D. degree in Computer
Science from School of Computer Science and Soft-
ware Engineering, East China Normal University,
China, in June 2019. Currently, he is a Research
Assistant Professor in School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. Previously, he was a Research Assistant
of NTU from 2016 to 2019 and a Research Fellow
from 2019-2020. His research focuses on Security
and Software Engineering.

Xiaofei Xie is a presidential postdoctorial fellow
in Nanyang Technological University, Singapore.
He received Ph.D, M.E. and B.E. from Tianjin
University. His research mainly focus on program
analysis, loop analysis, traditional software testing
and security analysis of artificial intelligence. He has
published some top tier conference/journal papers
relevant to software analysis in ISSTA, FSE, TSE,
IJCAI and CCS. In particular, he won two ACM
SIGSOFT Distinguished Paper Awards.

Guozhu Meng received the B.E. and M.E. degrees
from Tianjin University, China, in 2009 and 2012,
respectively, and the Ph.D. degree from Nanyang
Technological University, Singapore, in 2017. He is
currently an Associate Professor with the Institute
of Information Engineering, Chinese Academy of
Sciences. Before that, he was a Research Fellow with
Nanyang Technological University and a Visiting
Research Fellow at the University of Luxembourg.
His research interests include mobile security, vul-
nerability detection, big data analysis.

Shang-Wei Lin received his B.S. degree from the
National Chung Cheng University in 2003 and his
Ph.D. degree in 2010. He started his post-doctoral
work at NUS and SUTD from 2011 to 2015. In May
2015, he joined Nanyang Technological University
(NTU) as Assistant Professor. His research interests
include formal verification, formal synthesis, embed-
ded system design, cyberphysical systems, security
systems, multi-core programming, and component-
based object-oriented app frameworks for real-time
embedded systems.

Yang Liu received the Bachelor of Computing
degree (Hons.) from the National University of
Singapore (NUS) in 2005 and the Ph.D. degree in
2010. He started his post-doctoral work at NUS,
MIT, and SUTD. In Fall 2012, he joined Nanyang
Technological University (NTU) as a Nanyang As-
sistant Professor. He is currently a Professor and
the Director of the Cybersecurity Lab, NTU. He
specializes in software verification, security, and
software engineering.

	A performance-sensitive malware detection system using deep learning on mobile devices
	Citation
	Author

	I Introduction
	II Preliminaries
	II-A Android Apps
	II-B Dalvik Executable
	II-C Security Mechanisms
	II-D Deep Learning Model Migration and Quantization

	III Approach
	III-A Overview of MobiTive
	III-B Feature Preparation
	III-B1 Feature Selection
	III-B2 Feature Updating
	III-B3 Feature Vector Extraction

	III-C DL Model Construction
	III-C1 DL Model Training
	III-C2 DL Model Migration and Quantization

	III-D Real-Time Detection System

	IV Experiments
	IV-A Experiment Environment
	IV-B Effectiveness of Feature Extraction, Feature Updating, Feature Category Selection, and Neural Network Selection
	IV-B1 Performance evaluation of feature extraction
	IV-B2 Accuracy evaluation of behavior-based feature updating method
	IV-B3 Accuracy evaluation of feature category selection and deep neural network selection
	IV-B4 Comparison between the existing learning-based Android malware detection systems and MobiTive
	IV-B5 Accuracy evaluation of multi-class classification

	IV-C Effectiveness Evaluation of MobiTive on Mobile Devices
	IV-C1 Performance evaluation of feature preparation on real devices
	IV-C2 Performance evaluation of RNN models on real device
	IV-C3 Accuracy and prediction time on different real devices
	IV-C4 Performance comparison between MobiTive and dynamic run-time detection

	IV-D Analysis of Hardware Performance Evolution Trend of Android Mobile Devices

	V Limitations and Discussions
	VI Related Work
	VII Conclusion
	References
	Biographies
	Ruitao Feng
	Sen Chen
	Xiaofei Xie
	Guozhu Meng
	Shang-Wei Lin
	Yang Liu

