
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2021

A differential testing approach for evaluating abstract syntax tree A differential testing approach for evaluating abstract syntax tree

mapping algorithms mapping algorithms

Yuanrui FAN

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Ahmed E. HASSAN

Yuan WANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Citation Citation
FAN, Yuanrui; XIA, Xin; LO, David; HASSAN, Ahmed E.; WANG, Yuan; and LI, Shanping. A differential testing
approach for evaluating abstract syntax tree mapping algorithms. (2021). 43rd IEEE/ACM International
Conference on Software Engineering (ICSE 2021). 1174-1185.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6879

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6879&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yuanrui FAN, Xin XIA, David LO, Ahmed E. HASSAN, Yuan WANG, and Shanping LI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6879

https://ink.library.smu.edu.sg/sis_research/6879

2
0

2
1

 I
E

E
E

/A
C

M
 4

3
rd

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
a
re

 E
n

g
in

e
e

ri
n

g
 (

IC
S

E
)

|
9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
D

O
I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

1
0

8

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

A Differential Testing Approach for Evaluating

Abstract Syntax Tree Mapping Algorithms
Yuanrui Fan*t, Xin Xiai§, David Lo1, Ahmed E. Hassanll, Yuan Wang**, Shanping Li*

*Zhejiang University, China; tPengCheng Laboratory, China; ^Monash University, Australia;

^Singapore Management University, Singapore; ^Queen’s University, Canada; **Huawei Sweden Research Center

{yrfan, shan}@zju.edu.cn, Xin.Xia@monash.edu, davidlo@smu.edu.sg, ahmed@cs.queensu.ca, Yuan.Wang1@huawei.com

Abstract—Abstract syntax tree (AST) mapping algorithms are
widely used to analyze changes in source code. Despite the
foundational role of AST mapping algorithms, little effort has
been made to evaluate the accuracy of AST mapping algorithms,
i.e., the extent to which an algorithm captures the evolution
of code. We observe that a program element often has only
one best-mapped program element. Based on this observation,
we propose a hierarchical approach to automatically compare
the similarity of mapped statements and tokens by different
algorithms. By performing the comparison, we determine if each
of the compared algorithms generates inaccurate mappings for
a statement or its tokens. We invite 12 external experts to
determine if three commonly used AST mapping algorithms
generate accurate mappings for a statement and its tokens for
200 statements. Based on the experts’ feedback, we observe that
our approach achieves a precision of 0.98-1.00 and a recall of
0.65-0.75. Furthermore, we conduct a large-scale study with a
dataset of ten Java projects containing a total of 263,165 file
revisions. Our approach determines that GumTree, MTDiff and
IJM generate inaccurate mappings for 20%-29%, 25%-36% and
21%-30% of the file revisions, respectively. Our experimental
results show that state-of-the-art AST mapping algorithms still
need improvements.

Index Terms—Program element mapping, abstract syntax
trees, software evolution

I. In t r o d u c t i o n

program element mapping algorithms are the underlying

basis for analyzing changes between two versions of a source

code file (i.e., a file revision) [20]. Abstract syntax tree (AST)

mapping algorithms represent a file revision and program

elements of the file as two abstract syntax trees (ASTs) and

nodes, respectively [8], [9], [12]. The algorithms approximate

the similarity of nodes and calculate mappings of nodes

between the two ASTs. We define accurate mappings as

mappings that can reflect the evolution of code well.

Edit actions including adding, deleting, moving and

updating nodes of an AST can be calculated based on the

generated mappings by an AST mapping algorithm [6]. Such

edit actions can describe changes to the syntactic structure

of code, e.g., parameters added in a method call can be

represented as added nodes in an AST. Accurate mappings

lead to accurate edit actions that can reflect a developer’s

intent. Many prior studies apply AST mapping algorithms

to calculate edit actions for further analyses, e.g., API

recommendation [27], mining code change patterns [22], and

§ Corresponding author.

automated program repair [32]. The accuracy of the used AST

mapping algorithms is vital for the correctness of the proposed

approaches by prior studies.

However, evaluations of the accuracy of AST mapping

algorithms are limited. When evaluating the generated

mappings by an algorithm, prior work relies heavily on manual

analysis of the derived edit actions from the mappings [8],

[9], [12]. Since it is infeasible to analyze all file revisions

by hand, prior studies select a small sample for analysis.

The many cases where AST mapping algorithms perform

badly cannot be revealed. Furthermore, manually analyzing

the mappings of program elements is time-consuming and

tedious. An approach that can automatically find the inaccurate

mappings as generated by AST mapping algorithms would

be helpful. Practitioners and researchers can leverage such an

approach to explore and navigate the generated mappings by

an algorithm before performing further analyses.

In this paper, we propose an approach for evaluating AST

mapping algorithms. We observe that a program element e

often has only one best-mapped program element e in a file

revision. The element e might be empty, i.e., e should not be

mapped. If two algorithms inconsistently map such an element,

at least one of the algorithms inaccurately mapped the element.

We define similarity of two program elements in a file revision

as the likelihood of the two elements to be mapped. Our idea

is that if an algorithm maps a more similar program element

for e than another algorithm, the latter algorithm is likely

to have made a mistake. We aim to automatically compare

the similarity of mapped program elements by different AST

mapping algorithms. In the software testing area, this approach

is referred to as differential testing [25].

To ease analysis, we refine the mappings of AST nodes

into mappings of each statement and tokens in the statement.

And we treat each statement as an analysis unit. By doing

so, we avoid analyzing the mappings of AST nodes at all

granularity levels. Notice that statements include declarations

(e.g., method declarations) in our paper. A token is defined as

a sequence of characters representing a program element such

that none of its subsequences represents a program element.

Given two algorithms, if they inconsistently map a statement

or its tokens, we refer to such statements as statements with

inconsistent mappings for the two algorithms. If an algorithm

inaccurately maps a statement or its tokens, we refer to such

statements as statements with inaccurate mappings for the

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00108

1174

algorithm.

We analyzed three AST mapping algorithms in our paper,

namely GumTree [9], MTDiff [8] and IJM (Iterative Java

Matcher) [12]. As shorthand notations, we use GT and

MTD to represent GumTree and MTDiff, respectively. We

manually analyze 575 statements with inconsistent mappings

for comparing the algorithms. Through the manual analysis,

we design a hierarchical approach to automatically compare

the similarity of mapped statements and tokens by different

algorithms. This hierarchical approach uses six measures

collectively to perform the comparison. By performing

the comparison, we determine statements with inaccurate

mappings for each of the compared algorithms.

We invite 12 external experts to determine if the studied

algorithms generate inaccurate mappings (at the statement or

token level) for 200 statements. Compared to the experts’

evaluation, we find that our approach achieves a precision

of 0.98-1.00 and a recall of 0.65-0.75. We run the studied

algorithms on all the file revisions of ten Java projects. We

use our approach to analyze the generated mappings by the

algorithms. For 20%-29%, 25%-36% and 21%-30% of the

file revisions, GT, MTD and IJM are determined to generate

inaccurate mappings, respectively. The results show that state-

of-the-art AST mapping algorithms still need improvements.

We make our code and data publicly available on [1].

Our contributions are summarized as follows:

• We propose an approach that can automatically detect

statements with inaccurate mappings for AST mapping

algorithms. Almost all of the statements with inaccurate

mappings as determined by our approach are also

determined as such by experts (98%-100%).

• We use our approach to analyze the generated mappings

by GT, MTD and IJM for 263,165 file revisions. The

three algorithms are determined to generate inaccurate

mappings for a considerable number of file revisions.

II. PRELIMINARIES

Abstract syntax tree. A source code file can be parsed as an

abstract syntax tree (AST). An AST is a labeled ordered rooted

tree, which is composed of a set of nodes that are connected by

edges. An edge represents a parent-child relationship. A node

n l is the parent of another node n 2, if n 2 is a child of n l . The

node that has no parent is called the root node. A node that

has no child is called a leaf node. For a node, the nodes along

the path to the root node are called its ancestors. And the node

is called their descendant. Each node in an AST represents a

code element (e.g., a statement) with a label to indicate its

type. Some nodes have a value to indicate the corresponding

tokens of the element.

Example 2.1. Fig. 1(b) and Fig. 1 present the two ASTs

before and after the code changes at lines 1-3 in Fig. 1(a).

The ASTs are built using GT [9]. We only show partial ASTs

for clarity. The AST in Fig. 1(b) contains 22 nodes. The node

n4 has three child nodes n 5, n 6 and n l3, and its label is

F ie ld D e c la r a t io n . The label of n 5 is M o d if ie r , and

(d) Mappings and edit actions by GT (c) Partial AST after changes

Fig. 1: Mappings of AST nodes and edit actions as calculated

by GT for the partial changes of a file in the commit 4800a7

of ActiveMQ.

it has a string value p r i v a t e indicating the field declaration

is private for the class.

AST mapping algorithms. Given a file revision, an AST

mapping algorithm parses the file before and after the revision

as two ASTs. Let us denote the two ASTs as source AST and

target AST, respectively. By approximating the similarity of

nodes, the algorithm calculates mappings of nodes between

the two ASTs. Only the nodes that have the same label can be

mapped. The mappings are a set of pairs (ns, nt}, in which ns
belongs to the source AST and n t belongs to the target AST.

Example 2.2. We leverage GT to calculate mappings of

nodes between the ASTs shown in Fig. 1(b) and Fig. 1(c).

Fig. 1(d) presents the mappings in the first column. Specially,

n4 is mapped to n26, indicating that the field declaration

po rtM ap p in g at line 1 in Fig. 1(a) is mapped to the field

declaration p o rtM ap p in g at line 2 in Fig. 1(a). In addition,

n7 and n8 are mapped to n 58 and n 59, respectively. Such

mappings indicate that the first HashMap of line 1 and the

HashMap of line 3 in Fig. 1(a) are mapped, i.e., GT considers

that the two HashMap tokens are the same element across the

file revision.

Edit actions. Based on mappings of AST nodes, a series of

edit actions can be calculated to transform the source AST

to the target AST [6]. Prior studies apply the Chawathe et

al.’ algorithm [6] to calculate the edit actions [8], [9], [12].

1175

Generally, there are four types of edit actions:

• upd(n, v) replaces the value of the node n with a value

v.

• add(n,p,i) adds a node n as the i th child of the node

p if p is not null. Otherwise, the node n is added as the

new root node.

• del(n) deletes a leaf node n.

• mov(n,p,i) moves the node n as the ith child of the

node p. The subtree rooted at n is moved together with

n .

Example 2.3. Fig. 1(d) presents the edit actions that are

calculated based on the mappings shown in the same figure.

We use GT’s implementation of Chawathe et al.’s algorithm.

GT produces a sequence of 20 edit actions. One of the

20 actions is mov(n7,n 5r , 1). This action moves the first

HashMap of line 1 in Fig. 1(a) to line 3 in Fig. 1(a).

Current evaluations of AST mapping algorithms. Current

evaluations of AST mapping algorithms include automatic and

manual evaluations [8], [9], [12]. They are both based on the

edit actions that are calculated from the generated mappings

by different algorithms.

The number of edit actions is commonly used as an

automatic measure for estimating the cognitive load for

a developer when understanding the essence of a file

revision [8], [9], [12]. Mappings with fewer edit actions

are considered to be better. However, the number of edit

actions cannot reflect the accuracy of the mappings [12]. Prior

work relies heavily on manual analyses of the edit actions to

determine the accuracy of the mappings [8], [9], [12]. Frick et

al. [12] proposed three criteria for determining if a mapping

is accurate: (1) each mapping should be comprehensible, i.e.,

why the two program elements should be mapped; (2) the

generated edit actions should be helpful in understanding the

changes; (3) there exists no other comprehensible mappings

resulting in fewer actions.

Example 2.4. In Fig. 1(d), we determine the accuracy of

the mappings and highlight the inaccurate mappings with a

yellow background. The mappings {n7,n 58) and {n8,n 59)
are determined to be inaccurate. The nodes in the ASTs and

edit actions that relate to the inaccurate mappings are also

highlighted. We consider that it is not comprehensible to map

the first HashMap of line 1 to the HashMap of line 3 in

Fig. 1(a). Also, the action mov(n7,n 5r , 1) is not helpful in

understanding the changes. It is better to map n7 and n8 to

n 29 and n30, i.e., map the first HashMap of line 1 and the

Map of line 2 in Fig. 1(a). Thus, the mappings for the nodes

n 29 and n30 are also considered to be inaccurate.

III. Mo t iv a t io n

Prior evaluations of AST mapping algorithms are limited

to manually analyzing a small sample of file revisions [8],

[9], [12]. For instance, to evaluate GT, Falleri et al. manually

analyzed 144 file revisions [9]. To evaluate MTD, Dotzler et

al. manually analyzed 10 file revisions [8]. The many cases

where an AST mapping algorithm performs badly cannot be

revealed. An approach that can automatically find inaccurate

|-TypeDeclaration:PublishedAddressPolicy (n^

|-Modifier:public (^)
| -FieldDeclaration (^)

|-Modifier:private (^)

|-ParameterizedType:HashMap<Integer, Integer> (^)

|-VariableDeclarationFragment: portMapping (^)
|-ClassInstanceCreation (^)

|-ParameterizedType:HashMap<Integer, Integer> (n8)

(a) Partial AST before changes

|-TypeDeclaration:PublishedAdddressPolicy (n9)

|-Modifier:public (n^)
| -FieldDeclaration (n^)

| |-Modifier:private (n12)

| |-ParameterizedType:Map<Integer, Integer> (n^)

| |-VariableDeclarationFragment:portMapping (n^)
| |-ClassInstanceCreation (n^)

| |-ParameterizedType:HashMap<Integer, Integer> (n^)

| -FieldDeclaration (n^)

|-Modifier:private (n18)

|-ParameterizedType:Map<Integer, Integer> (n^)
|-VariableDeclarationFragment:hostMapping (^ 0)

|-ClassInstanceCreation (^ 1)

|-ParameterizedType:HashMap<Integer, Integer> (^ 2) * 1

(b) Partial AST after chang es (c) Mappings by DM

Fig. 2: Mappings of AST nodes calculated by IJM for the

changes shown in Fig. 1(a).

<n1, n9>

<n2, n10>

<n3, n11>
<n4, n12>

<n5, n13>
<n6, n14>

<n7, n15>
<n8, n16>

- private HashMap<Integer

IJM

Integer> portMapping = new HashMap<Integer, Integer>()

private Map<Integer, Integer> portMapping =
private Map<String,„j3tring> hostMapping =

7 g“ : 7 '
r HashMap<Integer, Integer>();

r HashMap<String, String>();

Fig. 3: The generated mappings by GT and IJM in Fig. 1 and

Fig. 2. Dashed lines show the inconsistent mappings.

mappings as generated by an algorithm would be helpful for

both researchers and practitioners.

We observe that for a file revision, a program element e1
often has only one best-mapped element e2. The element e2
can be empty, indicating that ei should not be mapped. For

instance, in Fig. 1(a), the first HashMap of line 1 should be

mapped to the Map of line 2. If two algorithms inconsistently

map such a program element, at least one of the algorithms

inaccurately maps the element. The inaccurate mappings can

be found by analyzing the inconsistencies between the two

algorithms.

We provide an example. For the file revision shown in

Fig. 1(a), we use IJM to calculate mappings of AST nodes.

Different AST mapping algorithms may use different ASTs to

represent the same file. Fig. 2(a) and (b) show the IJM’s ASTs

that represent the changes at lines 1-3 in Fig. 1(a). Fig. 2(c)

presents the generated mappings by IJM. The value of n 5
denotes the first H ashM ap< In teger, I n te g e r> of line

1 in Fig. 1(a). The value of n 13 denotes the M ap < In teg er,

I n te g e r> of line 2 in Fig. 1(a). As shown in Fig. 2(c), IJM

maps n 5 to n 13. By further mapping the tokens in the value

of the two nodes, we find that IJM accurately maps the first

HashMap of line 1 in Fig. 1(a). This mapping is inconsistent

with the generated mappings by GT. Fig. 3 visualizes the

generated mappings by GT and IJM and their inconsistent

mappings.

We find that both GT and IJM map the statement at line

1 to the statement at line 2 in Fig. 3. The first HashMap of

line 1 and the Map of line 2 belong to the mapped statements.

1176

They both denote the type of the field portMapping. On the

other hand, the first HashMap of line 1 and the HashMap of

line 3 belong to unmapped statements. Thus, in comparison to

the HashMap of line 3, the Map of line 2 is more similar to

the first HashMap of line 1. Finally, the inaccurately mapped

HashMap by GT is detected. In this motivational example,

we attempt to automatically perform the above analysis and

find the inaccurate mappings as generated by AST mapping

algorithms.

IV. Studied AST Mapping Algorithms

In this study, we analyze three state-of-the-art AST mapping

algorithms, namely GumTree [9], MTDiff [8] and IJM [12].

We briefly introduce the three algorithms below.

GumTree (GT) is proposed by Falleri et al [9]. Given two

ASTs, GT matches nodes between the ASTs in two phases:

In the first phase, GT applies a greedy top-down algorithm

to search and map identical subtrees. In the second phase,

GT applies a bottom-up algorithm to map a pair of nodes

between the two ASTs if they share a significant number

of mapped descendants. Then, GT tries to map previously

unmapped descendants of those nodes.

MTDiff (MTD) is proposed by Dotzler et al. [8]. MTD

is based on the ChangeDistiller algorithm [11]. First, MTD

applies the identical subtree optimization to reduce the

mapping problem by removing unchanged subtrees from the

ASTs. Then, MTD maps nodes using the ChangeDistiller

algorithm. Another four optimizations are finally applied to

find additional mappings of nodes.

IJM is proposed by Frick et al. [12]. IJM is an AST

mapping algorithm specialized for Java. In comparison to

GT, IJM works on a reduced AST, in which many name

nodes are pruned and the value of each pruned node is

merged to its parent node. Then, IJM splits the AST into parts

along each declaration. Finally, it maps AST nodes from the

corresponding parts between the two ASTs using an adaptation

of the GT algorithm. The adaptation adds name-awareness to

GT, which considers similarity of values when mapping two

nodes.

In this study, we apply the implementations of the three

algorithms that are provided on GitHub [2]-[4].

V. Approach

In this section, we describe the details of our approach.

Notice that our approach is general. We implement it for Java

programs but we can modify it to support other programs as

long as we can generate ASTs from them.

The granularity of AST nodes ranges from a statement

to a single literal. It is too complex to analyze mappings

of AST nodes of all granularity levels. Furthermore, finding

the corresponding nodes from the used ASTs by different

algorithms is a big challenge. Because different algorithms

may use ASTs with different sets of nodes (including leaf

nodes) to represent the same file, as shown in Fig. 1 and

Fig. 2. We observe that different algorithms commonly encode

statements as AST nodes. Additionally, tokens of a file are

Input Step 2: Grouping mappings along statements

+++ _
File Revision

A1

*
• ••
• •

A2
*

Mappings of AST nodes

s tm t! s tm t,

• O 9 0
O O O O '
• •

Step 1:

Tokenization

Step 3: Creating mappings of statements and tokens

\ 1
\ i

tokeni tokeni ! token. tokeni /

token, token, to k e n k token,

token. token,

stm ti

stm t,
Step 5: Algorithm accuracy

determination

Output

Statements with

inaccurate mappings

AA

stmt stmt

to k e n token- to k e n to k e n

token—

Fig. 4: Overview of our approach. The red color and green

color denote that the program element is from the file before

and after the revision, respectively.

not impacted by the composing nodes of an AST. To solve

the above issues, we refine the mappings of AST nodes into

mappings of statements and tokens. Moreover, we treat each

statement (including the statement itself and its tokens) as an

analysis unit.

Fig. 4 presents the overview of our approach. Given the

generated mappings by two algorithms (A1 and A 2) for a

file revision, we take five steps to calculate the statements

with inaccurate mappings for each algorithm. In Sections V-A

to V-E, we describe the five steps, respectively. In Section V-F,

we elaborate how to compare the similarity of mapped

statements and tokens by different algorithms.

A. Tokenization
In this step, we tokenize the file before and after a revision.

Instead of using punctuation and spaces, we use the parsed

AST of the source file to tokenize the file. For example, a

string literal containing punctuation and spaces is considered

as a single token.

For a Java file, we first use the Eclipse JDT parser

to generate a standard JDT AST. Then, we extract the

tokens from value of each AST node. Notice that we ignore

AST nodes representing comments and Javadocs. Because

comments and Javadocs are typically not treated as code [17].

As a result, we retrieve two token lists for a file before and

after a revision, respectively. The token lists are not impacted

by the used AST by each algorithm

B. Grouping Mappings along Statements
In this step, we separately group mappings of AST nodes

along statements for A 1 and A2. In an AST, a statement

(e.g., a method declaration) can have descendant statements.

For each statement in the source and target ASTs that

are being analyzed by an algorithm, we first group the

nodes that belong to the statement but do not belong

1177

to its descendant statements. For instance, our framework

groups n 1, n 2, and n 3 in Fig. 1(b) for the type declaration

PublishedAddressPolicy. Then, we find the generated

mappings by the algorithm for the grouped nodes. These

mappings are grouped for the statement.

C. Creating Mappings of Statements and Tokens
In this step, we separately calculate mappings of statements

and tokens for A1 and A2. Among the grouped mappings

for each statement, we can directly find the mapping for the

statement. For instance, in Fig. 1(b), n 1 represents the type

declaration PublishedAddressPolicy and the mapping

of n 1 is considered as the mapping of the declaration.

For a token, we refer to an AST node whose corresponding

program element contains the token as a relevant node of the

token. Among the relevant nodes of a token, we refer to the

node of the lowest level as the directly relevant node of the

token. In return, we refer to the token as a directly relevant
token of the node. We take the first HashMap of line 1 in

Fig. 1(a) as an example. In the used AST by GT shown in

Fig. 1(b), n 1, n4, n 6, n7 and n8 are relevant nodes of the

token. And the directly relevant node for the token is n8. In

the used AST by IJM shown in Fig. 2(a), n 1, n 3 and n5 are

relevant nodes of the token. And the directly relevant node for

the token is n 5.

An AST node can have several directly relevant tokens. For

instance, the node n 5 in Fig. 2(a) has three directly relevant

tokens including a HashMap and two Integer tokens. Such

tokens compose the value of n5. Another example is n 1

in Fig. 2, which has two directly relevant tokens including

the class and PublishedAddressPolicy tokens in

Fig. 1(a). The PublishedAddressPolicy token is the

value of the node, while the class token does not belong to

its value.

We observe that a token’s mapping is determined by the

mapping of its directly relevant node. We also take the first

HashMap of line 1 in Fig. 1(a) as an example. In Fig. 1, GT

maps n8 to n 59—indicating that the token is mapped to the

HashMap of line 3 in Fig. 1(a). And in Fig. 2, IJM maps

n5 to n 13—indicating that the token can only be mapped to a

directly relevant token of n 13.

For each node of the source and target ASTs, we calculate

all the directly relevant tokens and list the tokens according

to their character positions. Then, for each pair of mapped

nodes, we map tokens from the lists of directly relevant tokens

of the nodes. If both lists have only one token, we directly

map two tokens. Otherwise, we separately map the tokens

composing the value of the nodes and other tokens, since

tokens composing the value of a node can only be mapped

to those composing the value of another node. For the tokens

composing the values of the two nodes, we first sequentially

map identical tokens between the two lists and then map the

tokens (including the first and last tokens) that are surrounded

by already mapped pairs of tokens. Mapping program elements

surrounded by already mapped pairs is a commonly used

heuristic by program element mapping algorithms [20]. After

that, our framework applies the same method to map the tokens

that do not belong to the value of the two nodes.

For instance, in Fig. 2, n5 and n 13 are mapped. The

directly relevant tokens of n 5 include HashMap, Integer
and Integer. And the directly relevant tokens of n 13 include

Map, Integer and Integer. All of the tokens belong to

the values of the two nodes. We first sequentially map the two

Integer tokens between the two lists. HashMap and Map
are surrounded by already mapped tokens and they are further

mapped.

As a result, we calculate mappings of tokens using the

generated mappings of the AST nodes by A 1 and A 2 . We

further group mappings of tokens along each statement based

on the grouped mappings of AST nodes for the statement.

D. Calculating Statements with Inconsistent Mappings
In this step, we calculate statements with inconsistent

mappings for comparing A 1 and A 2 . For each statement in the

file before and after the revision, we first calculate whether

the two algorithms inconsistently map the statement. Then,

for each token in the statement, we calculate whether the two

algorithms inconsistently map the token. Finally, we output

statements with inconsistent mappings and for each statement,

we group the inconsistent mappings of the statement and its

tokens by comparing the two algorithms.

E. Algorithm Accuracy Determination
In this step, we compare the similarity of mapped statements

and tokens across each pair of different algorithms. By

performing the comparison, we determine the accuracy of each

algorithm in the mapping of a statement or a token. In this

section, we introduce how to determine the accuracy of each

algorithm by performing the comparison. In Section V-F, we

elaborate how to compare the similarity of mapped statements

and tokens by different algorithms.

Let us denote the similarity between two program elements

e and e as Sim (e,e). The elements can be statements

or tokens. Suppose that two algorithms (A0 and A1) map

a program element e0 to two different elements e1 and

e2, respectively. We notice that the two algorithms also

inconsistently map e1 and e2. Suppose that A0 maps an

element e3 to e2, and A1 maps an element e4 to e1. In other

words, A0 generates two mappings {(eo,e1), (e3 ,e2)}. And

A1 generates two mappings {(e0, e2), (e4, e1)}.

Suppose that Sim(e0,e 1) is larger than Sim(e0,e2), we

determine that A0 is more accurate than A1 in mapping e0.

However, it is not enough to determine that the mapping of e0

to e1 is better than the generated mappings by A 1 . We must

also check the condition: Sim (e0, e1) > Sim (e4, e1), i.e., A0

is also more accurate than A1 in mapping e1 . If this condition

is also satisfied, we determine that A1 inaccurately maps e0

and e1. Similarly, we can also determine if the two generated

mappings by A0 are inaccurate.

Given a pair of algorithms and a file revision, we calculate

the statements with inconsistent mappings. For each statement

with inconsistent mappings, we perform the above comparison

1178

TABLE I: Statistics of the studied projects.

Projects #Commit #File Revision

ActiveMQ 8,059 24,813

Commons IO 1,067 2,727

Commons Lang 3,031 6,917

Commons Math 4,257 18,133

Junit4 1,241 3,802

Hibernate ORM 10,170 51,711

Hibernate Search 5,369 27,002

Spring Framework 14,754 68,413

Spring Roo 4,274 19,894

Netty 11,135 39,753

Total 63,357 263,165

for the mappings of the statement and its tokens as generated

by the two algorithms that are being compared. Consequently,

we calculate statements with inaccurate mappings for each

algorithm.

For each studied algorithm, we separately compare it with

the other two studied algorithms. Finally, we calculate a union

set of statements with inaccurate mappings for any of the

algorithms that are being compared.

F. Similarity Comparison

Our aim is to automatically compare the similarity of

mapped statements and tokens by different algorithms. To

realize this aim, we perform a manual analysis of statements

with inconsistent mappings. Also, we verify if statements with

inconsistent mappings can expose the inaccurate mappings as

generated by the algorithms.

In this study, we analyze ten open-source Java projects.

Table I presents statistics of the ten studied projects. These

projects were analyzed by prior studies [12], [17]. We collect

the commits of the projects from the creation date of the

projects to January 2019.

We can compare three pairs of algorithms, namely GT

vs. MTD, GT vs. IJM and MTD vs. IJM. For each pair

of algorithms, we sample 50 file revisions for which the

two algorithms inconsistently map program elements from

the studied projects. For each file revision, we analyze all

the statements before and after the revision that involve

the inconsistent mappings. We analyze 178, 191 and 206

statements for comparing the three pairs of algorithms,

respectively. In total, we analyze 575 statements. For each

statement, we determine the accuracy of mappings as

generated by each of compared algorithms using Frick et al.’s

criteria [12]. In total, we make 1,150 (575 x 2) determinations.

The first and second author of this paper separately analyzed

the statements with inconsistent mappings. Both authors have

at least three years of programming experience in Java. We

calculate Fleiss’ Kappa [10] to estimate the agreement of

the two annotators’ determination results. The Kappa value

is 0.81, which indicates an excellent agreement. Finally, the

two annotators compared their determination results to uncover

disagreements. For each statement with a disagreement, the

annotators further discussed the accuracy of the generated

mappings by the two compared algorithms.

We analyze all the statements with inaccurate mappings

to design similarity measures to distinguish accurate and

inaccurate mappings of statements and tokens. We categorize

the statements with inaccurate mappings for the algorithms

along each similarity measure. For each statement with

inaccurate mappings, we consider if we have designed a

measure that can identify the inaccurate mappings. If we have

designed such a measure, we categorize the statement to the

category of the measure. Otherwise, we try to design a new

similarity measure to distinguish the accurate and inaccurate

mappings. By doing so, we design hierarchical similarity

measures for two statements and two tokens.
From our manual analysis, we have the following findings.

• Among the 178 statements for comparing GT and MTD,

71 and 129 statements involve inaccurate mappings as

generated by GT and MTD, respectively. Among the

191 statements for comparing GT and IJM, 114 and 91

statements involve inaccurate mappings as generated by

GT and IJM, respectively. Among the 206 statements

for comparing MTD and IJM, 113 and 117 statements

involve inaccurate mappings as generated by MTD and

IJM, respectively.

• For each statement with inconsistent mappings for

comparing two algorithms, at least one algorithm is

determined to generate inaccurate mappings. Hence,

statements with inconsistent mappings can expose the

inaccurate mappings as generated by the algorithms.

• There exist cases where two algorithms consistently

produce an inaccurate mapping of a statement or a token.

In total, we find 185 (71 + 114), 242 (129 + 113), 208

(91 + 117) statements with inaccurate mappings for GT,

MTD and IJM, respectively. Based on our observation, we

design two similarity measures for comparing two statements

and four similarity measures for comparing two tokens.

Table II presents the six measures. Notice that we define

two tokens with the same value as identical tokens. We

use the six similarity measures collectively to compare the

generated mappings by different algorithms. In the remaining

part of this section, we first introduce the six measures and

our categorization results for the statements with inaccurate

mappings. Then we describe the usage of the proposed

measures.
The six similarity measures are elaborated below.
NIT is defined as the number of mapped identical tokens

between a pair of mapped statements. Two mapped statements

with a larger NIT are more similar and an NIT of 0 indicates

that the two statements are highly dissimilar. If two statements

are mapped with an NIT of 0, we determine the mapping as

inaccurate. Otherwise, for a pair of mapped statements, we

check if the mapping of one of the statements to another

statement can achieve a larger NIT. For instance, in Fig. 5(a),

MTD inaccurately maps the statements at lines 1 and 2, and

the NIT is 0. In Fig. 5(b), GT maps the statements at lines 1

and 2 with an NIT of five. IJM maps the statements at lines

1 and 3 with an NIT of four. We determine that GT is more

accurate than IJM in mapping the statement at line 1.

1179

TABLE II: The similarity measures for statements and tokens.

Element M easure M easure Description GT MTD IJM

Stmt.
NIT Number of mapped identical tokens between a pair of mapped statements. 22 72 17

PM Whether the parent nodes of a pair of mapped statements are mapped. 9 18 7

Token

TYPE Whether mapped tokens have the same type. 29 24 0
STMT Whether mapped tokens belong to a pair of mapped statements. 71 84 146

VAL Whether mapped tokens have the same value. 16 0 4

LLCS Length of the longest common subsequence calculated using mapped tokens

between mapped statements.

10 10 4

Other 28 34 30

1

2

1

2

3

(b) Partial changes of XmlStreamReader.java from Commit d46782 of Commons IO (NIT)

1

2

3

Fig. 5: Illustrative examples of inaccurately mapped statements

that can be identified using our measures.

p u b l i c v o i d t e s t F i l t e r S e t () {

• I O F i l e F i l t e r f i l t e r = F i l e F i l t e r U t i l s . n a m e F i l e F i l t e r (” A”) ; ' * - - IJM

- f i n a l I O F i l e F i l t e r f i l t e r = F i l e F i l t e r U t i l s . n a m e F i l e F i l t e r (” A”) ; \

p u b l i c v o i d t e s t F i l t e r L i s t _ f r o m A r r a y () t h r o w s E x c e p t i o n { /

f i n a l I O F i l e F i l t e r f i l t e r = F i l e F i l t e r U t i l s . n a m e F i l e F i l t e r (” A”) ; G

}

(c) Partial changes of FileFilterTestCase.java from commit 6aa007 of (PM)

a s s e r t E q u a l s (m s g + ” : a r r a y :

c o s . w r i t e (i) ;

m i s m a t c h ” , e n d - s t a r t , a r r a y . l e n g t h) ; -

MTD

(a) Partial changes of CountOutputStreamTestjava from commit 4ab6a3 of Commons IO (NIT)

- p r i v a t e s t a t i c b o o l e a n i s A p p X m l (S t r i n g m i m e) { . . . }

s t a t i c b o o le <

s t a t i c b o o l e

i s A p p X m l (S t r i n g m i m e) { . . . }

. i s T e s t X m l { S t r i n g m im e } { . . . } «

PM characterizes whether the parent nodes of a pair

of mapped statements are also mapped. We observe that

statements with mapped parent nodes are more likely to be

mapped. For a pair of mapped statements, we check if mapping

one of the statements to another statement with mapped parent

nodes can achieve the same NIT. For instance, in Fig. 5(c), IJM

maps the statements at lines 1 and 2 with mapped parent nodes,

while GT maps the statements at lines 1 and 3 with parent

nodes not mapped. We determine that IJM is more accurate

than GT in mapping the statement at line 1. Furthermore,

we notice a special type of statements, i.e., blocks. A block

is a group of statements between balanced braces (i.e., “{”

and “}”). We observe that a block should be mapped along

with its parent nodes, e.g., the “{” following the method

testFilterSet in Fig. 5(c) should be mapped along with

the method declaration. Thus, mapped blocks with unmapped

parent nodes are determined to be inaccurate.

TYPE characterizes whether mapped tokens have the same

type. For a token whose directly relevant node is not a name

node, we define the type of the token as the label of its

directly relevant node. For tokens whose directly relevant node

is a name node, we define four types: variable name, type

name, method name and declaration name. Following Frick

et al. [12], we consider the mapping of tokens with different

types as inaccurate. For instance, in Fig. 6(a), GT maps a

variable name value to a method name bytevalue, we

determine that such a mapping is inaccurate.

STMT characterizes whether mapped tokens belong to a pair

of mapped statements. Two tokens from mapped statements

are more likely to be mapped. We observe that mapping tokens

- r e t u r n (v a l u e == ((M u t a b le B y te) o b j) . v a l u e) ;

' GT

+ r e t u r n v a l u e == ((M u t a b le B y te) o b j) . b y t e V a l u e () ;

IJM d o e s n o t map

t h e tw o t o k e n s .

(a) P a rtia l changes o f M u tab leB y te .java from com m it 49e1f1 o f Com m ons L ang (T Y P E)

- a p p e n d D e t a i l (b u f f e r , f i e l d N a m e , (O b j e c t) v a l u e) ;

IJM d o e s n o t map

+ a p p e n d D e t a i l (b u f f e r , f i e l d N a m e , v a l u e) ;

(b) P a rtia l changes o f T o S trin g S ty le ja v a from com m it 85d334 o f C om m ons L ang (S T M T)

1 - p r i v a t e H a s h M a p C I n te g e r , I n t e g e r > p o r tM a p p in g = new H a s h M a p C I n te g e r , I n t e g e r > () ;

IJM \

2 + p r i v a t e M a p C I n te g e r , I n t e g e r > p o r tM a p p in g = new H a s h M a p C I n te g e r , I n t e g e r > () ;

3 + p r i v a t e M a p C S t r in g , S t r i n g > h o s tM a p p in g = new H a s h M a p C S tr in g , S t r i n g > () ;
GT

(c) P a rtia l changes o f P ub lishedA ddressPolicy .java from com m it 4800a7 o f A ctiveM Q (S T M T)

1 - b u f . w r i t e B y t e s (r e q u e s t . g e t U R I () . t o A S C I I S t r i n g () . g e t B y t e s ()) ;

i j m „ G T __________________________________ _
2 + b u f . w r i t e B y t e s (r e q u e s t . g e t U r i () . g e t B y t e s ()) ;

(d) P a rtia l changes o f H ttp R eq u e stE n co d e rjav a from com m it 2d9277 o f N etty (V A LU E)

1 - F i l t e r a b l e f i l t e r a b l e = (F i l t e r a b l e) r u n n e r ;

/ i j m

2 + F i l t e r a b l e f i l t e r a b l e = (F i l t e r a b l e) c h i l d ;

(e) P a rtia l changes o f F i lte r ja v a from com m it 42beed o f Jun it4 (L C S T)

Fig. 6: Illustrative examples of inaccurately mapped tokens

that can be identified using our measures.

from mapped statements is better than (1) not mapping the

tokens and (2) mapping tokens from unmapped statements.

For instance, in Fig. 6(b), the two value tokens are both

variable names and they belong to a pair of mapped statements.

GT maps the two tokens, while IJM does not map them. We

determine that GT is more accurate than IJM in mapping the

two tokens. As another example, we find that both GT and

IJM map the statement at line 1 to the statement at line 2

in Fig. 6(c). GT maps the two HashMap tokens in unmapped

statements, while IJM maps the HashMap to the Map from the

mapped statements. Using the STMT measure, we determine

that IJM is more accurate in mapping the HashMap at line 1

than GT.

VAL characterizes whether mapped tokens have the same

string value. Two identical tokens in a pair of mapped

statements are more likely to be mapped. We consider that

mapping such two tokens is better than mapping one of the

tokens to another token with different values between the two

statements. For instance, in Fig. 6(d), GT maps getBytes to

writeBytes, while IJM maps the two getBytes tokens.

Using the VAL measure, we determine that IJM is more

accurate in mapping the getBytes tokens than GT.

LLCS is defined as the length of the longest common

subsequence (LCS) [16] that is calculated using the mapped

tokens between mapped statements. We observe that the order

of tokens is infrequently changed in a statement. We use

LLCS to quantify the number of tokens that are sequentially

mapped between the mapped statements. For instance, in

1180

Fig. 6(e), GT changes the orders of the two Filterable
tokens in the statement at line 1. As a result, at most three

tokens are sequentially mapped between the statements, i.e.,

Filterable, = and runner. The LLCS for the mapped

tokens is calculated as three. IJM sequentially maps the

five tokens between the two statements. The LLCS for the

mapped tokens is calculated as five. Using the LLCS measure,

we determine that IJM is more accurate in mapping the

Filterable tokens than GT.

Table II shows the number of statements that are categorized

along the measures. The measures can identify 157 (85%),

208 (86%) and 178 (86%) of the statements with inaccurate

mappings for GT, MTD and IJM, respectively. The other

statements with inaccurate mappings are categorized into the

Other category. For these statements, we find that determining

the accuracy of the mappings of statements and tokens requires

more comprehension of the changes.

Usage of the similarity measures. We compare the generated

mappings by two algorithms using the following steps.

Step 1. If an algorithm maps two non-block statements with

an NIT of 0, we determine the mapping as inaccurate. If an

algorithm maps two blocks with unmapped parent nodes, we

determine the mapping as inaccurate. If an algorithm maps

two tokens with different types, we determine the mapping as

inaccurate.

Step 2. When the two algorithms map a statement to

different statements, mapping statements with a larger NIT is

considered to be more accurate. If the two pairs of statements

have the same NIT, mapping statements with mapped parent

nodes is considered to be more accurate than mapping

statements with unmapped parent nodes.

Step 3. When the two algorithms consistently map a statement, * VI.

we assume that the two algorithms accurately map the

statement. From the statement, we retrieve all the tokens that

are inconsistently mapped by the two algorithms. For a token

that is inconsistently mapped by the two algorithms, we first

use the STMT measure to compare the generated mappings

for the token by the two algorithms. If both algorithms map

tokens from the mapped statements, mapping identical tokens

is considered to be more accurate than mapping tokens with

different values. If both algorithms map identical tokens from

the mapped statements, the mapped tokens with larger LLCS

are considered to be more accurate.

VI. Evaluation

We evaluate our approach by answering three research

questions. In this section, we present the three research

questions and our answer to each question.

A. (RQ1) How effective is our approach in detecting

statements with inaccurate mappings for the studied

algorithms?
Motivation. By answering this research question, we

investigate if our approach can effectively find the statements

with inaccurate mappings as generated by the studied

algorithms.

Method. Our approach may be over-fit on the used dataset in

our manual analysis. Thus, we conduct an experiment with 12

external experts. The experts include PhD students and post-

doctors majoring in software engineering. They have three to

seven years of programming experience in Java. Seven experts

have prior experience working in industry. For each project,

we randomly select 20 statements from all the file revisions.

For each selected statement, at least two studied algorithms

inconsistently map the statement or its tokens. In total, we

select 200 of such statements with inconsistent mappings. The

selected statements involve various change patterns including

adding, deleting, moving and updating statements and tokens.
We randomly divide the 200 statements into four groups

with each group having 50 statements. We also divide the

experts into four groups with each group having three experts.

We invite the four groups of experts to analyze the four groups

of statements, respectively. For each statement, we provide

the mappings of the statement and its tokens as generated

by each of the studied algorithms. Notice that we do not

provide the algorithm that generates the mappings. We let the

experts determine if the mapping of the statement or a token

of the statement is inaccurate. For each group of statements,

we calculate Fleiss’ Kappa [10] to estimate the agreement of

the three experts’ determination results.
For each studied algorithm, we have three determination

results on the accuracy of algorithm in mapping each statement

and its tokens. For each statement and the generated mappings

of the statement and its tokens by an algorithm, we label the

mappings as inaccurate if at least two experts determine that

inaccurate mappings exist.
Then, we run our approach to determine statements with

inaccurate mappings for GT, MTD and IJM from the 200

statements. Finally, we compare the determination results of

our approach with the experts’ determination results. We

define a true positive as a statement with inaccurate mappings

for an algorithm that is determined as such by both our

approach and experts. We define a false positive as a statement

with inaccurate mappings for an algorithm that is determined

as such by our approach but not determined as such by experts.

We define a false negative as a statement with inaccurate

mappings for an algorithm that is determined as such by

experts but not determined as such by our approach. Let us

denote the number of true positives, false positives and false

negatives as TP, FP and FN. We calculate the precision of

our approach as t j t +F_p . And we calculate the recall of our

approach as Tp+FN.
Results. For the four groups of statements, the Kappa values

for the experts’ determination results are 0.81, 0.82, 0.84

and 0.78, respectively. Thus, the experts’ determination results

have an excellent agreement.
Table III presents the TP, FP, FN, precision and recall of our

approach in determining statements with inaccurate mappings

for the studied algorithms. As shown in the table, our approach

achieves a precision of 0.98-1.00 and a recall of 0.65-0.75.

Almost all of the statements with inaccurate mappings as

determined by our approach are also determined as such by

1181

1 - LOG.trace(”redelivery #” + redeliveryCount + ” of: ” + messageReference.getMessageId() + ” with delay:
+ delay + ”, dest: ” + messageReference.getRegionDestination().getActiveMQDestinationO);

geR,
GT, IJM

2+ Destination regionDestination = (Destination) messageReference.getRegionDestination();
3+ LOG.trace(”redelivery #” + redeliveryCount + ” of: ” + messageReference.getMessageId() + ” with delay:

+ delay + ”, dest: ” + regionDestination.getActiveMQDestination());
MTD

Fig. 7: GT and IJM generates accurate mappings but our approach determines the mapping of a token as inaccurate.

TABLE III: TP, FP, FN, precision and recall of our approach.

Alg. TP FP FN Precision Recall

GT 56 1 27 0.98 0.67

MTD 90 0 30 1.00 0.75

IJM 59 1 32 0.98 0.65

experts.

For the false positives and false negatives, we further

asked the experts why they considered that an algorithm

inaccurately maps a statement or tokens of the statement.

We analyze cases of false positives and false negatives. For

the two false positives, we find that GT and IJM generate

the accurate mappings for a statement and its tokens but our

approach determines the mapping of a token as inaccurate.

We show this case in Fig. 7. As shown in Fig. 7, the code

involves a refactoring that extracts the method invocation

messageReference.getRegionDestination in the

statement at line 1 as a new variable. GT and IJM accurately

map the invocation to the statement at line 2, while MTD

maps messageReference in the statement at line 1 to

the regionDestination in the statement at line 3. In

this case, mapping tokens from unmapped statements is better

than mapping tokens from mapped statements. However, when

comparing the generated mappings by GT, IJM and MTD, our

approach considers that MTD generates a better mapping than

GT and IJM. This case indicates that our approach can be

further improved by considering refactoring changes.

For 11 cases of false negatives, we find that our similarity

measures can distinguish the accurate and inaccurate mappings

of statements or tokens. However, all three algorithms generate

inaccurate mappings. Hence, the inaccurate mappings cannot

be detected by comparing the similarity measures of the

mapped statements and tokens between different algorithms.

We observe 38 cases where an algorithm maps two tokens

from unmapped statements and another algorithm separately

maps the two tokens to empty elements. We observe 33

cases where an algorithm maps two statements and another

algorithm separately maps the two statements to empty

elements. We further observe 7 cases where two algorithms

map a statement or token to different statements or tokens

but our similarity measures cannot distinguish accurate and

inaccurate mappings. In these 78 cases, determining the

inaccurate algorithm requires more syntactic information to

determine if mapping two tokens or two statements helps

understand the changes.

Summary. Our approach achieves a precision of 0.98-1.00

and a recall of 0.65-0.75 in determining the statements

TABLE IV: TP, FP, FN, precision and recall of our approach

when comparing an algorithm with another algorithm.

Comparison Alg. TP FP FN Precision Recall

GT vs. MTD
GT 44 1 39 0.98 0.53

MTD 83 0 37 1.00 0.69

GT vs. IJM
GT 47 0 36 1.00 0.57

IJM 51 0 40 1.00 0.56

MTD vs. IJM
MTD 74 0 46 1.00 0.62

IJM 49 1 42 0.98 0.54

with inaccurate mappings for the studied algorithms. Any

statements with inaccurate mappings that we detect are

highly likely to be correct, although there may be additional

inaccurate mappings that we cannot detect. Our approach can

be used to estimate the lower bound on the effectiveness of

AST mapping algorithms.

B. (RQ2) How effective is our approach when comparing an

algorithm with multiple algorithms than when comparing it
with another algorithm?
Motivation. As described in Section V-E, we separately

compare an algorithm with the other two algorithms. Then, we

calculate a union set of statements with inaccurate mappings

for the algorithm. We investigate if comparing an algorithm

with the other two algorithms is more effective in detecting

statements with inaccurate mappings than comparing it with

another algorithm.

Method. We have three pairs of studied algorithms, namely

GT vs. MTD, GT vs. IJM and MTD vs. IJM. For the 200

analyzed statements in RQ1, we use our approach to compare

the generated mappings for statements and tokens by each

pair of algorithms. For each pair of algorithms, we calculate

a set of statements with inaccurate mappings. In such a case,

we compare an algorithm with another algorithm. Then, we

calculate the precision and recall of our approach in detecting

statements with inaccurate mappings for the two algorithms.

The precision and recall of our approach that compares an

algorithm with the other two algorithms are shown in Table III.

Finally, we compare the results shown in the table with

the precision and recall of our approach that compares an

algorithm with another algorithm.

Results. Table IV presents TP, FP, FN, precision and recall

of our approach when comparing an algorithm with another

algorithm. By comparing the results show in Tables III and IV,

we find that our approach achieves a better recall with a

difference of 9%-23% when comparing an algorithm with two

algorithms than when comparing it with another algorithm. On

the other hand, the precision of our approach is not impacted.

1182

TABLE V: Number of statements and file revisions for which the studied algorithms are determined to generate inaccurate

mappings.

Projects
Statements File Revisions

GT MTD IJM GT MTD IJM

ActiveMQ 53,083 191,566 39,669 5,817 8,523 5,786

Commons IO 7,932 16,978 5,883 546 713 656

Commons Lang 23,306 53,533 21,567 1,501 1,823 1,641

Commons Math 43,450 101,194 34,440 3,703 4,588 3,881

Junit4 6,997 13,800 5,750 924 1,083 984

Hibernate ORM 127,770 356,412 93,146 13,026 16,414 13,069

Hibernate Search 43,942 112,419 38,919 6,012 7,326 6,964

Spring Framework 164,545 440,480 145,374 17,120 20,484 20,215

Spring Roo 54,245 172,454 38,397 4,573 5,764 4,963

Netty 130,249 374,883 91,795 11,584 14,191 11,451

As described in Section V-F, two algorithms may

generate the same mapping that is inaccurate. Such an

inaccurate mapping cannot be detected by comparing the

two algorithms. If another algorithm generates the accurate

mapping, comparing the third algorithm with the former

two algorithms may reveal the inaccurate mapping. Thus,

comparing an algorithm with multiple algorithms can detect

more inaccurate mappings.

Summary. Our approach can detect 9%-23% more statements

with inaccurate mappings when comparing an algorithm with

the other two algorithms than when comparing it with another

algorithm.

C. (RQ3) Do state-of-the-art AST mapping algorithms

generate many inaccurate mappings?
Motivation. We show that our approach achieves a nearly

perfect precision in finding statements with inaccurate

mappings for the studied algorithms. Hence, we leverage

our approach to investigate whether the studied algorithms

generate many inaccurate mappings.
Method. We leverage GT, MTD and IJM to calculate the

mappings of the AST nodes for all the file revisions of the ten

studied projects. For each file revision, we use our approach

to detect the statements with inaccurate mappings for each

studied algorithm. For each project, we count the detected

statements with inaccurate mappings for each algorithm. We

also count the file revisions for which the studied algorithms

are determined to generate inaccurate mappings.

Results. Table V presents the number of statements with

inaccurate mappings as detected by our approach. We also

show the number of file revisions for which the studied

algorithms are determined to generate inaccurate mappings.

As shown in the table, the three studied algorithms may

generate a considerable number of inaccurate mappings. For

each project, we further calculate the ratio of file revisions

for which the studied algorithms are determined to generate

inaccurate mappings. We find that GT, MTD and IJM are

determined to generate inaccurate mappings for 20%-29%,

25%-36% and 21%-30% of the file revisions, respectively.

Summary. GT, MTD and IJM are determined to generate

inaccurate mappings for a considerable number of file

revisions. State-of-the-art AST mapping algorithms still have

room for improvement.

VII. Discussion

A. Threats to Validity
The primary threats to the validity of our experiments are

twofold. First, we compare the determination results of our

approach and experts on the accuracy of generated mappings

by the studied algorithms for 200 statements. The number of

analyzed statements is not very large-scale. This is because

such a manual analysis is time-consuming, with understanding

mappings of each statement and each token. On average,

each expert takes 1.5 hours to analyze the allocated 50

statements. The 200 statements are randomly taken from 10

different projects, and they are from different file revisions.

Dotzler et al. analyzed only 10 file revisions when evaluating

MTD [8]. Our analysis involves much more file revisions

than their analysis. second, when we select the statements,

we require that at least two studied algorithms inconsistently

map the statement or its tokens. There may exist cases where

the studied algorithms consistently map a statement and its

tokens, but the mapping of the statement or a token of

the statement is inaccurate. The selected statements do not

consider such cases, and our approach cannot detect the

inaccurate mapping in such cases. We manually analyzed

100 statements for which the studied algorithms generate

consistent mappings at both statement and token levels. We

did not observe the cases where the three algorithms produce

inaccurate mappings. Nevertheless, our code and data are

made publicly available [1], and researchers are encouraged

to investigate this possibility.

B. Limitations
From our experiments, we observe two limitations of

our approach. First, as described in our answer to RQ1,

refactoring changes may impact the precision of our approach.

In refactoring changes, mapping tokens from unmapped

statements may be better than mapping tokens from mapped

statements. We note that researchers proposed several

refactoring detection tools, e.g., [30]. Incorporating such tools

into our approach may deal with this limitation. On the other

hand, there still exists a considerable number of inaccurate

mappings that cannot be detected by our approach. According

to our answer to RQ2, comparing an algorithm with more

algorithms may detect more inaccurate mappings as generated

1183

by the algorithm. Moreover, researchers have proposed various

heuristics to map program elements [20]. Additional similarity

measures can be derived from these heuristics. Such measures

may further improve the recall of our approach. Our code

and data are made publicly available [1], and researchers are

encouraged to extend our approach.

VIII. Re l a t e d Wo r k

A. AST mapping algorithms
Many AST mapping algorithms were proposed in prior

studies. Yang proposed an AST mapping algorithm using

a branch-and-bound implementation of the largest common

subtree problem [33]. This algorithm does not consider moved

AST nodes. Fluri et al. proposed ChangeDistiller, an AST

mapping algorithm that uses a reduced AST, in which code

statements are encoded as leaf nodes [11]. Hashimoto et al.

proposed Diff/TS, an algorithm that works with raw ASTs

and supports multiple languages [14]. Nguyen et al. proposed

Jsync, which leverages a classic text-based mapping algorithm

to map AST nodes [28]. Recently, researchers proposed

GumTree [9], MTDiff [8] and IJM [12]. These algorithms are

the state-of-the-art AST mapping algorithms and are analyzed

in our paper. Different from them, we focus on evaluating

AST mapping algorithms rather than proposing a new AST

mapping algorithm.

B. Use of AST mapping algorithms
AST mapping algorithms are widely used in several SE

research areas. ChangeDistiller has been used to identify non-

essential modifications [19] and automate repetitive edits [26].

Nguyen et al. used Jsync to track cloned code in the software

evolution process [28]. Moreover, many studies used GumTree

to analyze code patterns of changes such as bug-fixing

changes [5], [13], [18], [21], [23], [29], logging changes [22]

and changes to online code examples [34]. Also, prior work

trained models based on the edit actions of changes that are

calculated using GumTree [7], [15], [24], [31], [32]. Such

models are used to recommend changes such as patches [32]

and logging changes [22]. Different from them, we focus

on evaluating AST mapping algorithms instead of using the

algorithms to analyze changes.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a differential testing approach that

can automatically determine the statements with inaccurate

mappings for AST mapping algorithms. Given a file revision,

we first compare the generated mappings by different

algorithms and extract the statements with inconsistent

mappings. Then, we use six similarity measures collectively

to compare the mapped statements and tokens by different

algorithms. By doing so, we determine the statements with

inaccurate mappings for each of the algorithms.

By conducting an experiment with 12 experts, we show that

our approach achieves a precision of 0.98-1.00 and a recall of

0.65-0.75. The studied algorithms are determined to generate

inaccurate mappings for a considerable number (20%-36%)

of file revisions in our studied projects. Hence, state-of-the-

art AST mapping algorithms still need improvements. AST

mapping algorithms play a foundational role in many existing

studies. It is necessary to investigate if the inaccurate mappings

as generated by the algorithms impact the conclusions of

existing studies.

Acknowledgement

This research was partially supported by the National Key

R&D Program of China (No. 2019YFB1600700), Australian

Research Council’s Discovery Early Career Researcher Award

(DECRA) funding scheme (DE200100021), ARC Discovery

grant (DP200100020), Key Research and Development

Program of Zhejing Province (No. 2021C01014), and the

National Research Foundation, Sinapore under its Industry

Alignment Fund - Prepositioning (IAF-PP) Funding Initiative.

Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not

reflect the views of National Research Foundation, Singapore.

References

[1] Code and data of this paper. http://doi.org/10.5281/zenodo.4281091.

[2] Github repository of gumtree. https://github.com/GumTreeDiff/gumtree.

[3] Github repository of ijm. https://github.com/VeitFrick/IJM.

[4] Github repository of mtdiff.

https://github.com/FAU- Inf2/treedifferencing.

[5] E. C. Campos and M. d. A. Maia. Discovering common bug-fix patterns:

A large-scale observational study. Journal o f Software: Evolution and

Process, 31(7):e2173, 2019.

[6] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change

detection in hierarchically structured information. Acm Sigmod Record,

25(2):493-504, 1996.

[7] B. Danglot, M. Monperrus, W. Rudametkin, and B. Baudry. An approach

and benchmark to detect behavioral changes of commits in continuous

integration. Empirical Software Engineering, pages 1-37, 2020.

[8] G. Dotzler and M. Philippsen. Move-optimized source code tree

differencing. In 2016 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 660-671. IEEE, 2016.

[9] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus.

Fine-grained and accurate source code differencing. In Proceedings o f
the 29th ACM/IEEE international conference on Automated software

engineering, pages 313-324, 2014.

[10] J. L. Fleiss. Measuring nominal scale agreement among many raters.

Psychological bulletin, 76(5):378, 1971.

[11] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change distilling:

Tree differencing for fine-grained source code change extraction. IEEE

Transactions on software engineering, 33(11):725-743, 2007.

[12] V. Frick, T. Grassauer, F. Beck, and M. Pinzger. Generating accurate and

compact edit scripts using tree differencing. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages

264-274. IEEE, 2018.

[13] Q. Hanam, F. S. d. M. Brito, and A. Mesbah. Discovering bug patterns in

javascript. In Proceedings o f the 2016 24th ACM SIGSOFT International
Symposium on Foundations o f Software Engineering, pages 144-156,

2016.

[14] M. Hashimoto and A. Mori. Diff/ts: A tool for fine-grained structural

change analysis. In 2008 15th working conference on reverse

engineering, pages 279-288. IEEE, 2008.

[15] F. Hassan and X. Wang. Hirebuild: An automatic approach to history-

driven repair of build scripts. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 1078-1089. IEEE,

2018.

[16] D. S. Hirschberg. Algorithms for the longest common subsequence

problem. Journal o f the ACM (JACM), 24(4):664-675, 1977.

[17] K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang, Y. Liu, and W. Zhao.

Cldiff: generating concise linked code differences. In Proceedings o f
the 33rd ACM/IEEE International Conference on Automated Software

Engineering, pages 679-690, 2018.

1184

[18] M. R. Islam and M. F. Zibran. How bugs are fixed: exposing bug-fix

patterns with edits and nesting levels. In Proceedings o f the 35th Annual
ACM Symposium on Applied Computing, pages 1523-1531, 2020.

[19] D. Kawrykow and M. P. Robillard. Non-essential changes in

version histories. In 2011 33rd International Conference on Software

Engineering (ICSE), pages 351-360. IEEE, 2011.

[20] M. Kim and D. Notkin. Program element matching for multi-version

program analyses. In Proceedings o f the 2006 international workshop

on Mining software repositories, pages 58-64, 2006.

[21] A. Koyuncu, K. Liu, T. F. Bissyande, D. Kim, J. Klein, M. Monperrus,

and Y. Le Traon. Fixminer: Mining relevant fix patterns for automated

program repair. Empirical Software Engineering, pages 1-45, 2020.

[22] S. Li, X. Niu, Z. Jia, J. Wang, H. He, and T. Wang. Logtracker: learning

log revision behaviors proactively from software evolution history. In

Proceedings o f the 26th Conference on Program Comprehension, pages

178-188, 2018.

[23] K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyande, and Y. Le Traon.

A closer look at real-world patches. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages

275-286. IEEE, 2018.

[24] S. Ma, F. Thung, D. Lo, C. Sun, and R. H. Deng. Vurle: Automatic

vulnerability detection and repair by learning from examples. In

European Symposium on Research in Computer Security, pages 229-

246. Springer, 2017.

[25] W. M. McKeeman. Differential testing for software. Digital Technical
Journal, 10(1):100-107, 1998.

[26] N. Meng, M. Kim, and K. S. McKinley. Lase: locating and applying

systematic edits by learning from examples. In 2013 35th International
Conference on Software Engineering (ICSE), pages 502-511. IEEE,

2013.

[27] A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,

E. Rademacher, T. N. Nguyen, and D. Dig. Api code recommendation

using statistical learning from fine-grained changes. In Proceedings o f
the 2016 24th ACM SIGSOFT International Symposium on Foundations

of Software Engineering, pages 511-522, 2016.

[28] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.

Nguyen. Clone management for evolving software. IEEE transactions

on software engineering, 38(5):1008-1026, 2011.

[29] Z. Ni, B. Li, X. Sun, T. Chen, B. Tang, and X. Shi. Analyzing bug fix

for automatic bug cause classification. Journal o f Systems and Software,

163:110538, 2020.

[30] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig.

Accurate and efficient refactoring detection in commit history. In 2018

IEEE/ACM 40th International Conference on Software Engineering

(ICSE), pages 483-494. IEEE, 2018.

[31] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and

D. Poshyvanyk. Learning how to mutate source code from bug-fixes.

In 2019 IEEE International Conference on Software Maintenance and

Evolution (ICSME), pages 301-312. IEEE, 2018.

[32] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and

D. Poshyvanyk. An empirical study on learning bug-fixing patches in

the wild via neural machine translation. ACM Transactions on Software

Engineering and Methodology (TOSEM), 28(4):1-29, 2019.

[33] W. Yang. Identifying syntactic differences between two programs.

Software - Practice and Experience, 21(7):739-755, 1991.

[34] T. Zhang, D. Yang, C. Lopes, and M. Kim. Analyzing and supporting

adaptation of online code examples. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 316-

327. IEEE, 2019.

1185

	A differential testing approach for evaluating abstract syntax tree mapping algorithms
	Citation
	Author

	A Differential Testing Approach for Evaluating Abstract Syntax Tree Mapping Algorithms

