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Abstract—Numerous efforts have been invested in improving
the effectiveness of bug localization techniques, whereas little
attention is paid to making these tools run more efficiently
in continuously evolving software repositories. This paper first
analyzes the information retrieval model behind a classic bug
localization tool, BugLocator, and builds a mathematical foun-
dation illustrating that the model can be updated incrementally
when codebase or bug reports evolve. Then, we present IncBL,
a tool for Incremental Bug Localization in evolving software
repositories. IncBL is evaluated on the Bugzbook dataset, and
the results show that IncBL can significantly reduce the running
time by 77.79% on average compared with the re-computing the
model, while maintaining the same level of accuracy. We also
implement IncBL as a Github App that can be easily integrated
into open-source projects on GitHub. Users can deploy and use
IncBL locally as well. The demo video for IncBL can be viewed
at https://youtu.be/G4gMuvlJSb0, and the source code can be
found at https://github.com/soarsmu/IncBL.

Index Terms—Bug Localization, Information Retrieval, Mining
Software Repository

I. INTRODUCTION

Information retrieval-based bug localization (IRBL) is a
popular research topic in software engineering and has shown
promising results in the last decade. The basic idea behind
IRBL is to model the bug localization as an ad-hoc document
search problem. Numerous research efforts have been invested
in developing IRBL techniques [1]–[3]. However, such re-
search mainly aims to achieve better retrieval accuracy rather
than make tools more efficient in software repositories where
codebases evolve and new bug reports emerge. As software
repositories are evolving, these tools need to re-process all
files and update the entire model representations (e.g., tf-idf
weights) to ensure accuracy, even for some minor changes
(e.g., adding or deleting several lines of code), which limits
their usages in time-sensitive or compute-intensive scenario.

To improve the efficiency of IRBL, Rao et al. [4] proposed
an incremental update framework, but their approach cannot
tackle some cases, e.g., when the number of documents
changes1. Moreover, their method has only been applied to
bug localization methods that purely rely on Bag-of-Words
(BoW) models. Last but not least, there is no open-source
artifact or tool that practitioners can adopt. The above facts

∗ Equal contributions.
1More detailed discussion can be found in our online appendix, that

we make available at https://github.com/soarsmu/IncBL/blob/main/discussion/
appendix.pdf

motivate us to develop an incremental bug localization tool
that addresses the limitations of Rao et al.’s work.

Akbar and Kak [1] divided IRBL tools that were pub-
lished between 2004 and 2019 into three generations. The
1st generation tools that are solely based on BoW models
perform the worst, while 3rd generation tools that utilize term-
term order and semantics, e.g., SCOR [5], require much time
and computing resources to train models. Moreover, none of
the tools specified as 3rd generation in [2] is made publicly
available. The 2nd generation tools use structural information
in codebases and software evolution information (e.g., his-
torical bug reports) to improve accuracy. Two representatives
of the 2nd generation tools, BugLocator [2] and BLUiR [3],
are evaluated in [1], and the empirical study shows that
BugLocator outperforms BLUiR on Bugzbook [2], a dataset
containing bug reports from 27 large open-source repositories.
Thus, we decide to build our incremental bug localization
solution (IncBL) on top of BugLocator for the following
reasons: It does not require as much time and computing
resources as the 3rd generation tools while performing better
than many other 2nd generation and the 1st generation tools.
Moreover, BugLocator is a popular tool and many other tools
are built on top of it, e.g., the recently proposed Legion tool
implemented in Adobe [6]. Although this work focuses on
making BugLocator incremental, the incremental design used
in IncBL can also potentially be translated into other solutions
that are based on BugLocator or have similar features to it.

IncBL performs a complete computation and retains the
computed information, e.g., term frequency, document fre-
quency, and other model parameters when it is applied on the
underlying repository for the first time. Once a new bug report
is raised, IncBL only updates the corresponding information,
e.g., tf-idf weights, incrementally rather than re-compute the
entire model, which can significantly reduce redundant compu-
tation and retrieval latency. We evaluate IncBL on Bugzbook
dataset. Our evaluation results show that the IncBL can run
4.5 times faster (i.e., reducing 77.79% of the running time on
average) than the original BugLocator, without sacrificing the
accuracy.

To promote the usage of IRBL in practices and alleviates
debugging costs for developers, we implement IncBL as a
GitHub App, which can be installed in GitHub to locate
potential potential buggy files for issues tagged as ‘bug’ or
be deployed locally for the same functionality.

The rest of this paper is organized as follows. Section II
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introduces the retrieval model and workflow of BugLocator.
Section III describes the design and implementation of main
features, and usage scenario of IncBL. Section IV reports the
evaluation results of IncBL on the Bugzbook dataset. After
surveying the related work in Section V, we conclude the paper
and present future work in Section VI.

II. BUGLOCATOR

IncBL extends BugLocator [2] with the support for incre-
mental computing and integration into the GitHub platform. In
this section, we briefly introduce the workflow of BugLocator
and the information retrieval model used.

Step 1. Processing code files. BugLocator preprocesses each
Java code file in the codebase as follows. First, it utilizes a Java
parser to extract identifiers (e.g., package name, method name,
etc.) and then appends them to the original code contents. After
that, BugLocator performs stemming and stopwords removal
to produce a code corpus. A Vector Space Model (VSM) (more
details of the incremental version of VSM will be given in
Section III-A) is then used to vectorize each document in the
code corpus so that further steps (e.g., computing similarity)
can be performed.

Step 2. Processing bug reports. BugLocator first combines
bug report titles with descriptions. Then, a bug corpus is
created after performing stemming and stopwords removal on
the combined documents. An important feature of BugLocator
is to leverage bug-fixing history information to help rank faulty
files, by computing the similarity between a bug report and all
the past fixed bug reports. The intuition is that the current new
bug report and the similar past fixed bug reports are likely to
share the same source code files to be modified. BugLocator
uses the VSM to compute similarities between bug reports.
For a bug report B and the mth code file referred by at least
one bug report, their SimiScore is computed by:

SimiScore =
∑

B′∈l(m)

Similarity(B,B′)

|l(m)|
(1)

where l(m) is all the bug reports linked to the mth code file
and Similarity(B,B′) is the similarity between B and B′

computed using VSM. For a bug report and a code file that is
not linked to any past bug report, their SimiScore is 0.

Step 3. Localizing buggy files. BugLocator defines and
computes the relevance score between bug reports and source
code files. A VSM requires documents and queries to share
the same vocabulary set, so BugLocator discards all the
terms that appear in bug reports but not in the code corpus
and then use the VSM produced in Step 1 to compute the
V SMScore between a document (source code file) d and a
query (bug report) q. Besides, BugLocator revises the VSM
model by weighting V SMScore with a function g to favors
long documents during ranking. BugLocator defines g as

g =
1

1 + e−N(|terms|) , where N(x) =
x− xmin

xmax − xmin
(2)

The |terms| is the number of terms in preprocessed code
files and N(x) is a max-min normalization function. The
final relevance score between the bug reports and source
code files is a linear combination of revised V SMScore and
SimiScore:

relevance = α×g×V SMScore+(1−α)×SimiScore (3)

where 0 ≤ α ≤ 1, and the performance is best empirically [2]
when α is between 0.2 and 0.3.

III. DESIGN AND USAGE CASE OF INCBL

In this section, we introduce how the VSM used in Bu-
gLocator can be updated incrementally and how IncBL incor-
porates incremental computing in the tool. We also present
how users can utilize IncBL as a GitHub App and a locally-
deployed tool.

A. Incremental Design

VSM is used to represent a collection of documents (the
code corpus and bug report corpus in this paper). First, we
need to create V , which is the vocabulary of terms appearing
in documents, and a term-document matrix A, whose size is
M × |V |, where M is the number of documents. Am(w)
represents the occurrence count of the wth term in V in
the mth file. In a VSM, each document is represented as a
vector with the size of |V |. The wth value of this vector is
the tf-idf weight that is computed by tfm(w) × idf(w). The
term frequency tfm(w) has different definitions over Am(w),
and BugLocator computes it by tfm(w) = log(Am(w)) + 1.
The idf(w), called inverse document frequency, is computed
by idf(w) = log( M

df(w)+1 ) where df(w) refers to document
frequency, total number of documents that have the wth term.
We concatenate representations for each source file into a big
matrix, denoted by D, in which Dm(w) presents the tf-idf
weight of the wth term in the mth file. Note that an element
Dm(w) is computed with (log(Am(w)) + 1) × M

df(w)+1 ,
meaning that Dm(w) needs to be updated only when at least
one of the three values (i.e., Am(w), df(w), and M ) changes.

Next, we explain how to incrementally update D when
documents change. At the document level, changes can be
categorized into one or a combination of the following three
atomic changes: (1) adding a new document, (2) deleting an
existing document, (3) modifying an existing document, which
corresponds to adding, deleting, and modifying a row in A.
At the term level, the atomic changes are: (1) adding a new
term, (2) deleting an existing term, and (3) changing the term
frequency of an existing term in a document.

Let us consider two cases: 1) M does not change and 2)
M changes. For the case in which M does not change, only
df and A have an influence on D. We first elaborate on how
the term-document matrix A can be updated. The update is
straightforward. We first update the columns (term-level) and
then update the rows (document-level) in A. If the wth term is
deleted, we delete the wth column in A. If a new term is added,
we append a new column to A and set all the values as 0. If
the term frequency value of the wth term in mth document
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Fig. 1. This figure illustrates how term-document matrix (A), document fre-
quency (df ) and document representation (D) can be updated incrementally.
Each row in D is the element-wise product of df and the corresponding row
in A, i,e, df�A = D. Blocks highlighted in red, green, and orange indicates
that the corresponding positions in the matrices should be deleted, added, or
modified, respectively. Colors in df and A will propagate to D, indicating
that only the labeled blocks in D need to be updated.

changes, we just need to set the corresponding position Am(w)
to a new number. Then, we can update rows in a similar way.
if the mth document is deleted, we delete the mth row in A. If
a new document is added, we append a new row to A and set
this row as the term frequency of this newly added document.
When the mth document is changed, the mth row in A should
be updated according to the modified term frequency of the
document. We next elaborate how document frequency vector
should be updated. Assuming the mth file is affected, the
df(w) can be updated with the following formula:

dfnew(w) = dfold(w) + [sign(Anew
m (w))− sign(Aold

m (w))]
(4)

where sign(·) returns +1 for positive inputs, −1 for negative
inputs, and 0 for 0. Aold and Anew are term-document matrices
before and after this change. If the file m or term w are not
in Anew (or Aold), we set Anew

m (w) (or Aold
m (w)) as 0.

We illustrate how the term-document matrix A, the docu-
ment frequency vector df , and document representation matrix
D can be updated according to the changes of documents
and terms in Fig. 1. We label the columns in A as green
and red to represent term addition and deletion respectively.
We highlight the rows in A as green and red to represent
document addition and deletion. Some blocks are highlighted
with orange, which means that term frequency values at the
corresponding positions are updated. We label the changes in
df using the same color scheme. D is generated by an element-
wise production between df and A (i.e., df�A = D), therefore
in D, only the blocks that are produced by the changed portion
in df and A need updates.

So far, we have explained how term-document matrix A and
document frequency vector df can be updated incrementally.
Considering the changes between two versions are small
(several commits), most elements in A and df will remain the
same. As a result, when M does not change, we can update

D incrementally at a very low cost: only positions highlighted
with a color need to be updated.

However, if M changes, the whole idf vector needs updates,
meaning that we must update all the values in idf , and all
model parameters must be recomputed. We take this case in
consideration as follows. We have idf(w) = log( M

df(w)+1 ),
which can be transformed to log(M) − log(df(w) + 1). We
can update idf(w) by

idfnew(w) = idfold(w) + log(
M + ∆M

M
) (5)

where ∆M is the change on M. In other words, we use the old
idf that is not affected to update the value of idf incrementally
rather than computing the idf value from scratch.

Such changes are widespread in software development as
codebases are continuously evolving and new bug reports are
raised. We use this incremental model to update the VSMs in
Step 1 and 2 of the BugLocator as described in Section II.
The updating method also indicates that IncBL only needs to
preprocess the affected files rather than act like BugLocator
who re-processes all files in the repositories each time it runs,
which saves time even further.

B. Implementation and Usage

To promote the use of bug localization tools, we implement
IncBL as a GitHub App. With some simple settings given
in the tool homepage (https://github.com/apps/incbl), GitHub
users can easily install IncBL in their public projects. Once
IncBL is installed, it will automatically analyze the codebases
and past bug reports. Each time when a new issue tagged
with ‘bug’ is raised, IncBL updates models incrementally and
locates relevant buggy files for this issue. After files are
retrieved, IncBL posts the top 10 most relevant files for the
issue so developers can get notified. Please refer to our video
(https://youtu.be/G4gMuvlJSb0) to see IncBL in action. Users
can also deploy IncBL locally on their own machines. Only a
simple Python command is needed to run IncBL. Users just
need to specify the path to the codebases under analysis, the
path to bug reports, and the path for storage.

IV. EVALUATION

A. Experimental setting

We use Bugzbook [1] as our benchmark to evaluate IncBL.
Bugzbook contains releases of 27 software projects and bug
reports that correspond to each release. Following Akbar and
Kak [1], we focus on Java, Python, C, and C++ code files,
and discard other files in the codebase as well as bug reports
linked to other file types in this experiment. We end up with
43,017 bug reports.

We aim to examine if IncBL can run more efficiently
without losing any accuracy. For this purpose, we measure
and compare the running time of IncBL and re-computing
from scratch. To measure the running time of IncBL, we
consider the usage scenario mentioned in Section III-B: a
user raises an issue in GitHub and then IncBL updates the
VSMs incrementally to localize buggy files with lower latency.

https://github.com/apps/incbl
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Fig. 2. Boxplot of the ratio of the running time to perform bug localization on
all studied bug reports of IncBL over that of the original BugLocator (TInc

TBL
).

The median and mean are 14.44% and 22.21%, corresponding to 6.30 and
4.50 times speed up.

We measure the running time that IncBL requires for locating
potential buggy files for the raised bug report, denoted as TInc.
We apply BugLocator on the usage scenario and measure its
running time for each bug report, denoted as TBL. Conducting
the experiments on all collected bug reports is very time-
consuming since BugLocator needs to compute everything
from scratch. Therefore, we randomly sample 381 reports
from all the studied bug reports, and this forms a statistically
representative sample considering a 95% confidence level and
5% interval. We measure the running of IncBL and BugLocator
on these sampled 381 reports. When measuring the accuracy,
we keep the same setting as Bugzbook experiment: associating
a group of bug reports with one software release. We run IncBL
on all the 43,017 bug reports and incrementally updates VSM
representations for each new software release.

We run our experiments on a server with a 16-core CPU
and 512 GB memory. The dataset, experimental results, and
detailed instructions to run the experiments can be accessed
via https://github.com/soarsmu/IncBL.

B. Results

IncBL can significantly reduce the running time for
locating bugs in continuously evolving repositories by
77.79% (i.e., 4.5 times faster) on average compared with
the original BugLocator while maintaining the same accu-
racy. Fig. 2 presents the boxplot of the ratio of running time
between IncBL and BugLocator. The median and mean ratios
are 14.44% and 22.21%. Wilcoxon signed-rank test shows that
the reduction in running time is statistically significant (p-
value < 0.01). The amount of time saved by the IncBL is
mainly related to two factors: (1) the number of affected files
and (2) the number of existing files. The more files change,
the more updating operations are needed. Besides, if there are
too many existing files, the VSM can be very large and IncBL
needs more time to identify the correct locations in matrices
to perform updates. On the Bugzbook dataset, IncBL achieves
a Mean Average Precision (MAP) of 0.331 – on average, the
correct files appear in the top 3 locations.

V. RELATED WORK

Although many efforts have been put into improving the
effectiveness of bug localization techniques [1]–[3], the long
running time of such tools limits their real-world usages.

Therefore, improvement of the efficiency of bug localization
tools is needed. However, there is no other studies in the
research community apart from Rao et al.’s framework in [4]
and [7]. The limitations of [4] were discussed in Section I, and
are addressed by IncBL. [7] only considers incremental LSA
and LSA has been shown to perform worse than VSM in bug
localization [8]. Moreover, IncBL is the first incremental bug
localization tool integrated as a GitHub App. BugLocalizer
[9] is a tool that implements BugLocator as a Bugzilla plugin.
However, it does not support incremental updates.

VI. CONCLUSION AND FUTURE WORK

To help developers localize bugs, this paper presents IncBL,
which can update the VSM incrementally and avoid repetitive
computation, on top of BugLocator. Our evaluation shows that
on average IncBL can run 4.5 times faster than re-computing
the model from scratch while maintaining the same level of
accuracy. We implement IncBL as a GitHub App that can
be easily installed to analyze public repositories on Github.
When a new bug report is raised, IncBL will update the
VSM incrementally and notify developers about the potentially
buggy files. Users can also deploy IncBL on their own machine
to analyze repositories locally. In the future, we plan to create
variants of IncBL built on top of other bug localization tools.
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