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Abstract—A robust Origin-Destination (OD) prediction is key
to urban mobility. Such a model can minimize the operational
risks and improve service availability, among many other upsides.
Here, we examine the use of Graph Convolutional Network
(GCN) and its hybrid Markov-Chain (GCN-MC) variant to per-
form a context-aware OD prediction based on a large-scale public
transportation dataset collected in Singapore. Compared with the
baseline Markov-Chain algorithm and GCN, the proposed hybrid
GCN-MC model improves the prediction accuracy by 37% and
12% respectively. Lastly, the addition of temporal and contextual
information further improves the performance of the proposed
hybrid model by 4− 12%.

Index Terms—Graph Convolutional Network (GCN); Markov
Chain; public transportation; OD prediction; explainable AI
(XAI)

I. INTRODUCTION

Mass public transportation is one of the most important
infrastructures in major cities, allowing millions of people to
move seamlessly. For land-scarce cities, such as Tokyo and
Singapore, it is critical to improve transport infrastructure
by estimating the future demand for an efficient, reliable,
and affordable mobility. OD prediction, a key component of
this demand analysis, has received a considerable amount of
attention due to a surge in the amount of available public
trips data [1, 2, 3, 4, 5]. However, the task is uniquely
challenging because the underlying dataset tends to have high
dimensionality, exhibits spatial and temporal dependencies,
and the prediction itself is sensitive to contexts (eg., time of the
day, traffic condition, disruptions) [6]. Therefore, we propose
a modeling framework that solves the high-dimensionality,
spatiotemporally-dependent OD problem through a Graph
Convolutional Network (GCN) and incorporates contexts using
a Markov Chain (MC) algorithm. To the best of our knowl-
edge, this is a novel approach in the OD prediction literature.

The rest of the paper is organized as follows. Section II
reviews recent literature from a deterministic, rule-based algo-
rithm to a more probabilistic approach, marked by advances
in the deep learning framework. Section III describes the
dataset and formalizes different ways of defining the OD
graphs. Section IV explains the GCN model, formulates the
hybrid GCN-MC model, and proposes an evaluation metric for
performance evaluation. Next, Section V presents the results
and discusses notable findings. Lastly, Section VI concludes

the paper by identifying the limitations of the current model
and the future research direction.

II. RELATED WORK

From linear-based modeling [7, 8, 9] to a nonlinear ap-
proach of nonparametric regression and chaotic models [10,
11], OD prediction is now leveraging deep learning framework
to make use of the available big data [12, 13]. In particular,
GCN has consistently performed better on network-based pre-
diction tasks, including that of OD trips, because the model can
capture the non-Euclidean characteristic and spatio-temporal
dependency of the dataset [14].

Other studies are more focused on developing a better OD
data structure rather than the actual modeling. For instance,
[15, 16] proposed OD graphs that are sensitive to the under-
lying spatiotemporal dependency, while [17] combined users’
context and their social media captions to extract clues for
their next destination.

III. DATASET

A. Smart Card Overview

In Singapore, the Mass Rapid Transit (MRT) system, was
constructed by the Land Transport Authority (LTA), and
consists of five MRT lines. In addition to the MRT Network,
Singapore also has more than 5,000 bus stations scattered
across the city-state [18].

EZ-Link card is the smart card used in Singapore for the
access of public transportation, including buses and MRT.
As described in Table I, each EZ-Link record is associated
with a ride, including the boarding and alighting station
IDs and its corresponding entry and exit timestamps. Other
information such as the travel mode and commuter types
are also recorded. In addition, each smart card is associated
with an anonymized and encrypted unique identifier to protect
commuters’ privacy [6].

In our study, we analyze the data captured by the EZ-Link
card from January 1st 2016 to May 31st 2016, corresponding
to 70,000+ randomly selected commuters. There are around
7.5 million OD trips made by those 70,000+ commuters. In
addition, we primarily focus on bus trips, rather than MRT
trips. This is because the former offers greater OD trips
granularity, and therefore, a more nuanced mobility behavior.



TABLE I: Smart Card Dataset Attributes

Attribute Description
card id unique identifier of a smart card
type commuter type (i.e., child, adult, se-

nior)
mode transport mode of the ride
entry date starting date of a ride
exit date ending date of a ride
entry time starting time of a ride
exit time ending time of a ride
origin id unique identifier of the origin MRT

station/bus station
destination id unique identifier of the destination

MRT station/bus station

B. Trips Regularity

An important feature of public commuting, particularly in
Singapore, is its regularity. When surveying approximately
200, 000 randomly selected users across the 5-month period,
Figure 1 illustrates how the number of users exponentially falls
with an increasing number of unique final destination This
insight is significant in our problem formulation, especially
when we try to combine GCN with an MC algorithm (to be
detailed in Section IV-C). The hybrid GCN-MC will penalize
incorrect next station prediction, depending on how likely
the next state is in relation to the global-level probability
distribution.

Overall, the regularity of trips is commonly observed in
public transport and ride-sharing services, including that of
bicycle and e-scooters [19, 20, 21, 22]. On the other hand,
social-media-related trips, such as those found in Foursquare,
are generally more irregular [23].

Fig. 1: Regularity of Trips in Singapore’s Public Transporta-
tion Dataset (based on 200, 000 randomly sampled commuters
with a total of 21.3 million trips)

C. OD Graph Definition
For this study, a collection of daily trips made by one user

(i.e., a commuter) is represented as a directed graph, g.

g = (Vg,Eg,Ag), g ∈ G (1)

Here, G is the entire collection of directed graphs correspond-
ing to a given set of users; Vg is a set of nodes in a graph g,
representing different bus stations, and |Vg| is the total number
of nodes; Eg is a set of edges in graph g referring to the
connectivity between nodes. An edge, e(v1, v2) ∈ Eg , implies
that there is at least one trip made by the user from v1 to v2. In
some of the OD graphs, each edge e(v1, v2) ∈ Eg may carry
a weight, e.g. the travel duration for a trip from v1 to v2. Ag

= (aij)|Vg|×|Vg| ∈ R|Vg|×|Vg| is the adjacency matrix that
captures the graph’s connectivity information. In other words,
∀aij ∈ Ag , if ∃e(vi, vj) ∈ Eg , aij = 1; otherwise, aij = 0.

In addition, we maintain a feature matrix Xvi
g for each node

vi in graph g, where vi ∈ Vg and g ∈ G. To be more specific,
Xvi

g = [Xvi
1 , · · · , Xvi

|F |] ∈ R1×|F |. The entire feature space,
F , represents a variety of spatiotemporal attributes, such as
the origin location, duration before the next trip, etc.

Last but not least, Yg = [Y1, Y2, · · · , Y|Vg|] ∈ R1×|Vg| is
the target vector of a graph g with |Vg| nodes. The target
variable, Yvi , of a node vi, is the node’s next station unique
identifier (ID). The value for Yvi can either be the destination
ID if vi is the originating station or the next-origin ID
if vi is the alighting station, but not the terminal station1.
After completing the feed-forward operations as discussed
in Section IV-B, a node vi is going to output a prediction
matrix of size (1 × nd), where nd refers to the total number
of next station predicted. The model then selects the next
station prediction, ŷvi , with the highest confidence level. A
comparison between ŷvi

and yvi ∈ Yg is made to calculate the
loss and backpropagate the parameter updates through gradient
descent.

This paper will consider two different family of graphs: (1)
Spatial-only and SpatialTemporal graphs to evaluate the effects
of temporality, as well as (2) Same-users and Random-users
graphs to examine the influence of user’s context or patterns
on accuracy. In summary, there are a total of four graphs
being considered, including the i) Spatial-only+Same-users; ii)
SpatialTemporal+Same-users; iii) Spatial-only+Random-users;
and iv) SpatialTemporal+Random-users.

Spatial-only graphs. For each node in graph g, the spatial
feature space represents the originating station ID, while the
edge attribute takes the Boolean value of 1 for connection or
0 otherwise.

SpatialTemporal graphs. This class of graphs captures addi-
tional temporal information in their nodes including:
• Travel gap. The duration, in seconds, for a user to make

the next trip after alighting. For the first and the last trip
of the day, the corresponding travel gap is assigned a
value of −999.

1A terminal node, vterminal, represents the final station a user alights to
on a particular day, and its Yterminal is assigned the integer value of -999.



• Boarding hour. The hour [0..23] by which a trip between
two nodes started.

• Alighting hour. The hour [0..23] by which a trip between
two nodes ended.

• Is weekday. A Boolean value indicating whether a trip is
made on weekdays.

and in their edges, e(vi, vj):
• Trip duration. The duration of a trip, in seconds, between

two connected nodes.

Same-users graphs. 70, 000 commuters are randomly selected
from the January 2016 dataset, and their subsequent 4-month
trips are retrieved (a total of 7.5M records).

Random-users graphs. 70, 000 commuters and their corre-
sponding monthly trips are sampled for each of the 5-month
period.

The nodes are split into three disjoint subsets, namely
training, validation, and testing sets, based on a ratio of
8:1:1. During any one of the three phases, the nodes that are
irrelevant to the current phase will be masked, e.g. testing
and validation nodes are masked during the training phase.
Masking allows graphs to preserve their critical adjacency
information while maintaining separation across the different
phases.

In order to better understand the sizes of graphs generated,
we summarize their characteristics and the distribution of test-
ing nodes in Table II. We have made three main observations.
Firstly, the number of nodes in each graph is generally small,
e.g., over 58% of graphs have up to four nodes. Secondly, the
graphs with four nodes are the most common. This represents
our everyday commute to work, school, and other places of
interests. Lastly, although rare, there are some graphs with
more than 14 nodes (about 0.7% of them).

TABLE II: Summary Statistics of Nodes and Graphs Used For
Testing

# of nodes
per graph # of graphs Proportion of

testing nodes (%)

2 78,537 7.86
3 30,394 4.61
4 129,159 25.91
5 36,982 9.33
6 47,001 14.13
7 28,398 9.96
8 24,989 10.02
9 11,726 5.28

10 8,757 4.33
11 5,146 2.85
12 3,369 2.05
13 1,894 1.24

>= 14 3,067 2.42

IV. METHODOLOGIES

A. Markov Chain Baseline

Markov Chain (MC) is a stochastic model that describes
the probability of a next state, given its current state and

the probability of transition [24, 25]. In our study, the MC
model calculates the proportion of correct (i.e. within the top-
k, where k = 1 and k = 3 in our implementation) next state
predictions, vi.next, given its current state, vi.current. Its
pseudo-code is defined in Algorithm 1.

Algorithm 1 Baseline Markov-Chain Model Algorithm (for
Top-k)
Input:HashMapfreq ← 〈origin : next1, · · · , nextk〉,
graph collection G
Output: accuracy
total correct← 0; total nodes← 0; accuracy ← 0
foreach g ∈ G do

foreach v ∈ Vtest
g do

if ∃ v.next and v.next ∈ HashMapfreq[v.current] then
total correct← total correct+ 1

total nodes← total nodes+ 1

accuracy ← total correct/total nodes

returns accuracy

HashMapfreq is generated from the global OD trips
dataset. The key represents a collection of originating station
IDs and its corresponding value represents a list of top-k next
station IDs.

B. Graph Convolutional Network (GCN) Baseline

GCN is commonly used to solve node embedding, link
prediction, and node classification problems, such as OD pre-
diction [26]. Different from its Graph Neural Network (GNN)
predecessor, the convolution layer in GCN learns the latent
representations of neighboring nodes in a Message Passing
(MP) process. MP dictates that for each node, vi ∈ Vg , an
aggregation function will combine and transform its adjacent
nodes’ embeddings at time t to yield a new node embedding
Xvi

g at time t + 1. For our study, we use a linear aggregation
function [26], as defined in Equation (2).

Xvi
g (t + 1) = D−0.5AD−0.5Xvi

g (t) ·Θ (2)

where, D is the degree matrix, A is the adjacency matrix, and
Θ is a set of learnable weights and bias matrices.

The transformed feature matrix is then passed through a
post-MP module, which consists of two fully linear networks
(dropout rate = 0.25) with an output size of 1024 and nd

respectively. The working diagram of the complete GCN
model is illustrated in Figure 2.

We use a negative log likelihood loss function with a
log softmax non-linear activation (or the Categorical Cross
Entropy (CCE) as defined in Equation (3)). Here, M is the
total number of batched nodes currently evaluated, C is the
entire set of possible next stations, y is the target variable, and
ŷ is the predicted outcome.

CCE = − 1

M

M∑ C∑
c=0

yc · log ŷ + (1− yc) · log(1− ŷc) (3)



Fig. 2: Our deep graph network with three layers of GCN, a post-MP module consisting of two linear layers, a log softmax
activation, and a negative log likelihood loss function.

We optimize the hyperparameters for the final model config-
uration by conducting a grid scan with a k-fold cross validation
approach (where k = 10) [27].

Fig. 3: The Distribution of Confidence Level for Incorrect and
Correct Predictions

C. GCN-Markov Chain Hybrid Model

In the hybrid model, we attempt to constrain any uncertain,
and often incorrect, prediction to be as close as possible to the
general trend. To this end, we incorporated an MC process into
the negative log likelihood loss function. Given the regularity
of OD public trips as elaborated in Section III-B, the additional
penalty is proportional to the inverse of p(ŷi|x), where x is
the current state and ŷi is the predicted next state. Essentially,
the factor proportionately penalizes incorrect prediction that
occurs infrequently in the global distribution of OD trips as
described in Equation (4).

MarkovChain CCE = (1 + PenalizingFactor) ·CCE (4)

where the PenalizingFactor, PF (Xg.current, Ŷ ), takes in
as input a set of current stations Xg.current, and their
corresponding predictions Ŷg , to return a single continuous

scalar value that lies within [0, 1] by applying a Sigmoid
function as in Equation (5).

PF = Sigmoid

|Vg|∑
i=1

h(yvi , ŷvi) ·
1

p(ŷvi |xvi .current)


(5)

The boolean function, h(yi, ŷi), ensures that the modified loss
function applies only to nodes that make incorrect prediction
as in Equation (6).

h(yvi , ŷvi) =

{
1, if yvi 6= ŷvi

0, if yvi = ŷvi

(6)

D. Evaluation Metric: Accuracy/Proportion Trade-off

As illustrated in Figure 3, there are two distinct confidence
distributions for the incorrect and correct predictions. As
expected, the average confidence level is generally higher for
correct predictions at 0.98 than for incorrect predictions at
0.22.

These trends beg the question: what if we predictions only
when their confidence is relatively high (ie. above a certain
threshold)? Accordingly, we introduce a confidence threshold,
where a lower value will increase the proportion of test cases
at the expense of accuracy, and vice versa; a trade-off.

This trade-off metric, as defined in Equation (7), closely
resembles the F1 score that calculates the harmonic mean
between accuracy and proportion.

Trade-off Score = 2× accuracy × proportion

accuracy + proportion
(7)

V. RESULTS AND DISCUSSION

A. Preliminary Results

In our preliminary evaluation, we compare the performance
of the different models and graph data structures with the
baseline MC algorithm without the dynamic confidence thresh-
olding as summarized in Table III.



(a) Same-users (b) Random-users

Fig. 4: Changes in Proportion (%) with Increasing Confidence Threshold for (a) Same-users, and (b) Random-users

(a) Same-users (b) Random-users

Fig. 5: Changes in Accuracy (%) with Increasing Confidence Threshold for (a) Same-users, and (b) Random-users

TABLE III: Preliminary evaluation without the dynamic
thresholding of the confidence level

Model Types Accuracy (%)
Same-users Random-users

MC Spatial(Top-1) 25.08± 0.01 26.10± 0.03
MC SpatialTemporal(Top-1) 30.52± 0.01 29.25± 0.02

MC Spatial(Top-3) 32.08± 0.01 33.10± 0.03
MC SpatialTemporal(Top-3) 40.52± 0.01 39.25± 0.02

GCN Spatial 42.73± 0.01 43.98± 0.02
GCN SpatialTemporal 48.40± 0.07 47.48± 0.20

GCN-MC Spatial 57.07± 0.01 58.86± 0.01
GCN-MC SpatialTemporal 58.91± 0.01 57.43± 0.01

GCN significantly improves the baseline MC model by 17%
and 18% in the Spatial-only and SpatialTemporal graphs re-
spectively. The hybrid GCN-MC model further improves GCN
by 15% and 11% in the Spatial-only and SpatialTemporal

graphs respectively. If we compare between Same-users and
Random-users graphs, the former is performing better by 1.2%
when temporality is considered. This suggests the importance
of users’ context and temporality in OD prediction tasks.

B. Models’ Accuracy versus Proportion Trade-off

The accuracy versus proportion trade-off is computed at
every testing epoch by first deriving the confidence distribution
of correct predictions and varying the confidence threshold.

Proportion. As illustrated in Figure 4, the hybrid GCN-MC
models increase the proportion of confident test cases by
1%−2% as compared to their GCN counterparts. In addition,
the SpatialTemporal graphs perform more predictions than the
Spatial-only graphs by 1% − 8%. Similarly, the Same-users
graphs are performing more predictions than the Random-



(a) Same-users (b) Random-users

Fig. 6: Changes in Trade-off Score (%) with Increasing Confidence Threshold for (a) Same-users, and (b) Random-users. The
higher the score is the better the model becomes.

users graphs by 4%, particularly when the SpatialTemporal
graphs are used.

Accuracy. As illustrated in Figure 5, the hybrid GCN-MC
models improve the accuracy of their GCN counterparts by
1% − 1.5%. In addition, the Spatial-only graphs demonstrate
higher accuracy than the SpatialTemporal configuration by
1%−5%. The Spatial-only graphs also yield consistently high
accuracy (> 98%) at varying level of confidence threshold,
while the accuracy for SpatialTemporal graphs fall signif-
icantly to 90% − 95% when the confidence threshold is
dropped beyond one standard deviation about the mean of the
confidence distribution. Moreover, Same-users graphs produce
lower accuracy than Random-users by 1% and 5% for Spatial-
only and SpatialTemporal graphs respectively.

C. Models’ Overall Evaluation

As shown in Figure 4 and Figure 5, a drop in confidence
threshold will increase the proportion of evaluated nodes at the
expense of accuracy. When we combine both the accuracy and
proportion into a single trade-off score defined in Equation (7),
the performance of the different models and graph structures
can be evaluated objectively. As illustrated in Figure 6, the
hybrid GCN-MC models improve the overall performance
of their GCN counterparts by 2% − 4%. In addition, the
SpatialTemporal graphs are performing better than the Spatial-
only graphs by 2% − 12%. Similarly, trips from Same-users
perform better than those of Random-users by 2.9% when
the SpatialTemporal graphs are used. This trend suggests that
adding both contextual and temporal information is crucial for
better OD predictions.

VI. CONCLUSION

In this paper, we have proposed a novel deep learning
architecture to predict OD trips using a large-scale public
transportation dataset in Singapore. First, we demonstrated

how GCN increases the prediction accuracy of the baseline
MC algorithm by 17% − 18% while the hybrid GCN-MC
model further improves the performance of GCN by another
11%− 14%.

Furthermore, we formulated two different approaches to
building graphs in the hope of improving the explainability of
the deep network. The first approach examined the effect of
temporality by constructing Spatial-only and SpatialTemporal
graphs. The second approach focused on the effect of users’
context by defining Same-users and Random-users graphs.
We found that both temporality and contextual information
improve the overall performance of the models. The hybrid
integration of MC algorithm further reinforced the notion of
context into GCN, allowing the deep model to be aware of the
global trend when faced with an uncertain prediction task.

One limitation of a GCN-based model is its difficulty to
train without, to some extent, processing the validation/testing
nodes either through its adjacency or structural information
(i.e., transductive learning). In other words, in cases where
new sets of training graphs become available, the GCN model
will lose its generalization and need to be retrained.
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