
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2011

Multi-objective zone mapping in large-scale distributed virtual Multi-objective zone mapping in large-scale distributed virtual

environments environments

Nguyen Binh Duong TA
Singapore Management University, donta@smu.edu.sg

Suiping ZHOU

Wentong CAI

Xueyan TANG

Rassul AVANI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons, and the Theory and Algorithms

Commons

Citation Citation
TA, Nguyen Binh Duong; ZHOU, Suiping; CAI, Wentong; TANG, Xueyan; and AVANI, Rassul. Multi-objective
zone mapping in large-scale distributed virtual environments. (2011). Journal of Network and Computer
Applications. 34, (2), 551-561.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6936

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6936&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6936&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

Multi-Objective Zone Mapping in Large-Scale

Distributed Virtual Environments

Duong Ta, Suiping Zhou, Rassul Ayani, Wentong Cai and Xueyan Tang

Abstract

In large-scale distributed virtual environments (DVEs), the NP-hard zone mapping problem concerns

how to assign distinct zones of the virtual world to a number of distributed servers to improve overall

interactivity. Previously, this problem has been formulated as a single objective optimization problem, in

which the objective is to minimize the total number of clients that are without QoS. This approach

may cause considerable network traffic and processing overhead, as a large number of zones may

need to be migrated across servers. In this paper, we introduce a multi-objective approach to the zone

mapping problem, in which both the total number of clients without QoS and the migration overhead

are considered. To this end, we have proposed several new algorithms based on meta-heuristics such as

local search and multi-objective evolutionary optimization techniques. Extensive simulation studies have

been conducted with realistic network latency data obtained from real measurements using millions of

pairs of geographically distributed IP addresses, and different workload distribution models. Simulation

results demonstrate the effectiveness of the newly proposed algorithms.

I. INTRODUCTION

Distributed Virtual Environments (DVEs) are distributed systems that allow multiple geographically

distributed clients (users) to explore and interact with each other in real time within a shared, computer-

generated 3D virtual world, where each client is represented by an avatar. A client controls the behavior

of his/her avatar by various inputs, and the updates of an avatar’s state need to be sent to other clients

in the same zone of the virtual world to support the interactions among clients. Examples of DVEs can

Duong Ta, Suiping Zhou, Wentong Cai and Xueyan Tang are with the School of Computer Engineering, Nanyang Technological

University, Singapore 639798. Emails: {binhduong, asspzhou, aswtcai, asxytang}@ntu.edu.sg

Rassul Ayani is with the School of Information and Communication Technology, Royal Institute of Technology, Sweden.

Email: rassul@imit.kth.se

2

be seen in multiple areas, such as collaborative design, military simulations, e-learning, virtual shopping

mall, and multiplayer online games [1].

Typically, in large-scale DVEs with thousands of clients interacting simultaneously, the resource

requirements in terms of network bandwidth, CPU cycles, memory, etc. are huge, and will increase

very fast as the number of concurrent clients increases. A distributed server infrastructure is usually

required [2], [3], [4] for such resource-intensive applications. In this architecture, each client connects

to one of multiple geographically distributed servers in the system, and clients interact with each other

through these servers. For load distribution, the large virtual world is spatially partitioned into several

distinct zones, with each zone managed by only one server. A client only interacts with other clients in

the same zone, and may move from one zone to another. As a server only needs to handle a few zones

instead of the entire virtual world, the distributed server architecture has good scalability.

The zone mapping problem in large-scale DVEs with a distributed server architecture arises due to

the heterogeneous nature of the Internet and the fact that clients in a DVE are usually geographically

distributed. In such situation, it is likely that a large number of clients in a zone may be far away (in

terms of round-trip network latency) to the server hosting that zone, thus the interactivity of the DVE

for those clients may be greatly degraded. Hence, there is a strong need for mechanisms to assign (map)

the zones to servers in such a way that reduces the network latency between clients and servers. This

is referred to as the zone mapping problem. Existing research on how to assign zones (with all of its

clients) to servers in DVEs has usually been formulated as a load balancing problem, i.e., the objective

is to balance the workload among servers rather than to directly reduce the latency between clients and

their servers [5], [6].

Previous work [2], [3], [7] had formulated the zone mapping problem and showed that it is actually

NP-hard. Several heuristic algorithms were then devised and evaluated. Although offering excellent

performance in terms of interactivity, these algorithms may suffer from potentially significant overhead

as the original problem has been formulated as a single-objective optimization problem. That is, the only

objective is to minimize the overall mapping cost, which is measured by the total number of clients that

have client-server round-trip network latencies larger than a predefined delay threshold, i.e., without QoS.

We shall call it the single-objective zone mapping problem (SOZP).

One major problem of this single-objective approach is that it may cause great network and processing

overhead. Usually the zone mapping procedure will start from an existing mapping. Such an initial

mapping can be a random assignment of zones to servers, which may have poor performance; or a

previously good mapping whose performance has gradually degraded over time because of network and

3

DVE dynamics, e.g., client joining, leaving or switching zones. In this case, zones will need to be

migrated across distributed servers according to the result of the zone mapping algorithm. Each zone,

in fact, is a small virtual world with a number of clients, hence zone migration may require significant

data movement across network. Clients currently connect to the server hosting that zone also need to

be switched to the new server. If zone mapping is carried out on the fly and frequently, this migration

problem would become even more significant. Therefore, it is desirable to reduce the zone migration

overhead, while maintaining a reasonable level of interactivity.

The primary contributions of this paper are as follows.

• We introduce a multi-objective approach to the zone mapping problem, in which we consider both

the mapping cost as well as the migration overhead.

• We propose two new zone mapping algorithms, HMOEA and LPLS. These algorithms are based on

a combination of multi-objective evolutionary algorithms (MOEAs), local search and linear programming

relaxation technique.

• We use realistic network and workload models to evaluate the effectiveness of the new algorithms.

Unlike previous work, e.g., [3] , in this paper we use realistic Internet delay spaces modeled after real

measurements between millions of pairs of IP addresses distributed all over the Internet. We also employ

different network topologies, both real and synthetic ones, and various client distributions, both in the

network and the virtual world.

• We conduct extensive simulation studies to evaluate the effectiveness of the new algorithms. The

results have been validated via Mann-Whitney U statistical tests [8], which show that HMOEA and LPLS

significantly outperform a baseline algorithm with similar execution times.

The rest of the paper is organized as follows. Section II formulates the multi-objective zone mapping

problem. The proposed algorithms are presented in Section III. Simulation methodology and results are

described in Sections IV and V, respectively. Related work is discussed in Section VI, and Section VII

concludes the paper.

II. PROBLEM FORMULATION

A. Multi-objective optimization

Informally stated, a multi-objective optimization problem (MOP) can be defined as a problem of finding

one or more vectors of decision variables which satisfies given constraints and optimizes a vector of

objective functions [9]. The vector X of decision variables xi, X = [x1, x2, ..., xn], represents a solution to

4

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70

f2

f1

Sample Pareto Front

Fig. 1. Example of a Pareto front

a MOP. A vector of objective functions of the solution X is denoted as f(X) = [f1(X), f2(X), ..., fk(X)]

where k is the number of objectives of the MOP.

Given two solutions X = [x1, x2, ..., xn] and Y = [y1, y2, ..., yn] to a MOP, assuming all the objectives

of this problem are to be minimized, we say that solution X dominates solution Y if and only if f(X) =

[f1(X), f2(X), ..., fk(X)] is partially less than f(Y) = [f1(Y), f2(Y), ..., fk(Y)], i.e., ∀i ∈ {1, ..., k},

fi(X) ≤ fi(Y) ∧ ∃i ∈ {1, ..., k} : fi(X) < fi(Y) [9].

If neither X dominates Y nor Y dominates X , then X and Y are called non-dominated solutions. In

this case, we cannot tell which one is the better solution between X and Y .

In multi-objective optimization, the most commonly adopted notion of optimum is called Pareto

optimum. A solution is Pareto optimal if there is no other solution that dominates it. In other words,

Pareto optimal solutions are those solutions whose corresponding objective vector’s elements cannot be

all simultaneously improved [9].

The goal of a MOP is then to find a set of Pareto optimal solutions, rather than a single optimal solution

as in single-objective optimization problems. These Pareto optimal solutions constitute the Pareto front,

which is often illustrated as a diagram showing the corresponding values of the objective functions. A

typical example of the Pareto front for an optimization problem with two objectives f1 and f2 is shown

in Fig. 1.

B. The multi-objective zone mapping problem

5

Fig. 2. Distributed server architecture with zone-based partitioning

In this paper, we focus on large-scale DVEs with a zone-based partitioning approach which maps

the distinct virtual world zones over a set of geographically distributed servers (Fig. 2). Each zone is

managed by only one server, and a client always connects directly to the server that manages its zone.

Given an existing zone mapping, the multi-objective zone mapping problem (MOZP) concerns how to

re-map each zone of the virtual world to an appropriate server to improve interactivity, and at the same

time, maintain low overhead of zone migrations across servers due to the re-mapping process.

We use the following notations/definitions in the problem formulation.

• ci - A client in the DVE.

• C = {c1, ..., ck} - The set of all clients in the DVE.

• zi - A zone in the DVE. This is also used to denote the set of all clients in a zone zi.

• Z = {z1, ..., zn} - The set of all zones in the DVE.

• si - A server in the DVE.

• S = {s1, ..., sm} - The set of all servers in the DVE.

• Rsi
- The resource consumption on a server si. In this paper, Rsi

is measured by the total number

of clients that are currently connecting to server si.

• Rzi
- The total amount of server resource used by all the clients that are interacting in the same

zone zi on the server that is hosting zi. This is measured by the number of clients in zone zi.

• Csi
- The resource capacity of a server si.

• dcisj
- The round-trip network delay between a client ci and a server sj .

• D - The delay bound of a DVE. The delay bound indicates the maximum round-trip communication

delay between a client and its server to maintain a desired level of interactivity for the DVE. For different

types of DVEs, there are different delay bound requirements. For example, the delay bounds of First-

6

Person Shooter (FPS) games and car-racing games are about 250ms [10] and 100ms [11], respectively.

Similar to previous work in this area, we assume that the client-server communication delay in DVE is

determined by the client-server network delay, since generally it would be easier to reduce the processing

delays at the server side by adding more computing power, than to reduce message transmission delays

in the network. In this paper, we assume that each server has a fixed capacity, say 400 clients, and if the

load is within that limit, the server processing delay is negligible comparing to the network delay. In the

following, the term “network delay” and “communication delay” are used interchangeably.

For interactive applications like DVEs, communication delay is the most important Quality of Service

(QoS) parameter that the system provides to the clients [10]. In this paper, we say that a client is with

QoS or without QoS if the communication delay between the client and its server is smaller or larger

than the delay bound, respectively.

• X - A zone mapping solution, X = [xij], where the decision variables xij = 1 if zone zj is mapped

to server si or xij = 0 otherwise.

• Cij - The cost of mapping a zone zj to a server si, which is calculated as follows.

Cij = |{ck ∈ zj : dcksi
> D}| (1)

where | · | denotes the cardinality of a set.

Cij measures the number of clients in a zone zj that do not satisfy the delay bound D, i.e., without

QoS. Therefore, by minimizing the total mapping cost when all zones are assigned, the total number of

clients with QoS in the DVE would be maximized.

• C(X) - The mapping cost of a solution X = [xij], which is given by

C(X) =
m∑

i=1

n∑

j=1

Cijxij (2)

• M(X) - M(X) denotes the migration ratio, which is used to measure the overhead incurred by

migrating zones across servers starting from an existing mapping Y = [yij] to reach a new mapping

X = [xij]. It is desirable to minimize this overhead when carrying out zone mapping. The migration

ratio is calculated by normalizing the total number of clients in the zones that need to be migrated with

the total number of clients in the system.

M(X) =

∑n
j=1 |zj |Mj

|C|
(3)

where Mj = 1 if ∃k ∈ {1, ...,m} : ykj 6= xkj , and Mj = 0 otherwise.

7

• [C(X),M(X)] - The vector of objective functions of each zone mapping solution X .

The multi-objective zone mapping problem can be formally stated as follows.

Definition 2.1: Multi-objective zone mapping problem (MOZP)

Let I = {1, ..., m} and J = {1, ..., n} be the set of indexes of servers and zones in the system,

respectively (n ≫ m). Find X = [xij] that minimizes [C(X),M(X)], with xij = 1 if zone zj is mapped

to server si or xij = 0 otherwise, subject to

n∑

j=1

Rzj
xij ≤ Csi

,∀i ∈ I, (4)

m∑

i=1

xij = 1,∀j ∈ J, (5)

xij ∈ {0, 1},∀i ∈ I,∀j ∈ J. (6)

In the above formulation, Constraint (4) ensures that the capacity of each server is not exceeded.

Constraints (5) and (6) are introduced to ensure that each zone is assigned to only one server.

Remark 2.1: The MOZP is NP-hard.

Remark 2.1 follows from the fact that the MOZP can be reduced to the original SOZP, which is NP-

hard. In practice, this property implies that it is only feasible to find a good approximation to the true

Pareto optimal set of solutions of the MOZP.

III. MULTI-OBJECTIVE ZONE MAPPING ALGORITHMS

A. Linear programming (LP) relaxation with local search (LPLS)

The first algorithm, referred to as LPLS, that we propose for the MOZP uses LP relaxation technique

to generate initial solutions, and then improves each of these solutions with a local search procedure,

creating a pool of diverse solutions. An approximation of the Pareto optimal set for the MOZP is then

created by removing all dominated solutions from the pool.

1) LP relaxation of the MOZP: LP relaxation is a widely used technique to design approximation

algorithms for computationally hard problems. This technique is often used to transform an NP-hard

problem, e.g., Integer Programming (IP), into a related LP problem, which can be solved in polynomial

time. Usually, solutions obtained from solving the relaxed problem are not feasible for the original

problem, but they can be used to gain useful insights into the solution that we are looking for [12].

8

An LP relaxation of the MOZP described in Section II can be obtained by replacing Constraint (6)

by:

0 ≤ xij ≤ 1,∀i ∈ I,∀j ∈ J. (7)

Note that with this new constraint, the variable xij now can take any real (fractional) value in [0, 1],

instead of the only two values 0 and 1 as in the original Constraint (6). Hence, a relaxed LP problem

may provide infeasible solutions to the original problem.

Since the MOZP has two objectives, in order to solve the relaxed MOZP using available LP solvers like

lp solve (http://lpsolve.sourceforge.net), we need to convert one of the objectives into a constraint in order

to have a single-objective LP problem. Here we choose to convert the migration overhead objective into

a new constraint by limiting the percentage of clients that are migrated during the re-mapping process:

M(X) ≤ ∆ (8)

By setting a limit on migration ratio, say ∆ = 0.5, and solving the relaxed MOZP, we can obtain a

mapping vector X ′ = [x′

ij], and a corresponding vector of objective values [C ′, 0.5], where C ′ is the

relaxed mapping cost with a migration ratio of 0.5

Each value x′

ij is then rounded to the closest integer value (in this case the integer values are just 0 and

1). If x′

ij = 1, then this means that zone zj is mapped to server si. The vector X ′ = [x′

ij] with x′

ij ∈ {0, 1}

now stores the rounded variables as the initial solution for the next part of the LPLS algorithm. Note

that this first part may result in an infeasible solution due to server capacity violation. The pseudocode

of this first part is shown in Algorithm 1.

2) A local search procedure: The second part of LPLS is a local search procedure (Algorithm 2)

aiming to produce a feasible and good solution X from each initial solution X ′ generated by Algorithm

1. This is done by attempting to fix the server capacity violations and further improving the quality of

X ′ if possible. The search procedure forms a new solution from an infeasible solution by repeatedly

reassigning a randomly selected zone zj from an overloaded server to a new server sk with sufficient

capacity available which can provide the best (smallest) mapping cost Ckj . We also search for zones that

are currently not assigned to any server1, and assign these zones to the best available servers. Note that

this local search procedure may not produce any feasible solution due to insufficient server capacity. In

this case, a null solution will be returned.

1Due to the rounding process in Algorithm 1, some zones may not be assigned to any server.

9

Algorithm 1: Solving the relaxed MOZP to obtain an initial solution

Data: a migration ratio limit ∆

Result: a relaxed mapping solution X ′

begin1

relax the constraint (6) of the MOZP;2

convert the overhead objective into a constraint based on the given migration ratio limit;3

solve the relaxed LP problem to obtain mapping vector X ′ = [x′

ij];4

round all x′

ij to the nearest integer;5

return X ′;6

end7

3) LPLS algorithm: Algorithm 3 shows the details of the LPLS algorithm, which relies on Algorithm

1 and Algorithm 2. To obtain a set of diverse zone mapping solutions, a set of migration ratio limits is

predefined. For example, limits on migration ratios may be selected ranging from 0.1 to 1 by a step of 0.1.

In this way, the final result set may have a wide range of solutions, from ones with low migration overhead

but high mapping cost to those with high migration overhead but low mapping cost. For each migration

ratio, an initial solution X ′ is obtained using Algorithm 1. With each X ′, at most a pre-specified number

of t feasible solutions are then generated by repeatedly executing Algorithm 2. Finally, all dominated

solutions are removed, and the algorithm returns the remaining set of non-dominated solutions, which is

an approximation of the true Pareto optimal set.

B. Hybrid multi-objective evolutionary algorithm (HMOEA)

Evolutionary algorithms (EAs) refer to a class of meta-heuristics that are inspired by the natural

evolution and selection process for solving computationally hard optimization problems. Recently, quite

a number of MOEAs have been proposed [9] to tackle multi-objective optimization problems. The main

motivation behind is due to the nature of all MOEAs employing a population-based approach, hence,

multiple Pareto optimal/approximate solutions could be found in a single run of the algorithm. Recall that

for multi-objective problems, a single solution that simultaneously optimizes all objectives is generally

not possible, therefore the capability of MOEAs to generate multiple approximate alternative solutions

in a single run is really appealing.

In this section, we propose a modified version of the NSGA-II algorithm [13] for our MOZP. NSGA-II

is a well-known and highly successful MOEA in various application domains. The modified algorithm

10

Algorithm 2: Local search procedure to correct and improve an initial solution

Data: a relaxed mapping X ′ = [x′

ij]

Result: a new mapping solution X = [xij], or NULL if the new solution is not feasible

begin1

initialize xij = x′

ij , ∀i, j;2

foreach si ∈ S do3

while Rsi
> Csi

do4

randomly select a zone zj currently mapped to si;5

if no server with sufficient capacity to take zj then6

return NULL;7

end8

map zj to a server sk with smallest Ckj and Rsk
+ Rzj

≤ Csk
: set xkj = 1;9

end10

end11

foreach zj ∈ Z do12

if zj is not mapped to any server then13

if no server with sufficient capacity to take zj then14

return NULL;15

end16

map zj to a server sl with smallest Clj and Rsl
+ Rzj

≤ Csl
: set xlj = 1;17

end18

end19

return X;20

end21

incorporates informed initialization and local search into the original NSGA-II, and is hence named

Hybrid MOEA.

1) Non-dominated sorting genetic algorithm (NSGA-II): NSGA-II [13] uses a fast non-dominated

sorting approach for ranking a population according to the level of non-domination and a density estimator

to maintain population’s diversity. Here, we briefly review these key components below. We refer the

readers to the original paper [13] for more details.

11

Algorithm 3: LPLS algorithm

Data: a set of migration ratio limits MR = {∆|0 ≤ ∆ ≤ 1}

Data: t - number of times to run Algorithm 2 in each loop

Result: a set of non-dominated solutions P

begin1

initialize the set of non-dominated solutions P = Φ;2

foreach ∆ ∈ MR do3

run Algorithm 1 with migration ratio limit ∆ to get initial mapping X ′;4

cnt = 0;5

while cnt < t do6

run Algorithm 2 with X ′ as input;7

if a feasible solution X is generated then8

add X to P ;9

end10

cnt = cnt + 1;11

end12

end13

remove all dominated solutions in P ;14

return P ;15

end16

• Non-dominated sorting: NSGA-II uses a mechanism called non-dominated sorting to organize the

entire population P into mutually exclusive classes referred to as fronts. In each front, member solutions

are all non-dominated. Solutions belong to the first front are assigned the highest rank, while those of the

last got the lowest rank. Generally, solutions in the higher ranked fronts produce more offsprings during

the evolution process towards the true Pareto front.

• Density estimation: To ensure the diversity of the population, NSGA-II calculates an estimation

of the density of solutions surrounding a particular solution in the population using a crowding distance

measure. Essentially, each solution will be assigned a crowding distance value equal to the average

distance of the two solutions on either side of this solution along each of the objectives.

2) HMOEA: The key components of the HMOEA are as follows.

12

• Genetic representation and operations: For the MOZP, we adopt a similar solution representation

to the one used in [7]. Each gene in the chromosome represents a zone, where the position of the gene

corresponds to the zone index, e.g., the second gene in a chromosome represents zone z2. Each gene

takes an integer value, which is the index of the server that this zone is mapped to. In this way, we can

ensure that a zone is mapped to only one server, while one server can take multiple zones.

For the genetic operators, standard single-point crossover, standard mutation (randomly change the

value of a gene) and binary tournament selector are used, as recommended by the original NSGA-II

algorithm.

• Informed initialization: Generally, good methods of generating a population of initial solutions

would help EAs quickly obtain a decent approximation of the Pareto optimal set. Hence, instead of using

randomly generated solutions as usually seen in existing MOEAs, we propose to use LP relaxation to

create a set of meaningful and relatively good initial solutions for the MOEA. The method used here is

similar to the previously proposed LPLS algorithm, but for generating initial solutions we do not evaluate

and eliminate dominated solutions.

• Local search to improve offsprings: Note that during the evolution process of a MOEA, offsprings

generated by performing crossovers and mutations are usually infeasible. Hence, we propose to use local

search (as described in Algorithm 2) on each offspring to meet the constraints of server capacity, as well

as to further improve the quality of the solution.

Algorithm 4: HMOEA algorithm

Data: M - number of initial solutions

Data: N - a limit on the number of new solutions to be generated by the algorithm

Result: a set of non-dominated solutions

begin1

generate M initial solutions;2

while total number of new solutions generated is less than N do3

apply NSGA-II’s genetic operators to the initial population;4

run Algorithm 2 for each new solution X;5

apply NSGA-II’s ranking and density estimation operators for the new population;6

end7

return the front with the highest rank;8

end9

13

Algorithm. 4 shows the HMOEA algorithm. First, we generate M initial informed solutions. Then,

in each evolution round, the binary tournament selector is used to choose two solutions for mating, and

the standard single-point crossover as well as the mutation operator are then applied. The offsprings will

further be improved via Algorithm 2. The last operators to be executed at the end of a round are NSGA-

II’s ranking and density estimation operators. Finally, the front with the highest rank is returned after N

new offspring solutions have been generated. For this paper, we implement the HMOEA algorithm into

the open-source software package JMetal (http://jmetal.sourceforge.net/).

IV. EVALUATION METHODOLOGY

For evaluating the proposed multi-objective zone mapping algorithms, we employ realistic network

latency models based on real Internet-wide measurements plus network topologies, and use different

client distributions in both the virtual world and the network.

A. Network latency models

1) Latency models based on real measurements: We use the tool DS2 (Delay Space Synthesizer)

[14], which has been built to help designers/researchers of distributed systems to conduct more realistic

simulations/emulations for evaluating different design alternatives. We generate two latency matrices using

DS2 (denoted as REAL1 and REAL2 in Table I).

Generating latency matrices for our experiments using DS2 is a procedure with two steps. First,

DS2 creates two Internet latency models using two real-life measurements, each of them measuring

approximately 16 million pairs of geographically distributed IP addresses (the data are downloadable

from [15]). Each model is constructed with a default scaling factor of 10, i.e., given the size of the

measured latency matrix is 4000 × 4000, DS2 can scale this data and build a realistic Internet latency

model for 40000 nodes with this scaling factor. This scaling factor helps researchers to model much

larger Internet delay spaces with limited measurements.

In the second step, for each model, we construct a latency matrix by uniformly selecting 3000 nodes,

and calculate the round-trip latency between each pair of nodes using data provided by the model. For

more information on latency models in DS2, please refer to the original paper [14].

2) Latency models based on network topologies: For diversity, we also employ latency models based

on network topologies generated by the popular topology generator BRITE (http://www.cs.bu.edu/brite),

and real topologies collected from the Internet. Table I lists these latency models, with TOPO1 and TOPO2

produced by BRITE. For the hierarchial topology (TOPO3), we collected a real-world AS (Autonomous

14

TABLE I

NETWORK LATENCY MODELS

Name Model Nodes Links

REAL1 DS
2, Matrix1 from [15] 3000 -

REAL2 DS
2, Matrix2 from [15] 3000 -

TOPO1 Flat, Waxman (BRITE) 3000 6000

TOPO2 Flat, Barabasi-Albert (BRITE) 3000 5997

TOPO3 Hierarchical (real topology) 4466 8963

System2)-level topologies (29 nodes) from http://www.ssfnet.org/Exchange/gallery. We then used the US

AT&T continental IP backbone topology (154 nodes) [16] as the router-level topologies to construct a

hierarchical topology.

To calculate network delays from the topologies, we take the link delays generated by BRITE, and

employ both shortest-path routing and AS-level hierarchical routing [17] where applicable.

B. Workload models

TABLE II

DISTRIBUTION TYPES

Type 1 2 3 4

Cluster in PW No Yes No Yes

Cluster in WW No No Yes Yes

Similar to previous studies [2], for more robust and reliable simulation results, we have simulated a

number of combinations of client distributions in both the virtual world (VW) and the physical world

(PW) (the network). Table II shows these combinations. The number of clients may be larger in some

specific zones of the virtual world than others, due to the clustering of clients in these more popular zones.

For example, in online games, clients may be clustered in the zones with large amounts of game resources

such as energy, gold, etc. In the physical world, due to the differences in time zones of geographically

distributed clients, at a specific time, the number of online clients in the DVE may be quite different for

different geographic regions [18].

2An Autonomous System refers to a group of IP networks that is usually under the administration of a single organization.

15

More specifically, in the clustered client distribution in the VW, a popular zone would have about

4 times more clients on average compared to a “normal” zone. Similarly, to simulate the clustering of

clients in the PW, some nodes in the network are randomly selected to have a larger number (about 3

times more) of clients than the rest.

C. Other alternative algorithms

1) Baseline: The Baseline algorithm starts from an existing zone mapping. It then runs the local

search procedure (Algorithm 2) for a pre-specified number of times to correct server capacity violation

and re-assign zones to further improve the current mapping. In each iteration, it generates a new, feasible,

and possibly better solution. In the end, dominated solutions will be removed, and the algorithm returns

the set of remaining solutions. We should note that Baseline algorithm tends to produce solutions with

low migration ratios but potentially high mapping cost, since the algorithm’s main goal is to improve

an existing mapping. Nevertheless, being simple and easy to implement, it serves as a useful basis for

comparison with LPLS and HMOEA.

2) Super-optimal: The Super-optimal (SP) algorithm provides the lower bound (MOZP is a minimiza-

tion problem) of the true Pareto front by repeatedly solving the relaxed MOZP using Algorithm 1 with a

large number of different limits on migration ratios, say from 0 to 1, by a step of 0.01. Recall that MOZP

is NP-hard, so the true Pareto front in this case is not attainable. Though in most cases solutions provided

by the SP algorithm are not feasible, it can be used as a reference for comparing various performance

measures of multi-objective algorithms.

D. Performance measures

How to accurately assess the performance of multi-objective optimization algorithms is a challenging

research topic in its own right [19]. In this paper we use two of the most popular performance measures,

namely hypervolume [20] and epsilon [19]. These measures assess different properties of a non-dominated

solution set, and provide a single performance value for the set.

The epsilon measure for a pair of solution sets PA and PB , denoted as ǫ(PA, PB), calculates the

minimum shift necessary for PA to be dominated by PB , i.e., after this shift operation, we can say that

PA is worse than PB . In order to compare two solution sets produced by two alternative algorithms,

we would need to calculate their epsilon values against a reference solution set. For example, using the

solution set provided by the SP algorithm as a reference, we can say that LPLS outperforms HMOEA if

ǫ(PSP , PLPLS) < ǫ(PSP , PHMOEA).

16

Fig. 3. An example of the hypervolume

The hypervolume measure calculates the volume covered by members of a solution set in the objective

space. Algorithms with larger hypervolume values are more desirable. An example of the hypervolume

for a minimization problem is shown in Fig. 3 (which has been taken from [21]). The hypervolume

formed by solution set {A,B, C} is the region enclosed within the discontinuous line, where W is a

point with worst objective values in the objective space provided by a reference algorithm.

E. Default parameters

Unless otherwise stated, the following assumptions and default values are used in the simulations. The

clients are uniformly distributed in the physical world as well as in the virtual world. There are 5000

clients, 100 zones, and 20 servers with a total capacity to accommodate 7000 clients. The minimum

capacity of each server is 100 clients. Locations of servers are uniformly distributed in the physical

world. The latency model in use is REAL1, and the DVE delay bound D is set to 100ms.

To initialize LPLS and HMOEA, we solve the relaxed MOZP (using Algorithm 1) for a number of

migration ratio limits ranging from 0.1 to 1 by a step of 0.1. Each algorithm (Baseline, LPLS, and

HMOEA) generates 1000 new solutions before termination. All algorithms have similar execution times

(roughly two minutes for each algorithm in all experiments). The number of initial solutions, default

crossover and mutation rates of HMOEA are set to 100, 0.9 and 0.01, respectively, as recommended by

the software package JMetal. All algorithms start from a random zone mapping scheme.

Mann-Whitney U statistical significance tests [8] are used to validate experiment results where appli-

cable. It is a non-parametric statistical test3 for comparing two unpaired groups of samples. The main

result is the p-value ranging from 0 to 1. Informally speaking, if this value is small, we can conclude

3Such a test does not rely on assumptions that the data in question follow a given probability distribution.

17

that the two populations have different medians with high confidence. On the other hand, if p-value is

large, we might not be able to conclude that the medians are different.

V. RESULTS AND ANALYSIS

In this section, we describe the experiment results which are obtained from 30 independent simulation

runs for each algorithm.

A. Impacts of client distributions

We have tested and compared Baseline, LPLS, and HMOEA with different client distributions to

verify their performances in a wide range of practical situations. Fig. 4 shows box-and-whisker plots4 of

the representative results for the REAL1 latency model. The results show that, regardless of the client

distributions in the physical or virtual world, LPLS and HMOEA obviously outperform Baseline in terms

of both hypervolume and epsilon values. Indeed, the Mann-Whitney U statistical tests give extremely

small p-values (the highest p-value is 0.0038 for Fig. 4(b)) when comparing LPLS to Baseline, implying

high confidence in the performance difference.

We have also noticed that HMOEA offers almost no performance advantage over LPLS. This comes

as a surprise, as HMOEA is based on the well-known NSGA-II which has been applied successfully in

various application domains. It employs much more complicated operations compared to LPLS, such as

fast non-dominated ranking and density estimation to evolve the solution set towards the true Pareto front.

As we have observed in some cases, e.g., Fig. 4(a) and 4(b), Mann-Whitney U tests show that LPLS

performs even better than HMOEA in terms of hypervolume with some substantial degree of confidence

(the p-values obtained are 0.09 and 0.12, respectively).

In addition, Fig 5 plots the Pareto fronts obtained by different algorithms. In Fig. 5, the x-axis shows

the performance gaps in percentage between the mapping cost C(X) provided by each solution X and

the best possible lower bound C(X∗), where X∗ is the solution obtained by solving the relaxed MOZP

(as described in Section III-A.1) without any constraint on the migration ratio. The performance gap is

defined as
C(X)−C(X∗)

C(X∗) × 100. It is seen from Fig. 5 that HMOEA does not provide better solutions than

LPLS.

4Box-and-whisker plots display groups of data using the smallest observation, lower quartile, median, upper quartile, and

largest observation, together with outliers.

18

Baseline LPLS HMOEA

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

(a) Dist. type 1 - Hypervolume

Baseline LPLS HMOEA

0.3
0.4

0.5
0.6

(b) Dist. type 2 - Hypervolume

Baseline LPLS HMOEA

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

(c) Dist. type 3 - Hypervolume

Baseline LPLS HMOEA

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

(d) Dist. type 4 - Hypervolume

Baseline LPLS HMOEA

5
10

15
20

25

(e) Dist. type 1 - Epsilon

Baseline LPLS HMOEA

0
10

20
30

40

(f) Dist. type 2 - Epsilon

Baseline LPLS HMOEA

5
10

15
20

25

(g) Dist. type 3 - Epsilon

Baseline LPLS HMOEA

10
20

30
40

50

(h) Dist. type 4 - Epsilon

Fig. 4. Impacts of client distributions

19

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80

m
ig

ra
tio

n
ra

tio

gap (%)

SP
Baseline

LPLS
HMOEA

(a) REAL1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120 140

m
ig

ra
tio

n
ra

tio

gap (%)

SP
Baseline

LPLS
HMOEA

(b) REAL2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35

m
ig

ra
tio

n
ra

tio

gap (%)

SP
Baseline

LPLS
HMOEA

(c) TOPO3

Fig. 5. Pareto fronts of different algorithms with different latency models

B. Impacts of latency models

Due to the dynamic nature of the Internet, and the fact that there is no definitive network latency

models currently, we feel that it is necessary to validate the performance of our algorithms with a diverse

range of latency models. In this paper, we use five different models as previously discussed in Section

IV for our experiments.

Fig. 6 shows the box-and-whisker plots of hypervolumes and epsilons for our algorithms when tested

using different latency models. From the observations and the Mann-Whitney U statistical tests that we

have carried out, we can conclude that regardless of latency models, LPLS and HMOEA always signif-

icantly outperform the Baseline algorithm, while performance differences between LPLS and HMOEA

are not really significant.

20

Baseline LPLS HMOEA

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

(a) REAL1 - Hypervolume

Baseline LPLS HMOEA

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

(b) REAL2 - Hypervolume

Baseline LPLS HMOEA

0.3
0

0.3
5

0.4
0

0.4
5

0.5
0

0.5
5

(c) TOPO1 - Hypervolume

Baseline LPLS HMOEA

0.4
0

0.4
5

0.5
0

0.5
5

0.6
0

(d) TOPO2 - Hypervolume

Baseline LPLS HMOEA

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

0.4
5

(e) TOPO3 - Hypervolume

Baseline LPLS HMOEA

5
10

15
20

25

(f) REAL1 - Epsilon

Baseline LPLS HMOEA

5
10

15
20

25

(g) REAL2 - Epsilon

Baseline LPLS HMOEA

5
10

15
20

25

(h) TOPO1 - Epsilon

Baseline LPLS HMOEA

5
10

15
20

25

(i) TOPO2 - Epsilon

Baseline LPLS HMOEA

5
10

15

(j) TOPO3 - Epsilon

Fig. 6. Impacts of network latency models

21

Baseline LPLS HMOEA

0.0
0.1

0.2
0.3

0.4
0.5

(a) Hypervolume

Baseline LPLS HMOEA

5
10

15

(b) Epsilon

Fig. 7. Impacts of existing zone mapping - Hypervolume and epsilon

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14

m
ig

ra
tio

n
ra

tio

gap (%)

SP
Baseline

LPLS
HMOEA

Fig. 8. Impacts of existing zone mapping - sample Pareto front

C. Impacts of client dynamics

Finally, we evaluate the new algorithms considering client dynamics. Typically, in a DVE, after

sometime some clients may leave the virtual world or move from one zone to another zone, while

new clients will be coming in. Due to such movements, it may be more practical to start the re-mapping

operation early to prevent the current mapping from significant degradation in terms of interactivity.

Hence, the multi-objective zone mapping algorithms should be periodically executed, say after a certain

number of clients have changed server or have left/joined the virtual world.

In this experiment, we start re-mapping the zones after 1000 new clients have joined, 1000 existing

clients have left and another 1000 existing clients have changed their zones. Note that the clients and

their new zones (in case of joining/changing) are selected randomly for the experiment. From the results

shown in Fig. 7 and 8, we can confirm that LPLS and HMOEA still outperform Baseline, while HMOEA

22

offers no significant advantage over LPLS.

VI. RELATED WORK

To the best of our knowledge, there is no existing work that directly addresses the latency-driven multi-

objective zone mapping problem described in this paper. Previous work [2], [3], [7] had dealt with the

single-objective zone mapping problem, that is, the only objective to be minimized is the mapping cost,

which is measured by the total number of clients that have client-server round-trip network latencies larger

than a predefined delay threshold. This single-objective zone mapping approach may cause significant

network and processing overhead due to zone migrations across servers.

On the other hand, research on how to assign clients to servers in DVEs is usually formulated as a

resource-driven problem [5], [6], [22], [23], [24]. In [25], the authors also focused on providing QoS for

DVEs, but they only considered the processing delay caused by limited CPU resource. Such approaches

may damage the interactivity of the DVE, since clients may be assigned to servers that are far away from

them in terms of network delays. [26] considered a latency-driven assignment of clients to servers, but

this work is limited to voice communication in massively multi-player games.

In [27], a distributed algorithm has been proposed for game clients to select the best server in a

mirrored architecture, taking into account the network delay between clients and servers. The mirrored

architecture replicates the DVE zones at multiple servers. This approach shares some similarities with

the web server replica placement problem in Content Distribution Networks (CDNs) [28]. Similarly, [29]

considers optimal client-to-mirror-assignment, for which the objective is to minimize average client-to-

mirror delay considering player joins and leaves, and mirrors with limited capacity. However, unlike web

replications, DVE replication faces more complicated consistency issues [30] which may damage the

users’ experience in interacting with the virtual world. In our approach, only one server has the control

over the state of a zone, thus consistency is easier to maintain.

Following a latency-driven approach, [31] and [32] have proposed a decentralized middleware capable

of utilizing information on clients’ geographical locations to reduce the overall latency for the majority

of users in a region of the virtual world. The latency reduction is accomplished by migrating a game

region to a server closer to the clients. The focus of this work seems to be more on supporting services,

e.g., name service, for game state migration. Such services can be of great benefit for implementing our

proposed algorithms. On the other hand, the heuristics for determining good server locations in [31], [32]

are rather simple, and without any provision for minimizing the game migration overhead.

23

VII. CONCLUSIONS

The MOZP aims to determine how to map the virtual world zones to different distributed servers

without incurring much zone migration overhead. Most of the time, there is no single, definitive answer

to this multi-objective optimization problem. Instead, the results are often expressed as a set of non-

dominated solutions. In this paper, we have formulated this NP-hard problem, which calls for efficient

zone mapping heuristics. We then proposed two new algorithms, LPLS and HMOEA, which could provide

approximations to the set of Pareto optimal solutions for the MOZP.

Extensive simulation results on realistic models built from Internet-wide latency measurements between

millions of host pairs have shown that our new algorithms significantly outperform a baseline algorithm

in terms of two mostly used measures in multi-objective optimization, namely hypervolume and epsilon,

while having similar execution time. This implies that LPLS and HOMEA are able to provide good

quality and diverse solution sets, which can help DVE designers/developers/maintainers to select the

most appropriate re-mapping solution depending on the situation. A final note is that we prefer LPLS

over HMOEA, since the former has simpler implementation, and produces comparable or sometimes

even better results than HMOEA.

ACKNOWLEDGEMENT

This work is supported in part by the Singapore National Research Foundation under Grant NRF2007IDM-

IDM002-052.

REFERENCES

[1] S. Singhal and M. Zyda, Networked virtual environments: design and implementation. Reading, MA: Addison-Wesley,

1999.

[2] D. N. B. Ta and S. Zhou, “A Network-centric Approach to Enhancing the Interactivity for Large-Scale Distributed Virtual

Environments,” Elsevier Computer Communications, vol. 29(17), pp. 3553–3566, 2006.

[3] D. Ta and S. Zhou, “A Two-phase Approach to Interactivity Enhancement for Large-Scale Distributed Virtual Environ-

ments,” Elsevier Computer Networks, vol. 51(14), pp. 4131–4152, 2007.

[4] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D.H.J.Epema, and T. Fahringer, “Efficient Management of Data Center Resources

for Massively Multiplayer Online Games,” in Proc. of ACM/IEEE SuperComputing Conference on High Performance

Networking and Computing, 2008.

[5] D. N. B. Ta and S. Zhou, “A Dynamic Load Sharing Algorithm for Massively Multi-Player Online Games,” in Proc. of

the 11th IEEE International Conference on Networks, 2003.

[6] J. Lui and M. Chan, “An Efficient Partitioning Algorithm for Distributed Virtual Environment Systems,” IEEE Transaction

on Parallel and Distributed Systems, vol. 13(3), 2002.

24

[7] D. Ta, S. Zhou, W. Cai, X. Tang, and R. Ayani, “Efficient Zone Mapping in Distributed Virtual Environments,” in Proc.

of the ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulations, New York, 2009.

[8] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. Wiley, 2009.

[9] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems.

Springer, 2007.

[10] T. Henderson and S. Bhatti, “Networked games: a QoS-sensitive application for QoS-insensitive users?” in Proc. of the

ACM SIGCOMM, 2003.

[11] L. Pantel and L. Wolf, “On the Impact of Delay on Real-Time Multiplayer Games,” in Proc. of NOSSDAV, 2002, pp.

23–29.

[12] S. Walukiewicz, Integer programming. Kluwer Academic Publishers, 1991.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE

Transactions on Evolutionary Computation, vol. 6, pp. 182–197, 2002.

[14] B. Zhang, A. N. T. S. Eugene Ng, R. Riedi, P. Druschel, and G. Wang, “Measurement-based analysis, modeling, and

synthesis of the internet delay space,” in ACM SIGCOMM/USENIX Internet Measurement Conference (IMC), 2006.

[15] “Internet delay space synthesizer - data,” Available at http://www.cs.rice.edu/ bozhang/ds2/matrix/, retrieved May 2009.

[16] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz, “Generating realistic isp-level network topologies,” IEEE

Communication Letters, 2003.

[17] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin, “The Impact of Routing Policy on Internet Paths,” in Proc.

of IEEE INFOCOM, 2001.

[18] W. chang Feng and W. chi Feng, “On the geographic distribution of online game servers and players,” in Proc. of NetGames,

2003.

[19] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca, “Performance Assessment of Multiobjective

Optimizers: An Analysis and Review,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117–132, 2003.

[20] E. Zitzler and L. Thiele, “Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study,” in

Conference on Parallel Problem Solving from Nature (PPSN), 1998, pp. 292–301.

[21] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, “Abyss: Adapting scatter search to multiobjective

optimization,” IEEE Trans. Evolutionary Computation, vol. 12, no. 4, pp. 439–457, 2008.

[22] R. Chertov and S. Fahmy, “Optimistic load balancing in a distributed virtual environment,” in Proc. of NOSSDAV, 2006.

[23] D. T. Admed and S. Shirmohammadi, “A microcell oriented load balancing model for collaborative virtual environments,”

in Proc. of the IEEE Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, 2008.

[24] M. Lim and D. Lee, “A task-based load distribution scheme for multi-server-based distributed virtual environment systems,”

Presence: Teleoperators and Virtual Environments, vol. 18, no. 1, pp. 16–38, 2009.

[25] P. Morillo, S. Rueda, J. Ordua, and J.Duato, “A Latency-Aware Partitioning Method for Distributed Virtual Environment

Systems,” IEEE Transaction on Parallel and Distributed Systems, vol. 18(9), 2007.

[26] C. D. Nguyen, F. Safaei, and P. Boustead, “Optimal assignment of distributed servers to virtual partitions for the provision

of immersive voice communication in massively multiplayer games,” Elsevier Computer Communications, vol. 29(9), 2006.

[27] K. W. Lee, B. J. Ko, and S. Calo, “Adaptive Server Selection for Large Scale Interactive Online Games,” Computer

Networks, vol. 49, pp. 84–102, 2005.

[28] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web server replicas,” in Proc. of IEEE INFOCOM, 2001.

[29] S. D. Webb and S. Soh, “Adaptive client to mirrored-server assignment for massively multiplayer online games,” in MMCN

’08: Fifteenth Annual Multimedia Computing and Networking, 2008.

25

[30] S. Zhou, W. Cai, B. S. Lee, and S. J. Turner, “Time-space consistency in large-scale distributed virtual environments,”

ACM Transactions on Modeling and Computer Simulation, vol. 14(1), pp. 31–47, 2004.

[31] P. B. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz, “Latency reduction by dynamic core selection and partial migration

of game state,” in Proc. of Workshop on Network and Systems Support for Games (NetGames), 2008, pp. 79–84.

[32] P. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz, “The partial migration of game state and dynamic server selection

to reduce latency,” Springer’s Multimedia Tools and Applications Special Issue on Massively Multiuser Online Gaming

Systems and Applications, 2009.

	Multi-objective zone mapping in large-scale distributed virtual environments
	Citation

	tmp.1646385310.pdf.wtnbS

