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ABSTRACT
User interfaces (UI) of desktop, web, andmobile applications involve
a hierarchy of objects (e.g. applications, screens, view class, and
other types of design objects) with multimodal (e.g. textual, visual)
and positional (e.g. spatial location, sequence order and hierarchy
level) attributes. We can therefore represent a set of application
UIs as a heterogeneous network with multimodal and positional at-
tributes. Such a network not only represents how users understand
the visual layout of UIs, but also influences how users would interact
with applications through these UIs. To model the UI semantics well
for different UI annotation, search, and evaluation tasks, this paper
proposes the novel Heterogeneous Attention-based Multimodal
Positional (HAMP) graph neural network model. HAMP combines
graph neural networks with the scaled dot-product attention used
in transformers to learn the embeddings of heterogeneous nodes
and associated multimodal and positional attributes in a unified
manner. HAMP is evaluated with classification and regression tasks
conducted on three distinct real-world datasets. Our experiments
demonstrate that HAMP significantly out-performs other state-of-
the-art models on such tasks. We also report our ablation study
results on HAMP.

CCS CONCEPTS
• Computing methodologies → Neural networks; Artificial
intelligence; •Human-centered computing→User interface
management systems; • Information systems→Multimedia
information systems.

KEYWORDS
Graph neural networks, transformers, attention mechanism, hetero-
geneous networks, multimodal, mobile application user interface,
supervised learning
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1 INTRODUCTION
The pervasiveness of mobile applications and availability of mobile
application user interface (UI) repositories containing rich multi-
modal information have made the mining of mobile application
design knowledge [32] an important research topic which bene-
fits retrieval and annotation of UI objects, design of user interac-
tions/experiences (UI/UX), and evaluation of UI designs. Mobile
application UI data can be viewed as a hierarchy of design objects
- mobile applications associated with multiple UI screens, code
classes and elements. As these different types of design objects
are linked with one another, they form a heterogeneous network.
Moreover, they are often associated with multimodal and positional
attributes. Example of multimodal attributes include visual informa-
tion (e.g., UI screen and element images) and textual information
(e.g., code and description of design objects). The positional at-
tributes include spatial locations of design objects (e.g., locations
of UI elements in UI screens), sequential positions (e.g., order of
UI screens during user interactions), and hierarchical positions
(e.g., hierarchical levels of design objects). Heterogeneous networks
formed from a hierarchy of design objects with multimodal and
positional attributes are also common in many other UI-related
applications - web, print, tangible.

Psychological evidence shows that humans parse images into
part-whole hierarchies and model the viewpoint-invariant spatial
relationships between a part and a whole as they process a piece
of visual information [20]. Intuitively, such hierarchical represen-
tations are even more important for UIs since the part-whole hi-
erarchies not only allow a user to understand the visual layout of
UIs but also influence user interactions and experiences. For exam-
ple, the number of levels in a UI design hierarchy could influence
the navigation experience of the user; the spatial, sequential and
hierarchical positions of a UI object could affect the way the user
perceives its functional role and importance. The above intuition
thus motivates our research objective to design a model for het-
erogeneous networks with multimodal and positional attributes to
capture the semantics of UI objects. Such a model would enable a se-
mantic representation vector to be learnt for every UI object which
can be used in downstream tasks such as UI search, evaluation,
annotation, and organization.

In this paper, we use the RICO repository [8, 32] and an en-
hanced version of RICO, ENRICO [28], as exemplar datasets. RICO
is a real-world mobile UI dataset that covers more than 9,000 An-
droid applications and their rich design information. RICO can be
used to support novel UI/UX applications, such as automatic catego-
rization and annotation of UIs for designers to learn design patterns
and trends; and prediction of user ratings of design objects to help
designers evaluate new designs. ENRICO is an enhanced subset of
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the RICO dataset that includes 1460 UI screens manually annotated
with design topics, e.g., a UI screen with a dialer, tutorial, or news
topic. Assigning topics to a UI screen is a non-trivial task, as
the same set of UI elements could be used to compose UIs
of different topics, e.g. form, or login topic, and the differ-
ences between screens with different topics may require an
understanding of the content, e.g. list, or news topic. ENRICO
dataset is intended to be utilized for a range of UI design applica-
tions: semantic UI captioning, automatic UI tagging and annotation,
explainable UI designs, and search and retrieval.

Figure 1 depicts mobile application UIs in RICO and ENRICO as a
heterogeneous network with multimodal and positional attributes.
There are four types of nodes in this heterogeneous network -
mobile applications, UI screens, UI view classes and UI elements.
Multimodal attributes are associated with these four types of nodes
- mobile application node has description attribute, both UI screen
node and UI element node have image attributes, and UI view class
object has class name attribute. The positional attributes include
spatial locations of UI elements on the screen, sequential positions
of UI screens in user interaction traces, and the level of the nodes
in the original design hierarchy. The hierarchy of nodes in this
network structure is captured by the hierarchical level attribute.

Figure 2 provides an overview of the proposed framework in
this paper, and examples of predictive application tasks that may
be performed using a heterogeneous attributed network model: i)
automatic annotation of elements’ component type, which could
be used to insert metadata for accessibility features in mobile appli-
cations; ii) automatic classification of UIs’ genres, which could be
used for organization, search and retrieval of UIs in a repository; iii)
UI rating prediction, which could be used for UI designers to obtain
an initial evaluation of their designs; and iv) automatic tagging of
UIs with their topics, which could be used for applications such as
semantic UI captioning, automatic UI tagging and annotation [28].

Despite the large volume of multimedia research, there is very
little work on heterogeneous networks with multimodal and posi-
tional attributes, particularly the non-Euclidean nature of network
structures associated with multimodal attributes. In recent years,
graph neural network (GNN) models have been developed to cap-
ture both network structures and node attributes. However, most
GNN works do not attempt to capture multiple modalities of node
attributes in heterogeneous networks. They also do not specifically
model spatial and sequential node positional information.

There are works that capture UI multimodal information, such
as [15, 29], which generate item embeddings for recommendation
tasks from user interaction information and metadata text but do
not capture multimodal and positional attributes of a heterogeneous
network of UI design objects. [1] uses multimodal GNNs for mobile
UI-related tasks but does not incorporate spatial, sequential and
hierarchical information, and is designed for bipartite networks, a
special type of heterogeneous network. [29] captures multimodal
and sequential UI information, but does not capture structural
network and positional information.

In this paper, we propose the Heterogeneous Attention-based
Multimodal Positional (HAMP) model to address the limitations
of such existing models. Specifically, HAMP aims to: (1) capture
information from different modalities for different types of nodes

at different levels of a design hierarchy, along with other posi-
tional information such as spatial location and sequence order; (2)
ensure that low dimensional positional attributes are captured ef-
fectively alongside high dimensional multimodal attributes; and (3)
self-discover the relative importance of multimodal attributes and
positional attributes.

HAMP1 adopts a novel attention-based GNN inspired by trans-
formers. Our key contributions are as follows:

• To our knowledge, this is the first work to propose an ap-
proach that captures heterogeneous networks and their as-
sociated multimodal and positional attributes in a unified
manner for UI-related tasks;

• HAMP is also the first work that incorporates a positional
vectorizer (PosVect) with different functional forms to ex-
tract important information from different positional (spa-
tial, sequential and hierarchical level) attributes within a
GNN framework. The module also ensures proper capture of
lower dimensional spatial, sequential and hierarchical level
attributes by expanding their dimensions to match higher
dimensional multimodal attributes;

• We propose the use of attention fusion in HAMP to self-
discover the relative importance of multimodal and spa-
tial, sequential and hierarchical level attributes for different
nodes, and enable the relative importance of the different
attributes to be extracted for interpretability;

• We combine the proposed positional vectorizer and attention
fusion modules with a scaled dot-product attention-based
GNN message propagation method that is designed for het-
erogeneous networks with different node and edge-types;
and

• We show that HAMP consistently out-performs several state-
of-the-art models on UI screen genre classification, UI ele-
ment component type classification, mobile application rat-
ings prediction and UI screen topic classification tasks which
are highly relevant to real-world applications.

2 RELATEDWORK
Key related works in the areas of UI representational learning and
network embeddings are outlined in this section.

2.1 UI representation learning
[3, 6, 22, 38, 47] are examples of recent representation learning
work that also capture UI semantics for a range of tasks, but they
use information from just one or two modalities, and do not utilize
the structural network information present in the linkages between
different UI objects. [22] retrieves UI screen images based on UI
sketch images by using image embeddings for visual similarity
comparisons, but does not capture the structural network infor-
mation present in the linkages between UI objects. [47] captures
structural network information of UI objects to support retrieval
applications, but does not capture multimodal attributes. [1] cap-
tures structural network and multimodal information but does not
incorporate spatial, sequential and hierarchical information, and is
designed for a bipartite network, a special kind of heterogeneous
network. Screen2Vec [29], a recent work, generates representations
1Source code available at: https://github.com/playgrdstar/hamp
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Figure 1: Heterogeneous network to capture hierarchy of UI objects and their multimodal and positional attributes. The het-
erogeneous network comprises four types of nodes - mobile application nodes, UI screen nodes, UI view class nodes and UI
view element nodes, with attributes from different modalities, as well as different positional attributes. On the left side, we
show application and UI view class nodes associated with textual application description and UI view class name attributes;
and UI screen and UI view element nodes associated with visual screen image and element image attributes. On the right side,
we show the different types of positional attributes. Each node-type may be associated with one or more of these positional
attributes.

Figure 2: Overview of framework in this paper. A heterogeneous attributed network model captures different UI object node-
types with different inter-UI object relationships and multimodal and positional attributes for four different predictive tasks.

of UI screens and components that capture the multi-modal infor-
mation of UIs, UI layouts and sequential information of UIs in user
interactions. However, it does not capture the structural network
information present in a heterogeneous network of UI objects.

2.2 Network embeddings
There are several related works on network embedding approaches
which could be applied to a network of UI design objects. The
Graph Variational Autoencoder (GVAE) [25] approach applies a

variational autoencoder [24] framework to learn the node embed-
dings of homogeneous networks. The Co-Embedding Attributed
Network (CAN) [33] uses two VAE channels to jointly encode and
decode the node adjacency matrix and another node feature matrix.
Semi-supervised Co-embedding Attributed Network [34] extends
CAN to co-embed both attributes and nodes of partially labelled
networks. Multinomial VAE [30] is a VAE-based approach that
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generates embeddings of heterogeneous network by using a multi-
nomial distribution instead of the Bernoulli distribution used in
GVAE.

Graph neural network (GNN) is another approach which com-
poses messages based on network features, and propagates them to
update the representation vectors of nodes and/or edges over multi-
ple neural network layers [2, 12]. Several GNN-based models have
been developed. In particular, Graph Convolutional Network (GCN)
[26] aggregates features of neighboring nodes and normalizes the
aggregated representations by the node degrees. GraphSAGE [17]
further considers mean, LSTM or pooling aggregation methods. Un-
like GCN, GraphSAGE samples only a fixed number of neighbors
for representation aggregation. Graph Attention Network (GAT)
[42] assigns neighboring nodes with different importance weights
during aggregation using additive attention. Messages passed be-
tween each layer in most GNNs go through non-linear layers such
as rectified linear activation units. Simplifying Graph Convolu-
tional Network (SGC) [46] further adopts linear layers to process
messages as they are passed to neighboring nodes. Hard Graph At-
tention Operator (hGAO) [11] applies hard attention, requiring each
node to only attend to a subset of neighboring nodes to improve
performance and reduce computational costs.

GNNs have also been applied to heterogeneous networks. Re-
lational Graph Convolutional Networks [39] and Graph Convolu-
tional Matrix Completion [40] use multiple GCNs to encode embed-
dings of multiple adjacency matrices, one for each edge type, before
aggregating them. Neural Graph Collaborative Filtering [43] and
LightGCN [18] encode embeddings for different number of hops
before aggregating them. [23] captures indirect proximity between
the same node types in bipartite networks. Heterogeneous Graph
Attention Network (HAN) [44] and General Attributed Multiplex
Heterogeneous Network [4] use multiple GNN-based layers to en-
code networks formed from different metapaths [9] before using
an attention mechanism to aggregate the embeddings.

Other than VAE and GNN-based approaches, transformers [41],
initially designed for modeling sequential information, have also
been generalized for networks/graphs [10].While these graph trans-
formers are not designed to capture multimodal, spatial, sequential
and hierarchical information, we are inspired by the scaled dot-
product attention mechanisms in such graph transformer works
[21, 49].

Most of the related network embedding works only use informa-
tion from a single modality, whereas HAMP captures information
from multiple modalities. These related works also do not capture
spatial, sequential and hierarchical information. With regards to
sequential information, there are GNN-related works [14, 16, 31, 37]
designed for sequences of network snapshots with their associated
timestamps. However, such works are designed for snapshots of
simple networks with overlapping sets of nodes and edges, and are
not suitable for the hierarchical network described in this paper. We
also propose the use of a module that can accommodate different
functional forms (the positional vectorizer) to extract important
lower dimensional spatial, sequential and hierarchical features (rep-
resenting linear and non-linear patterns) and expand their dimen-
sions to match higher dimensional textual and visual information,
which has thus far not featured in GNN-related works. We also use
an attention mechanism to self-discover the relative importance of

multimodal and spatial, sequence and hierarchical level information
for different nodes. Finally, instead of the usual message passing
methods employed in most GNNs, we adapt the scaled dot-product
attention mechanism inspired by graph transformers to undertake
the composition, aggregation and update steps in a GNN message
passing framework.

3 HETEROGENEOUS ATTENTION-BASED
MULTIMODAL POSITIONAL GRAPH
NEURAL NETWORK

In our proposed Heterogeneous Attention-based Multimodal Posi-
tional (HAMP) GNN model, we represent different types of objects
(e.g. mobile application, UI screen, UI view class and UI view ele-
ment nodes in the case of the RICO dataset) as nodes at different
levels in a heterogeneous network. We denote the network as

G = (V ,E,X ) (1)

where V includes Q disjoint sets of nodes of different types V =
V1 ∪ · · · ∪ VQ . Similarly, E consists of edges of R types, i.e., E =
E1 ∪ · · · ∪ ER . In the case of the RICO dataset, each edge type
represents a specific part-whole relationship as shown in Figure 1.
Every edge connecting two nodes is then represented as a canonical
triplet ⟨vs , r ,vt ⟩ ∈ E, where vs ,vt ∈ V and r ∈ {1, · · · ,R}. The set
of all canonical triplets is denoted as C .

HAMP is designed to model multimodal attributes which can be
textual, visual, categorical or numerical, and positional attributes
which can be spatial locations, sequential positions, and hierarchical
level numbers. For each node-typeq, we define amatrix to represent
the values of each attribute associated with nodes of the type q.
For each textual, visual, categorical, or numerical attribute, we use
a X

q
f t matrix to represent the node to attribute value mapping.

X
q
f t is of |Vq | × N

q
f t dimension where Nq

f t is the dimension size
of the multimodal attribute. For each positional attribute, we also
use a Xq

pos matrix to represent the node to position mapping. The
dimension size ofXq

pos is |Vq |×N
q
pos whereN

q
pos is the dimension of

the positional attribute. In the case of specific nodes that are missing
multimodal attribute values (e.g. missing textual descriptions), we
set the missing multimodal attribute values to random values.

HAMP comprises three key components. First, the positional
vectorizer (PosVect) captures linear, non-linear and periodic relation-
ships between positional attributes and different tasks. Second, the
multimodal positional fusion module projects different multimodal
and positional features to a common latent representational space,
and fuses them with attention mechanisms. Finally, attention-based
network-encoding layers comprising scaled dot-product attention
message-passing and representation aggregation steps are used to
capture structural heterogeneous network information.

To learn the representation of each target node vt , HAMP first
extracts edges linking other neighboring source nodes to vt as
canonical triplets ⟨vs , r ,vt ⟩’s from the heterogeneous network.
Suppose the multimodal and positional node attribute values are
represented in the Xq

f t and X
q
pos matrices respectively. For both

simplicity and without loss of generality, we shall drop node type
q from the following description. The multimodal positional fu-
sion module first expands the positional attribute vectors with the
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Table 1: Summary of Key Notations

Symbol Description

V Nodes in graph G comprising Q disjoint sets of nodes of different node-types
E Edges in graph G formed based on R relationship-types
Xm ;m ∈ { f t ,pos} Node features, comprising multimodal features f t ; as well as positional features pos . Positional

features may include spatial locations sp; sequential positions sq; and hierarchical levels hi
N (v) Neighboring nodes of node v ∈ V
X ′ Hidden representations after fusion of multimodal, spatial, sequential, hierarchical level infor-

mation
e = ⟨vs , r ,vt ⟩ Canonical triplet formed based on edge e consisting of relationship r between a source node vs

of one node-type and a target node vt of the same or different node-type
H Node embeddings/representations

PosVect to match the dimensions of other multimodal information
before the positional and multimodal attribute vectors are fused
together with an attention mechanism. For each triplet (or edge)
ei = ⟨vq , r ,vt ⟩’s and target node vt pair, a scaled dot-product atten-
tion message-passing mechanism is then used to learn the triplet-
specific embedding of vt , denoted by Hei ,t . Once we obtain all the
triplet embeddings for the target node vt , for {⟨vs , r ,vt ⟩ ∈ E}, the
representation aggregation step averages across all these embed-
dings and passes the resultant embedding through a dense layer to
obtain vt ’s final representation denoted by Ht . We shall elaborate
on these steps, as shown in Figure 3, in the subsequent sections.

Multimodal positional fusion. We first project each multimodal at-
tribute vector (with different dimensions) to a common dimension
with a dense layer - X ′

f t = PROJ (Xf t ). We use a positional vector-
izer, PosVect, to expand positional attribute vectors, where present,
to match the dimensions of the projected multimodal attribute vec-
tor, i.e. X ′

pos = PosVect(Xpos ). That is, X ′
f t and X ′

pos share the
same dimension size. The positional vectorizer, inspired by [13, 36],
generates higher dimensional representations from the low dimen-
sional positional attributes and extracts important longitudinal
information (i.e. relationships between the task and the positional
attributes) via different pre-defined functional forms (that can be
linear, non-linear or periodic). The set of functional forms chosen
should allow for different types of patterns, e.g., linear, non-linear,
and/or periodic, representing different relationships between the
task and the positional attributes to be captured. Unlike the sinu-
soidal positional encodings used in transformers that only deal with
the sequential positions of word tokens [41], the positional vector-
izer is of a more general form to enable it to be applied to different
types of positional attributes. For our experiments with HAMP on
the RICO dataset, we empirically chose Linear, Sinusodial, Sigmoid
and Softplus functions to capture linear, non-linear and periodic
patterns for the positional vectorizer for all positional attributes.

Next, we use an attention mechanism to fuse these intermediate
representations X ′

f t and X
′
pos . The use of an attention mechanism

here allows the model to self-discover the relative importance of
each information type, and weight contributions accordingly for the
task at hand. It also allows us to interpret the relative importances
of the different inputs. We first apply a non-linear transformation
to each of these intermediate representations to obtain the scalars

Km for attributem wherem ∈ { f t ,pos}.

Km =W
(1)tanh(W (0)X ′

m + b) (2)

whereW (0) andW (1) are learnable weight matrices and b is the bias
vector. These three parameters are shared across multimodal and
positional attributes. We then normalize Km with a softmax func-
tion to obtain the attention weights for the respective multimodal
and positional attributes:

βm =
exp(Km )∑
m exp(Km )

(3)

Finally, we use these weights to fuse the multimodal and relevant
positional representations (i.e. spatial, sequential and/or hierarchi-
cal level representations depending on the node-type) of each of
the node-types and apply a dense layer to obtain the fused repre-
sentation X ′′:

X ′′ = DENSE(
∑
m

βmX ′
m ) (4)

where the DENSE function is a simple fully-connected linear layer.
A bias vector and a non-linear activation layer could also be added
where necessary.

The steps outlined above, i.e. the attention fusion of the multi-
modal and positional attributes, and application of the dense layer
to the fused representations, are repeated to generate the query, key
and value representations, resulting in X ′′

Q ,X
′′
K ,X

′′
V for each node.

Hence, along with the query, key and value representations, we also
introduce the correspondingW (0)

K ,W (0)
Q ,W (0)

V ,W (1)
K ,W (1)

Q ,W (1)
V , bK ,

bQ , and bV . Parameters for the dense layer used for projection of
the multimodal attribute vectors (PROJ ), the positional vectorizer
(PosVect ), attention mechanism and the final dense layer (DENSE)
as described above are shared between nodes of each node-type.

Scaled dot-product attention message passing. In this step, inspired
by [21, 49], we adapt the scaled dot-product attention module com-
monly used in transformers [41] for the GNN message-passing
framework. The scaled dot-product attention mechanism used in
transformers for natural language processing usually computes
an attention score between every pair of word tokens in sentence,
whereas the scaled dot-product attention mechanism applied to
networks is more efficient as it utilizes network information to only
compute attention scores between nodes that are neighbors. These
attention scores are used to weight the messages propagated from
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Figure 3: Architecture of HAMPmodel, which comprises threemain components: positional vectorizer (PosVect) that captures
linear, non-linear and periodic relationships between positional attributes and different tasks; multimodal positional fusion
module that projects multimodal and positional features to a common latent representational space and fuses them with
attention mechanisms; and network-encoding layers that capture structural heterogeneous network information.

the source to target nodes for aggregation. Using scaled dot-product
attention is also more effective than the usual message-passing
framework employed in most GNNs as it allows the model to per-
form the message composition, propagation and update steps in
the GNN message-passing framework based on the self-discovered
relative importances of each neighboring source node.

For each canonical triplet, we obtain the node embedding by
first computing the attention score AttScore between a target node
vt and each neighboring source node vs ∈ N (vt ) as:

AttScore ⟨vs ,r,vt ⟩ = so f tmaxvs ∈N (vt )scale(X
′′
K,vsWattX

′′
Q,vt )

(5)
where N (vt ) denotes the neighboring nodes of vt .Watt is a learn-
able weight matrix, and the scale operation divides the resultant
values by the square root of the dimension of the hidden represen-
tation per [41].

Next, we use the attention scoreAttScore to compute theweighted
average of features from all source nodes and use it to update the
triplet-specific representation of the target node vt .

H ⟨vs ,r,vt ⟩,t =
∑

vs ∈N (vt )

AttScore ⟨vs ,r,vt ⟩ · X
′′
V ,vsWV (6)

whereWV is a learnable weight matrix. Multiple heads can also be
incorporated within each scaled dot-product attention module per
[41].

Representation Aggregation. At this point, we have the embed-
dings of the target node vt for each of the canonical triplets or
edges connected to neighboring nodes N (vt ). We assume each of
these canonical triplet-specific embeddings is equally important,
and hence perform the final aggregation step by averaging these

438



Learning UI Semantics from Heterogeneous Networks with Multimodal and Positional Attributes IUI ’22, March 22–25, 2022, Helsinki, Finland

embeddings to obtain a single representation H
′(0)
t . That is,

H
′(0)
t =

1
|N (vt )|

∑
vs ∈N (vt )

H ⟨vs ,r,vt ⟩,t (7)

Besides the above approach, we can consider other aggregation ap-
proaches (e.g. using an attention mechanism to weight the different
canonical triplet-specific embeddings) but we would include this as
part of future work. Finally, a dense layer and a residual connection
is applied to obtain the representation of the nodeH (0)

t = H
′(0)
t +X ′

t ,
which can then serve as input to another layer comprising the dense
layers, scaled dot-product attention message-passing and represen-
tation aggregation modules.

MultipleMessagePassing andAggregationLayers. As shown
in Figure 3, the node representations from a prior layer (i.e. k-1 layer)
are passed into dense layers to generate query, key and value repre-
sentations as inputs to the scaled dot-product attention messaging
passing module. The scaled dot-product attention messaging pass-
ing module then generates a representation for each target node for
each canonical triplet, i.e.H (k)

⟨vs ,r,vt ⟩,t
. We then aggregate these tar-

get node representations across the canonical triplets ⟨vs , r ,vt ⟩ ∈ E

(as described earlier) to obtain H
′(k )
t . A residual connection is then

applied to obtain H
(k )
t = H

′(k )
t + H

(k−1)
t .

H
(k )
t can then be passed to a task-specific module. If K layers

are used, then every node embedding contains information about
its K-hop neighborhood. The use of residual connections serves
to address potential over-smoothing, which can arise when we
have multiple rounds of GNN message-passing over multiple layers
[48]. Over-smoothing causes representations for all nodes in a net-
work to become very similar to one another and can lead to poorer
performance. The use of residual connections allows information
from earlier GNN message-passing layers to flow to the final layer,
helping to alleviate the over-smoothing issue.

4 EXPERIMENTS
We now conduct several experiments to evaluate the network em-
beddings learned by HAMP against state-of-the-art baselines. In the
following, we describe the experiment datasets and the predictive
tasks for comparing the models.

4.1 Datasets
The data used in these experiments are extracted from RICO and
ENRICO as mentioned in Section 1. Among the 9384 Android ap-
plications in the RICO repository, we were able to scrape from the
Google Play Store the metadata of 6583 of these applications and
their UI screens in Feb 2020. These applications were released be-
tween Jan. 2010 and Apr. 2017. The repository includes images of UI
screens and their associated UI view classes, as well as the interac-
tion traces of the UI screens. To validate the result findings against
UI datasets with different characteristics, we extract two datasets
from the RICO repository, namely: RICO-N, comprising the most
recently released 1000 applications (Oct 2015 to Apr 2017); and
RICO-O, comprising the earliest released 1000 applications (Jan
2010 to Aug 2011). To assess HAMP’s performance on predicting UI
topics, we also utilize the list of UI screens and topic annotations

provided in ENRICO, and extract other information correspond-
ing to these UI screens (i.e. their mobile applications, UI classes
and elements, multimodal and positional attributes) from the RICO
repository. The differences between these datasets are significant
as shown in Table 2. RICO-O has around twice the number of nodes
and edges as RICO-N, while ENRICO is the smallest dataset. The
length of the longest UI screen sequence and the maximum depth
of node hierarchy across the three datasets also differ.

For each mobile application, we parse the UI screens and UI
view class hierarchies to extract the spatial, sequential, hierarchical
and network information - UI elements linked to their parent UI
elements, each in turn linked to parent UI view classes, that are
then linked to series of UI screens, which constitute mobile appli-
cations. The result of this step is a heterogeneous network with
the associated multimodal, spatial, sequential and hierarchical level
information shown in Figure 1.

Table 3 shows the multimodal and positional attributes of differ-
ent node types in our datasets. The multimodal attributes Xf t for
each node-type are derived by encoding the descriptions of the mo-
bile application nodes, images of the UI screen nodes, class names
of the UI view class nodes, and images of the UI element nodes. Tex-
tual information of the mobile application descriptions is encoded
with pre-trained Glove embeddings. Visual information of the UI
screens is encoded by training an autoencoder. Textual information
of the names of the UI view classes is first pre-processed by break-
ing them up by their periods, special characters and camel casing.
For example, com.android. internal.policy.PhoneWindow$DecorView
is tokenized as android, internal, policy, phone, window, decor, view.
Thereafter, we generate the features by using a pre-trained Char-
NGram embedding. Images of the individual UI elements are first
extracted using the bounds provided in the extracted UI code. Each
image is then passed through a pre-trained ResNet18 model to
generate their representations. Other methods can also be used to
encode the attributes.

To represent the spatial position Xsp of UI element nodes in UI
screens, we use the coordinates of the UI elements on the screen
(x0,y0,x1,y1). The sequential positions Xsq of the UI screens are
extracted from the user screen interaction sequences. The hierar-
chical levels Xhi are assigned based on the depth of the node in the
hierarchical network.

4.2 Experiment Setup
We compare the performance of HAMP with state-of-the-art base-
lines on four predictive tasks: (a) classification of UI screen genres;
(b) classification of UI element component types; (c) Prediction of
mobile application ratings; and (d) classification of UI screen topic.

• Classification of UI screen genre - For this task, we pre-
dict the genre labels of UI screens for the RICO-N and RICO-
O datasets. We extract genre labels from the data scraped
from the Google Play Store. To predict the UI screen genre,
we pass the aggregated representation of a UI screen node
generated by HAMP to a dense neural network layer with
output dimensions equal to the number of genre classes,
and train HAMP with cross-entropy loss. We use macro and
micro F1 as the evaluation metrics as they combine both
precision and recall which are important for this task. F1 is
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Table 2: Dataset Overview

Datasets RICO-N RICO-O ENRICO

Num. of Application Nodes 1000 1000 869
Num. of UI Screen Nodes 5879 9108 1460
Num. of UI View Class Nodes 1563 2920 1506
Num. of UI Element Nodes 109,387 203,522 28,821
Num. of App - UI Screens Edges 5879 9108 1460
Num. of UI Screens - UI View Classes Edges 38,961 68,305 10,113
Num. of UI View Classes - UI Elements Edges 109,387 203,522 28,821

Length of longest sequence 36 46 38
Max. depth of hierarchy 9 10 9

Num. of UI element component-types 26 26 -
Num. of UI screen genres 36 33 -
Num. of UI screen topics - - 20
Range of mobile app. ratings 1.15 to 4.92 1.72 to 4.91 -

Table 3: Multimodal Feature Dimensions and Availability of Spatial, Sequential and Hierarchical Level Information for Dif-
ferent Node-Types

Feature Dim. Spatial Sequential Hierarchical

Mobile Application Nodes - Textual - Glove vectors
of app. descriptions

50 No No Yes

UI Screen Nodes - Visual - Latent vectors of UI screen
images extracted with auto-encoder

64 No Yes Yes

UI View Class Nodes - Textual - CharNGram vectors
of the names of UI view classes

100 No No Yes

UI Element Nodes - Visual - Latent vectors of UI ele-
ment images extracted with pre-trained ResNet18

512 Yes No Yes

defined by the harmonic mean of precision and recall scores.
For macro F1, we compute the F1 score for each class and
average them. Macro F1 thus treats all classes equally in the
averaging operation. Micro F1 score on the other hand is
defined based on the precision and recall computed from the
predicted genre class labels of all UI screens. As the distri-
bution of genre classes is unequal, macro F1 and micro F1
scores can be quite different.

• Classification ofUI element component-types - For this
task, we predict the component-type of UI elements for the
RICO-N and RICO-O datasets. Similar to UI screen genre
classification, we create another dense neural network layer
to predict the component-type of UI element nodes, and train
HAMP with cross-entropy loss. We also use macro and mi-
cro F1 scores to evaluate the results of this task. To evaluate
performance on this task in a manner that is not dependent
on the Android nature of the UI view classes, a limitation
pointed out in [32], we randomly initialize the attributes of
the UI view class nodes instead of using the textual features
of the UI view classes for this task. The other features used -
application descriptions, UI screen and element images - are
not Android-specific.

• Prediction of mobile application ratings - For this task,
we predict mobile application ratings for the RICO-N and
RICO-O datasets. The rating of a mobile application are
computed based on the average of all its user ratings from
the Google Play Store. A dense neural network layer with
output dimension of one is added, and HAMP is trained with
the mean square error loss for this task. This task is useful
for predicting the success of new applications. We use root
mean square error (RMSE) as the evaluation metric.

• Classification ofUI screen topic - For this task, we predict
the topic labels of UI screens for the ENRICO dataset. Similar
to UI screen genre classification, we create another dense
neural network layer to predict the topic of UI screen nodes,
and train HAMP with cross-entropy loss. We also use macro
and micro F1 scores to evaluate the results of this task.

For all four tasks, the dataset is splitted for training/validation/
testing in the ratio 60%/20%/20%, e.g., for UI screen genre classifi-
cation, it means that the model is trained on a subset of 60% of UI
screens with their genre labels, validated on 20% of UI screens with
their genre labels, and testing results shown in the paper based on
the final 20% of UI screens with their genre labels. Labels are not
utilized as input features, and UI objects that are not in the training,
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validation or testing sets would not be used during training; or for
validation or testing evaluations respectively.

Baselines and Settings. We use multi-class logistic regression
and linear regression as baselines for the classification task (for
UI screen genre, UI element component type, and UI screen topic
classification) and regression task (for mobile application ratings)
respectively. For these baselines, the visual features of the UI screen
images and UI element images are used as inputs for the classifi-
cation tasks, while the textual features of the mobile applications’
descriptions are used as inputs for the regression task. We also
choose an extensive set of state-of-the-art models as strong base-
lines:

• GCN [26], which normalizes the aggregated representations
by the node degrees;

• SGC [46], which has been shown to achieve improved per-
formance with simpler GCN layers;

• GraphSAGE [17] which allows us to adopt a different aggre-
gation method - pooling;

• GAT [42], where different nodes in the neighborhood are
assigned different importances during aggregation based on
additive attention;

• hGAO [11], which applies hard attention to improve perfor-
mance and reduce computational cost;

• HAN [44], which is also based on the additive attention
mechanism but can deal with heterogeneous networks; and

• Screen2Vec [29], a recently proposed model that can capture
both multimodal and sequential information within mobile
UIs.

For each of these baselines (other than Screen2Vec), we similarly
add a dense neural network layer with output dimensions equal
to the number of classes for classification tasks (or a dimension
equal to one in the case of the rating prediction task) and train
these models with cross-entropy loss (or mean square error loss
for the rating prediction task). For Screen2Vec, we utilize the pre-
trained models provided by the authors of the work to generate
the embeddings for the corresponding UI screens, and then use
the embeddings as features to train a Support Vector Machine
(SVM) for the UI screen genre and topic classification tasks. For the
mobile application rating task, we obtain the mobile application
embeddings by adding the embeddings of all its UI screens and then
use the mobile application embeddings as features to train a SVM
for the mobile application rating task. We do not compare against
Screen2Vec on the UI element component-type classification task
as the UI components in the Screen2Vec paper differ from the UI
elements in our paper.

For HAMP and all network-embedding baselines with attention
modules, two layers (K = 2) and two heads (where applicable) are
used. Two layers were chosen based on empirical experiments, in-
dicating that two hop-away neighbours are useful for the selected
predictive tasks. Based on our experiments with the validation
dataset, we use 64 dimensions for the hidden representations gen-
erated by all models. A separate model is trained for each task in
a supervised manner. For all models, an Adam optimizer with a
maximum learning rate of 0.001 with a cosine annealing scheduler
is used. All models are implemented in Pytorch and trained for

Table 4: UI Screen Genre Classification Results. Higher is
better for micro F1 and macro F1. Best performing results
are boldfaced in this and subsequent tables.

RICO-N RICO-O
Micro F1 Macro F1 Micro F1 Macro F1

Log. Regression 0.127 0.059 0.153 0.043
GCN 0.087 0.048 0.137 0.042
SGC 0.046 0.011 0.113 0.012

GraphSAGE 0.079 0.035 0.136 0.038
GAT 0.079 0.058 0.159 0.063
hGAO 0.087 0.067 0.168 0.060
HAN 0.698 0.648 0.517 0.298

Screen2Vec 0.392 0.311 0.466 0.407
HAMP 0.970 0.877 0.921 0.759

3000 epochs on a 3.60GHz AMD Ryzen 7 Windows desktop with
NVIDIA RTX 3090 GPU and 64GB RAM.

4.3 Results
4.3.1 UI Screen Genre Classification Results. Table 4 sets out
the results relating to UI screen genre classification. HAMP clearly
out-performs all baselines by a significant margin. Among the base-
line models, HAN, which also models heterogeneous network in-
formation, comes closest to HAMP, but the gap between the two
is still significant. HAMP in particular performs much better than
HAN on the RICO-O dataset. Screen2Vec also performs better than
most of the other models, demonstrating the value of capturing
multimodal and sequential information. However, there is a sig-
nificant gap between Screen2Vec and HAMP, demonstrating the
importance of capturing structural network information. As we
observe higher micro F1 than macro F1, the genre class distribution
in this task is imbalanced.

4.3.2 UIElementComponent-TypeClassificationResults. Ta-
ble 5 sets out the results of the experiments relating to UI element
component-type classification. The baseline models perform better
on this task compared with UI screen genre classification, though
HAMP still out-performs all baselines by a significant margin. For
this task, HAN does not perform as well as the previous task. Graph-
SAGE and GAT’s performance is closest to HAMP. The differences
between performance on the UI element component-type and UI
screen genre classification tasks could be due to differences in the
density of different parts of the network. HAMP is however able
to cope with such differences, possibly due to its ability to capture
structural network, multimodal, spatial, sequential and hierarchical
information in a unified manner.

4.3.3 Application Rating Regression Results. Table 6 shows
the results of the experiments relating to prediction of user ratings
of mobile applications. HAMP similarly out-performs all baseline
models. The performance of baselines is more varied for this task.
As application nodes are at the highest level of the network, we
could also view this as a sub-graph regression task. This could
explain the better performance of GraphSAGE (which pools node
representations in the aggregation step) and HAN (due to its ability
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Table 5: UI Element Component-Type Classification Results. Higher is better for micro F1 and macro F1.

RICO-N RICO-O
Micro F1 Macro F1 Micro F1 Macro F1

Logistic Regression 0.587 0.166 0.616 0.185
GCN 0.587 0.220 0.627 0.236
SGC 0.519 0.215 0.549 0.248

GraphSAGE 0.649 0.279 0.694 0.274
GAT 0.638 0.331 0.693 0.398
hGAO 0.626 0.249 0.683 0.321
HAN 0.470 0.220 0.511 0.219
HAMP 0.906 0.891 0.899 0.801

Table 6: Application Rating Regression Results (RMSE).
RICO application rating ranges from 1 to 5. Lower is better
for RMSE.

RICO-N RICO-O

Linear Regression 0.540 0.669
GCN 0.761 4.131
SGC 1.969 1.900

GraphSAGE 0.500 0.595
GAT 1.354 1.011
hGAO 1.209 1.237
HAN 0.538 0.613

Screen2Vec 0.752 0.657
HAMP 0.468 0.577

to deal with heterogeneous networks) relative to other baselines.
GCN’s performance on the RICO-O dataset is surprisingly poor
(RMSE of 4.131). One possible explanation for its poorer perfor-
mance could be due to over-smoothing, a well known issue that
GNNs often face [48]. Over-smoothing means that after several it-
erations of GNN message-passing, the representations for all nodes
in a network become very similar, affecting model performance. To
check if this is the cause, we ran this experiment with just one GCN
layer (as opposed to two), and the performance improved (RMSE
of 2.641). HAMP is less likely to be affected by this issue due to the
intrinsic regularization arising from its capturing of structural net-
work, multimodal, spatial, sequential and hierarchical information,
and also due to the residual connections that were introduced in
the model.

4.3.4 UI Screen Topic Classification Results. Table 7 sets out
the results relating to UI screen topic classification on the EN-
RICO dataset. The results are consistent with the UI screen genre
classification task. HAMP clearly out-performs all baselines by
a significant margin. Among the baseline models, HAN, which
also models heterogeneous network information, comes closest to
HAMP, but the gap between the two is still significant. We also see
that Screen2Vec performs better than most of the other models but
that there is still a significant gap between Screen2Vec and HAMP,
which again demonstrates the importance of capturing structural
network information. As the topic class distribution in this task is

Table 7: UI Screen Topic Classification Results. Higher is bet-
ter for micro F1 and macro F1.

ENRICO
Micro F1 Macro F1

Log. Regression 0.264 0.118
GCN 0.290 0.110
SGC 0.179 0.016

GraphSAGE 0.335 0.231
GAT 0.305 0.196
hGAO 0.390 0.278
HAN 0.452 0.436

Screen2Vec 0.336 0.206
HAMP 0.996 0.996

also imbalanced, we similarly observe higher micro F1 than macro
F1.

4.4 Ablation Studies
Table 8 sets out the results of the ablation studies. The differences in
performance between HAMP and the baseline models already illus-
trate the benefits of capturing hierarchical networks with different
node and edge-types, and the effects of using the scaled dot-product
attention message-passing mechanism for heterogeneous networks
(which is not present in the baseline models). We further examine
the importance of this feature of the HAMPmodel by using the same
weights for all relationship-types, i.e. utilizing the sameWatt and
WV across all relationship-types (denoted as No heterogeneous
weights). We see that not capturing the heterogeneity of relation-
ships between UI objects leads to a significant drop in performance.
Performance similarly deteriorates significantly when the attention
fusion module is not used (denoted as No attention-fusion) and
we concatenate the multimodal attributes and spatial, sequential
and hierarchical level information instead. Removing the PosVect
module (denoted as No PosVect) also leads to a material drop in
the performance of HAMP, albeit to a smaller degree. From the sen-
sitivities of the HAMP model to No heterogeneous weights, No
attention-fusion and No PosVect, we can surmise that the com-
bination of these three proposed model features (i.e. heterogeneous
weights, attention-fusion and PosVect), together with the proposed
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Table 8: Ablation Study (RICO-N and ENRICO) - For component(comp.)-type classification, UI view class features had already
been randomized in the main experiments. Higher is better for micro F1 and macro F1. Lower is better for RMSE.

Genre Comp.-Type App. Topic
Micro F1 Macro F1 Micro F1 Macro F1 RMSE Micro F1 Macro F1

No attention-fusion 0.860 0.697 0.884 0.763 0.480 0.840 0.834
No PosVect 0.916 0.746 0.898 0.840 0.488 0.921 0.874

No heterogeneous weights 0.901 0.717 0.888 0.783 0.481 0.849 0.795
Omit spatial location 0.969 0.871 0.899 0.861 0.468 0.965 0.961

Omit sequential position 0.967 0.864 0.905 0.888 0.473 0.976 0.966
Omit hierarchical levels 0.960 0.855 0.901 0.885 0.469 0.962 0.951

Random UI element features 0.930 0.796 0.846 0.676 0.469 0.927 0.919
Random UI view class features 0.948 0.881 - - 0.468 0.947 0.917
Random UI screen features 0.965 0.888 0.901 0.870 0.468 0.954 0.945

Random app. features 0.886 0.812 0.896 0.838 0.468 0.957 0.957
Proposed HAMP 0.970 0.877 0.906 0.891 0.468 0.996 0.996

scaled dot-product attention message-passing mechanism for het-
erogeneous networks (which is not present in the baseline models),
account for most of the differences in performance between HAMP
and the baseline models.

The impact of varying the input information, by either omit-
ting the positional information (denoted asOmit spatial location,
Omit sequential position, andOmit hierarchical levels), or re-
placing each of the attribute feature matrices with a randomized
matrix (denoted as Random UI element features, Random UI
view class features, Random UI screen features and Random
app. features) have a less significant effect on HAMP’s perfor-
mance, but some of these effects are still material. Application tex-
tual and UI element visual features appear to contribute the most
to HAMP’s performance. For the regression tasks, varying input
information has a relatively small impact on HAMP’s performance.

4.5 Interpretability
We also visualize the attention weights, βm as described in Section
3, to interpret what HAMP has learnt for each of the tasks and the
relative importance of the different input information. The visual-
izations are shown in Figure 4. A darker shade of blue indicates
higher attention weights. The attention weights for the multimodal
features (row 1) are generally higher for the UI screen genre and
topic classification task, as well as the UI element component-type
classification task. Interestingly, they do not feature prominently
for the application rating regression task. Instead, the attention
weights for the sequential position (row 2) dominates. One explana-
tion for this is that the sequential position and length of the UI user
interaction traces has an important influence on user experience
and hence affects average user ratings for the application, which
makes intuitive sense. For all three classification tasks, we can see
the positional information playing important roles. For UI screen
genre classification, spatial information (rows 4 to 6) appears to be
important, which could indicate the importance of element spatial
positions in a UI layout for this task. For UI screen topic classifica-
tion, sequential and hierarchical information (rows 2 and 3) appear
to play an important role. The importance of sequential information
could be due to correlations between the position of a UI screen
in user interactions and its topical role. Similarly, the hierarchical

structure of the UI screen could also have strong relationships with
its topical role. For the UI element component-type classification,
hierarchical level information (row 3) appears to play a key role,
which makes intuitive sense, since the depth of a UI element in a
hierarchy is likely to be correlated to its component-type.

4.6 Discussion
Based on the results of our experiments, we see that HAMP’s ability
to capture heterogeneous network structural information, along
with the associated multimodal and positional attributes in a unified
manner enables it to perform better on a number of tasks relating
to the learning of UI semantics and metadata compared with an
extensive set of state-of-the-art baselines. The distribution of genre,
topic and component-type classes are imbalanced, and HAMP’s
relatively good performance on the macro F1 metric on the classifi-
cation tasks (especially when compared with the baselines) demon-
strates its ability to perform well across different classes despite
the imbalanced dataset. The experimental results provide evidence
to support our intuition that capturing hierarchical relationships
is important for UI-related tasks since part-whole hierarchies not
only inform how a user understands the visual layout of UIs but
also influence user interactions and experiences. Framing the UI
dataset as a heterogeneous network enables similarities between
nodes based on structural and regular equivalence to be captured,
leading to better performance on tasks. The experiments also show
that the key methods proposed in the HAMP model - adapting the
scaled dot-product attention mechanism for a network with differ-
ent node and edge-types, and combining the proposed positional
vectorizer with the attention fusion module to effectively capture
both multimodal and positional node attributes - are effective in
enabling it to perform better on a range of tasks. Further, from the
visualization of the learnt attention weights shown in Figure 4, we
see that positional attributes, i.e. spatial, sequential and hierarchi-
cal level information, play a key role in the tasks, highlighting the
importance of capturing such information. Such attention weights
also enable better interpretability of the predictions. The model is
designed to be generalizable to other UI and design networks with
such heterogeneous and hierarchical relationships, and multimodal
and positional information. The model can accommodate different
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Figure 4: Learnt Attention Weights (RICO-N and ENRICO), i.e. βm - Row 1 corresponds to the attention weights βf t for the
multimodal attributes (e.g., encoded UI screen image); while rows 2 to 7 correspond to the attention weights βpos for the
positional attributes. Specifically, row 2 corresponds to attention weights for sequential position; row 3 for hierarchy level;
row 4 for spatial coordinate x0; row 5 for spatial coordinate y0; row 6 for spatial coordinate x1; and row 7 for spatial coordinate
y1. Each column represents the attention weights of the relevant nodes for the respective tasks (e.g. UI screen nodes for
genre classification). Darker shade of blue means higher attention weights for the nodes, e.g. for UI screen genre classification
tasks, attention weights for UI screen nodes are highest for row 1 which are the multimodal attributes. Attributes with higher
attention weights are highlighted in red boxes.

types of UI objects and relationships, information from different
modalities, as well as different types of positional information. The
choice of attention mechanisms that can weight more relevant in-
formation based on the domain and task enables the model to be
adaptable to different UI applications. For example, a homogeneous
network of UI objects with unimodal features would be a special
case of the network proposed in our paper, and such networks and
their features could be captured by the HAMP model. The proposed
model and framework is not domain specific and could be extended
to other types of UIs, e.g., web, print, tangible, and other predictive
tasks associated with such UIs.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposeHAMP, a novel scaled dot-product attention-
based GNN message passing model designed for heterogeneous
networks with multimodal and positional attributes. Through ex-
periments involving an extensive set of state-of-the-art baseline
models, we demonstrate that HAMP out-performs state-of-the-art
models on a wide range of tasks for mobile application UIs that
have real-world applications. Given HAMP’s performance on the
three distinct datasets that were used for experiments, the model is
likely to be equally applicable to other UIs even if characteristics of
the information differ. In addition to the tasks shown in Figure 2,
future work could explore howHAMP could be used to complement
or augment a range of other UI-related systems. HAMP could be
incorporated within UI object detection and annotation systems in
works such as [7, 19, 45, 50] to capture additional multi-modal and
structural network information. HAMP could also be used to com-
plement systems that assist UI designers [5, 6, 27, 35]. Data relating

to other types of UIs - web, print, tangible - could be collected and
similar experiments conducted with such data for tasks in other
domains involving design artifacts.

In relation to its societal impact, we see opportunities for
HAMP to benefit a range of real-world applications due to its abil-
ity to capture semantics from a wide range of information sources,
for example, improving automatic annotation of UIs for greater
accessibility by disabled persons; or assisting designers in assessing
their designs to improve the usability of UIs. We should however
recognize that a greater dependence on models for such tasks could
inadvertently lead to decisions that might disadvantage certain
groups of users. For example, automatic annotations for accessibil-
ity might benefit certain groups of disabled users to the detriment
of others if the data collection process is not carefully designed or
is biased; designers might lean towards designs with higher rat-
ings from broad user groups but which could be less accessible
to specific groups of users (e.g., color-blind users). While we have
designed HAMP with interpretability in mind to help address this,
further work could be undertaken to explore how such negative
effects could be further managed via better design of data collection
processes, and/or greater model interpretability/explainability.

ACKNOWLEDGMENTS
This research is supported by the National Research Foundation,
Singapore under its Strategic Capabilities Research Centres Fund-
ing Initiative. Gary Ang is supported by a Monetary Authority of
Singapore Postgraduate Scholarship. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National

444



Learning UI Semantics from Heterogeneous Networks with Multimodal and Positional Attributes IUI ’22, March 22–25, 2022, Helsinki, Finland

Research Foundation, Singapore, nor the Monetary Authority of
Singapore.

REFERENCES
[1] Gary Ang and Ee-Peng Lim. 2021. Learning Network-Based Multi-Modal Mobile

User Interface Embeddings. In 6th International Conference on Intelligent User
Interfaces IUI 2021, College Station, TX, USA, April 14–17, 2021.

[2] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J.
Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles
Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. 2018.
Relational inductive biases, deep learning, and graph networks. CoRR (2018).

[3] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. CoRR
(2021).

[4] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Representation Learning for Attributed Multiplex Heterogeneous Network.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. Anchorage AK USA.

[5] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery D.C.: Design Search and Knowledge Discov-
ery through Auto-Created GUI Component Gallery. Proc. ACM Hum.-Comput.
Interact. 3, CSCW, Article 180 (2019).

[6] Chun-Fu (Richard) Chen et al. 2017. UI X-Ray: Interactive Mobile UI Testing
Based on Computer Vision. In Proceedings of the 22nd International Conference on
Intelligent User Interfaces.

[7] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Lim-
ing Zhu, and Guoqiang Li. 2020. Object detection for graphical user interface:
old fashioned or deep learning or a combination?. In 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering.

[8] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
Symposium on User Interface Software and Technology.

[9] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

[10] Vijay Prakash Dwivedi and Xavier Bresson. 2021. A Generalization of Trans-
former Networks to Graphs. CoRR (2021).

[11] Hongyang Gao and Shuiwang Ji. 2019. Graph Representation Learning via Hard
and Channel-Wise Attention Networks. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

[12] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. CoRR (2017).

[13] Luke B. Godfrey and Michael S. Gashler. 2018. Neural Decomposition of Time-
Series Data for Effective Generalization. IEEE Trans. Neural Networks Learn. Syst.
29, 7 (2018), 2973–2985.

[14] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. DynGEM: Deep
Embedding Method for Dynamic Graphs. CoRR (2018).

[15] Asnat Greenstein-Messica, Lior Rokach, and Michael Friedman. 2017. Session-
Based Recommendations Using Item Embedding. In Proceedings of the 22nd
International Conference on Intelligent User Interfaces.

[16] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna R. Narayanan, Nick Duffield,
Mingyuan Zhou, and Xiaoning Qian. 2019. Variational Graph Recurrent Neu-
ral Networks. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems.

[17] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems.

[18] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Net-
work for Recommendation. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval.

[19] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wich-
ers, Gabriel Schubiner, Ruby B. Lee, and Jindong Chen. 2021. ActionBert: Lever-
aging User Actions for Semantic Understanding of User Interfaces. In Thirty-Fifth
AAAI Conference on Artificial Intelligence.

[20] Geoffrey E. Hinton. 2021. How to represent part-whole hierarchies in a neural
network. CoRR (2021).

[21] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. In Proceedings of the 2020 World Wide Web Conference on
World Wide Web.

[22] Forrest Huang, John F. Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based
User Interface Retrieval. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems.

[23] Wentao Huang, Yuchen Li, Yuan Fang, Ju Fan, and Hongxia Yang. 2020. BiANE:
Bipartite Attributed Network Embedding. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.

[24] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
2nd International Conference on Learning Representations.

[25] Thomas N Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. In
NIPS Workshop on Bayesian Deep Learning.

[26] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations.

[27] Chunggi Lee, Sanghoon Kim, Dongyun Han, Hongjun Yang, Young-Woo Park,
Bum Chul Kwon, and Sungahn Ko. 2020. GUIComp: A GUI Design Assistant with
Real-Time, Multi-Faceted Feedback. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems.

[28] Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta. 2020. Enrico: A Dataset for
Topic Modeling of Mobile UI Designs. In MobileHCI 2020: 22nd International
Conference on Human-Computer Interaction with Mobile Devices and Services.

[29] Toby Jia-Jun Li et al. 2021. Screen2Vec: Semantic Embedding of GUI Screens and
GUI Components. In CHI ’21: CHI Conference on Human Factors in Computing
Systems.

[30] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018
World Wide Web Conference on World Wide Web.

[31] Jingxin Liu, Chang Xu, Chang Yin, Weiqiang Wu, and You Song. 2020. K-Core
based Temporal Graph Convolutional Network for Dynamic Graphs. CoRR
(2020).

[32] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning Design Semantics for Mobile Apps. In The 31st Annual
ACM Symposium on User Interface Software and Technology. Berlin, Germany.

[33] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. 2019. Co-
Embedding Attributed Networks. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining.

[34] Zaiqiao Meng, Shangsong Liang, Jinyuan Fang, and Teng Xiao. 2019. Semi-
supervisedly Co-embedding Attributed Networks. In Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on Neural Information Processing
Systems.

[35] Peter O’Donovan, A. Agarwala, and Aaron Hertzmann. 2015. DesignScape:
Design with Interactive Layout Suggestions. Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems.

[36] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting.
In 8th International Conference on Learning Representations.

[37] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence.

[38] Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, and Yi-Zhe Song.
2021. StyleMeUp: Towards Style-Agnostic Sketch-Based Image Retrieval. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[39] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, andMaxWelling. 2018. Modeling Relational Data with Graph Convolu-
tional Networks. In The Semantic Web - 15th International Conference Proceedings.

[40] Rianne van den Berg, Thomas N. Kipf, and Max Welling. 2017. Graph Convolu-
tional Matrix Completion. CoRR (2017).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems.

[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. 6th International
Conference on Learning Representations, Conference Track Proceedings.

[43] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.

[44] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous Graph Attention Network. In Proceedings of the 2019
World Wide Web Conference on World Wide Web.

[45] Thomas D. White, Gordon Fraser, and Guy J. Brown. 2019. Improving random
GUI testing with image-based widget detection. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2019.

[46] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In
Proceedings of the 36th International Conference on Machine Learning.

445



IUI ’22, March 22–25, 2022, Helsinki, Finland Ang and Lim

[47] Yingtao Xie, Tao Lin, and Hongyan Xu. 2019. User Interface Code Retrieval: A
Novel Visual-Representation-Aware Approach. IEEE Access 7 (2019), 162756–
162767.

[48] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Proceedings of the 35th International
Conference on Machine Learning.

[49] Shaowei Yao, Tianming Wang, and Xiaojun Wan. 2020. Heterogeneous Graph
Transformer for Graph-to-Sequence Learning. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics.

[50] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle I. Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron Everitt, and
Jeffrey P. Bigham. 2021. Screen Recognition: Creating Accessibility Metadata
for Mobile Applications from Pixels. In CHI Conference on Human Factors in
Computing Systems.

446


	Learning user interface semantics from heterogeneous networks with multi-modal and positional attributes
	Citation

	Abstract
	1 Introduction
	2 Related Work
	2.1 UI representation learning
	2.2 Network embeddings

	3 Heterogeneous Attention-based Multimodal Positional Graph Neural Network
	4 Experiments
	4.1 Datasets
	4.2 Experiment Setup
	4.3 Results
	4.4 Ablation Studies
	4.5 Interpretability
	4.6 Discussion

	5 Conclusion and Future Work
	Acknowledgments
	References

