
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2021

HRPDF: A software-based Heterogeneous Redundant Proactive HRPDF: A software-based Heterogeneous Redundant Proactive

Defense Framework for Programmable Logic Controller Defense Framework for Programmable Logic Controller

Ke LIU

Jing-Yi WANG

Qiang WEI

Zhen-Yong ZHANG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
LIU, Ke; WANG, Jing-Yi; WEI, Qiang; ZHANG, Zhen-Yong; SUN, Jun; MA, Rong-Kuan; and DENG, Rui-Long.
HRPDF: A software-based Heterogeneous Redundant Proactive Defense Framework for Programmable
Logic Controller. (2021). Journal of Computer Science and Technology. 36, (6), 1307-1324.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6924

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6924&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6924&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Ke LIU, Jing-Yi WANG, Qiang WEI, Zhen-Yong ZHANG, Jun SUN, Rong-Kuan MA, and Rui-Long DENG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6924

https://ink.library.smu.edu.sg/sis_research/6924

Liu K, Wang JY, Wei Q et al. HRPDF: A software-based heterogeneous redundant proactive defense framework for

programmable logic controller. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 36(6): 1307–1324 Nov.

2021. DOI 10.1007/s11390-021-1647-7

HRPDF: A Software-Based Heterogeneous Redundant Proactive
Defense Framework for Programmable Logic Controller

Ke Liu1, Jing-Yi Wang2, Qiang Wei1,∗, Zhen-Yong Zhang2,3, Jun Sun4, Rong-Kuan Ma1, and Rui-Long Deng2

1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450001, China
2College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
3College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
4School of Information Systems, Singapore Management University, Singapore 689867, Singapore

E-mail: {chexin, wangjyee, 12132013, zhangzhenyong}@zju.edu.cn; junsun@smu.edu.sg
E-mail: {csewmf, dengruilong}@zju.edu.cn

Received June 1, 2021; accepted November 15, 2021.

Abstract Programmable logic controllers (PLCs) play a critical role in many industrial control systems, yet face in-

creasingly serious cyber threats. In this paper, we propose a novel PLC-compatible software-based defense mechanism,

called Heterogeneous Redundant Proactive Defense Framework (HRPDF). We propose a heterogeneous PLC architecture

in HRPDF, including multiple heterogeneous, equivalent, and synchronous runtimes, which can thwart multiple types of

attacks against PLC without the need of external devices. To ensure the availability of PLC, we also design an inter-process

communication algorithm that minimizes the overhead of HRPDF. We implement a prototype system of HRPDF and test it

in a real-world PLC and an OpenPLC-based device, respectively. The results show that HRPDF can defend against multiple

types of attacks with 10.22% additional CPU and 5.56% additional memory overhead, and about 0.6 ms additional time

overhead.

Keywords industrial control system, programmable logic controller, proactive defense, heterogeneous redundant archi-

tecture

1 Introduction

Industrial control systems (ICSs) are widely used

in national critical infrastructures like power grids, oil,

natural gas, water conservancy and metallurgy, which

are crucial to economy and social stability [1, 2]. Pro-

grammable logic controllers (PLCs), as the core of

many ICSs, play an essential role to control the in-

dustrial processes via the I/O interface. Due to the

importance of PLCs, they have become the main tar-

get of attackers consequently [3]. For example, in 2011,

the “Stuxnet” incident destroyed the nuclear facilities

in Natanz, Iran, and eventually delayed the launch of

the Bushehr Nuclear Power Plant [4]. Since then, simi-

lar cyber attacks against PLC in ICS, such as Duqu [5],

BlackEnergy [6], Industroyer [7], and Triton [8], caused

huge economic losses and posed a threat even to hu-

man lives.

Although being effective in some settings, ex-

isting defense approaches against PLC-oriented at-

tacks have the following key limitations. Firstly,

defending approaches adopted by intrusion detec-

tion systems (IDSs) [9–11], deception defense [12–14] and

attestation [15–19] take effect after attacks happened,

mainly detecting them but not blocking them, while

blocking technologies such as industrial firewalls alone

are not able to effectively block growing sophisticated

attacks [20–22]. Secondly, most existing approaches are

Regular Paper

Special Section on Software Systems 2021—Theme: Dependable Software Engineering

This work is supported by the National Key Research and Development Program of China under Grant No. 2020YFB2010900
and the Fundamental Research Funds for the Central Universities (Zhejiang University NGICS Platform) of China under Grant
No. TC190A449.

∗Corresponding Author

©Institute of Computing Technology, Chinese Academy of Sciences 2021

http://dx.doi.org/10.1007/s11390-021-1647-7

1308 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

designed based on the characteristics of one or sev-

eral specific kinds of known attacks, such as [9, 13, 15].

Thirdly, most existing approaches are hardware-based

and require external devices, such as [11, 13, 17], which

are costly, and difficult to deploy and update, especially

in a deployed distributed control system (DCS). Specifi-

cally, large-scale DCSs often have multiple controllers

that are scattered everywhere, and hardware-based ap-

proaches may need to monitor the I/O interface of each

controller and the network connecting controllers.

To address these issues, in this paper, we

present a novel proactive and PLC-compatible defense

mechanism, called Heterogeneous Redundant Proac-

tive Defense Framework (HRPDF). Unlike existing

approaches [13, 15–17,23], HRPDF is designed to actively

defend against a variety of attacks targeting the core

software stack of PLC, including 1) firmware modifica-

tion attacks (firmware level), 2) control logic tampering

attacks (logic application level), and 3) PLC memory

attacks (memory level). The success of HRPDF mainly

depends on a novel software redundancy framework lay-

ing in multiple levels of the PLC’s software stack. This

idea is inspired by the redundant system architecture

to cope with errors and unpredictable failures during

normal operation for fault tolerance and stability guar-

antee, which has been widely used in large-scale control

systems like DCSs and modern computer systems [24].

Besides, HRPDF is PLC-compatible, i.e., no external

devices are needed while satisfying the real-time and

availability requirements of PLC.

Specifically, HRPDF implements heterogeneous re-

dundancy in multiple levels of the PLC’s software stack

as follows (shown in Section 4). Firstly, in the compil-

ing phase, HRPDF adopts several different compiler en-

hancement mechanisms to generate different versions of

executable binaries. Secondly, in the execution phase,

HRPDF uses multiple heterogeneous runtimes with

equivalent functionality and executes control logic sepa-

rately in a PLC’s scan cycle. Note that these runtimes

are the key to PLC’s security enhancement. Thirdly,

a runtime manager is built on top of the runtimes to

make decisions on the final output and complete a scan

cycle. In addition, to minimize the overhead, HRPDF

adopts a new communication mechanism to ensure the

real-time requirement and data integrity of the commu-

nication between the runtimes and runtime manager.

To evaluate HRPDF, we realize HRPDF in a real-

world PLC used in distributed energy generation sys-

tem as well as an OpenPLC-based device 1○. Note that

we focus on ARM-based devices since a large num-

ber of PLCs in ICSs use the ARM processors [25]. We

first compare HRPDF with several state-of-the-art de-

fense techniques including invariants-based detection

mechanism (IDM) [11], ECFI [15], PLCDefender [17], and

Shade [26], to validate its defense capability. Besides,

we conduct comparative experiments between HRPDF

and the original PLC to evaluate its time and perfor-

mance overhead. Note that this is crucial for HRPDF

to be adopted in real-world PLCs. Extensive experi-

ments have shown that the prototype implementation

of HRPDF has much stronger defense capabilities com-

pared with the state-of-the-art defending approaches

while introducing the low overhead, i.e., with 10.22%

additional CPU overhead, 5.56% additional memory

overhead, and about 0.6 ms additional time overhead.

In a nutshell, we make the following main contribu-

tions.

• We propose a proactive and PLC-compatible de-

fense framework HRPDF, which is a novel software re-

dundancy framework to enhance PLC’s security against

a wide spectrum of PLC specific attacks.

• We implement HRPDF in both a real-world PLC

and an OpenPLC-based device on raspberry. We de-

sign compilation enhancement techniques and a lock-

free inter-process communication (IPC) mechanism to

minimize the overhead of HRPDF to satisfy the real-

time and availability requirements.

• We collect 492 control logics from different in-

dustries and conduct extensive experiments to validate

HRPDF’s performance in terms of defending against

cyber attacks. The results show that HRPDF is promis-

ing in defending against a wide range of attacks with

an acceptable cost and does not affect the real-time and

availability of PLC.

2 Preliminary

2.1 PLC Programs and PLC Scan Cycle

PLC is the core control unit in ICSs. PLC’s soft-

ware architecture and programming languages are of-

ten implemented according to the IEC 61131-3 2○ stan-

dard by a third party (e.g., Codesys 3○). Commonly

1○https://www.openplcproject.com/, Oct. 2021.
2○https://webstore.iec.ch/publication/62427, Oct. 2021.
3○https://www.codesys.com/, Oct. 2021.

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1309

used programming languages include ladder diagram

(LD), function block diagram (FBD), structured text

(ST), instruction list (IL), and sequential function chart

(SFC), among which LD, FBD, and SFC are graphic

languages, and the rest are textual languages.

A control logic is written with one or multiple lan-

guages listed above by the engineer and then compiled

on the engineering workstation (EWS). The compiled

binary PLC program is subsequently downloaded to

the PLC’s runtime for execution. During the execution

stage, PLC’s runtime first scans the input table to read

the data from input devices and executes the control

logic with the inputs. Then, the execution results of

control logic will be flushed and stored in the output

table, and finally updated to the output devices. The

whole process of reading inputs, executing control logic,

and updating outputs is called as a scan cycle [27]. The

above work cycle of a PLC is depicted in Fig.1. It is

worth mentioning that the memory layout of PLC in-

cludes the code segment, the config segment and the

object segment and so on, where the input/output

(I/O) table in the object segment is connected to the

field devices.

PLC

Runtime

Check and Read

Inputs

Execute Control

Logic Program

Update Outputs

Memery

Input Table

Output Table

Write

Read

P
L
C

 S
c
a
n
 C

y
c
le

EWS Program Software

Editor

Compiler

IEC 61131-3

Language

LD FBD ST

IL SFC

Network

CODE

CONFIG

OBJECT

Fig.1. PLC programs downloading process and PLC scan cycle.

2.2 Redundant Architecture

In modern ICS, redundant architecture, which has

been widely used in DCS, SIS, etc., is an important

fault tolerance technology to cope with errors and un-

predictable failures during normal operation and guar-

antee the stability of the system [24]. We show an ex-

ample of redundant controller architecture in Fig.2.

The controllers A and B are standby to each other

and connected by bus. When the system is work-

ing, the two controllers will execute the same control

logic but only one of them is actively responsible for

controlling the field devices while the other serves as

a standby controller. Once the active controller fails

(e.g., being attacked) and cannot operate normally, the

standby controller will take over the system. Note

that such traditional redundancy architecture is iso-

morphic, which means that the hardware and software

structures of the active and standby devices are often

the same. Furthermore, such redundancy solutions are

rather expensive [24]. Moreover, isomorphic redundancy

has been proven to be vulnerable against cyber attacks

and even introduces new risks [28].

Fig.2. Redundant controller architecture.

3 Threat Model

We first formulate our threat model and then give

the problem statement. We assume that the at-

tackers are able to access PLCs in ICS either re-

motely via the network or physically. Note that this

is a reasonable assumption adopted by multiple re-

cent researches [10, 11,17,28]. Consequently, the attack-

1310 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

ers could read and modify the PLC memory, control

logic application and firmware, etc. to launch a range

of attacks targeting PLC’s software stack as follows.

1) Firmware Modification Attack [28–31]. This type

of attacks exploits the vulnerabilities in the firmware

update validation mechanism of a PLC’s runtime. The

attackers would create a counterfeit firmware sample

and download it to a target PLC. The firmware samples

are often carefully constructed to execute privileged in-

structions or pave the way for stealthy attacks.

2) Control Logic Tampering Attack [32–36]. This type

of attacks could happen in multiple stages: develop-

ment, transmission and execution. In this work, we

focus on the transmission and execution stage, which

mainly exploits the vulnerabilities of the authentica-

tion mechanism of PLC’s runtime. The attackers can

manipulate the status of the industrial procedure via

the counterfeit control logic.

3) PLC Memory Attack [37–39]. There are three

types of attacks against PLC’s memory in the scope

of this paper: attacks on the PLC working memory, at-

tacks on the input table and attacks on the output ta-

ble. This type of attacks exploits the vulnerabilities of

the memory protection mechanism of PLC’s runtime.

We assume that the attacker has the ability to mod-

ify the value of the PLC’s virtual memory address and

protocol-oriented memory address via memory corrup-

tion vulnerabilities or industrial protocol vulnerabili-

ties. However, we assume that the attackers will not

bluntly overwrite a large range of memory addresses

with jungle bytes to cause unpredictable abnormality,

but precisely overwrite the value of one or several spe-

cific memory addresses to affect the industrial proce-

dure.

These attacks are common to PLCs which could po-

tentially damage the status of a PLC [28, 32,36,37]. In

particular, we assume that the attackers have limited

knowledge of the defense framework. We do not con-

sider the situation where the attackers can compromise

the EWS like Stuxnet, and the insider attacks such as

supply chain attacks [40] are also not in the scope of the

attacker model.

The objectives of HRPDF is to defend the above

attacks proactively with an acceptable cost. The basic

research objectives (ROs) are listed as follows.

• RO1. The mechanism needs to be able to defend

and block such attacks before they take effect.

• RO2. The defense mechanism should not occupy

too many PLC resources and compromise the availa-

bility of the PLC.

• RO3. The real-time requirements of the PLC can-

not be compromised by the defense mechanism.

4 HRPDF Design

4.1 PLC Internal Design

The overall HRPDF architecture is shown in Fig.3.

Inside the redundantly designed PLC, HRPDF consists

of a runtime manager and several runtimes. The run-

times are heterogeneous and functionally equivalent to

each other, as the core of this framework. Heterogene-

ity means that the control logic and the memory layout

are different. Functional equivalence means that given

the same input to the PLC programs in runtimes, they

will return the same execution results. This framework

not only preserves the original function, but also im-

proves the defense capabilities of the PLC. The run-

time manager, as a hypervisor, has the highest priority

and is responsible for multiple tasks including runtime

management, controlling the PLC scan cycle, recording

security event logs, and raising alarms. The communi-

cation between the runtimes and the runtime manager

will inevitably bring time delay; therefore, it is nece-

ssary to design and implement an efficient and practical

IPC mechanism to reduce the impact on the real-time

performance of the PLC as much as possible.

In addition, the PLC internal design changes the

original PLC scan cycle as shown in Fig.4. The de-

tailed workflow of the new PLC scan cycle consists of six

phases. At the beginning, the runtime manager reads

inputs from the input table and sends them to run-

times. Then, different runtimes execute control logic

separately according to the inputs and then send the

results back to the runtime manager. Finally, the run-

time manager decides the proper results according to

the results of these runtimes and flushes them to the

storage area and output table. Fig.4 shows that the

new PLC scan cycle of HRPDF has three new phases,

which are IPC in the input phase, IPC in the output

phase, and decision making of the runtime manager.

The time overhead analysis experiment shows that the

additional time overhead caused by the decision making

is negligible for the millisecond scan cycle. Therefore,

the main time overhead of HRPDF is IPC in the input

phase and the output phase, which need to be evalu-

ated. Note that, due to the compilation enhancement

strategy (such as code obfuscation), the control logic in

HRPDF will also be more complex than the original.

Therefore, the additional execution time should not be

ignored.

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1311

Fig.3. Overall architecture of HRPDF.

Runtime Manager Chooses

Final Proper Results

Original Phases New Phases

IPC

IPC

Decision

Making

Runtime Manager Reads

and Checks Inputs

Runtimes Execute Control

Logic Program

Runtime Manager Updates

Outputs

Runtime Manager Sends

Inputs to Runtimes

Runtimes Send Execution

Results to Runtime Manager

Fig.4. New PLC scan cycle.

4.2 Engineer Workstation Design (EWS)

EWS is an important part of an ICS for design-

ing, configuring and diagnosing the software and hard-

ware in the system. Logic applications are written,

debugged, and downloaded to PLC via EWS. The

redundant EWS architecture in HRPDF is shown in

Fig.3, responsible for generating multiple functionality-

equivalent control logic programs. The principle of the

EWS design is to use different compilation enhance-

ment strategies, such as obfuscation and randomiza-

tion, to ensure that the logic application and memory

layout of runtimes are also different. Specifically, the

virtual address and the protocol-oriented address of the

main memory segment of each runtime are different.

The address of any memory segment of the runtime

should be useless memory address in other runtimes.

Therefore, the attacks on a specific memory (such as

1312 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

I/O tables) can only affect the normal operation of run-

time at most.

5 HRPDF Implementation Details

5.1 Platform

We implement the HRPDF on a real-world PLC,

which belongs to the SF-auto CSD-826 PLC family 4○.

CSD-826 is an integrated controller mainly used in the

energy market, which adopts an 866 MHz dual-core

32 bit ARM Cortex-A7 CPU and runs on a real-time

Linux operating system with a PREEMPT Kernel (ver-

sion 3.14.1). We collaborate with SF-auto and imple-

ment the HRPDF based on the original runtime source

code. In addition, we also implement HRPDF on an

OpenPLC-based device, which is deployed on Rasp-

berry Pi 3 Model B 5○. However, because of the diffe-

rences between OpenPLC and the real-world PLC, we

only implement the PLC’s internal design of HRPDF

on OpenPLC.

5.2 Compiler Enhancement

5.2.1 Address Randomization

We use address randomization to make sure that the

control logic application will be executed in runtimes

differently. In particular, we improve the compilation

strategy of the CSD-826’s original program software by

adopting address space layout randomization (ASLR),

which is done by randomly placing main memory seg-

ments of runtime, such as the code segment, the con-

fig segment and the object segment. To guarantee

the success of such address randomization, the com-

piler further checks that 1) different address segments

in the same runtime are not overlapping, and 2) the

address of any main memory segment in one runtime

should not overlap with other runtimes. Fig.5 shows

how address randomization can ensure that the distri-

bution of the main memory segments such as the code

segment, the config segment and the object segment

in the virtual memory is different.

Note that we also adopt randomization on address

segments handling protocols (separated from the vir-

tual address executing logic applications) to counter

attacks initialized from the protocol side. Fig.6 shows

how we uniformly randomize the protocol-oriented ad-

dress, where the specific memory in each segment can

further be randomized as shown in Fig.7.

CODE CODE

CONFIG

OBJECT

CONFIG

OBJECT

0x00008000

0xa7ebc000

0xabe22000

0x00017000

0xa1293000

0xa7d86000

Fig.5. Randomizing the virtual address of the segments.

CODE

CODE

CONFIG

CONFIG

OBJECT

OBJECT
0x08003270

0x0872c000

0x0e47d000

0x01078120

0x03079350

0x0b13a700

Fig.6. Randomizing the protocol-oriented address of the seg-
ments.

CODE

CONFIG

OBJECT CODE

CONFIG

OBJECT

Subroutines

Libs

Rumtime 1 Rumtime 2

Main

Variable Config

Log Config

I/O Config

Other Config

Input Table

Output Table

Internal Bits

Register

Output Table

Internal Bits

Input Table

Register

Variable Config

Other Config

Log Config

I/O Config

Main

Subroutines

Libs

Fig.7. Randomizing the distribution of submodules in segments.

5.2.2 Obfuscation

Obfuscation of logic applications could significantly

increase the cost of an attacker to analyze the binary

control logic [41]. To implement effective obfuscation,

HRPDF will randomly insert some junk instructions

in the compiling phase, which could be categorized

4○https://www.sifang-electric.com/about, Oct. 2021.
5○https://www.raspberrypi.org/, Oct. 2021.

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1313

into executable and non-executable instructions. Ex-

ecutable junk instructions will take up CPU time slices

and be able to perform normal memory read/write ope-

rations, while not affecting the original control logic

functions. A variety of executable junk instructions are

designed in HRPDF for different compilation strategies,

including reversible operations, invalid assignment in-

structions, etc.

HRPDF also adopts additional strategies to hinder

static reverse engineering. For instance, in the compil-

ing time, HRPDF replaces regular procedure calls with

jump tables and branch functions, which prevents an

attacker from obtaining the logic applications directly

from the PLC for further analysis. Besides, HRPDF

also improves ultimate packer for executables 6○ to pack

the compiled binaries with proprietary strategies, which

mainly counters an attacker attempting to obtain the

compiled binaries such as the project file of CODESYS

V2 [42].

Note that in general, the obfuscation technology will

incur additional time overhead inevitably, especially the

executable junk instructions. Considering the real-time

requirements, HRPDF is limited to insert a small num-

ber of executable junk instructions (executed in each

PLC scan cycle). Meanwhile, since unpacking will only

happen once at the beginning, the caused additional

time overhead is negligible.

5.3 Runtime Manager and Runtime

5.3.1 Runtime Manager

The runtime manager is the most critical part of

HRPDF, which has the highest privilege and priority

in the PLC. There are only config and object seg-

ments in the memory layout of the runtime manager

because it is not intended to execute control logic. Note

that the I/O table in the object segment of the run-

time manager corresponds to the field devices. In each

PLC scan cycle, the runtime manager scans and reads

the inputs from the input devices and sends them to

runtimes. After executing the control logic, the run-

times send the results, which include execution results

and part of the internal storage data, to the runtime

manager for decision making. The runtime manager

compares the results of each runtime byte by byte and

selects the most common values as the final results.

Then, the runtime manager flushes the results to the

corresponding memory area. If the result of a runtime

is abnormal (different from the most common result),

the runtime manager will immediately raise an alarm

and mark the corresponding runtime as an exception.

Note that the runtime manager will only wait for the re-

sults for a limited time. If one runtime does not return

results beyond a time threshold, the runtime manager

will give up waiting and mark the runtime as an excep-

tion as well.

When a runtime is marked as an exception, the run-

time manager will start the runtime checking mecha-

nism (RCM). RCM mainly scans the existence of the

flags in the object, config, and code segments to

judge whether the memory is corrupted, which are ran-

dom numbers generated and inserted by the compilers.

In addition, the runtime manager records the accuracy

of each runtime to deal with some corner cases. For

example, when all runtimes return different results, the

runtime manager will select the results according to the

most reliable runtime with the highest historical accu-

racy.

5.3.2 Runtime

In the heterogeneous runtime, the I/O table does

not communicate with the field devices directly. Alter-

natively, a runtime obtains inputs from and send the

results to the runtime manager. In addition, some new

functions have been added to the runtime to ensure that

the runtime can parse and execute the randomized and

obfuscated binaries. Note that it is important to im-

plement runtime isolation, such as assigning different

privileges to different runtimes, which can potentially

prevent attackers from using a compromised runtime to

attack the others.

While generating multiple heterogeneous runtimes,

the memory layout, logic application execution function

and communication mechanism are taken into consid-

eration. Specifically, we set different compilation con-

figurations for different runtimes, in which the mem-

ory layout and strategy for adding junk instructions

are different. Then the compiler can compile and gene-

rate multiple heterogeneous but functionally equivalent

runtimes according to different compilation configura-

tions.

5.4 Communication Mechanism

In HRPDF, the new PLC scan cycle includes two

IPCs. To guarantee the normal operation of the new

PLC scan cycle and reduce the additional time over-

head, the IPC mechanism should be designed to meet

6○https://upx.github.io/, Oct. 2021.

1314 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

the following requirements.

• The mechanism should guarantee data integrity,

which means that the runtime should not disrupt the

runtime manager.

• The mechanism should be lock-free, and will not

block the normal operation of the runtime manager and

runtimes. The priority of the runtime manager is higher

than that of the runtime, and the IPC algorithm or the

data structure needs to be able to avoid the priority in-

version problem. Furthermore, the mechanism should

avoid being exploited by attackers to block the PLC

scan cycle.

• The mechanism should not impose any assump-

tions on the time and speed of reading or writing ope-

rations, i.e., the worst-case under attack needs to be

considered.

IPC in the input stage is that the runtime man-

ager sends the inputs to runtimes; hence we design

a lock-free single-writer/multi-reader mechanism be-

tween the runtime manager and runtimes, which have

a fixed-size shared memory queue and are based on

the atomic read-modify-write primitives. In this paper,

we use compare-and-swap (CAS) which is a synchro-

nization primitive widely used in lock-free algorithm

implementation [43]. The completed design of the IPC

mechanism in HRPDF is shown in Algorithm 1.

The array Buffer stores the data transferred be-

tween the runtime manager and runtimes. Assum-

ing that value ai held by Reading[i] indicates whether

Buffer[ai] is being used. The variable Latest indi-

cates the latest data written by the runtime manager.

The function GetBuff() is responsible for selecting a

free buffer slot for the runtime manager for the next

PLC scan cycle. The array InUse is a local variable

used to mark the buffer slot that is currently occu-

pied and is initialized in lines 8–11. During lines 12–18,

the runtimes’ status and the buffer slot status are ac-

quired and recorded in InUse, and the corresponding

elements are marked as true. Note that if there is a

buffer slot occupied by a runtime, it means that the

runtime is abnormal. The runtime manager finds a free

buffer slot at the beginning of a new PLC scan cycle,

and all runtimes should be idle and waiting for inputs.

Therefore, the runtimes that still occupy the buffer slot

must be abnormal or under attack. Finally, the first

buffer slot with a false value in InUse will be returned

to RuntimeManagerWriter(). After finding a free

buffer slot, the runtime manager writes data and up-

dates Latest in lines 27 and 28. In lines 29–31, the run-

time manager checks the status of all runtimes by scan-

ning Reading and then updates all non-zero elements

in Reading to inform all runtimes in which buffer slot

the input is stored. The operation uses CAS primitives

to guarantee atomicity. In function RuntimeReader(),

the runtime uses the CAS command to assign Latest

to Readind[RtmID] in lines 37 and 38. If it succeeds,

it means that the runtime manager has written the in-

put data of this PLC scan cycle into Buffer, and then

the runtime obtains the corresponding buffer slot index

from the array Reading and reads the corresponding

input data from the proper buffer slot in lines 39 and

40.

Algorithm 1. Communication Mechanism in the Input
Phase

1: int N ;
2: Data Buffer[N + 2];
3: int Reading[N];
4: int Latest;
5:
6: function GetBuff()
7: boolean InUse[N];
8: int i, k;
9: for i← 0 to N do

10: InUse[i]← False;
11: end for
12: InUse[Latest]← True;
13: for i← 0 to N do
14: j ← Reading[i];
15: if j! = 0 then
16: InUse[Latest]← True;
17: end if
18: mark runtime i as exception;
19: end for
20: for i← (Latest + 1)%(N + 2) To N + 2 do
21: if InUse[i] == False then return i;
22: end if
23: end for
24: end function
25:
26: function RuntimeManagerWriter()
27: widx← GetBuff();
28: Write input data to Buffer[widx];
29: Latest← widx;
30: for i← 0 to N do
31: CAS(Reading[i], N + 2, widx)
32: end for
33: end function
34:
35: function RuntimeReader()
36: RtmID ← RuntimeID;
37: Reading[RtmID]← N + 2;
38: ridx← Latest;
39: CAS(Reading[RtmID], N + 2, ridx);
40: ridx← Reading[RtmID];
41: Read input data from Buffer[ridx];
42: end function

While in the output phase, the runtimes send the re-

sults to the runtime manager respectively. We could use

multiple fixed-size lock-free single-writer/single-reader

queues, and different runtimes use the different queues

to communicate with the runtime manager. This prob-

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1315

lem can be solved by a fixed size circular buffer 7○. The

head and tail pointers of the circular buffer are both

in the shared memory. The head pointer is written by

the writer and the tail pointer is written by the reader.

Each runtime uses an independent circular buffer to

communicate with the runtime manager. In HRPDF,

we implement the IPC mechanism with Michael and

Scott’s approach [44].

6 Evaluation

In this section, we conduct a series of experiments

comparing the original devices and security-enhanced

(implemented on both CSD-826 and OpenPLC-based)

devices to evaluate the effectiveness of HRPDF mainly

from the following two aspects. Firstly, we evaluate the

defense capabilities of HRPDF against different kinds

of software-oriented attacks. Secondly, we evaluate

the real-time and availability performance of HRPDF

considering the incurred time and the resource over-

head. For each experiment, we test 100 PLC scan cy-

cles.

6.1 Effectiveness in RO1: Defense Capabilities

To evaluate the defense capabilities of the frame-

work, we design and implement the firmware modifi-

cation attack, the control logic tampering attack, and

the PLC memory attack on original CSD-826 PLC and

OpenPLC-based device. The details of the attack are

as follows.

• Firmware Modification Attack. The CSD-826 up-

dates the firmware through the network protocol and

lacks verification. Using this vulnerability, we can in-

ject malicious firmware. We could modify the config-

uration of the output table in the firmware, causing

its firmware to fail to execute normally. In CSD-826,

we launch an attack from the network as attackers,

and then inject malicious firmware, which can stealthily

modify the value of the output table to affect the in-

dustrial procedure. In the OpenPLC-based device, we

manually replace its firmware (an executable program

named OpenPLC)

• Control Logic Tampering Attack. In CSD-826, we

generate the counterfeit downloading packets including

malicious control logic, and download them to CSD-

826, which can affect the normal operation of the origi-

nal control logic and tamper with the execution results

of the control logic. However in the OpenPLC-based

device, we exploit the HTTP service it provides for nor-

mal control logic downloading to implement the attack.

Note that the normal workflow of the OpenPLC-based

device is different from that of real-world PLC. In the

OpenPLC-based device, we write the control logic in

programming software, from which we can export the

structured text (ST) file, and then download it to the

PLC through the HTTP service of the OpenPLC-based

device runtime. Then, the OpenPLC-based device run-

time compiles the ST file and runs the new runtime

so that we can exploit the HTTP service to finish the

control logic tampering attack.

• PLC Memory Attack. We design three types of at-

tacks against the PLC memory. The first is the attack

on the config segment of CSD-826, which overwrites

the pointer of the output table to a certain address,

and then manipulates the value of virtual memory cor-

responding to the output table via controlling the value

of the address. The second is the attack on the PLC

input table, which exploits the authentication variabil-

ities of the industrial protocol and replays the packets

to tamper with the value of the protocol-oriented ad-

dresses of the input table. The third is the attack on

the PLC output table, which is similar to the second

attack. In the OpenPLC-based device, we compromise

its working memory via the Modbus server.

We conduct attack experiments on the original de-

vices and HRPDF-devices at the same time. The exper-

imental results are shown in Table 1. It can be seen that

HRPDF can effectively defend current common various

attacks against PLC. Fig.8 shows the basic architecture

of our experimental environment.

Case Study. Taking the control logic tampering at-

tack as an example, the adversary illegally tampers with

a simple control logic, which can manipulate a value of

output table. As shown in Fig.9, this type of attacks

can tamper with the original control logic into a forged

control logic and then influence the result of its exe-

cution, and can easily compromise the original PLC,

and then manipulate the field device via affecting the

output table. However, it can only tamper one of the

runtimes in HRPDF at most because the memory lay-

out and protocol-oriented addresses of the runtimes are

different. In the next, the runtime manager could find

the compromised runtime because of the abnormal re-

sults. Note that we deliberately fix the address of one

of the runtimes (runtime 1 in Fig.9) to be consistent

with the original PLC runtime for better comparison

experiments.

7○https://en.wikipedia.org/wiki/Circular buffer, Oct. 2021.

1316 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

Table 1. Defense Capabilities of HRPDF

Attack Type CSD-826 CSD-826 OpenPLC OpenPLC

(HRPDF) (Original) (HRPDF) (Original)

Firmware modification attack
√

×
√

×
Control logic tampering attack

√
×

√
×

PLC memory attack CONFIG segment attack
√

×
√

×
Input table attack

√
×

√
×

Output table attack
√

×
√

×

Fig.8. Basic architecture of experimental environment.

We compare defensive capabilities with different

types of previous work. IDM is an invariants-based

anomaly detection system [11]. ECFI is the first control-

flow verification system for PLC and belongs to the

category of local attestation [15]. PLCDefender is a re-

mote attestation framework with a physics-based model

to preserve the control behavior integrity of PLC [17].

Shade is a novel shadow memory technology against

control logic tamper attacks [26]. Table 2 shows the

comparison results of the defensive capabilities of these

approaches. It can be seen that these defense mecha-

nisms can only be used for specific attacks and cannot

comprehensively improve the security of PLCs.

CSD-826

(Original)

CSD-826

(HRPDF)

Runtime

CODE

CONFIG

OBJECT

CODE

CODE

CODE

CONFIG

CONFIG CONFIG

OBJECT OBJECT

OBJECT

Rumtime 1 Rumtime 2 Rumtime 3

Runtime Manager

Affect the Output Table

in Object Segment

Fig.9. Case study of the control logic tampering attack.

Table 2. Comparison of Defense Capabilities Between HRPDF and Other Mechanisms

Attack Type HRPDF IDM ECFI PLCDefender Shade

Firmware modification attack
√

×
√

× ×
Control logic tampering attack

√
×

√
×

√

PLC memory attack CONFIG segment attack
√

× × ×
√

Input table attack
√ √

×
√

×
Output table attack

√ √
×

√
×

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1317

6.2 Effectiveness in RO2: Performance

Overhead

To evaluate the performance overhead of the several

techniques presented in the paper on real-world cyber

physical system (CPS) control logic applications, we

widely collect representative control logics on Github.

A total of 4 833 control logics in the ST format are

collected, in which 492 of them can perform a real-

world CPS process. According to the functionalities

of the 492 control logics, they can be divided into five

categories of CPS processes, including manufacturing,

energy, chemical industry, water, and others. We use

them to evaluate the performance overhead of HRPDF.

The performance overhead is mainly in terms of CPU

and memory utilization in this paper. We use the perf

tool suite 8○ and the top tool 9○ that comes with the tar-

get system to obtain an accurate measurement value.

Real-World Impact. We execute these control log-

ics on both CSD-826 with HRPDF and the original

CSD-826. The comparison results are shown in Fig.10.

HRPDF does bring additional resource overhead, but

Manufa-

cturing

Energy Chemical

Industry

Water Others

CPS Process

(a)

Manufa-

cturing

Energy Chemical

Industry

Water Others

CPS Process

(b)

Manufa-

cturing

Energy Chemical

Industry

Water Others

CPS Process

(c)

Manufa-

cturing

Energy Chemical

Industry

Water Others

CPS Process

(d)

U
ti
li
z
a
ti
o
n
 (

%
)

U
ti
li
z
a
ti
o
n
 (

%
)

U
ti
li
z
a
ti
o
n
 (

%
)

U
ti
li
z
a
ti
o
n
 (

%
)

0.24

0.22

0.20

0.18

0.14

0.13

0.12

0.11

0.194

0.192

0.190

0.188

0.139

0.138

0.137

0.136

0.135

0.134

Fig.10. Impact of different control logics on resource overhead. (a) CPU utilization on CSD-826 (HRPDF). (b) CPU utilization on
CSD-826 (original). (c) Memory utilization on CSD-826 (HRPDF). (d) Memory utilization on CSD-826 (original).

8○https://man7.org/linux/man-pages/man1/perf.1.html, Oct. 2021.
9○https://man7.org/linux/man-pages/man1/top.1.html, Oct. 2021.

1318 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

the addition resource overhead is in an acceptable

range. In addition, the difference of CPS processes has

little impact on the additional resource overhead. These

experimental results show that our proposed techniques

have a limited impact on the performance overhead

when executing diverse real-world control logics.

Worst Impact. In order to further evaluate the im-

pact of other indicators on performance overhead, we

select two worst cases to evaluate CPU and memory

overhead on different implementations of runtimes. The

number of runtimes of implementations of HRPDF is

set to 3, and the number of I/O is set to 16. Com-

pared with other real-world control logic applications,

the PID algorithm [45] and the SHA-2 control logic have

the highest average CPU and memory utilization on

CSD-826 with HRPDF; therefore, we choose the two

cases for the next experiment.

Table 3 shows the CPU and memory utilization of

the worst case in different devices. Note that the num-

ber of runtimes in HRPDF is set to 3, and the number

of I/O is set to 16. The results show that the imple-

mentation of the HRPDF framework in CSD-826 causes

about 10.22% the additional CPU overhead and 5.56%

the additional memory overhead. Even in the worst

case, the performance overhead is limited to an accept-

able range. An additional 4.18% CPU and 2.09% mem-

ory are required in an OpenPLC-based device, which is

far from reaching 70% resource utilization.

Runtimes Number. We conduct experiments to ob-

serve the impact of the number of runtimes on perfor-

mance. Fig.11 and Fig.12 show the changes in per-

formance overhead caused by the number of runtimes

when the PLC executes SHA-2 control logic. With

the increase in the number of runtimes, the increase

in the utilization of CPU and memory is acceptable. In

CSD-826, each additional runtime will increase about

2.64% CPU and 1.72% memory utilization, while in

the OpenPLC-based device it is 0.65% CPU and 0.86%

memory utilization.

To prove that such additional overhead is accept-

able for PLCs, we investigate the CPU and memory

utilization of some off-the-shelf PLCs in normal ope-

rations. Because in some PLCs, the telnet or secure

shell server is enabled by default, we can get the de-

fault username and password from the PLC manual or

customer service staffs. Then we can remote login the

device and measure the CPU and memory utilization.

The results are shown in Table 4. From the results, we

can see that the performance of many existing PLCs

has been greatly improved, and more than 60% of the

CPU and memory resources of the PLC listed in the

table are idle. For example, the Wago 750-8212 PLC

even leaves more than 90% of the CPU and memory

unused. In addition, many modern conventional PLCs

use Cortex-A series CPUs, because not all the indus-

trial environments have extremely strict real-time re-

quirements. Our solution inevitably brings some time

overhead, but this is acceptable especially in PCS en-

vironments.

6.3 Effectiveness in RO3: Time Overhead

HRPDF adds three additional steps to the origi-

nal PLC cycle, which is the reason for the additional

time overhead. Experimental results show that the time

overhead for the runtime manager to choose the cor-

rect results is negligible. Therefore, we focus on the

additional time overhead of a whole PLC scan cycle

caused by the IPC between the runtime manager and

runtimes. To evaluate the time overhead, we design

different configurations to generate the runtime (hav-

ing different numbers of I/O or different numbers of

runtimes).

According to the communication mechanism in Sec-

tion 5, the time overhead of IPC depends on the amount

of the data transferred. Fig.13 shows the influence of

the number of I/O on time delay. In this experiment,

we set three runtimes, and calculate how much more

time that HRPDF spends in the PLC scan cycle than

the original device. The results show that as the num-

ber of I/O increases, the time delay caused by HRPDF

is gradually increasing. Fig.14 shows the influence of

the number of runtimes on time delay while the num-

ber of I/O is set to 16. The increase in the number

of runtimes will also lead to an increase in time delay.

The experimental results also show that the delay can

be controlled at about 0.6 ms less than 1 ms, which is

an acceptable cost for most industrial scenarios.

Table 3. Performance Overhead of the Worst Case in Different Devices

Control Logic CSD-826 (Original) CSD-826 (HRPDF) OpenPLC (Original) OpenPLC (HRPDF)

Average (%) Worst (%) Average (%) Worst (%) Average (%) Worst (%) Average (%) Worst (%)

PID algorithm 13.27 14.81 23.32 25.03 0.84 0.97 4.69 5.15

SHA-2 control logic 13.78 N/A 19.34 N/A 1.19 N/A 3.28 N/A

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1319

CPU Utilization

Memory Utilization

0.30

0.25

0.20

0.15

0.217 7

0.243 2

0.270 4

0.193 4

3 4 5

0.210 1

0.227 8

R
e
so

u
rc

e
 U

ti
li
z
a
ti
o
n

Number of Runtimes

Fig. 11. Impact of number of runtimes on resource overhead
(CSD-826).

0.06

0.04

0.02

3 4 5

R
e
so

u
rc

e
 U

ti
li
z
a
ti
o
n

Number of Runtimes

CPU Utilization

Memory Utilization

0.032 7

0.037 4

0.042 7

0.039 8

0.049 9

0.050 3

Fig. 12. Impact of number of runtimes on resource overhead
(OpenPLC-based device).

Table 4. Average Resource Usage in Different PLCs

Vendor & Controller CPU Core Main Memory Runtime OS CPU Utilization Memory

(MB) (%) Utilization (%)

Wago 750-8212 Cortex A8 1 GHz 1 512 Codesys V3 RTlinux 6.50 8.38

Wago 750-8202 Cortex A8 600 MHz 1 256 Codesys V2 RTlinux 31.41 13.56

Atekon NA-300 ARM9 400 MHz 1 128 N/A RTlinux 12.02 25.28

Atekon NA-400 Cortex A8 1 GHz 1 512 N/A VxWorks 3.49 11.51

Hollysys LK-210 Intel Xscale IXP42X 533 MHz 1 512 Codesys V2 Linux 41.43 32.81

SF-auto CSC-850 Cortex A8 1 GHz 2 512 ProConOS VxWorks 20.96 27.22

SF-auto CSC-830 Cortex A7 866 MHz 2 256 N/A VxWorks 17.73 21.18

SF-auto CSD-826 Cortex A7 866 MHz 2 512 N/A RTlinux 23.34 26.73

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

T
im

e
 D

e
la

y
 (

m
s)

CSD-826

OpenPLC

Average Time Delay

Worst Time Delay

Number of I/O

8 16 32

0.534
0.561

0.617

0.553

0.541

0.449

0.371

0.465

0.504
0.480

0.421

0.344

Fig.13. Impact of the number of I/O on time delay.

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

T
im

e
 D

e
la

y
 (

m
s)

CSD-826

OpenPLC

Average Time Delay

Worst Time Delay

Number of Runtimes

3 4 5

0.371

0.465

0.504

0.561 0.571

0.552

0.563

0.513

0.465

0.413

0.489

0.603

Fig.14. Impact of the number of runtimes on time delay.

In addition, due to the obfuscation technologies, the

control logic execution time of runtime also needs to

be evaluated. We conduct experiments to compare the

execution time of 492 different control logics in our

framework with the original device runtime. Fig.15

shows the experimental results, from which we could

see that the obfuscation technologies only cause less

than 0.015 ms average additional time overhead. This

effect is small enough to be negligible for the millisecond

scan cycle. Note that the time overhead does not in-

clude time for unpacking, which will only happen once

after a successful download.

1320 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

25%-75%

Time with 1.5 Interquartile Range

Median Line

Mean

Outliers

0.016

0.014

0.012

0.010

A
d
d
it
io

n
a
l
E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s)

Fig.15. Additional execution time of the control logics.

Discussion. The execution time of each hete-

rogeneous but functionally equivalent runtime is diffe-

rent, which means that the execution time will be sub-

ordinated to the slowest runtime. However, HRPDF

uses the shared memory for synchronization; therefore,

the runtime manager will not be blocked by runtimes

and we could set a waiting time threshold for the run-

time manager. Once the execution time of a runtime

exceeds the threshold, the runtime manager will mark

it as an exception and no longer wait. The value of the

threshold can be determined according to the actual

normal execution time and the real-time requirements

of the system. For some extreme time-sensitive scenar-

ios, such time overhead may not be desirable, but for

process control systems (PCS), e.g., chemical industry

and thermal power, this is completely acceptable.

7 Discussion

In HRPDF, the increase in the number of runtimes

will also increase the overhead of EWS, because the

number of corresponding compilers will also increase.

And to ensure the difference of runtimes, the cost of

randomization and obfuscation validation of EWS will

also increase. The increase in the number of runtimes

has little impact on the performance of the host com-

puter. We do not evaluate the increment of EWS’s

additional overhead, because we think the resources of

EWS are sufficient to cover these overheads.

The runtime manager is the most important part of

PLC. The approach we adopt is setting high privilege

and closing other additional services. In fact, the run-

time manager process can be protected separately. For

example, we can use TrustZone to protect it 10○. How-

ever, virtually each PLC relies on different architectures

and OSs. How to implement the process protection

technologies on these diversified architectures and OSs

is another practical issue that needs to be considered.

Junk instructions introduced as a part of the ob-

fuscation strategy will cause additional time overhead.

In addition, if carelessly selected, these instructions

may cause CPU-level scheduler conflicts, resulting in

pipeline stalls and even cache coherency issues, which

may have a considerable impact on the normal exe-

cution of the system. However, we do not find the

impact of this problem in actual experiments, and the

time overhead generated by junk instructions is com-

pletely acceptable. This problem needs to be further

analyzed, and it is also one of the next directions for

improvement.

8 Related Work

IDS. IDS is a defense mechanism that has been

widely studied and applied [46–50]. It usually uses the

data, such as network traffic and logs, to build a system

model and monitors the operation of the system in real

time. Once the behavior against the preset model is de-

tected, it will record and alarm. The IDS in ICS can be

divided into misuse-based intrusion detection [46, 47] and

anomaly-based intrusion detection [9–11]. Among them,

anomaly-based intrusion detection is more widely used

in ICS. Graveto et al. [48] proposed an intrusion detec-

tion mechanism based on shadow security unit (SSU),

which can monitor the I/O of the controller in a novel

and fine-grained way to detect many attacks against

the controller. Due to the working principle of SSU,

its deployment difficulty and cost are high, especially

in DCSs. In addition, this approach cannot detect

stealthy attacks [28, 37] at the firmware level in the so-

phisticated ICS cyber kill chain [49]. Caselli et al. [50]

also proposed interesting approaches for PLC runtime

monitoring and proposed the S-IDS, which have great

detection capabilities for sequence attacks in seman-

tic attacks. However, they focused on the detection of

sequential attacks and therefore lacked the ability to

detect other attacks, and they did not evaluated the

impact on the real-time and availability of the original

ICS. A common problem with existing intrusion detec-

tion technologies is that they can only detect the at-

tack after it takes effect, but cannot block it before it

takes effect. Therefore, when IDS detects an attack, it

means that the attack may have occurred and even it

has achieved its purpose of destroying ICS.

10○https://developer.arm.com/ip-products/security-ip/trustzone, Oct. 2021.

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1321

Attestation. Attestation needs to pre-set behavior

rules or system models and uses the collected PLC

data to determine whether there is an abnormality.

Previous work on the PLC attestation can be divided

into two categories: local attestation [15, 16] and remote

attestation [17–19,23,51]. The biggest difference between

the two is whether the verification is performed on PLC

or the external hardware device. However, most of the

proposed attestation technologies usually aim at a cer-

tain type of attacks and cannot be combined together

to improve defensive capabilities. In addition, few of

them evaluated the impact of defense mechanisms on

the real-time and availability of the original PLC.

Deception Defense. The deception defense is to

manipulate the information learned by the attacker dur-

ing the reconnaissance phase to prevent the attack. De-

fRec is such a mechanism to disrupt reconnaissance of

cyber-physical infrastructures via the physical function

virtualization [13]. Honeypot is also one of the effec-

tive deception defense technologies and always keeps

progressing. López-Morales et al. [14] proposed a high-

interaction, extensible, and malware-collecting honey-

pot called HoneyPLC, which significantly pushes the

state-of-the-art field forward. However, deception de-

fense does not improve the security of PLC; hence it

needs to be combined with other technologies in actual

deployment.

Formal Methods. The application of formal meth-

ods in ICS security is still in continuous development.

Existing work is mainly to perform model checking on

PLC programs, most of which analyzes and models the

control logic statically, such as [52–55]. It is worth

mentioning that Janicke et al. [56] proposed a runtime-

monitoring technology to ensure the normal operation

of ICS. However, this approach mainly focuses on con-

trol logic attacks. In addition, this approach is a re-

mote attestation approach so that external devices are

required during deployment.

9 Conclusions

We presented a novel PLC-compatible proactive de-

fense framework called HRPDF with redundant archi-

tecture in multiple layers. HRPDF includes a run-

time manager, multiple heterogeneous runtimes, and

compiling security enhancement mechanisms. These

heterogeneous but functionally equivalent runtimes can

defend against a variety of attacks against PLC. In

particular, we proposed an IPC mechanism to meet the

real-time and availability requirements of PLC. We im-

plemented a prototype of HRPDF on both real-world

PLC and OpenPLC-based device and evaluated it with

492 control logics from different industries. The results

showed that the proposed framework has satisfiable de-

fense capabilities against a wide spectrum of software-

oriented attacks with 10.22% additional CPU overhead,

5.56% additional memory overhead, and about 0.6 ms

additional time overhead. Compared with previous

work, HRPDF has stronger defense capabilities and can

block the attacks before they take effect within an ac-

ceptable cost.

In addition, the HRPDF will be further opti-

mized by considering the unpredictable low-level im-

pact caused by the improvement of the compilation

strategies, such as pipeline stalls and even cache co-

herency issues.

References

[1] McLaughlin S, Konstantinou C, Wang X, Davi L, Sadeghi

A, Maniatakos M, Karri R. The cybersecurity landscape in

industrial control systems. Proceedings of the IEEE, 2016,

104(5): 1039-1057. DOI: 10.1109/JPROC.2015.2512235.

[2] Knowles W, Prince D, Hutchison D, Disso J F P,

Jones K. A survey of cyber security management in in-

dustrial control systems. International Journal of Crit-

ical Infrastructure Protection, 2015, 9: 52-80. DOI:

10.1016/j.ijcip.2015.02.002.

[3] Zonouz S, Rrushi J, McLaughlin S. Detecting indus-

trial control malware using automated PLC code analy-

tics. IEEE Security & Privacy, 2014, 12(6): 40-47. DOI:

10.1109/MSP.2014.113.

[4] Farwell J P, Rohozinski R. Stuxnet and the future

of cyber war. Survival, 2011, 53(1): 23-40. DOI:

10.1080/00396338.2011.555586.

[5] Bencsáth B, Ács-Kurucz G, Molnár G, Vaspöri G, Buttyán

L, Kamarás R. Duqu 2.0: A comparison to Duqu.

Technical Report, CrySyS Lab, 2015. https://www.crys-

ys.hu/publications/files/duqu2.pdf, Nov. 2021.

[6] Lee R M, Assante M, Conway T. Analysis of the cyber

attack on the Ukrainian power grid. Technical Report,

Electricity-Information Sharing and Analysis Center, 2016.

https://media.kasperskycontenthub.com/wp-content/upl-

oads/sites/43/2016/05/20081514/E-ISAC SANS Ukrain-

e DUC 5.pdf, Nov. 2021.

[7] Lee R, Slowik J, Miller B, Cherepanov A, Lipovsky R.

Industroyer/Crashoverride: Zero things cool about a

threat group targeting the power grid. Technical Report,

Black Hat, 2017. https://www.blackhat.com/docs/us-

17/wednesday/us - 17 - Lee - Industroyer - Crashoverride-Ze-

ro-Things-Cool-About-A-Threat-Group-Targeting-The-Po-

wer-Grid.pdf, Nov. 2021.

[8] Di Pinto A, Dragoni Y, Carcano A. TRITON: The

first ICS cyber attack on safety instrument sys-

tems. Technical Report, Nozomi Networks, 2018.

https://www.nozominetworks.com/downloads/US/Nozom-

i-Networks-TRITON-The-First-SIS-Cyberattack.pdf, Nov.

2021.

https://doi.org/10.1109/JPROC.2015.2512235
https://doi.org/10.1016/j.ijcip.2015.02.002
https://doi.org/10.1109/MSP.2014.113
https://doi.org/10.1080/00396338.2011.555586

1322 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

[9] Ponomarev S, Atkison T. Industrial control system network

intrusion detection by telemetry analysis. IEEE Transac-

tions on Dependable and Secure Computing, 2016, 13(2):

252-260. DOI: 10.1109/TDSC.2015.2443793.

[10] Zhang F, Kodituwakku H A D E, Hines W, Coble J B. Mul-

tilayer data-driven cyber-attack detection system for indus-

trial control systems based on network, system and process

data. IEEE Transactions on Industrial Informatics, 2019,

15(7): 4362-4369. DOI: 10.1109/TII.2019.2891261.

[11] Feng C, Palleti V R, Mathur A, Chana D. A systematic

framework to generate invariants for anomaly detection in

industrial control systems. In Proc. the 2019 Network and

Distributed System Security Symposium, February 2019.

DOI: 10.14722/ndss.2019.23265.

[12] Cifranic N, Hallman R, Romero-Mariona J, Souza B, Cal-

ton T, Coca G. Decepti-SCADA: A cyber deception frame-

work for active defense of networked critical infrastructures.

Internet of Things, 2020, 12: Article No. 100320. DOI:

10.1016/j.iot.2020.100320.

[13] Lin H, Zhuang J, Hu Y C, Zhou H. DefRec: Establishing

physical function virtualization to disrupt reconnaissance

of power grids’ cyber-physical infrastructures. In Proc. the

27th Network and Distributed System Security Symposium,

February 2020. DOI: ndss.2020.24365.

[14] López-Morales E, Rubio-Medrano C, Doupé A, Shoshi-

taishvili Y, Wang R, Bao T, Ahn G J. HoneyPLC: A

next-generation honeypot for industrial control systems. In

Proc. the 2020 ACM SIGSAC Conference on Computer

and Communications Security, November 2020, pp.279-

291. DOI: 10.1145/3372297.3423356.

[15] Abbasi A, Holz T, Zambon E, Etalle S. ECFI: Asyn-

chronous control flow integrity for programmable logic con-

trollers. In Proc. the 33rd Annual Computer Security Ap-

plications Conference, December 2017, pp.437-448. DOI:

10.1145/3134600.3134618.

[16] Garcia L, Zonouz S, Wei D, De Aguiar L P. Detecting

PLC control corruption via on-device runtime verification.

In Proc. the 2016 Resilience Week, August 2016, pp.67-72.

DOI: 10.1109/RWEEK.2016.7573309.

[17] Salehi M, Bayat-Sarmadi S. PLCDefender: Improving re-

mote attestation techniques for PLCs using physical model.

IEEE Internet of Things Journal, 2021, 8(9): 7372-7379.

DOI: 10.1109/JIOT.2020.3040237.

[18] McCune J M, Li Y, Qu N, Zhou Z, Datta A, Gligor V,

Perrig A. TrustVisor: Efficient TCB reduction and attesta-

tion. In Proc. the 2010 IEEE Symposium on Security and

Privacy, May 2010, pp.143-158. DOI: 10.1109/SP.2010.17.

[19] Dessouky G, Zeitouni S, Nyman T, Paverd A J, Davi L,

Koeberl P, Asokan N, Sadeghi A. LO-FAT: Low-overhead

control flow attestation in hardware. In Proc. the 54th An-

nual Design Automation Conference, June 2017, Article

No. 24. DOI: 10.1145/3061639.3062276.

[20] Cheminod M, Durante L, Seno L, Valenzano A. Per-

formance evaluation and modeling of an industrial

application-layer firewall. IEEE Transactions on In-

dustrial Informatics, 2018, 14(5): 2159-2170. DOI:

10.1109/TII.2018.2802903.

[21] Li D, Guo H, Zhou J, Zhou L, Wong J W. SCADAWall:

A CPI-enabled firewall model for SCADA security.

Computers & Security, 2019, 80: 134-154. DOI:

10.1016/j.cose.2018.10.002.

[22] Jiang N, Lin H, Yin Z, Xi C. Research of paired industrial

firewalls in defense-in-depth architecture of integrated man-

ufacturing or production system. In Proc. the 2017 IEEE

International Conference on Information and Automation,

July 2017, pp.523–526. DOI: 10.1109/ICInfA.2017.8078963.

[23] Zeitouni S, Dessouky G, Arias O, Sullivan D, Ibrahim

A, Jin Y, Sadeghi A R. ATRIUM: Runtime attesta-

tion resilient under memory attacks. In Proc. the 2017

IEEE/ACM International Conference on Computer-Aided

Design, November 2017, pp.384-391. DOI: 10.1109/IC-

CAD.2017.8203803.

[24] Stój J. Cost-effective hot-standby redundancy with

synchronization using EtherCAT and real-time ether-

net protocols. IEEE Transactions on Automation Sci-

ence and Engineering, 2021, 18(4): 2035-2047. DOI:

10.1109/TASE.2020.3031128.

[25] Schwartz M D, Mulder J, Trent J, Atkins W D. Con-

trol system devices: Architectures and supply chan-

nels overview. Technical Report, Sandia National Labo-

ratories, 2010. https://energy.sandia.gov/wp-content/gall-

ery/uploads/JCSW Report Final.pdf, Nov. 2021.

[26] Yoo H, Kalle S, Smith J, Ahmed I. Overshadow PLC to de-

tect remote control-logic injection attacks. In Proc. the 16th

International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment, June 2019, pp.109-

132. DOI: 10.1007/978–3–030–22038–9 6.

[27] Bryan L A, Bryan E A. Programmable Controllers: Theory

and Implementation (2nd edition). Industrial Text Com-

pany, 1997.

[28] Ma R, Cheng P, Zhang Z, Liu W, Wang Q, Wei Q. Stealthy

attack against redundant controller architecture of indus-

trial cyber-physical system. IEEE Internet of Things, 2019,

6(6): 9783-9793. DOI: 10.1109/JIOT.2019.2931349.

[29] Basnight Z, Butts J, Lopez J, Dube T. Firmware modifi-

cation attacks on programmable logic controllers. Interna-

tional Journal of Critical Infrastructure Protection, 2013,

6(2): 76-84. DOI: 10.1016/j.ijcip.2013.04.004.

[30] Schuett C, Butts J, Dunlap S. An evaluation of modifi-

cation attacks on programmable logic controllers. Interna-

tional Journal of Critical Infrastructure Protection, 2014,

7(1): 61-68. DOI: 10.1016/j.ijcip.2014.01.004.

[31] Garcia L, Brasser F, Cintuglu M, Sadeghi A, Mohammed O,

Zonouz S. Hey, my malware knows physics! Attacking PLCs

with physical model aware rootkit. In Proc. the 26th Net-

work and Distributed System Security Symposium, Febru-

ary 26–March 1, 2017. DOI: 10.14722/ndss.2017.23313.

[32] Govil N, Agrawal A, Tippenhauer N O. On ladder logic

bombs in industrial control systems. In Proc. the 2017 In-

ternational Workshop on Security and Privacy Require-

ments Engineering and the 2017 International Work-

shop on the Security of Industrial Control Systems and

Cyber-Physical Systems, September 2017, pp.110-126. DOI:

10.1007/978–3–319–72817–9 8.

https://doi.org/10.1109/TDSC.2015.2443793
https://doi.org/10.1109/TII.2019.2891261
https://doi.org/10.14722/ndss.2019.23265
https://doi.org/10.1016/j.iot.2020.100320
https://doi.org/ndss.2020.24365
https://doi.org/10.1145/3372297.3423356
https://doi.org/10.1145/3134600.3134618
https://doi.org/10.1109/RWEEK.2016.7573309
https://doi.org/10.1109/JIOT.2020.3040237
https://doi.org/10.1109/SP.2010.17
https://doi.org/10.1145/3061639.3062276
https://doi.org/10.1109/TII.2018.2802903
https://doi.org/10.1016/j.cose.2018.10.002
https://doi.org/10.1109/ICInfA.2017.8078963
https://doi.org/10.1109/ICCAD.2017.8203803
https://doi.org/10.1109/ICCAD.2017.8203803
https://doi.org/10.1109/TASE.2020.3031128
https://doi.org/10.1007/978--3--030--22038--9_6
https://doi.org/10.1109/JIOT.2019.2931349
https://doi.org/10.1016/j.ijcip.2013.04.004
https://doi.org/10.1016/j.ijcip.2014.01.004
https://doi.org/10.14722/ndss.2017.23313
https://doi.org/10.1007/978--3--319--72817--9_8.

Ke Liu et al.: HRPDF: A Software-Based Heterogeneous Redundant Proactive Defense Framework 1323

[33] Senthivel S, Dhungana S, Yoo H, Ahmed I, Roussev V. De-

nial of engineering operations attacks in industrial control

systems. In Proc. the 8th ACM Conference on Data and

Application Security and Privacy, March 2018, pp.319-329.

DOI: 10.1145/3176258.3176319.

[34] Yoo H, Ahmed I. Control logic injection attacks on indus-

trial control systems. In Proc. the 34th IFIP TC 11 Inter-

national Conference on ICT Systems Security and Privacy

Protection, June 2019, pp.33-48. DOI: 10.1007/978–3–030–

22312–0 3.

[35] Kalle S, Ameen N, Yoo H, Ahmed I. CLIK on PLCs! at-

tacking control logic with decompilation and virtual PLC.

In Proc. the Workshop on Binary Analysis Research, Febru-

ary 2019. DOI: 10.14722/bar.2019.23074.

[36] Sun R, Mera A, Lu L, Choffnes D. SoK: Attacks on indus-

trial control logic and formal verification-based defenses. In

Proc. the 2021 IEEE European Symposium on Security and

Privacy, September 2021, pp.385-402. DOI: 10.1109/Eu-

roSP51992.2021.00034.

[37] Abbasi A, Hashemi M. Ghost in the PLC designing an unde-

tectable programmable logic controller rootkit via pin con-

trol attack. In Proc. the 2016 Black Hat Europe, November

2016.

[38] Robles-Durazno A, Moradpoor N, McWhinnie J, Russell G,

Maneru-Marin I. Implementation and detection of novel at-

tacks to the PLC memory of a clean water supply system.

In Proc. the 4th International Conference on Technology

Trends, August 2019, pp.91-103. DOI: 10.1007/978–3–030–

05532–5 7.

[39] Robles-Durazno A, Moradpoor N, McWhinnie J, Russell

G, Maneru-Marin I. PLC memory attack detection and re-

sponse in a clean water supply system. International Jour-

nal of Critical Infrastructure Protection, 2019, 26: Article

No. 100300. DOI: 10.1016/j.ijcip.2019.05.003.

[40] Hou Y, Such J, Rashid A. Understanding security require-

ments for industrial control system supply chains. In Proc.

the 5th IEEE/ACM International Workshop on Software

Engineering for Smart Cyber-Physical Systems, May 2019,

pp.50-53. DOI: 10.1109/SEsCPS.2019.00016.

[41] Behera C K, Bhaskari D L. Different obfuscation techniques

for code protection. Procedia Computer Science, 2015, 70:

757-763. DOI: 10.1016/j.procs.2015.10.114.

[42] Keliris A, Maniatakos M. ICSREF: A framework for au-

tomated reverse engineering of industrial control systems

binaries. In Proc. the 26th Annual Network and Dis-

tributed System Security Symposium, February 2019. DOI:

10.14722/ndss.2019.23271.

[43] Valois J D. Lock-free linked lists using compare-and-swap.

In Proc. the 14th Annual ACM Symposium on Principles

of Distributed Computing, August 1995, pp.214-222. DOI:

10.1145/224964.224988.

[44] Michael M M, Scott M L. Simple, fast, and practical

non-blocking and blocking concurrent queue algorithms.

In Proc. the 15th Annual ACM Symposium on Princi-

ples of Distributed Computing, May 1996, pp.267-275. DOI:

10.1145/248052.248106.

[45] Ang K H, Chong G, Li Y. PID control system ana-

lysis, design, and technology. IEEE Transactions on Con-

trol Systems Technology, 2005, 13(4): 559-576. DOI:

10.1109/TCST.2005.847331.

[46] Vollmer T, Alves-Foss J, Manic M. Autonomous rule cre-

ation for intrusion detection. In Proc. the 2011 IEEE Sym-

posium on Computational Intelligence in Cyber Security,

April 2011, pp.1-8. DOI: 10.1109/CICYBS.2011.5949394.

[47] Lin H, Slagell A, Di Martino C, Kalbarczyk Z, Iyer R K.

Adapting bro into SCADA: Building a specification-based

intrusion detection system for the DNP3 protocol. In Proc.

the 8th Annual Cyber Security and Information Intelligence

Research Workshop, January 2013, Article No. 5. DOI:

10.1145/2459976.2459982.

[48] Graveto V, Rosa L, Cruz T, Simões P. A stealth monitoring

mechanism for cyber-physical systems. International Jour-

nal of Critical Infrastructure Protection, 2019, 24: 126-143.

DOI: 10.1016/j.ijcip.2018.10.006.

[49] Assante M J, Lee R M. The industrial control system cy-

ber kill chain. Technical Report, SANS Institute, 2015.

https://sansorg.egnyte.com/dl/HHa9fCekmc, Nov. 2021.

[50] Caselli M, Zambon E, Kargl F. Sequence-aware intrusion

detection in industrial control systems. In Proc. the 1st

ACM Workshop on Cyber-Physical System Security, April

2015, pp.13-24. DOI: 10.1145/2732198.2732200.

[51] Kovah X, Kallenberg C, Weathers C, Herzog A, Albin M,

Butterworth J. New results for timing-based attestation. In

Proc. the 2012 IEEE Symposium on Security and Privacy,

May 2012, pp.239-253. DOI: 10.1109/SP.2012.45.

[52] Frey G, Litz L. Formal methods in PLC programming. In

Proc. the 2000 IEEE International Conference on Systems,

Man and Cybernetics, October 2000, pp.2431-2436. DOI:

10.1109/ICSMC.2000.884356.

[53] Adiego B F, Darvas D, Vinuela E B, Tournier J C, Bli-

udze S, Blech J O, Suarez V G. Applying model check-

ing to industrial-sized PLC programs. IEEE Transactions

on Industrial Informatics, 2015, 11(6): 1400-1410. DOI:

10.1109/TII.2015.2489184.

[54] Kuzmin E, Sokolov V A, Ryabukhin D. Construction and

verification of PLC-programs by LTL-specification. Auto-

matic Control and Computer Sciences, 2015, 49(7): 453-

465. DOI: 10.3103/S014641161407013X.

[55] Ryabukhin D, Kuzmin E. LTL-specification, verifi-

cation and construction of PLC programs. In Proc.

the Spring/Summer Young Researchers’ Colloquium

on Software Engineering, May 2014, pp.19-26. DOI:

10.15514/SYRCOSE-2014-8-3.

[56] Janicke H, Nicholson A, Webber S, Cau A. Runtime-

monitoring for industrial control systems. Electronics, 2015,

4: 995-1017. DOI: 10.3390/electronics4040995.

Ke Liu is a Ph.D. candidate in the

State Key Laboratory of Mathematical

Engineering and Advanced Comput-

ing, Zhengzhou. He received his B.S.

degree in computer science from the

State Key Laboratory of Mathematical

Engineering and Advanced Computing,

Zhengzhou, in 2017. His research

interests include ICS (industrial control system) security,

web security and program analysis of binary code.

https://doi.org/10.1145/3176258.3176319
https://doi.org/10.1007/978--3--030--22312--0_3
https://doi.org/10.1007/978--3--030--22312--0_3
https://doi.org/10.14722/bar.2019.23074
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1109/EuroSP51992.2021.00034
https://doi.org/10.1007/978--3--030--05532--5_7
https://doi.org/10.1007/978--3--030--05532--5_7
https://doi.org/10.1016/j.ijcip.2019.05.003
https://doi.org/10.1109/SEsCPS.2019.00016
https://doi.org/10.1016/j.procs.2015.10.114
https://doi.org/10.14722/ndss.2019.23271
https://doi.org/10.1145/224964.224988
https://doi.org/10.1145/248052.248106
https://doi.org/10.1109/TCST.2005.847331
https://doi.org/10.1109/CICYBS.2011.5949394
https://doi.org/10.1145/2459976.2459982
https://doi.org/10.1016/j.ijcip.2018.10.006
https://doi.org/10.1145/2732198.2732200
https://doi.org/10.1109/SP.2012.45
https://doi.org/10.1109/ICSMC.2000.884356
https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.3103/S014641161407013X
https://doi.org/10.15514/SYRCOSE-2014-8-3
https://doi.org/10.3390/electronics4040995

1324 J. Comput. Sci. & Technol., Nov. 2021, Vol.36, No.6

Jing-Yi Wang is currently a tenure-

track assistant professor at the College

of Control Science and Engineering,

Zhejiang University, Hangzhou. He

received his Ph.D. degree in information

system technology and design from

Singapore University of Technology and

Design, Singapore, in 2018, and his B.S.

degree in information engineering from Xi’an Jiaotong

University, Xi’an, in 2013. He was a research fellow at the

School of Computing, National University of Singapore,

Singapore, during 2019–2020, and at Information Systems

Technology and Design Pillar, Singapore University of

Technology and Design during 2018–2019. His research

interests include formal methods, software engineering,

cyber-security and machine learning.

Qiang Wei received his Ph.D. degree

in computer science and technology

from China National Digital Switching

System Engineering and Technological

Research Center, Zhengzhou. He is

currently a professor with the State

Key Laboratory of Mathematical En-

gineering and Advanced Computing,

Zhengzhou. His research interests include network secu-

rity, industrial internet security and vulnerability discovery.

Zhen-Yong Zhang received his

Ph.D. degree in control science and

engineering from Zhejiang University,

Hangzhou, in 2020, and B.S. degree

in automation from Central South

University, Changsha, in 2015. He

was a visiting scholar in Singapore

University of Technology and Design,

Singapore, from 2018 to 2019. Currently, he is a professor

in the College of Computer Science and Technology,

Guizhou University, Guiyang, and a research fellow in

the School of Control Science and Engineering, Zhejiang

University, Hangzhou. His research interests include

cyber-physical system security, applied cryptography and

machine learning security.

Jun Sun is currently a tenured

associate professor at the School of

Information Systems, Singapore Mana-

gement University, Singapore. He

received his B.S. and Ph.D. degrees in

computing science from the National

University of Singapore (NUS), Singa-

pore, in 2002 and 2006, respectively.

From 2010 to 2019, he was an assistant/associate professor

at the Singapore University of Technology and Design,

Singapore. He was a visiting scholar at MIT, Cambridge,

from 2011 to 2012. His research focuses on software

engineering, formal methods, program analysis, and

cyber-security. He is the co-founder of the PAT model

checker.

Rong-Kuan Ma received his Ph.D.

degree in the State Key Laboratory

of Mathematical Engineering and Ad-

vanced Computing, Zhengzhou, in 2021.

He is a system security researcher.

His research interests include program

analysis and embedded system security,

iCPS security, and Web security.

Rui-Long Deng received his B.Sc.

and Ph.D. degrees both in control

science and engineering from Zhejiang

University, Hangzhou, in 2009 and

2014, respectively. He was a research

fellow with Nanyang Technological

University, Singapore, from 2014 to

2015, an AITF Postdoctoral Fellow with

the University of Alberta, Edmonton, from 2015 to 2018,

and an assistant professor with Nanyang Technological

University, Singapore, from 2018 to 2019. Currently, he

is a professor with the College of Control Science and

Engineering, Zhejiang University, Hangzhou, where he

is also affiliated with the School of Cyber Science and

Technology, Zhejiang University. His research interests

include cyber security, smart grid, and communication

networks. Dr. Deng serves/served as an associate editor

for IEEE Transactions on Smart Grid and IEEE/KICS

Journal of Communications and Networks, and a guest

editor for IEEE Transactions on Emerging Topics in

Computing, IEEE Transactions on Cloud Computing, and

IET Cyber-Physical Systems: Theory & Applications.

He also serves/served as a symposium chair for IEEE

SmartGridComm’19 and IEEE GLOBECOM’21.

	HRPDF: A software-based Heterogeneous Redundant Proactive Defense Framework for Programmable Logic Controller
	Citation
	Author

	1 Introduction
	2 Preliminary
	2.1 PLC Programs and PLC Scan Cycle
	2.2 Redundant Architecture

	3 Threat Model
	4 HRPDF Design
	4.1 PLC Internal Design
	4.2 Engineer Workstation Design (EWS)

	5 HRPDF Implementation Details
	5.1 Platform
	5.2 Compiler Enhancement
	5.2.1 Address Randomization
	5.2.2 Obfuscation

	5.3 Runtime Manager and Runtime
	5.3.1 Runtime Manager
	5.3.2 Runtime

	5.4 Communication Mechanism

	6 Evaluation
	6.1 Effectiveness in RO1: Defense Capabilities
	6.2 Effectiveness in RO2: PerformanceOverhead
	6.3 Effectiveness in RO3: Time Overhead

	7 Discussion
	8 Related Work
	9 Conclusions

