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Scaled PCA: A New Approach to Dimension Reduction

Abstract

This paper proposes a novel supervised learning technique for forecasting—scaled principal

component analysis (sPCA). The sPCA improves the traditional principal component analysis

(PCA) by scaling each predictor with its predictive slope on the target to be forecasted. Unlike

the PCA that maximizes the common variation of the predictors, the sPCA assigns more weights

to those predictors with stronger forecasting power. In a general factor framework, we show

that, under some appropriate conditions on data, the sPCA forecast beats the PCA forecast; and

when these conditions break down, extensive simulations indicate that the sPCA still has a large

chance to outperform the PCA. A real data example on macroeconomic forecasting shows that

the sPCA has better performance in general.

JEL codes: C22, C23, C53

Keywords: Forecasting, PCA, Big Data, Dimension Reduction, Machine Learning
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1 Introduction

Principal component analysis (PCA) is the oldest, dated back to Pearson (1901), and the most

widely used dimension reduction method (Trevor, Robert, and Jerome, 2009). It transforms a

large number of variables into orthogonal components so that these variables can be represented

by a few principal components. It has wide applications in all areas of science, including in

particular management, finance, economics, etc. Connor and Korajczyk (1986), Kelly, Pruitt, and

Su (2020), Kim, Korajczyk, and Neuhierl (2020), Giglio and Xiu (2021), and Lettau and Pelger

(2020a,b) are a few examples of extending and applying the PCA to finance. Today, in the age of

big data, it is important to deal with the "curse of dimensionality". Without dimension reduction,

forecasting with the conventional multivariate regressions suffers from in-sample over-fitting

and out-of-sample poor performance. While the PCA is useful in reducing a large number of

predictors to just a few combinations of them, one recognized weakness is that it ignores the

target information completely.

In this paper, we propose a novel dimension reduction technique—scaled principal compo-

nents analysis (sPCA), which scales each predictor with its predictive slope on the target to be

forecasted. By design, the sPCA puts more weights on those predictors with stronger forecasting

power. In contrast, the PCA puts equal weights on all the predictors. While the PCA summarizes

the common variation of the predictors, it ignores the target and is an unsupervised learning

technique. Hence, if some predictors are noisier than others, they will inevitably affect the

forecast disproportionately. In the extreme case, the presence of irrelevant predictors would only

add noise to the forecast, and it is possible to make the forecasting useless. The sPCA corrects

exactly this deficiency by screening out such noisier predictors and assigning them shrinking

weights. In this sense, the sPCA is designed to let the target guide dimension reduction, and is

in spirit similar to the partial least squares (PLS) of Kelly and Pruitt (2013, 2015) for time series

forecasting, and to the risk-premium PCA of Lettau and Pelger (2020a,b) for cross-sectional asset

pricing.

We extract the sPCA factors in two steps. First, we run a predictive regression of the target

on each predictor and scale the predictor with the regression slope. Second, we apply the PCA

1
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to the scaled predictors to obtain principal components as the sPCA factors. In this way, the

sPCA tends to down-weight those predictors with weak forecasting power, while overweight

those with strong forecasting power. As a result, the sPCA factors are more likely to outperform

the PCA factors for forecasting purposes.

Theoretically, we consider the sPCA in a partially-relevant latent factor framework, where

each predictor loads on two groups of factors: one group of relevant factors that are truly

associated with the target and the other group of irrelevant factors that are not useful for

forecasting the target. In our model, the factors are allowed to be either strong or weak. Our

analyses indicate that when the factors are weak, if the number of predictors (N) and the number

of periods (T) satisfy a mild condition, the sPCA forecast will dominate the PCA forecast. If the

factors are strong, or the required condition does not hold, our extensive simulations show that

the sPCA forecast still has a large chance to outperform the PCA forecast.

Empirically, we apply the sPCA to forecast the US inflation, industrial production, unem-

ployment, and the S&P 500 index volatility with a basket of 123 macro variables (Ludvigson

and Ng, 2007). We find that the sPCA consistently generates more accurate forecasts than the

PCA both in- and out-of-sample, over a wide range of model specifications. The sPCA factors’

loadings are more tilted towards a smaller subset of the macro variables that display stronger

forecasting power, while the PCA factors’ loadings are more disperse. In addition, the sPCA

produces comparable or better forecasting performance compared with other commonly used

supervised learning techniques, such as LASSO, ridge regression, elastic-net, target PCA in Bai

and Ng (2008), etc.

Overall, this paper complements existing approaches for dimension reduction in forecasting

with a large number of predictors. Recent examples on the expanding literature include Connor,

Hagmann, and Linton (2012), Kelly and Pruitt (2015), Huang, Jiang, Tu, and Zhou (2015), Light,

Maslov, and Rytchkov (2017), Freyberger, Neuhierl, and Weber (2020), Pelger (2020), Kelly, Pruitt,

and Su (2019), Gu, Kelly, and Xiu (2019, 2020), Lettau and Pelger (2020a,b), and Chen, Pelger, and

Zhu (2020), among others. Since the sPCA generally improves the PCA forecasting performance,

it can potentially be applied in many such areas to yield improved results.

2
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The rest of the paper is organized as follows. Section 2 introduces the sPCA method and

develops some asymptotic properties. Section 3 explores real data applications, which is followed

by Section 4 with a brief conclusion.

2 Methodology

2.1 sPCA Method

Suppose there are N predictors, denoted by Xt = (X1,t, · · · , XN,t)
′ for i = 1, · · · , N and t = 1, · · · , T,

where T is the number of observations. We are interested in using these predictors to forecast a

target variable yt+h, with a forecast horizon of h. Each Xi,t is a relevant but imperfect predictor

of the target. Hence, relying on a few of them is unlikely to capture the dynamics of the target

well. However, including all the predictors in a conventional multivariate regression suffers from

the curse of dimensionality, which often leads to in-sample overfitting and out-of-sample poor

performance. To address this issue, a common approach is to impose a factor structure on the

predictors and extract the latent factors with a reduced dimension.

Specifically, we consider in this paper a partially-relevant latent factor model on the joint

dynamics of the N predictors Xt and the target yt+h:

Xi,t = µi + λ′i ft + ei,t = µi + φ′i gt + ψ′i ht + ei,t, (1)

yt+h = α + β′gt + εt+h, (2)

where ft = (g′t, h′t)
′ are r-dimensional unobserved factors, of which gt are r1-dimensional relevant

factors that are associated with the target yt+h and ht are (r− r1)-dimensional irrelevant factors.

For each predictor i = 1, · · · , N, λi = (φ′i ,ψ
′
i)
′ denote the loadings on ft.

The factor-augmented regression model of Bai and Ng (2006) is a special case of equation (2).

In their set-up, any factor in ft can forecast yt+h. In our framework, in contrast, only the factors

gt, a subset of ft, are relevant to the target, which seems more plausible in real data applications

(see, e.g., Kelly and Pruitt, 2015). The case of excluding the irrelevant factors ht in equation (1) for

3
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forecasting is explicitly analyzed in this paper because most of the theoretical results are based

on all the factors.

Given the factor structure, a natural method to estimate the latent factors ft is the PCA.

Specifically, according to Bai (2003), the PCA estimates ft = (g′t, h′t)
′ as
√

T times the eigenvectors

associated with the r largest eigenvalues of Mxx, where Mxx = 1
N ∑N

i=1 ẊiẊ′i denotes the T × T

dimensional sample covariance matrix with Ẋi = (Ẋi,1, Ẋi,2, . . . , Ẋi,T)
′ and Ẋi,t = Xi,t − 1

T ∑T
s=1 Xi,s.

Let F̂ = (Ĝ, Ĥ) with Ĝ = (ĝ1, ĝ2, . . . , ĝT)
′ and Ĥ = (ĥ1, ĥ2, . . . , ĥT)

′. The bulk of variation among

Xt is summarized by the factors F̂. One can conduct forecasting based on either all the factors

(gt and ht) if he prefers a low bias, or partial factors (gt) if he prefers a parsimonious model and

believes that the estimated partial factors are good enough. In either case, dimension reduction

can be achieved because of r� N.

However, when the model is specified by equations (1) and (2), the PCA has a drawback

of ignoring the target information. In particular, when factors are strong, the PCA fails to

differentiate between the target-relevant and irrelevant latent factors, and there is no guarantee

that the first r1 principal components can best predict the target. When the factors are weak, the

PCA could fail to extract the signals from the large amount of noises, leading to biased forecasts

even using all the factors. To overcome these deficiencies, the sPCA is designed to modify the

PCA by incorporating the target information in the factor extracting procedure. In so doing, we

predict the target with the sPCA in two steps:

1. Form a panel of scaled predictors, (γ̂1X1,t, · · · , γ̂NXN,t), where the scaled coefficient γ̂i is

the estimated slope from regressing the target on the i-th (standardized) predictor:

yt+h = νi + γiXi,t + ui,t+h, i = 1, · · · , N. (3)

2. Apply the PCA to (γ̂1X1,t, · · · , γ̂NXN,t) to extract r factors, and use them to predict the

target. Specifically, calculate a T × T matrix M◦XX = 1
N ∑N

i=1 γ̂iẊi(γ̂iẊi)
′, where Ẋi denotes

the demeaned vector of predictor i. The sPCA factors, F̂sPCA, are equal to
√

T times of

the eigenvectors of the matrix M◦XX, which correspond to the r largest eigenvalues of M◦XX

4
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arranged in a descending order. Let ĜsPCA be the first r1 columns of F̂sPCA and ĝsPCA
t be the

transpose of the t-th row of ĜsPCA. With these estimates, one can conduct a full-factor based

forecast by regressing yt+h on a constant term and the estimated factors f̂ sPCA
t , or conduct a

partial-factor based forecast by regressing yt+h on a constant term and the estimated ĝsPCA
t .

Then the sPCA forecast for yt+h is:

ŷsPCA
t+h = α̂sPCA + (π̂sPCA)′ f̂ sPCA

t or ỹsPCA
t+h = α̃sPCA + (β̃sPCA)′ ĝsPCA

t , (4)

where (α̂sPCA, (π̂sPCA)′)′ and (α̃sPCA, (β̃sPCA)′)′ are the respective slope estimates of the

above two predictive regressions.

It is worthwhile mentioning that the scaled predictors (γ1X1,t, · · · ,γNXN,t) follow a latent

factor structure as γiXi,t = γiµi + γiλ
′
i ft + γiei,t, where γi is the probability limit of γ̂i for each

i. So the scaled predictors actually share the same factors ft with the original predictors. Since

the forecasted target yt+h is related to the factors instead of the loadings, this naturally begs the

question why the sPCA forecast can beat the PCA forecast, especially when all the factors are

used to forecast yt+h. The answer to this question is that the sPCA screens out the irrelevant

predictors by assigning them shrinking weights. This procedure is particularly important since,

compared with strong factors, signals of weak factors usually do not dominate the noises sharply.

Without a signal-strengthening procedure, the traditional PCA could fail to extract the signals

from the large amount of noises. We will see this point clearly in Section 2.3.

2.2 Assumptions

We make the following five assumptions for the subsequent theoretical results. Hereafter, C

denotes a generic constant that is large enough and could be different at each appearance.

Assumption 1: supt E‖ ft‖4 ≤ C and 1
T ∑T

t=1 ft f ′t
p−→ ΣF for some r× r positive definite matrix ΣF.

Assumption 2: supi E‖λi‖4 ≤ C. Let Iλ denote the set of units whose λ is not equal to zero. We

assume Card(Iλ)� Nν for some ν ∈ (0,1] and 1
Nν ∑N

i=1 λiλ
′
i

p−→ ΣΛ for some r× r positive definite

matrix ΣΛ, where Card(·) denotes the cardinality of the input, i.e., the number of elements of the

5
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input, and a � b means that there exist two constants c and C such that cb ≤ a ≤ Cb.1

Assumption 3: eit = σie∗it, where e∗it is independent and identically distributed over i and t with

the eighth moment bounded. In addition, C−1 ≤ σi ≤ C.

Assumption 4: {λi}, { ft}, and {eit} are mutually independent.

Assumption 5: Let Ft be the σ-field generated by gt,εt, gt−1,εt−1, . . . . Then E(εt+h|Ft) = 0 for

any integer h > 0 and supt E(ε4
t ) ≤ C. In addition, {εt+h} is independent with the three groups

of variables in Assumption 4.

Assumptions 1 and 2 specify the strength of the factors. If ν ∈ (0,1), our model is a weak

factor model since it violates the strong factor assumption N−1Λ′Λ
p−→ ΣΛ; see Bai (2003) and

Bai and Li (2012), among others, for a detailed illustration on strong factor models. The weak

factor specification is of practical relevance. Recently, for example, Daniele, Pohlmeier, and

Zagidullina (2019) show that the eigenvalues of the return covariance matrix of the S&P 500

constituents can be well characterized by a mixed factor model with one strong factor and three

weak factors. We do not consider the mixed-factor model in this paper for simplicity. Given

that strong factor models are well understood in the literature, an extension of allowing partial

factors to be strong can be made with some changes on the current arguments without theoretical

challenges. Moreover, the assumption of a weak factor form is more sensible in our setting, where

the predictors’ signal-to-noise ratios are usually low.

Assumption 3 assumes independence among the errors {eit}. Our asymptotic analysis relies

on the theoretical results about the largest eigenvalue of a random matrix, and so we can allow

limited correlations in errors according to Onatski (2012). Assumptions 4 and 5 are standard

for factor analysis with heterogenous loadings. As pointed out by Bai and Ng (2006), these

assumptions are rather general.

Hereafter, to avoid unnecessary mathematical complexity, we confine the analysis to a simple

two-factor model, one relevant factor gt and one irrelevant factor ht. To evaluate the forecasting

performance, we follow the literature and use the asymptotic mean square forecast error (MSFE)

1We sincerely thank the associate editor for inspiring us to consider the sPCA in a weak factor framework.
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as the evaluation criterion,

MSFE = plim
N,T→∞

1
T

T

∑
t=1

(yt+h − ŷt+h)
2. (5)

Consider the scaling coefficient from the regression of yt+h on (standardized) predictor Xit in

equation (3), we have

γ̂i =
1
T ∑T

t=1(Xit − X̄i)(yt+h − ȳt+h)
1
T ∑T

t=1(Xit − X̄i)2
= βφi + op(1), (6)

where we use the standardized condition 1
T ∑T

t=1(Xit − X̄i)
2 = 1 for each i. Hence, the scaled

predictor γ̂iXit is very close to γiXit, which is equal to

γiXit = βφi

[
µi + φigt + ψiht + eit

]
= βφiµi︸ ︷︷ ︸

µ◦i

+ βφ2
i︸︷︷︸

φ◦i

gt + βφiψi︸ ︷︷ ︸
ψ◦i

ht + βφieit︸ ︷︷ ︸
e◦it

. (7)

In (7), the scaled series γiXi,t reflects the i-th predictor’s forecasting power on the target. A

predictor with stronger forecasting power (i.e., higher absolute value of γi) on average receives a

larger weight, whereas a predictor with weaker forecasting power receives a smaller weight. In

short, the sPCA applies the PCA to the scaled predictors (γ̂1X1,t, · · · , γ̂NXN,t), rather than to the

raw predictors (X1,t, · · · , XN,t), to better capture the predictive information contained in Xi,t.

2.3 Asymptotic Forecasting Performance

This subsection presents the asymptotic forecasting performance of the sPCA and the PCA. The

results are used for the comparison purpose. We first provide the asymptotic results on the

estimated sPCA and PCA factors, respectively.

Proposition 1. Under Assumptions 1-5,

1. If N1−ν

T2 → 0, the estimated sPCA factors, denoted by F̂sPCA, are consistent and admit

1√
T
‖F̂sPCA − ḞR′sPCA‖ �p N−ν/2 + T−1 +

N1−ν

T2 ,

7
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where Ḟ = ( ḟ1, ḟ2, . . . , ḟT)
′ with ḟt = ft − 1

T ∑T
s=1 fs, RsPCA is some invertible rotational matrix, and

A �p B means that there exist two constants c and C such that cB ≤ A ≤ CB with probability

approaching one.

2. (a) Let F̂PCA denote the estimated PCA factors. If N1−ν

T ≥ c for some c > 0, then F̂PCA is not a

consistent estimator of Ḟ, in the sense that for any invertible matrix RPCA, the following holds,

1√
T
‖F̂PCA − ḞR′PCA‖ ≥ c∗,

with a strictly positive probability for some constant c∗.

(b) If N1−ν

T → 0, F̂PCA is consistent and admits

1√
T
‖F̂PCA − ḞR′PCA‖ �p N−ν/2 +

N1−ν

T
.

We have three remarks on Proposition 1. First, the consistency condition for the sPCA is

obviously weaker than that for the PCA. As such, if the values of N and T satisfy N1−ν

T2 → 0

and N1−ν

T ≥ c for some c > 0, the sPCA forecast will dominate the PCA forecast because the

former is consistent but the latter is not. Second, even N1−ν

T → 0, the sPCA forecast still has a

chance to outperform the PCA forecast since it is likely that the sPCA estimates the factors more

precisely. Intuitively, if the forecast is consistent, the first-order MSFE can be decomposed into

two components. One component arises from the regression errors in the predictive equation,

which is independent of the estimation methods of the factors, and the other component is due

to the estimation errors of the factors. Apparently, a precise estimation of the factors will lead to

a smaller magnitude of MSFE. Third, when ν = 1, the model reduces to a strong factor model.

Our analysis indicates that

1√
T
‖F̂PCA − ḞR′PCA‖ �p N−1/2 + T−1.

This result is consistent with the literature, see Bai (2003).2

2Bai (2003) shows that 1√
T
‖F̂PCA − ḞR′PCA‖ = Op(N−1/2) + Op(T−1/2). However, we note that this result is not

the sharpest. In the subsequent analysis on the limiting distribution, it is seen that this result can be improved by
replacing T−1/2 with T−1.

8
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2.3.1 Sufficient Conditions

With the results in Proposition 1, we can identify the sufficient conditions for the sPCA to

outperform the PCA. If N−ν/2 + T−1 is dominated by N1−ν/T2, it is certainly dominated by

N1−ν/T. In this case, the sPCA dominates the PCA in estimating the factors. If N−ν/2 + T−1

dominates N1−ν/T2, since T−1 and N1−ν/T2 are both dominated by N1−ν/T, it suffices to

compare N−ν/2 and N1−ν/T. If N1−ν/T dominates N−ν/2, we still have that the sPCA dominates

the PCA when estimating the factors. Given this discussion, we have the following proposition.

Proposition 2. Under Assumptions 1-5, if N1−ν

T2 → 0 and N1−ν/2

T →∞, the sPCA forecast outperforms the

PCA forecast.

As pointed out earlier, the sPCA assigns different weights to different predictors, and in the

extreme case when a predictor contains no relevant information, it assigns a weight of order

Op(
1√
T
) to the predictor to screen out noise, which sharpens the advantage of the sPCA. Hence,

the weaker the factors, i.e., the smaller the ν, the more chance that the sPCA outperforms the

PCA. This can be seen from Proposition 2. The condition N1−ν/2

T → ∞ is more likely to hold if ν

is small. As regard to the condition N1−ν

T2 → 0, we note that it is imposed for the purpose of the

consistency of the sPCA. When this condition breaks down, we conjecture that the sPCA still has

a superior performance since it delivers a relatively better estimation of factors although both the

sPCA and the PCA factors are not consistent in this case. However, we do not analyze further

this case due to the lack of tools in the literature for inconsistent estimating. There are a few

exceptions. For example, Onatski (2012) and Lettau and Pelger (2020a,b) consider inconsistency

comparison in the very weak case (ν = 0). However, their analysis depends critically on the

tools from the random matrix theory, which seem not applicable in our context because of the

shrinking weights in the sPCA.

To further understand the implications of Proposition 2, we depict Figure 1 under the

condition T � Nη with η ∈ (0,∞). In this figure, the rectangle area is partitioned into four

regions, which are labeled as I, II, III, and IV, respectively. According to Proposition 2, if (η,ν)

falls in Regions II and III, the sPCA forecast will outperform the PCA forecast. More specifically,

9
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ν

ηO

1

10.5

1− 2η − ν = 0

1− η − ν = 0

1− η − 0.5ν = 0

I
II

III

IV

Figure 1: Partitioned regions for different results

Notes: The graph is depicted under the assumption of T � Nη with η ∈ (0,∞).

Region I: 1− 2η − ν > 0. The sPCA and the PCA forecasts are both inconsistent.

Region II: 1− η − ν > 0 but 1− 2η − ν < 0. The sPCA forecast is consistent, but the PCA is not.

Region III: 1− η − 0.5ν > 0 but 1− η − ν < 0. The sPCA and the PCA forecasts are both consistent, but the order
magnitude of the MSFE for the sPCA is smaller.

Region IV: 1− η − 0.5ν < 0. The sPCA and the PCA forecasts are both consistent, the MSFEs of two methods are in
the same order of magnitude. Which method is better depends on the values of φi,ψi and the variance values
of eit.

in Region II, the sPCA forecast is consistent, but the PCA is not; in Region III, the sPCA and

the PCA forecasts are both consistent, but the magnitude of the sPCA’s MSFE is smaller. In

Region I, we conjecture that the sPCA could still outperform the PCA although both methods

deliver inconsistent forecasts. The case of Region IV will be discussed in details in the following

subsection. From Figure 1, one may have an impression that when N ≤ T, it suffices to consider

the case of Region IV. However, we point out that this is not true. Consider the case of T = CNη

with C = 10. When T = 100, we have N ≤ T for all η ≥ 0.5. So even for N ≤ T, it is still possible

that η < 1. In other words, one should not use the observed values of N and T to roughly

determine the region. Instead, given the fact that the increase of the number of predictors is

more speedy than the increase of the time periods, it is more plausible to assume η < 1. In a

nutshell, Regions II and III tend to represent the cases of practical relevance.

10
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2.3.2 Other Cases

If N, T, and ν satisfy N1−ν/2

T → 0, or if (η,ν) falls in Region IV in Figure 1, Proposition 1 implies

1√
T
‖F̂sPCA − ḞR′sPCA‖ = Op(N−ν/2), and

1√
T
‖F̂PCA − ḞR′PCA‖ = Op(N−ν/2).

In this case, the estimation errors of the sPCA and the PCA are in the same order of magnitude.

Thus, if one expects to figure out which method is better, he has to calculate the concrete formulas

of the MSFE. The following proposition gives the expressions of the first-order MSFE for both the

sPCA and PCA forecasts, which is based on ν = 1 for the strong factor case. However, the results

for other points in Region IV are almost the same with the mere change that N is replaced by

Nν.

Proposition 3. Under Assumptions 1-5, as N→∞, T→∞, and
√

N/T→ 0,3 the first-order MSFEs of

the PCA and sPCA forecasts have the following expressions

MSFEPCA =
1
T

3σ2
ε +

1
T

T

∑
t=1

β?′(Λ′Λ)−1ΓPCA
t (Λ′Λ)−1β?,

MSFEsPCA =
1
T

3σ2
ε +

1
T

T

∑
t=1

β?′(Λ′WΛ)−1Λ′ΓsPCA
t Λ(Λ′WΛ)−1β?,

where β? = (β,0)′, ΓPCA
t = 1

N ∑N
i=1 E(λiλ

′
ie

2
it), ΓsPCA

t = 1
N ∑N

i=1 E(φ4
i λiλ

′
ie

2
it), and W = diag(φ2

1, . . . ,φ2
N).

Proposition 3 indicates that, under current assumptions, it is difficult to determine which

method dominates the other. On the one hand, if eit is homoskedastic across i, the MSFE of the

PCA can be smaller than that of the sPCA. On the other hand, if φ2
i happens to be the inverse of

var(eit), the MSFE of the sPCA can be smaller than that of the PCA. For this reason, in Section

2.5 we resort to simulations to investigate that, with what probability, the sPCA outperforms the

PCA. Our simulations indicate that the probability is about 0.7. This result looks plausible. To

see the intuition, under the normalization 1
T Ḟ′ Ḟ = I, we have

φ2
i + ψ2

i + σ2
i ≈ 1, (8)

3Note that when ν = 1, the condition N1−ν/2

T → 0 reduces to
√

N/T→ 0.
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where σ2
i = var(eit). Then, a large absolute value of φi would generally lead to a small σ2

i . For

the sPCA, we assign a weight γ̂i = βφi + ui to the i-th predictor. So the variance of the scaled

data is approximately φ2
i σ2

i for a generic i. Intuitively, the PCA can be linked to the ordinary least

square regressions (see, e.g., Bai (2003)), while the sPCA can be linked to the generalized least

square regressions with a specific weighting matrix W = diag(φ2
1,φ2

2, . . . ,φ2
N). Theoretically, the

most efficient estimator would use the inverse residual covariance matrix as a weight W. Hence,

the closer the weighting matrix W gets to the inverse residual covariance matrix, the higher the

efficiency. We refer readers to Pelger and Xiong (2020) for detailed discussions on this point.

Given that φ2
i is generally negatively related to σ2

i , we have that, with a large probability, the

weighting matrix W resembles the inverse residual covariance matrix. This means that, with

a large probability, the sPCA factors are estimated more precisely because the errors are more

likely to be homoskedastic.

2.4 Single Factor Forecast

In this subsection, we briefly discuss the single-factor case of using the first sPCA factor to

conduct forecasting, which has some theoretical interest as the factor represents an aggregate

index of all the predictors. Moreover, it is worth mentioning that the identification in a partially-

relevant-factor forecasting model is different from that in a fully-relevant-factor forecasting

model, which has not attracted much attention in the literature. However, for the sake of brevity,

we leave the identification issue in the online appendix, where we also compare the sPCA with

the PLS (Kelly and Pruitt, 2013, 2015).

We provide a set of sufficient conditions under which the sPCA forecast outperforms the PCA

forecast in the single-factor forecast case.

Proposition 4. Suppose E(e2
it) = σ2

e for all i and t. We have

Case 1: 0 < ξ◦ ≤ ξ, if |φi| > |ψi| and φiψi ≥ 0 for all i;

Case 2: 0 > ξ◦ ≥ ξ, if |φi| > |ψi| and φiψi < 0 for all i;

Case 3: 0 > ξ ≥ ξ◦, if |φi| < |ψi| and φiψi ≥ 0 for all i;

Case 4: 0 < ξ ≤ ξ◦, if |φi| < |ψi| and φiψi < 0 for all i,
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where

ξ◦ =
∑N

i=1 φ◦i ψ◦i
∑N

i=1(φ
◦2
i − ψ◦2i )

=
∑N

i=1 φ3
i ψi

∑N
i=1 φ2

i (φ
2
i − ψ2

i )
, and ξ =

∑N
i=1 φiψi

∑N
i=1(φ

2
i − ψ2

i )
.

The sPCA forecast outperforms the PCA forecast in the case of using the first factor to conduct forecasting,

i.e., MSFEsPCA ≤MSFEPCA, if the factor loadings φi and ψi in equation (1) belong to one of the above

four cases.

Proposition 4 involves four cases on the signs of φiψi and |φi| − |ψi| to simplify our discussions

about the signs on the numerator and denominator of ξ = ∑N
i=1 φiψi

/
∑N

i=1(φ
2
i −ψ2

i ). The intuition

can be elaborated by the first case, in which the numerator and denominator of ξ are both

positive. Let zi = ψi/φi measure the noise-to-signal ratio of predictor i. Define ωi =
φiψi

φ2
i −ψ2

i
=

zi/(1− z2
i ). Since ωi is an increasing function of zi over the region of zi < 1, a predictor with

stronger forecasting power, i.e., lower noise-to-signal ratio, has a lower value of ωi. Denote ωu
i

and ωd
i to be the numerator and denominator of ωi, and so we have ξ =

ωu
1+ωu

2+...,+ωu
N

ωd
1+ωd

2+...,+ωd
N

. Then,

the weighting scheme of the sPCA puts a larger weight on predictor i if its ωi = ωu
i /ωd

i has a

smaller value, which can in turn reduce ξ due to the general inequality that a
b ≤

∑i ai
∑i bi

if a
b ≤

ai
bi

for

each i. The same argument carries through for the other three cases. Hence, the sPCA forecast

outperforms the PCA forecast in terms of MSFE.

We note that the above analyses are based on the assumption of stationarity. However, when

the predictors are highly persistent, say local-to-unit process or fractional integrated, we caution

the readers that our sPCA method could have a chance to break down, depending on the sources

of the persistence. For example, if the persistence of predictors comes from the idiosyncratic

errors or irrelevant factors or both, our method may not work because the useless information

dominates the useful one. However, we note that, when this happens, the PCA also breaks down

for the same reason (see, e.g., Bai (2004) and Bai and Ng (2004)). So it is not an issue specific

to our method, although the estimation accuracy of scaling values in the sPCA depends on the

persistence. Developing a method that is immune to the persistence of predictors is an interesting

topic but beyond the scope of this paper, and we leave it for future research.
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2.5 Simulation Evidence

In this subsection, we conduct Monte-Carlo experiments to compare the finite sample forecasting

accuracies of the sPCA with the PCA. Our simulation design is based on a simple two-latent-

factor model with one being target-relevant. To be more specific, we begin by simulating the time

series of two factors that are independently and normally distributed with zero mean and unit

variance, i.e., gt ∼ N(0,1) and ht ∼ N(0,1). The target is generated by yt+h = gt + εt+1, where

εt+1 ∼ N(0,1), so that the infeasible best forecast has a lowest MSFE of 1. There are N observable

predictors Xi,t (i = 1, ..., N), which load on both the relevant factor gt and the irrelevant factor ht.

Idiosyncratic noises are also generated from the normal population with zero mean and standard

deviation of σi, and are independent across predictors and over time.

2.5.1 Weak Factor Case

We first examine the performance in the weak factor setting, in which we set all φi and ψi

to be zero except n predictors with n � N. The n predictors are randomly drawn from the

independent uniform distribution with support [0,1], denoted by U[0,1]. The standard deviations

of idiosyncratic noises σi (i = 1, ..., N) are drawn independently from U[0,1]. To allow for

heterogeneity over time, we consider multiplying each σi with a time-dependent random variable

σt (t = 1, ..., T), which is drawn from an uniform distribution with support [0.5,1.5].

[Place Table 1 about here]

Table 1 presents the simulated forecasting performance of the sPCA and the PCA with

different degrees of weakness. We focus on their MSFEs in an out-of-sample environment, and

consider forecasting with one, two, and three estimated sPCA and PCA factors, respectively.

These three cases correspond to under-, correct-, and over-estimation of the number of factors.

The results are obtained with 100 repetitions with a sample size of N = 500 and T = 250. We split

the data into two parts, and use the first 200 time periods for sample training and the remaining

50 periods for out-of-sample evaluation. We report the median out-of-sample MSFEs for the

sPCA and PCA forecasts. Panel A considers the cross-sectional heteroskedasticity alone, and
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Panel B considers both the cross-sectional and the time-series heteroskedasticities.

Panel A of Table 1 indicates that the first sPCA factor has an MSFE less than 1.30 across the

values of n/N. This result contrasts with the first PCA factor that produces an MSFE above 1.50 in

general. In the case of two factors, the MSFE of the sPCA forecast ranges from 1.03 to 1.19, while

the MSFE of the PCA ranges from 1.11 to 1.57 as n decreases from 50 to 10, which implies that

the sPCA forecast dominates the PCA forecast unanimously. The MSFE of the PCA is far from

the best value of 1, and, therefore, none of these forecasts is consistent, confirming our theoretical

conclusions. As expected, including the over-estimated three factors leads to little change in the

MSFE of the PCA and sPCA. Panel B shows that the conclusions remain true when we consider

the cross-sectional and time-series heterogenous noises simultaneously. In summary, consistent

with our theoretical analyses, the simulated results in Table 1 show that the sPCA dominates the

PCA in the weak factor setting, and the dominance becomes more pronounced when the degree

of weakness grows.

2.5.2 Strong Factor Case

We next compare the forecasting performance of the sPCA with the PCA in the strong factor

setting, where the number of nonzero loadings is n = N. Since the asymptotic MSFEs of

the sPCA and the PCA depend on the joint distribution of factor loadings φi and ψi and

the standard deviation of idiosyncratic noise σi, we consider different parameter specifications

and compute the asymptotic MSFEs through simulations. We draw φi and σi randomly from

a correlated uniform distribution with support [0,1], and draw ψi independently from the

uniform distribution with support [0,ψ], where ψ governs the average relative importance of

the systematic noise. This design allows us to highlight the role of ρ = corr(φi,σi) in shaping the

asymptotic efficiency of the sPCA relative to the PCA.

[Place Figure 2 about here]

Figure 2 displays a heat-map of the differences in the asymptotic MSFE between the PCA and

the sPCA, in which a positive (negative) value indicates the outperformance (underperformance)
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of the sPCA. We find that the sPCA tends to deliver a more accurate forecast (i.e., a positive

difference) when φi and σi are negatively correlated or when ψ is small. In these cases, a higher

signal value of φi tends to be associated with a lower idiosyncratic noise σi and a lower systematic

noise ψ. Similarly, a lower signal value of φi tends to be associated with a higher idiosyncratic

noise σi and systematic noise ψ, which suggests that the signal-to-noise ratios are more dispersed

in the cross section. By incorporating the target information, the sPCA overweighs the predictors

with a high signal-to-noise ratio, and down-weights the predictors with a low signal-to-noise

ratio. In this way the sPCA effectively enhances the efficiency in extracting the factors relative to

the PCA.

[Place Table 2 about here]

Table 2 presents the out-of-sample MSFEs with one, two, and three sPCA and PCA factors

by assuming (N, T) = (50,250) and (N, T) = (100,250), respectively. The results show that the

first sPCA factor unanimously generates a lower MSFE than the first PCA factor across all the

parameter specifications. The performance improvement tends to be larger as the value of ψ

increases. This is intuitive because a higher ψ means a larger component of the irrelevant factor

attributing to the predictors, and so it is more likely to contaminate the first PCA factor. The first

sPCA factor is less affected by the irrelevant factor as it is target-driven and can filter out the

systematic noise. When we employ two or three factors, the outperformance of the sPCA relative

to the PCA becomes weaker, because both the sPCA and PCA forecasts are consistent in this

case. Overall, the sPCA tends to outperform the PCA in general, especially when the correlation

between φi and σi is negative, which is consistent with the heat-map of Figure 2.

2.6 Number of sPCA Factors

Determining the number of factors is an important topic in factor analysis, which has received

much attention over the last two decades. Most of the existing studies focus on determining

the number of strong factors (see, e.g., Bai and Ng, 2002; Ahn and Horenstein, 2013). Since the

current paper also allows the presence of weak factors, the method to determine the number of

factors must be consistent with this assumption. Fortunately, the literature has designed methods
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for weak factors (e.g., Onatski, 2012). In addition, some methods, such as Ahn and Horenstein

(2013), seem to continue to work in the weak factor setting. Overall, one may rely on methods in

the existing literature to determine the number of weak factors in real applications.

3 Empirical Evidence

In this section, we apply the sPCA to macroeconomic forecasting with real data. We compare

the in- and out-of-sample forecasting performance of the sPCA with that of the PCA. We also

compare the sPCA with alternative big-data forecasting methods, such as target PCA (tPCA),

PLS, LASSO, and Ridge regression.

3.1 Data

We consider 123 macro variables from the FRED-MD database spanning from January 1960 to

December 2019, which are maintained by St. Louis Fed.4 As described in McCracken and Ng

(2016), the FRED-MD database represents a recent effort by the authors and St. Louis Fed staffs

to compile a standard macroeconomic database to facilitate big-data macro research. It extends

the widely used Stock and Watson’s (2006) data set and covers broad economic categories such

as output and income, labor force and unemployment, consumption expenditure and housing

indicators, money stock and credit, and price indices. The detailed variables and transformation

codes to ensure stationarity of each macro variable are provided in the on-line data appendix.

We apply the sPCA to these 123 macro variables to forecast the 1-month ahead US

inflation, industrial production (IP) growth, change in unemployment rate, and the S&P 500

index volatility. Among these four applications, inflation, IP growth, and unemployment rate

predictions are widely examined in the macroeconomic forecasting literature, and the S&P 500

index volatility prediction with macro variables is carefully explored by Ludvigson and Ng

(2007).

[Place Figure 3 about here]

4 http://research.stlouisfed.org/econ/mccracken/sel/.
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Figure 3 plots the R2s of predicting 1-month ahead inflation, IP growth, change in

unemployment rate, and the S&P 500 index volatility with one of the 123 macro variables,

respectively. To highlight the incremental forecasting power, we control for lagged values of

the target with the number of lags selected by BIC.

Panel A of Figure 3 shows that, among different categories, interest rates and prices related

variables have the highest predictive power for future inflation, followed by housing, labor and

output related variables. Panels B and C show that labor market conditions and interest rates

related variables display the highest predictive power for future IP growth and unemployment

rate. Panel D shows that several money and prices related variables and housing and interest

rates related variables have the highest predictive ability for the S&P 500 index volatility. Overall,

Figure 3 demonstrates that one should not treat individual predictors equally in extracting factors

for prediction, because their forecasting abilities vary.

3.2 In-sample Results

This section examines the in-sample forecasting performance.

[Place Table 3 about here]

First, Table 3 reports in a descending order the first 15 eigenvalues of the covariance matrix

of the raw and scaled macro variables, where the scaling parameter is the predictive slope of the

variable on the forecasted target. The eigenvalues are normalized to sum up to 1 and reflect the

dominance of each factor in explaining the total variations of the macro variables. We observe

that the distributions of the eigenvalues are more concentrated among the first few factors for

the sPCA than the PCA. In specific, the first PCA factor explains about 15% of the total variation,

while the first sPCA factor explains 20% to 37% of the total variation depending on the target to be

forecasted. The eigenvalues corresponding to the second and third sPCA factors are also much

larger than that corresponding to the PCA factors. This result suggests that the sPCA, which

scales each predictive variable by its predictive power, reorders the latent factors according to

their predictive power.
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[Place Figure 4 about here]

Second, we examine the compositions of the PCA and sPCA factors and plot their loadings

on each macro variable. Figure 4 shows that the first PCA factor is related to the real economic

condition, which loads mainly on output, labor and housing related variables. The second and

third PCA factors are nominal factors, which load mainly on interest rate and price related

variables. The fourth and fifth PCA factors load heavily on housing and interest rate related

variables, while the seventh PCA factor has larger loadings on price related variables.

[Place Figure 5 about here]

In contrast, Figure 5 shows that the loadings of the sPCA factors are much more concentrated

within only a few key variables. Specifically, to forecast inflation, the first sPCA factor loads on

interest rate related variables, and the second sPCA factor on price related variables. To forecast

the IP growth, the first sPCA factor loads mainly on output and labor related variables, akin to

the first PCA factor, and the third sPCA factor loads solely on interest rate related variables. To

forecast the unemployment rate, the first sPCA factor loads mainly on output and labor related

variables. Finally, to forecast the S&P 500 index volatility, the first sPCA factor loads on labor

and housing related variables, the second factor on interest rate and price related variables, and

the fourth factor has larger loadings on interest rate and money related variables, respectively.

Third, we compare the in-sample forecasting performance between the sPCA and the PCA.

Figure 6 depicts the adjusted R2 (in percentage) of predicting the 1-month ahead inflation (Panel

A), IP growth (Panel B), change in unemployment rate (Panel C), and the S&P 500 index volatility

(Panel D) by the PCA and sPCA factors, respectively. Within each panel, we consider the

forecasting performance with number of factors ranging from one to 15.

[Place Figure 6 about here]

Panel A of Figure 6 presents the inflation prediction results. It shows that the first PCA factor

generates an R2 less than 1%, which increases to 8% with seven PCA factors and to 9% with 15

PCA factors. Hence, the first PCA factor, which mainly captures the real economic condition, has

little forecasting power on inflation. The inflation-relevant factors, which heavily load on interest
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rate and price variables, have lower ranks as the second and the seventh PCA factors. In contrast,

by using the sPCA to forecast inflation, the R2 is about 5.5% with the first factor and about 15%

with the first 15 factors.

It is evident in Panel A that the sPCA effectively pushes up the eigenvalues corresponding to

the inflation-relevant factors so that the first couple of sPCA factors contain the main predictive

information, which naturally outperform the same number of PCA factors. Although including

more PCA factors improve the forecasting performance, the sPCA consistently beats the PCA

even with 15 factors (15% vs. 9%), lending empirical support to our theoretical result in Section

2.3.1. We observe a similar pattern in Panel D on the S&P 500 index volatility prediction.

Panel B of Figure 6 presents the IP growth prediction results. It shows that the first sPCA and

PCA factors have similar predictive power, since they both load on the real economic condition

related variables such as outputs and labors. With five factors, the R2 of the sPCA becomes larger

and reaches about 16%, while the PCA underperforms with an R2 about 10%. However, with 15

factors, the PCA eventually catches up and it performs similarly as the sPCA with an R2 about

17%. We obtain similar results in Panel C on the unemployment rate prediction. Overall, the

results in Panels B and C indicate that, when just using the first few factors, the sPCA method is

more likely to dominate the PCA method. When including more factors, the performance of the

PCA could eventually catch up and converge to that of the sPCA, consistent with our theoretical

results in Section 2.3.2.

3.3 Out-of-sample Results

In this section, we explore the out-of-sample forecasting performance.

[Place Figure 7 about here]

Figure 7 plots the out-of-sample R2
OSs (in percentage) of predicting 1-month ahead inflation

(Panel A), IP growth (Panel B), unemployment rate (Panel C), and the S&P 500 index volatility

(Panel D) by up to eight PCA and sPCA factors, respectively. The R2
OS is computed against

an autoregressive model with lagged target as a benchmark, and a higher R2
OS value indicates
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better forecasting performance. While the in-sample R2 is generally non-decreasing as we include

more factors, the out-of-sample R2
OS is not necessarily monotonic, since the increased estimation

errors could outweigh the marginal benefit of including an additional factor, which translates

into deteriorated out-of-sample forecasting performance. All factors and predictive regressions

are recursively estimated with an expanding window scheme. The initial estimation window

ranges from January 1960 to December 1984 and the out-of-sample evaluation period is from

January 1985 to December 2019.

Panel A of Figure 7 shows that, to forecast inflation, the first sPCA factor generates an R2
OS of

7%, which increases to about 18% when including eight sPCA factors. In sharp contrast, the first

PCA factor has no predictability. While an eight-factor PCA model catches up and generates an

R2
OS of 15%, it still underperforms the sPCA. Panels B, C, and D exhibit similar patterns when

forecasting IP growth, unemployment, and the S&P 500 index volatility. In summary, Figure 7

suggests that the sPCA beats the PCA in out-of-sample forecasting at least up to the first eight

factors, which is consistent with the earlier in-sample results.

[Place Table 4 about here]

Table 4 compares the out-of-sample forecasting performance of the sPCA with alternative

machine learning methods that also apply to a large number of predictors. Specifically, we

consider the target PCA (tPCA), PLS, LASSO, Elastic Net, and Ridge regressions, respectively.

Among these methods, tPCA relies on the hard threshold criteria in Bai and Ng (2008) to

select targeted predictors; PLS extracts multiple factors iteratively as suggested in Kelly and

Pruitt (2013); the penalized forecast regressions are estimated with the standardized values of

macro variables, and the strength of penalties are determined recursively through three-fold

cross validations. We also explore the LASSO regression on principal components of the macro

variables, i.e., eigenvector rotated macro variables. Aside from the baseline sPCA that scales

each predictor with its regression slope, we also consider a modified version, sPCA◦, that scales

each predictor with the t-value of the regression slope. The empirical results in Table 4 show

that, across all the four target-driven methods considered, the sPCA displays comparable, and in

many cases better, performance with these alternative forecasting methods.
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4 Conclusion

In this paper, we propose a novel supervised learning technique, sPCA, for forecasting with many

predictors. The sPCA improves the traditional PCA by scaling each predictor with its predictive

slope on the target to be forecasted, and assigns more (less) weights to those predictors that have

stronger (weaker) forecasting power.

Theoretically, we motivate our sPCA with a general factor framework that allows the factors

to be either weak or strong, and show that the sPCA can outperform the PCA under a wide range

of appropriate conditions on data. Extensive simulations also support the superior performance

of the sPCA in a finite sample setting. In real data applications, we show that the sPCA works

well in forecasting the US inflation, industrial production growth, unemployment rate, and the

S&P 500 index volatility with a panel of 123 macro variables, and it outperforms the PCA both

in- and out-of-sample in general. In addition, the sPCA performs similarly or better than several

other supervised learning techniques commonly used in a big data environment.
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Figure 2: Asymptotic Forecasting Performance Difference Between the sPCA and PCA

This figure plots the asymptotic forecasting performance difference between the sPCA and PCA
in a two-latent-factor model with heterogenous idiosyncratic errors. We calculate this asymptotic
performance difference as the asymptotic mean squared forecast error (MSFE) of the PCA minus
that of the sPCA divided by the number of predictors N = 500. A positive value with brighter
color indicates that the sPCA forecast is more accurate than the PCA forecast. Loadings on the
relevant factor, φi, and the standard deviation of idiosyncratic error, σi, are drawn randomly
from correlated uniform distributions with support [0,1], and loadings on the irrelevant factor
are drawn independently from an uniform distribution with support [0,ψ].
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Figure 3: In-sample Forecasting of Macro Variables

This figure plots in-sample R2s (in percentage) of predicting 1-month ahead inflation (Panel
A), industrial production growth (Panel B), unemployment rate (Panel C), and the S&P 500
index volatility (Panel D) using each of the 123 macro variables from the FRED-MD data set of
McCracken and Ng (2016), consisting of output and income (No. 1-16), labor market (No. 17-47),
consumption and housing (No. 48-64), money and credit (No. 65-78), interest and exchange
rate (No. 79-99), and prices (No. 100-123). To highlight the incremental predictive power of
each variable, we control for lags of the target with the number of lags selected by BIC. Macro
variables are collected at a monthly frequency and the sample period is 1960:01–2019:12.
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Figure 4: Loadings of the PCA factors on macro variables

This figure plots the loadings of the first to eighth PCA factors on the 123 macro variables.
The macro variables are collected at a monthly frequency from the FRED-MD data set of
McCracken and Ng (2016), consisting of output and income (No. 1-16), labor market (No. 17-47),
consumption and housing (No. 48-64), money and credit (No. 65-78), interest and exchange rate
(No. 79-99), and prices (No. 100-123). The sample period is 1960:01–2019:12.
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Figure 5: Loadings of the sPCA factors on macro variables

This figure plots the loadings of the first to eighth sPCA factors on 123 macro variables when predicting
the 1-month ahead inflation, industrial production growth, unemployment rate, and the S&P 500 index
volatility, respectively. The macro variables are collected at a monthly frequency from the FRED-MD
data set of McCracken and Ng (2016), consisting of output and income (No. 1-16), labor market (No.
17-47), consumption and housing (No. 48-64), money and credit (No. 65-78), interest and exchange rate
(No. 79-99), and prices (No. 100-123). The sample period is 1960:01–2019:12.
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Figure 5 (continued)

Output Labor Housing Money Interest Rates Prices
−5

0

5

1
s
t

Unemployment Rate

Output Labor Housing Money Interest Rates Prices
−5

0

5

1
s
t

Stock Market Volatility

Output Labor Housing Money Interest Rates Prices
−5

0

5

2
n
d

Output Labor Housing Money Interest Rates Prices
−5

0

5

2
n
d

Output Labor Housing Money Interest Rates Prices
−5

0

5

3
r
d

Output Labor Housing Money Interest Rates Prices
−5

0

5

3
r
d

Output Labor Housing Money Interest Rates Prices
−5

0

5

4
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

4
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

5
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

5
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

6
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

6
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

7
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

7
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

8
t
h

Output Labor Housing Money Interest Rates Prices
−5

0

5

8
t
h

30

Electronic copy available at: https://ssrn.com/abstract=3358911



Figure 6: In-sample Forecasting Performance of the PCA and sPCA factors

This figure plots the in-sample R2s (in percentage) of predicting the 1-month ahead inflation
(Panel A), industrial production growth (Panel B), unemployment rate (Panel C), and the S&P
500 index volatility (Panel D) by using the PCA and sPCA factors extracted from 123 macro
variables, respectively. We control for the lags of the target the number of lags selected by
BIC. The macro variables are collected at a monthly frequency from the FRED-MD data set of
McCracken and Ng (2016), consisting of output and income (No. 1-16), labor market (No. 17-47),
consumption and housing (No. 48-64), money and credit (No. 65-78), interest and exchange rate
(No. 79-99), and prices (No. 100-123). The sample period is 1960:01–2019:12.
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Figure 7: Out-of-sample Forecasting Performance of the PCA and sPCA factors

This figure plots the out-of-sample R2
OSs (in percentage) of predicting 1-month ahead inflation

(Panel A), industrial production growth (Panel B), unemployment rate (Panel C), and the S&P
500 index volatility (Panel D) by using the PCA and sPCA factors extracted from 123 macro
variables, respectively. All factors and predictive regressions are recursively estimated with an
expanding window scheme. The initial estimation window ranges from 1960:01 to 1984:12 and
the out-of-sample evaluation period is from 1985:01 to 2019:12.
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Table 1: The MSFEs of the sPCA and PCA Forecasts with Weak Factors

This table reports the out-of-sample mean squared forecast errors (MSFEs) of the sPCA and
PCA forecasts in the case of weak factors and heterogenous noises. Simulations are based on a
two-latent-factor model with one relevant factor. The sample size is (T, N) = (250,500). Both
factors are i.i.d normally distributed, and are weak in the sense that only n = 50, 40, 30, 20,
or 10 out of N = 500 predictors are loading on the two latent factors. Non-zero loadings on
the relevant factor φi and on the irrelevant factor ψi are drawn independently from an uniform
distribution with support [0,1]. Panel A considers the case in which the idiosyncratic errors are
heterogenous cross-sectionally, and the standard deviations of the idiosyncratic errors σi follow
an uniform distribution with support [0,1]. Panel B adds the time series heterogeneity, and
the standard deviations of the idiosyncratic errors are further multiplied by a random variable
σt, which is drawn from an uniform distribution with support [0.5,1.5]. We use the first 200
observations for parameter training and the rest 50 for for out-of-sample evaluation. Reported
are the median MSFE of 1, 2, and 3 sPCA and PCA factors on the basis of 100 simulations.

sPCA PCA

n 1 factor 2 factors 3 factors 1 factor 2 factors 3 factors

Panel A: Heterogenous idiosyncratic errors (cross-sectionally)

50 1.262 1.048 1.056 1.507 1.109 1.111

40 1.278 1.033 1.038 1.532 1.140 1.135

30 1.269 1.066 1.070 1.509 1.292 1.270

20 1.274 1.107 1.107 1.499 1.429 1.421

10 1.292 1.194 1.194 1.565 1.571 1.569

Panel B: Heterogenous idiosyncratic errors (cross-sectionally & time series)

50 1.268 1.027 1.032 1.513 1.225 1.220

40 1.246 1.030 1.039 1.492 1.337 1.311

30 1.311 1.131 1.135 1.548 1.504 1.489

20 1.291 1.110 1.109 1.557 1.558 1.557

10 1.362 1.272 1.280 1.720 1.719 1.716
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Table 2: The MSFEs of the sPCA and PCA Forecasts With Strong Factors

This table reports the out-of-sample mean squared forecast errors (MSFEs) of the sPCA and
PCA forecasts in the case of strong factors and heterogenous noises. Simulations are based on
a two-latent-factor model with one relevant factor. The sample size (T, N) = (250,50) in Panel
A and (T, N) = (250,100) in Panel B. Loadings on the relevant factor φi and standard deviation
of idiosyncratic error σi are drawn from correlated uniform distributions with support [0,1],
whereas loadings on the irrelevant factor is drawn independently from an uniform distribution
with support [0,ψ]. We use the first 200 observations for parameter training and the rest 50 for
for out-of-sample evaluation. Reported are the median MSFE of 1, 2, and 3 sPCA and PCA
factors on the basis of 100 simulations.

sPCA PCA

corr(φi,σi) ψ 1 factor 2 factors 3 factors 1 factor 2 factors 3 factors

Panel A: T = 200, N = 50

−0.75 0.5 1.115 1.024 1.028 1.179 1.043 1.048

−0.75 1 1.208 0.998 1.003 1.403 1.007 1.013

−0.50 0.5 1.119 1.047 1.055 1.189 1.061 1.065

−0.50 1 1.238 1.026 1.032 1.457 1.035 1.039

0 0.5 1.138 1.033 1.041 1.227 1.031 1.034

0 1 1.273 1.053 1.057 1.529 1.050 1.054

0.50 0.5 1.156 1.042 1.048 1.267 1.048 1.054

0.50 1 1.310 1.062 1.068 1.584 1.049 1.056

0.75 0.5 1.188 1.060 1.066 1.323 1.047 1.048

0.75 1 1.330 1.070 1.077 1.568 1.055 1.058

Panel B: T = 200, N = 100

−0.75 0.5 1.130 1.048 1.056 1.188 1.056 1.061

−0.75 1 1.234 1.031 1.040 1.433 1.036 1.044

−0.50 0.5 1.118 1.034 1.042 1.186 1.041 1.042

−0.50 1 1.230 1.000 1.006 1.450 1.007 1.009

0 0.5 1.134 1.023 1.030 1.223 1.023 1.025

0 1 1.255 1.001 1.009 1.499 1.002 1.009

0.50 0.5 1.159 1.025 1.030 1.280 1.020 1.026

0.50 1 1.351 1.074 1.084 1.609 1.072 1.075

0.75 0.5 1.143 0.991 0.997 1.284 0.988 0.990

0.75 1 1.342 1.070 1.078 1.602 1.063 1.066
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Table 3: Eigenvalues of the covariance matrixes of the raw and scaled macro variables

This table reports the first to fifteenth eigenvalues in a descending order for the covariance
matrixes of the raw and scaled macro variables, where the scaling parameter is the predictive
slope of the variable on the forecasted target. The eigenvalues are normalized to have a sum of
one.

PCA sPCA

Inflation IP Unemploy Volatility

1st 0.15 0.19 0.33 0.37 0.22

2nd 0.07 0.14 0.10 0.11 0.10

3rd 0.07 0.13 0.07 0.07 0.08

4th 0.05 0.08 0.07 0.06 0.08

5th 0.04 0.06 0.06 0.04 0.06

6th 0.03 0.03 0.03 0.03 0.04

7th 0.03 0.03 0.03 0.03 0.03

8th 0.02 0.03 0.02 0.02 0.03

9th 0.02 0.02 0.02 0.02 0.03

10th 0.02 0.02 0.02 0.02 0.02

11th 0.02 0.02 0.02 0.02 0.02

12th 0.02 0.02 0.02 0.02 0.02

13th 0.02 0.01 0.01 0.01 0.02

14th 0.02 0.01 0.01 0.01 0.02

15th 0.02 0.01 0.01 0.01 0.02
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Table 4: Out-of-sample R2
OSs of forecasting with macro variables

This table reports the out-of-sample R2
OSs (in percentage) of predicting the 1-month ahead

inflation, industrial production, unemployment rate and the S&P 500 index volatility with 123
macro variables. The methods include the PCA, sPCA, target PCA (tPCA), partial least square
(PLS), LASSO, Elastic Net, and Ridge regression. sPCA◦ refers to an alternative sPCA method
that scales each predictor by its t-value in regression rather than the regression slope. We
also consider LASSO regression on principal components of macro variables. For the PCA,
sPCA, tPCA, PLS, and sPCA◦, we employ the first five factors. For tPCA, we use the hard
threshold criteria in Bai and Ng (2008) to select the target predictors. For LASSO, Elastic
Net, and Ridge regression, we estimate forecast via a three-fold cross validation. All factors
and predictive regressions are recursively estimated with an expanding window scheme. The
initial estimation window ranges from 1960:01 to 1984:12 and the out-of-sample evaluation
period is from 1985:01 to 2019:12. Statistical significance for R2

OSs is based on the Clark and
West (2007) test and ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

Inflation IP Unemploy Volatility

PCA 10.98∗∗∗ 7.88∗∗∗ 7.96∗∗∗ 3.39∗

sPCA 15.24∗∗∗ 13.17∗∗∗ 15.55∗∗∗ 12.56∗∗

sPCA◦ 17.52∗∗∗ 13.20∗∗∗ 15.76∗∗∗ 11.36∗∗

tPCA 15.08∗∗∗ 9.10∗∗∗ 14.72∗∗∗ 10.28∗∗

PLS 12.27∗∗∗ 0.10∗∗∗ 8.84∗∗∗ 7.97∗∗

LASSO 16.66∗∗∗ 8.22∗∗∗ 12.60∗∗∗ 14.57∗∗∗

ENet 16.94∗∗∗ 8.86∗∗∗ 11.91∗∗∗ 14.04∗∗∗

Ridge 9.40∗∗∗ 9.02∗∗∗ 10.61∗∗∗ 12.63∗∗

LASSO (PCs) 17.64∗∗∗ 4.20∗∗∗ 9.02∗∗∗ 6.10∗∗∗
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