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Abstract—Applying quantum computing to real world 

applications to assess the potential efficacy is a daunting task for 

non-quantum specialists. This paper shows an implementation 

of two quantum optimization algorithms applied to portfolios of 

trade finance portfolios and compares the selections to those 

chosen by experienced underwriters and a classical optimizer. 

The method used is to map the financial risk and returns for a 

trade finance portfolio to an optimization function of a quantum 

algorithm developed in a Qiskit tutorial. The results show that 

whilst there is no advantage seen by using the quantum 

algorithms, the performance of the quantum algorithms has no 

statistically significant degradation. Therefore, it is promising 

that in the future, with expected improvements in quantum 

hardware, the theoretically superior processing speeds, and data 

volumes that quantum offers, will also be applicable to trade 

finance. 

Keywords—quantum computing, credit, trade finance, supply 

chain finance. 

I. INTRODUCTION  

This paper shows the application of existing quantum 
computing algorithms to optimise a trade finance portfolio for 
supply chains. Like a portfolio of stocks, an optimal trade 
finance portfolio will maximise the returns while minimising 
the risk. However, the risk in this case is based on the 
likelihood of defaulting on the payback of the financing, for 
example a letter of credit. Determining the best mix for a trade 
finance portfolio is currently a highly manual and skilled job 
and market experts estimate that only 10% of the global 
available marketplace are satisfied with Supply Chain Finance 
(SCF) solutions [1]. The current market size for SCF is 
estimated to be at around US$ 3 trillion globally [1] and is 
expected to expand strongly in the coming years at a rate 
between 10% to 20% [2]. The driving forces behind the rapid 
growth of SCF solutions are an increase in supply chain risks 
due to globalisation, liquidity and cash flow management, and 
suppliers' growing requirements for better access to finance 
along with lower financing costs. Furthermore, IoT in 
manufacturing is generating vast amounts of data which could 
be used in decision-making models, allowing the supply chain 
ecosystem to act with the timely insight needed to optimize 
finance, resource management and logistics. For financing 
supply chain portfolios, more precise estimates of credit 
exposures should lead to better optimization decisions. More 
broadly, capital allocation across a range of corporate finance 
activities can also be improved by insights into the size and 
materiality of risks. 

Quantum computing has been applied to finance over the 
past few years [3], in particular for areas such as option 
pricing, risk management, client and product management, 

and portfolio optimisation showing potential advantages such 
as a quadratic speed up of Monte Carlo simulations over 
classical machines [4]. However, there are still issues that do 
not allow the advantages to be exploited today, such as loading 
data into quantum states and the low quality of quantum 
hardware. Progress on quantum computer hardware continues 
at a good pace with significant research and investment by 
many companies around the world, for example IBM 
announced a new quantum computing milestone, with a 
Quantum Volume of 64 [5]. Furthermore, interest is growing 
in major banks such as Goldman Sachs, JPMorgan and 
Citigroup having set up quantum computing initiatives [6]. 
Any non-deterministic and computationally intense process 
with a large set of variables is a candidate for improvement by 
quantum computing in the future. This paper explores the 
accuracy of two quantum algorithms in selecting a number of 
corporates to finance by comparing three models (one 
classical and two quantum) to that of an experienced 
underwriter.  

II. APPROACH 

Quantum computing algorithms are complex and time-
consuming to create, requiring specialised knowledge outside 
the capability of most underwriters. However, there are 
already many algorithms existing for many types of problems 
[7]. Furthermore, IBM Quantum Services provides tools and 
tutorials showing examples of using certain quantum 
algorithms [8] which can be implemented in their Qiskit 
development environment [9]. It was decided to leverage the 
stock portfolio optimisation tutorial [10] as a basis for 
exploring trade finance portfolio optimisation.  

The overall objective of any portfolio optimisation is to 
maximise returns whilst minimising risk. One main difference 
for our use case is that the risk for the portfolio is captured by 
the likelihood of defaulting rather than the volatility of stock 
prices. Another difference is that the return is not simply a 
stock price difference but is the interest paid and fees charged 
for the financing. Optimising the portfolio is achieved by 
introducing a constraint on the acceptable risk level, q, and 
then maximize the return under this constraint by the best 
selection of assets (i.e. companies to finance). In the tutorial 
the value of q=0.5 is for a balance of risk to returns for 
illustration. For different values of q, we expect to find 
different selections. For example, q=0 is considered risk-
neutral and the optimal solution would only maximize the 
expected return independent of the risk. As q increases, the 
solution becomes more and more risk-averse and possibly 
reduce returns. Solving the problem for a reasonable set of q 
leads to the so-called efficient frontier of risk and return, i.e. 
for every risk level, we get the maximum expected return that 



 

 

 

can be achieved. In other words, q is an implicit way to control 
the risk taken in the optimal solution of the resulting 
optimization problem.  

The stock portfolio algorithm is a mean-variance 
optimization problem for n selections. In this paper the main 
selection shown is 6 companies out of 10 in total using 20 
performance parameters. A covariance matrix of the scoring 
of the company’s performance is calculated and input to the 
quantum algorithms along with the return equivalent values, 
and the risk factor. The overall process flow used is to pre-
process the base data, load the data into the optimisation 
algorithms and then analyse the results (Fig. 1).  

Fig. 1. Overall data preparation and processing flow.  

A. Base Data 

Performance parameters used were collected from the 
following sources: 

• Annual report and quarterly filings – 
including Financial Highlights, Chairman’s 
Statement, CEO’s Statement, Operations 
Review, Board of Directors and Key 
Management, Corporate Information, etc. 

• Manually underwriting - a section of the annual 
report including: Financial Statements, 
Statements of Financial Position, Consolidated 
Statement of Profit or Loss and Other 
Comprehensive Income, etc. 

• Country Risk evaluation parameters – 
including economic and political risks, core 
fundamentals such as demographics and 
infrastructure 

These were finalised into 20 parameters for counterparty 

financial metrics and sector country risk, broadly categorized 

under: 

• Liquidity position 

• Business performance 

• Fundamental solidity 

• Sector risk constraints 

The 10 companies chosen were across 2 sectors and 
diversified across geographies: 

Department Stores: Woolworths Group Ltd (ASX: WOW), 

Walmart Inc (NYSE: WMT), Tesco PLC (LON: TSCO), 

Shoprite Holdings Ltd (JSE: SHP), Avenue Supermarts Ltd 

(NSE: DMART). 

 

Steel Manufacturing: 

Nippon Steel Corp (TYO: 5401), JSW Steel Limited (NSE: 

JSWSTEEL), ArcelorMittal SA (AMS: MT), Novolipetsk 

Steel PAO (NCX: NLMK), Hoa Phat Group JSC (HPG.HM). 

B. Data Processing 

The performance parameters of each company were weighted 

and summed in Microsoft Excel to give a weighted score: 

 

S = ∑(s * w)    (1) 

 

Where s is a value between 0 and 100, mapped to the actual 

metric value and w is the relative importance weight of the 

metric compared to other metrics, as decided by the 

underwriter and applied to all companies. The summation of 

the individual scores combined with the weights provide an 

output in the form of a rating which serves as a tool for the 

underwriter to decide on the companies to pick, vis-à-vis the 

returns expected from each company. 

Pandas software library was used to extract the data from the 

Excel file and import into Python lists. The covariance was 

calculated using standard Python NumPy functions. The 

covariance along with the financing interest rate, as the 

equivalent return, were loaded into the optimization 

algorithms. 

C. Optimization Algorithms 

Three algorithms were used to determine the optimum 

selection: a classical Minimum Eigenvalue Algorithm, 

Variational Quantum Eigensolver (VQE) and Quantum 

Approximate Optimization Algorithm (QAOA). Each 

algorithm was executed for ten risk values from q=0.0 to 

q=1.0 in steps of 0.1 for the same returns and covariance 

matrix. 

The code in the tutorial [10], to solve the mean-variance 

portfolio optimization problem for n stocks, was modified for 

n companies’ financing. The problem to optimize for now 

becomes: 

 

 min 𝑞𝑥𝑇 ∑ 𝑥 − 𝜇𝑇𝑥   (2) 

 

For 𝑥 ∈{0,1}n indicating which company to pick (x=1) or 

not to pick (x=0) with the constraint that the number of 

selected companies equals the total budget, B, available. 

Also, it is assumed that all financing amounts are the same 

for all companies (i.e. 1Tx = B). μ is a vector of interest rates 

for financing the companies, Σ is the covariances between 

the company metrics, and q is a factor for the risk appetite of 

the decision maker and is always >0. 

The equality constraint 1Tx=B is mapped to a penalty term 

(1Tx−B)2 which is scaled by a parameter and subtracted from 

the objective function. The resulting problem can be mapped 

to a Hamiltonian function whose minimum energy ground 

state corresponds to the optimal solution.  

The classical Minimum Eigenvalue Algorithm works on the 

principal that eigenvectors represent the directions of the 

spread or variance of data and the corresponding eigenvalues 

are the magnitude of the spread in these directions. This 

 



 

 

 

optimization algorithm finds the eigenvalue in generalized 

eigenvalue problems.  

The Variational Quantum Eigensolver (VQE) is used for 

optimization applications harnessing energy states to 

calculate the function of the variables it needs to optimize. In 

financial services, the VQE has been used in stock portfolio 

optimization in the tutorial.  

The Quantum Approximate Optimization Algorithm 

(QAOA) is a hybrid quantum-classical variational algorithm 

designed to address combinatorial optimization problems. A 

quantum circuit is created to prepare a quantum state 

according to a set of variational parameters and is executed. 

The measurement outputs of the quantum circuit are then read 

by a classical computer and used to further optimize the 

parameters feeding back to the quantum machine in a closed 

loop.  

The three algorithms compute a minimum eigenvalue for an 

operator implementing the same programming interface 

allowing the different algorithms to be used interchangeably.  

To evaluate the performance of the algorithms, we have used 

the IBM Qiskit framework accessing the quantum systems 

and simulators available in the IBM Quantum network. All 

the experiments were executed on quantum simulators to 

remove variations from hardware noise.  

D. Scenarios and analysis 

The first trial scenario was to select 2 companies out of a total 

of 4 to confirm the functions were executing as expected. The 

results seemed promising and the selection was expanded to 

10 companies out of 25 but the processing time increased to 

greater than 12 hours, too slow to be practical. Finally, 6 out 

of 10 companies were chosen from 2 sectors: retail and steel 

and with geographical diversity. 

Each company’s credit worthiness and potential equivalent 

return was assessed by an underwriter and the portfolio 

manually compiled for each risk value from 0.0 (risk neutral) 

to 1.0 (risk adverse). The asset selections of the algorithms 

were found for each risk value and compared to the manual 

selections of the underwriter. An accuracy scores was 

calculated by summing the number of times the selection of 

an algorithm matched that of the underwriter. 

To further analyze the behavior of quantum algorithms the 

number of selected companies out of the total 10 was 

decreased and accuracy scores measured. 

III. RESULTS 

Results shown here are for selecting 6 out of 10 companies 

across 2 sectors and diversified for geography. The first 

observation was that the asset selections (“1” in cells shaded 

in green in Table. I) for differing risk appears relatively stable 

for the classical algorithm with more variation for VQE and 

even more for QAOA. Also, the QAOA algorithm does not 

always select 6 assets, for example with q=1.0 only has 3 

selections, q=0 has 7 selections and q=0.5 has 5 selections. It 

is not clear where the variation arises from and is an area that 

can be further explored. 

To check on the stability of the results and to explore possible 

differences in accuracy with the number of selections, it was 

decided to reduce the number of companies to select from 6 

to 1 and re-run the experiments for all values of q. Results 

show the accuracy increasing with the number of selections 

for all algorithms (Fig. 2). The accuracy for the classical 

algorithm appears above those of the quantum algorithms 

(blue line on Fig. 2) and has a higher average (Table III) and 

lower variance. This is even clearer if only selections of 3 to 

6 are statistically analysed (not shown). However, a one-way 

analysis of variance (ANOVA) shows that there are no 

significant differences in the distributions of three algorithms 

(F(2,15)=0.96, p=0.40) (Table IV), i.e. they all exhibit the 

same behavior. 

TABLE I. SIX COMPANIES SELECTED BY CLASSICAL, VQE AND QAOA ALGORITHMS COMPARED TO MANUAL. 

 
 

TABLE II. ACCURACY SCORES FOR COMPANIES SELECTED THE ALGORITHMS COMPARED TO MANUAL. 

 



 

 

 

 
Figure 2. Accuracy scores for varying number of selections. 

IV. DISCUSSION 

As there is no statistical difference between the accuracy of 

VQE and QAOA quantum algorithms to classical algorithm 

in the results we cannot conclude that there is any advantage 

in using quantum algorithms with this data. However, as there 

is no difference then there is also no disadvantage. Hence, it 

is hopeful that when quantum computing can be scaled up 

with improved hardware, the amount of data that can be 

processed should also be able to also scale efficiently. This 

would allow the finance industry to be better equipped to deal 

with the higher data volumes and more features. For this use 

case there are over 200 more data points that could be 

explored from other financial metrics in the P&L, Balance 

Sheet and Auditor’s notes of companies as well as transaction 

data analysis & payment track records. Also, macroeconomic 

data relating to sector, economy, and country or region could 

also be included. Using all this data with efficient quantum 

algorithms could lead to improved trade finance portfolio 

optimization. 

This is just the beginning and future work will include 

selecting more companies out of larger total numbers of 

companies and using more performance parameters with the 

algorithms. Executing on quantum hardware would also be 

necessary to prepare for when quantum computing is 

sufficiently developed, and the algorithms can be practically 

implemented. Uses of these algorithms would complement 

the skills and experience of underwriters showing possible 

optimal combinations for large numbers of financing 

opportunities. It is most likely that first uses would be in the 

food and beverage services and credit insurance industries 

where the data volumes are high and contract values are low.  
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TABLE III. CUMMULATIVE ACCURACY 

Groups Count Sum Average Variance  

      

Classical 6 3.4 0.566667 0.022947  

VQE 6 2.68 0.446667 0.029387  

QAOA 6 2.51 0.418333 0.063337  
 

TABLE IV. STATISTICAL ANALYSIS OF OPTIMISATION SCORES 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 0.074411 2 0.037206 0.964958 0.403435 3.68232 

Within Groups 0.57835 15 0.038557    

       

Total 0.652761 17         
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