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Abstract—Abstract syntax tree (AST) mapping algorithms are 
widely used to analyze changes in source code. Despite the 
foundational role of AST mapping algorithms, little effort has 
been made to evaluate the accuracy of AST mapping algorithms,
i.e., the extent to which an algorithm captures the evolution 
of code. We observe that a program element often has only 
one best-mapped program element. Based on this observation, 
we propose a hierarchical approach to automatically compare 
the similarity of mapped statements and tokens by different 
algorithms. By performing the comparison, we determine if each 
of the compared algorithms generates inaccurate mappings for 
a statement or its tokens. We invite 12 external experts to 
determine if three commonly used AST mapping algorithms 
generate accurate mappings for a statement and its tokens for 
200 statements. Based on the experts’ feedback, we observe that 
our approach achieves a precision of 0.98-1.00 and a recall of 
0.65-0.75. Furthermore, we conduct a large-scale study with a 
dataset of ten Java projects containing a total of 263,165 file 
revisions. Our approach determines that GumTree, MTDiff and 
IJM generate inaccurate mappings for 20%-29%, 25%-36% and 
21%-30% of the file revisions, respectively. Our experimental 
results show that state-of-the-art AST mapping algorithms still 
need improvements.

Index Terms—Program element mapping, abstract syntax 
trees, software evolution

I. In t r o d u c t i o n

program element mapping algorithms are the underlying 

basis for analyzing changes between two versions of a source 

code file (i.e., a file revision) [20]. Abstract syntax tree (AST) 

mapping algorithms represent a file revision and program 

elements of the file as two abstract syntax trees (ASTs) and 

nodes, respectively [8], [9], [12]. The algorithms approximate 

the similarity of nodes and calculate mappings of nodes 

between the two ASTs. We define accurate mappings as 

mappings that can reflect the evolution of code well.

Edit actions including adding, deleting, moving and 

updating nodes of an AST can be calculated based on the 

generated mappings by an AST mapping algorithm [6]. Such 

edit actions can describe changes to the syntactic structure 

of code, e.g., parameters added in a method call can be 

represented as added nodes in an AST. Accurate mappings 

lead to accurate edit actions that can reflect a developer’s 

intent. Many prior studies apply AST mapping algorithms 

to calculate edit actions for further analyses, e.g., API 

recommendation [27], mining code change patterns [22], and

§ Corresponding author.

automated program repair [32]. The accuracy of the used AST 

mapping algorithms is vital for the correctness of the proposed 

approaches by prior studies.

However, evaluations of the accuracy of AST mapping 

algorithms are limited. When evaluating the generated 

mappings by an algorithm, prior work relies heavily on manual 

analysis of the derived edit actions from the mappings [8], 

[9], [12]. Since it is infeasible to analyze all file revisions 

by hand, prior studies select a small sample for analysis. 

The many cases where AST mapping algorithms perform 

badly cannot be revealed. Furthermore, manually analyzing 

the mappings of program elements is time-consuming and 

tedious. An approach that can automatically find the inaccurate 

mappings as generated by AST mapping algorithms would 

be helpful. Practitioners and researchers can leverage such an 

approach to explore and navigate the generated mappings by 

an algorithm before performing further analyses.

In this paper, we propose an approach for evaluating AST 

mapping algorithms. We observe that a program element e 

often has only one best-mapped program element e in a file 

revision. The element e might be empty, i.e., e should not be 

mapped. If two algorithms inconsistently map such an element, 

at least one of the algorithms inaccurately mapped the element. 

We define similarity of two program elements in a file revision 

as the likelihood of the two elements to be mapped. Our idea 

is that if an algorithm maps a more similar program element 

for e than another algorithm, the latter algorithm is likely 

to have made a mistake. We aim to automatically compare 

the similarity of mapped program elements by different AST 

mapping algorithms. In the software testing area, this approach 

is referred to as differential testing [25].

To ease analysis, we refine the mappings of AST nodes 

into mappings of each statement and tokens in the statement. 

And we treat each statement as an analysis unit. By doing 

so, we avoid analyzing the mappings of AST nodes at all 

granularity levels. Notice that statements include declarations 

(e.g., method declarations) in our paper. A token is defined as 

a sequence of characters representing a program element such 

that none of its subsequences represents a program element. 

Given two algorithms, if they inconsistently map a statement 

or its tokens, we refer to such statements as statements with 

inconsistent mappings for the two algorithms. If an algorithm 

inaccurately maps a statement or its tokens, we refer to such 

statements as statements with inaccurate mappings for the

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
DOI 10.1109/ICSE43902.2021.00108
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algorithm.

We analyzed three AST mapping algorithms in our paper, 

namely GumTree [9], MTDiff [8] and IJM (Iterative Java 

Matcher) [12]. As shorthand notations, we use GT and 

MTD to represent GumTree and MTDiff, respectively. We 

manually analyze 575 statements with inconsistent mappings 

for comparing the algorithms. Through the manual analysis, 

we design a hierarchical approach to automatically compare 

the similarity of mapped statements and tokens by different 

algorithms. This hierarchical approach uses six measures 

collectively to perform the comparison. By performing 

the comparison, we determine statements with inaccurate 

mappings for each of the compared algorithms.

We invite 12 external experts to determine if the studied 

algorithms generate inaccurate mappings (at the statement or 

token level) for 200 statements. Compared to the experts’ 

evaluation, we find that our approach achieves a precision 

of 0.98-1.00 and a recall of 0.65-0.75. We run the studied 

algorithms on all the file revisions of ten Java projects. We 

use our approach to analyze the generated mappings by the 

algorithms. For 20%-29%, 25%-36% and 21%-30% of the 

file revisions, GT, MTD and IJM are determined to generate 

inaccurate mappings, respectively. The results show that state- 

of-the-art AST mapping algorithms still need improvements. 

We make our code and data publicly available on [1].

Our contributions are summarized as follows:

• We propose an approach that can automatically detect 

statements with inaccurate mappings for AST mapping 

algorithms. Almost all of the statements with inaccurate 

mappings as determined by our approach are also 

determined as such by experts (98%-100%).

• We use our approach to analyze the generated mappings 

by GT, MTD and IJM for 263,165 file revisions. The 

three algorithms are determined to generate inaccurate 

mappings for a considerable number of file revisions.

II. PRELIMINARIES

Abstract syntax tree. A source code file can be parsed as an 

abstract syntax tree (AST). An AST is a labeled ordered rooted 

tree, which is composed of a set of nodes that are connected by 

edges. An edge represents a parent-child relationship. A node 

n l is the parent of another node n 2, if n 2 is a child of n l . The 

node that has no parent is called the root node. A node that 

has no child is called a leaf node. For a node, the nodes along 

the path to the root node are called its ancestors. And the node 

is called their descendant. Each node in an AST represents a 

code element (e.g., a statement) with a label to indicate its 

type. Some nodes have a value to indicate the corresponding 

tokens of the element.

Example 2.1. Fig. 1(b) and Fig. 1 present the two ASTs 

before and after the code changes at lines 1-3 in Fig. 1(a). 

The ASTs are built using GT [9]. We only show partial ASTs 

for clarity. The AST in Fig. 1(b) contains 22 nodes. The node 

n4 has three child nodes n 5, n 6 and n l3, and its label is 

F ie ld D e c la r a t io n .  The label of n 5 is M o d if ie r , and

(d) Mappings and edit actions by GT (c) Partial AST after changes

Fig. 1: Mappings of AST nodes and edit actions as calculated 

by GT for the partial changes of a file in the commit 4800a7 

of ActiveMQ.

it has a string value p r i v a t e  indicating the field declaration 

is private for the class.

AST mapping algorithms. Given a file revision, an AST 

mapping algorithm parses the file before and after the revision 

as two ASTs. Let us denote the two ASTs as source AST and 

target AST, respectively. By approximating the similarity of 

nodes, the algorithm calculates mappings of nodes between 

the two ASTs. Only the nodes that have the same label can be 

mapped. The mappings are a set of pairs (ns, nt}, in which ns 
belongs to the source AST and n t belongs to the target AST.

Example 2.2. We leverage GT to calculate mappings of 

nodes between the ASTs shown in Fig. 1(b) and Fig. 1(c). 

Fig. 1(d) presents the mappings in the first column. Specially, 

n4 is mapped to n26, indicating that the field declaration 

po rtM ap p in g  at line 1 in Fig. 1(a) is mapped to the field 

declaration p o rtM ap p in g  at line 2 in Fig. 1(a). In addition, 

n7 and n8 are mapped to n 58 and n 59, respectively. Such 

mappings indicate that the first HashMap of line 1 and the 

HashMap of line 3 in Fig. 1(a) are mapped, i.e., GT considers 

that the two HashMap tokens are the same element across the 

file revision.

Edit actions. Based on mappings of AST nodes, a series of 

edit actions can be calculated to transform the source AST 

to the target AST [6]. Prior studies apply the Chawathe et 

al.’ algorithm [6] to calculate the edit actions [8], [9], [12].
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Generally, there are four types of edit actions:

• upd(n, v) replaces the value of the node n  with a value 

v.

• add(n,p,i) adds a node n as the i th child of the node 

p if p is not null. Otherwise, the node n is added as the 

new root node.

• del(n) deletes a leaf node n.

• mov(n,p,i) moves the node n as the ith child of the 

node p. The subtree rooted at n is moved together with 

n .

Example 2.3. Fig. 1(d) presents the edit actions that are 

calculated based on the mappings shown in the same figure. 

We use GT’s implementation of Chawathe et al.’s algorithm. 

GT produces a sequence of 20 edit actions. One of the 

20 actions is mov(n7,n 5r , 1). This action moves the first 

HashMap of line 1 in Fig. 1(a) to line 3 in Fig. 1(a). 

Current evaluations of AST mapping algorithms. Current 

evaluations of AST mapping algorithms include automatic and 

manual evaluations [8], [9], [12]. They are both based on the 

edit actions that are calculated from the generated mappings 

by different algorithms.

The number of edit actions is commonly used as an 

automatic measure for estimating the cognitive load for 

a developer when understanding the essence of a file 

revision [8], [9], [12]. Mappings with fewer edit actions 

are considered to be better. However, the number of edit 

actions cannot reflect the accuracy of the mappings [12]. Prior 

work relies heavily on manual analyses of the edit actions to 

determine the accuracy of the mappings [8], [9], [12]. Frick et 

al. [12] proposed three criteria for determining if a mapping 

is accurate: (1) each mapping should be comprehensible, i.e., 

why the two program elements should be mapped; (2) the 

generated edit actions should be helpful in understanding the 

changes; (3) there exists no other comprehensible mappings 

resulting in fewer actions.

Example 2.4. In Fig. 1(d), we determine the accuracy of 

the mappings and highlight the inaccurate mappings with a 

yellow background. The mappings {n7,n 58) and {n8,n 59) 
are determined to be inaccurate. The nodes in the ASTs and 

edit actions that relate to the inaccurate mappings are also 

highlighted. We consider that it is not comprehensible to map 

the first HashMap of line 1 to the HashMap of line 3 in 

Fig. 1(a). Also, the action mov(n7,n 5r , 1) is not helpful in 

understanding the changes. It is better to map n7 and n8 to 

n 29 and n30, i.e., map the first HashMap of line 1 and the 

Map of line 2 in Fig. 1(a). Thus, the mappings for the nodes 

n 29 and n30 are also considered to be inaccurate.

III. Mo t iv a t io n

Prior evaluations of AST mapping algorithms are limited 

to manually analyzing a small sample of file revisions [8], 

[9], [12]. For instance, to evaluate GT, Falleri et al. manually 

analyzed 144 file revisions [9]. To evaluate MTD, Dotzler et 

al. manually analyzed 10 file revisions [8]. The many cases 

where an AST mapping algorithm performs badly cannot be 

revealed. An approach that can automatically find inaccurate

|-TypeDeclaration:PublishedAddressPolicy (n^

|-Modifier:public (^)
| -FieldDeclaration (^)

|-Modifier:private (^)

|-ParameterizedType:HashMap<Integer, Integer> (^) 

|-VariableDeclarationFragment: portMapping (^)
|-ClassInstanceCreation (^)

|-ParameterizedType:HashMap<Integer, Integer> (n8)

(a) Partial AST before changes

|-TypeDeclaration:PublishedAdddressPolicy (n9 )

|-Modifier:public (n^)
| -FieldDeclaration (n^)

| |-Modifier:private (n12)

| |-ParameterizedType:Map<Integer, Integer> (n^)

| |-VariableDeclarationFragment:portMapping (n^)
| |-ClassInstanceCreation (n^)

| |-ParameterizedType:HashMap<Integer, Integer> (n^)

| -FieldDeclaration (n^)

|-Modifier:private (n18)

|-ParameterizedType:Map<Integer, Integer> (n^) 
|-VariableDeclarationFragment:hostMapping ( ^ 0 )

|-ClassInstanceCreation ( ^ 1 )

|-ParameterizedType:HashMap<Integer, Integer> ( ^ 2 ) * 1

(b) Partial AST after chang es (c) Mappings by DM

Fig. 2: Mappings of AST nodes calculated by IJM for the 

changes shown in Fig. 1(a).

<n1, n9> 

<n2, n10> 

<n3, n11> 
<n4, n12> 

<n5, n13> 
<n6, n14> 

<n7, n15> 
<n8, n16>

- private HashMap<Integer 

IJM

Integer> portMapping = new HashMap<Integer, Integer>()

private Map<Integer, Integer> portMapping = 
private Map<String,„j3tring> hostMapping =

7 g“ : 7 '
r HashMap<Integer, Integer>(); 

r HashMap<String, String>();

Fig. 3: The generated mappings by GT and IJM in Fig. 1 and 

Fig. 2. Dashed lines show the inconsistent mappings.

mappings as generated by an algorithm would be helpful for 

both researchers and practitioners.

We observe that for a file revision, a program element e1 
often has only one best-mapped element e2. The element e2 
can be empty, indicating that ei should not be mapped. For 

instance, in Fig. 1(a), the first HashMap of line 1 should be 

mapped to the Map of line 2. If two algorithms inconsistently 

map such a program element, at least one of the algorithms 

inaccurately maps the element. The inaccurate mappings can 

be found by analyzing the inconsistencies between the two 

algorithms.

We provide an example. For the file revision shown in 

Fig. 1(a), we use IJM to calculate mappings of AST nodes. 

Different AST mapping algorithms may use different ASTs to 

represent the same file. Fig. 2(a) and (b) show the IJM’s ASTs 

that represent the changes at lines 1-3 in Fig. 1(a). Fig. 2(c) 

presents the generated mappings by IJM. The value of n 5 
denotes the first H ashM ap< In teger, I n te g e r>  of line

1 in Fig. 1(a). The value of n 13 denotes the M ap < In teg er, 

I n te g e r>  of line 2 in Fig. 1(a). As shown in Fig. 2(c), IJM 

maps n 5 to n 13. By further mapping the tokens in the value 

of the two nodes, we find that IJM accurately maps the first 

HashMap of line 1 in Fig. 1(a). This mapping is inconsistent 

with the generated mappings by GT. Fig. 3 visualizes the 

generated mappings by GT and IJM and their inconsistent 

mappings.

We find that both GT and IJM map the statement at line 

1 to the statement at line 2 in Fig. 3. The first HashMap of 

line 1 and the Map of line 2 belong to the mapped statements.
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They both denote the type of the field portMapping. On the 

other hand, the first HashMap of line 1 and the HashMap of 

line 3 belong to unmapped statements. Thus, in comparison to 

the HashMap of line 3, the Map of line 2 is more similar to 

the first HashMap of line 1. Finally, the inaccurately mapped 

HashMap by GT is detected. In this motivational example, 

we attempt to automatically perform the above analysis and 

find the inaccurate mappings as generated by AST mapping 

algorithms.

IV. Studied AST Mapping Algorithms

In this study, we analyze three state-of-the-art AST mapping 

algorithms, namely GumTree [9], MTDiff [8] and IJM [12]. 

We briefly introduce the three algorithms below.

GumTree (GT) is proposed by Falleri et al [9]. Given two 

ASTs, GT matches nodes between the ASTs in two phases: 

In the first phase, GT applies a greedy top-down algorithm 

to search and map identical subtrees. In the second phase, 

GT applies a bottom-up algorithm to map a pair of nodes 

between the two ASTs if they share a significant number 

of mapped descendants. Then, GT tries to map previously 

unmapped descendants of those nodes.

MTDiff (MTD) is proposed by Dotzler et al. [8]. MTD 

is based on the ChangeDistiller algorithm [11]. First, MTD 

applies the identical subtree optimization to reduce the 

mapping problem by removing unchanged subtrees from the 

ASTs. Then, MTD maps nodes using the ChangeDistiller 

algorithm. Another four optimizations are finally applied to 

find additional mappings of nodes.

IJM is proposed by Frick et al. [12]. IJM is an AST 

mapping algorithm specialized for Java. In comparison to 

GT, IJM works on a reduced AST, in which many name 

nodes are pruned and the value of each pruned node is 

merged to its parent node. Then, IJM splits the AST into parts 

along each declaration. Finally, it maps AST nodes from the 

corresponding parts between the two ASTs using an adaptation 

of the GT algorithm. The adaptation adds name-awareness to 

GT, which considers similarity of values when mapping two 

nodes.

In this study, we apply the implementations of the three 

algorithms that are provided on GitHub [2]-[4].

V. Approach

In this section, we describe the details of our approach. 

Notice that our approach is general. We implement it for Java 

programs but we can modify it to support other programs as 

long as we can generate ASTs from them.

The granularity of AST nodes ranges from a statement 

to a single literal. It is too complex to analyze mappings 

of AST nodes of all granularity levels. Furthermore, finding 

the corresponding nodes from the used ASTs by different 

algorithms is a big challenge. Because different algorithms 

may use ASTs with different sets of nodes (including leaf 

nodes) to represent the same file, as shown in Fig. 1 and 

Fig. 2. We observe that different algorithms commonly encode 

statements as AST nodes. Additionally, tokens of a file are

Input Step 2: Grouping mappings along statements

+++ _
File Revision

A1

*
•  ••  
•  •

A2
*

Mappings of AST nodes

s tm t!  s tm t,

• O  9 0  
O O  O O  '  
•  •

Step 1:

Tokenization

Step 3: Creating mappings of statements and tokens

\  1 
\ i

tokeni tokeni ! token. tokeni /

token, token, to k e n k token,

token. token,

stm ti

stm t,
Step 5: Algorithm accuracy 

determination

Output

Statements with 

inaccurate mappings

AA

stmt stmt

to k e n token- to k e n to k e n

token—

Fig. 4: Overview of our approach. The red color and green 

color denote that the program element is from the file before 

and after the revision, respectively.

not impacted by the composing nodes of an AST. To solve 

the above issues, we refine the mappings of AST nodes into 

mappings of statements and tokens. Moreover, we treat each 

statement (including the statement itself and its tokens) as an 

analysis unit.

Fig. 4 presents the overview of our approach. Given the 

generated mappings by two algorithms (A1 and A 2) for a 

file revision, we take five steps to calculate the statements 

with inaccurate mappings for each algorithm. In Sections V-A 

to V-E, we describe the five steps, respectively. In Section V-F, 

we elaborate how to compare the similarity of mapped 

statements and tokens by different algorithms.

A. Tokenization
In this step, we tokenize the file before and after a revision. 

Instead of using punctuation and spaces, we use the parsed 

AST of the source file to tokenize the file. For example, a 

string literal containing punctuation and spaces is considered 

as a single token.

For a Java file, we first use the Eclipse JDT parser 

to generate a standard JDT AST. Then, we extract the 

tokens from value of each AST node. Notice that we ignore 

AST nodes representing comments and Javadocs. Because 

comments and Javadocs are typically not treated as code [17]. 

As a result, we retrieve two token lists for a file before and 

after a revision, respectively. The token lists are not impacted 

by the used AST by each algorithm

B. Grouping Mappings along Statements
In this step, we separately group mappings of AST nodes 

along statements for A 1 and A2. In an AST, a statement 

(e.g., a method declaration) can have descendant statements. 

For each statement in the source and target ASTs that 

are being analyzed by an algorithm, we first group the 

nodes that belong to the statement but do not belong
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to its descendant statements. For instance, our framework 

groups n 1, n 2, and n 3 in Fig. 1(b) for the type declaration 

PublishedAddressPolicy. Then, we find the generated 

mappings by the algorithm for the grouped nodes. These 

mappings are grouped for the statement.

C. Creating Mappings of Statements and Tokens
In this step, we separately calculate mappings of statements 

and tokens for A1 and A2. Among the grouped mappings 

for each statement, we can directly find the mapping for the 

statement. For instance, in Fig. 1(b), n 1 represents the type 

declaration PublishedAddressPolicy and the mapping 

of n 1 is considered as the mapping of the declaration.

For a token, we refer to an AST node whose corresponding 

program element contains the token as a relevant node of the 

token. Among the relevant nodes of a token, we refer to the 

node of the lowest level as the directly relevant node of the 

token. In return, we refer to the token as a directly relevant 
token of the node. We take the first HashMap of line 1 in 

Fig. 1(a) as an example. In the used AST by GT shown in 

Fig. 1(b), n 1, n4, n 6, n7 and n8 are relevant nodes of the 

token. And the directly relevant node for the token is n8. In 

the used AST by IJM shown in Fig. 2(a), n 1, n 3 and n5 are 

relevant nodes of the token. And the directly relevant node for 

the token is n 5.

An AST node can have several directly relevant tokens. For 

instance, the node n 5 in Fig. 2(a) has three directly relevant 

tokens including a HashMap and two Integer tokens. Such 

tokens compose the value of n5. Another example is n 1 

in Fig. 2, which has two directly relevant tokens including 

the class and PublishedAddressPolicy tokens in 

Fig. 1(a). The PublishedAddressPolicy token is the 

value of the node, while the class token does not belong to 

its value.

We observe that a token’s mapping is determined by the 

mapping of its directly relevant node. We also take the first 

HashMap of line 1 in Fig. 1(a) as an example. In Fig. 1, GT 

maps n8 to n 59—indicating that the token is mapped to the 

HashMap of line 3 in Fig. 1(a). And in Fig. 2, IJM maps 

n5 to n 13—indicating that the token can only be mapped to a 

directly relevant token of n 13.

For each node of the source and target ASTs, we calculate 

all the directly relevant tokens and list the tokens according 

to their character positions. Then, for each pair of mapped 

nodes, we map tokens from the lists of directly relevant tokens 

of the nodes. If both lists have only one token, we directly 

map two tokens. Otherwise, we separately map the tokens 

composing the value of the nodes and other tokens, since 

tokens composing the value of a node can only be mapped 

to those composing the value of another node. For the tokens 

composing the values of the two nodes, we first sequentially 

map identical tokens between the two lists and then map the 

tokens (including the first and last tokens) that are surrounded 

by already mapped pairs of tokens. Mapping program elements 

surrounded by already mapped pairs is a commonly used 

heuristic by program element mapping algorithms [20]. After

that, our framework applies the same method to map the tokens 

that do not belong to the value of the two nodes.

For instance, in Fig. 2, n5 and n 13 are mapped. The 

directly relevant tokens of n 5 include HashMap, Integer 
and Integer. And the directly relevant tokens of n 13 include 

Map, Integer and Integer. All of the tokens belong to 

the values of the two nodes. We first sequentially map the two 

Integer tokens between the two lists. HashMap and Map 
are surrounded by already mapped tokens and they are further 

mapped.

As a result, we calculate mappings of tokens using the 

generated mappings of the AST nodes by A 1 and A 2 . We 

further group mappings of tokens along each statement based 

on the grouped mappings of AST nodes for the statement.

D. Calculating Statements with Inconsistent Mappings
In this step, we calculate statements with inconsistent 

mappings for comparing A 1 and A 2 . For each statement in the 

file before and after the revision, we first calculate whether 

the two algorithms inconsistently map the statement. Then, 

for each token in the statement, we calculate whether the two 

algorithms inconsistently map the token. Finally, we output 

statements with inconsistent mappings and for each statement, 

we group the inconsistent mappings of the statement and its 

tokens by comparing the two algorithms.

E. Algorithm Accuracy Determination
In this step, we compare the similarity of mapped statements 

and tokens across each pair of different algorithms. By 

performing the comparison, we determine the accuracy of each 

algorithm in the mapping of a statement or a token. In this 

section, we introduce how to determine the accuracy of each 

algorithm by performing the comparison. In Section V-F, we 

elaborate how to compare the similarity of mapped statements 

and tokens by different algorithms.

Let us denote the similarity between two program elements 

e and e as Sim (e,e). The elements can be statements 

or tokens. Suppose that two algorithms (A0 and A1) map 

a program element e0 to two different elements e1 and 

e2, respectively. We notice that the two algorithms also 

inconsistently map e1 and e2. Suppose that A0 maps an 

element e3 to e2, and A1 maps an element e4 to e1. In other 

words, A0 generates two mappings {(eo,e1), (e3 ,e2)}. And 

A1 generates two mappings {(e0, e2), (e4, e1)}.

Suppose that Sim(e0,e 1) is larger than Sim(e0,e2), we 

determine that A0 is more accurate than A1 in mapping e0. 

However, it is not enough to determine that the mapping of e0 

to e1 is better than the generated mappings by A 1 . We must 

also check the condition: Sim (e0, e1) > Sim (e4, e1), i.e., A0 

is also more accurate than A1 in mapping e1 . If this condition 

is also satisfied, we determine that A1 inaccurately maps e0 

and e1. Similarly, we can also determine if the two generated 

mappings by A0 are inaccurate.

Given a pair of algorithms and a file revision, we calculate 

the statements with inconsistent mappings. For each statement 

with inconsistent mappings, we perform the above comparison
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TABLE I: Statistics of the studied projects.

Projects #Commit #File Revision

ActiveMQ 8,059 24,813

Commons IO 1,067 2,727

Commons Lang 3,031 6,917

Commons Math 4,257 18,133

Junit4 1,241 3,802

Hibernate ORM 10,170 51,711

Hibernate Search 5,369 27,002

Spring Framework 14,754 68,413

Spring Roo 4,274 19,894

Netty 11,135 39,753

Total 63,357 263,165

for the mappings of the statement and its tokens as generated 

by the two algorithms that are being compared. Consequently, 

we calculate statements with inaccurate mappings for each 

algorithm.

For each studied algorithm, we separately compare it with 

the other two studied algorithms. Finally, we calculate a union 

set of statements with inaccurate mappings for any of the 

algorithms that are being compared.

F. Similarity Comparison

Our aim is to automatically compare the similarity of 

mapped statements and tokens by different algorithms. To 

realize this aim, we perform a manual analysis of statements 

with inconsistent mappings. Also, we verify if statements with 

inconsistent mappings can expose the inaccurate mappings as 

generated by the algorithms.

In this study, we analyze ten open-source Java projects. 

Table I presents statistics of the ten studied projects. These 

projects were analyzed by prior studies [12], [17]. We collect 

the commits of the projects from the creation date of the 

projects to January 2019.

We can compare three pairs of algorithms, namely GT 

vs. MTD, GT vs. IJM and MTD vs. IJM. For each pair 

of algorithms, we sample 50 file revisions for which the 

two algorithms inconsistently map program elements from 

the studied projects. For each file revision, we analyze all 

the statements before and after the revision that involve 

the inconsistent mappings. We analyze 178, 191 and 206 

statements for comparing the three pairs of algorithms, 

respectively. In total, we analyze 575 statements. For each 

statement, we determine the accuracy of mappings as 

generated by each of compared algorithms using Frick et al.’s 

criteria [12]. In total, we make 1,150 (575 x 2) determinations.

The first and second author of this paper separately analyzed 

the statements with inconsistent mappings. Both authors have 

at least three years of programming experience in Java. We 

calculate Fleiss’ Kappa [10] to estimate the agreement of 

the two annotators’ determination results. The Kappa value 

is 0.81, which indicates an excellent agreement. Finally, the 

two annotators compared their determination results to uncover 

disagreements. For each statement with a disagreement, the 

annotators further discussed the accuracy of the generated 

mappings by the two compared algorithms.

We analyze all the statements with inaccurate mappings 

to design similarity measures to distinguish accurate and 

inaccurate mappings of statements and tokens. We categorize 

the statements with inaccurate mappings for the algorithms 

along each similarity measure. For each statement with 

inaccurate mappings, we consider if we have designed a 

measure that can identify the inaccurate mappings. If we have 

designed such a measure, we categorize the statement to the 

category of the measure. Otherwise, we try to design a new 

similarity measure to distinguish the accurate and inaccurate 

mappings. By doing so, we design hierarchical similarity 

measures for two statements and two tokens.
From our manual analysis, we have the following findings.

• Among the 178 statements for comparing GT and MTD, 

71 and 129 statements involve inaccurate mappings as 

generated by GT and MTD, respectively. Among the 

191 statements for comparing GT and IJM, 114 and 91 

statements involve inaccurate mappings as generated by 

GT and IJM, respectively. Among the 206 statements 

for comparing MTD and IJM, 113 and 117 statements 

involve inaccurate mappings as generated by MTD and 

IJM, respectively.

• For each statement with inconsistent mappings for 

comparing two algorithms, at least one algorithm is 

determined to generate inaccurate mappings. Hence, 

statements with inconsistent mappings can expose the 

inaccurate mappings as generated by the algorithms.

• There exist cases where two algorithms consistently 

produce an inaccurate mapping of a statement or a token.

In total, we find 185 (71 +  114), 242 (129 +  113), 208 

(91 +  117) statements with inaccurate mappings for GT, 

MTD and IJM, respectively. Based on our observation, we 

design two similarity measures for comparing two statements 

and four similarity measures for comparing two tokens. 

Table II presents the six measures. Notice that we define 

two tokens with the same value as identical tokens. We 

use the six similarity measures collectively to compare the 

generated mappings by different algorithms. In the remaining 

part of this section, we first introduce the six measures and 

our categorization results for the statements with inaccurate 

mappings. Then we describe the usage of the proposed 

measures.
The six similarity measures are elaborated below.
NIT is defined as the number of mapped identical tokens 

between a pair of mapped statements. Two mapped statements 

with a larger NIT are more similar and an NIT of 0 indicates 

that the two statements are highly dissimilar. If two statements 

are mapped with an NIT of 0, we determine the mapping as 

inaccurate. Otherwise, for a pair of mapped statements, we 

check if the mapping of one of the statements to another 

statement can achieve a larger NIT. For instance, in Fig. 5(a), 

MTD inaccurately maps the statements at lines 1 and 2, and 

the NIT is 0. In Fig. 5(b), GT maps the statements at lines 1 

and 2 with an NIT of five. IJM maps the statements at lines 

1 and 3 with an NIT of four. We determine that GT is more 

accurate than IJM in mapping the statement at line 1.
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TABLE II: The similarity measures for statements and tokens.

Element M easure M easure Description GT MTD IJM

Stmt.
NIT Number of mapped identical tokens between a pair of mapped statements. 22 72 17

PM Whether the parent nodes of a pair of mapped statements are mapped. 9 18 7

Token

TYPE Whether mapped tokens have the same type. 29 24 0
STMT Whether mapped tokens belong to a pair of mapped statements. 71 84 146

VAL Whether mapped tokens have the same value. 16 0 4

LLCS Length of the longest common subsequence calculated using mapped tokens 

between mapped statements.

10 10 4

Other 28 34 30

1 

2

1

2 

3

(b) Partial changes of XmlStreamReader.java from Commit d46782 of Commons IO (NIT)

1

2

3

Fig. 5: Illustrative examples of inaccurately mapped statements 

that can be identified using our measures.

p u b l i c  v o i d  t e s t F i l t e r S e t ( ) {

• I O F i l e F i l t e r  f i l t e r  =  F i l e F i l t e r U t i l s . n a m e F i l e F i l t e r ( ” A” ) ;  '  *  - - IJM

- f i n a l  I O F i l e F i l t e r  f i l t e r  =  F i l e F i l t e r U t i l s . n a m e F i l e F i l t e r ( ” A” ) ;  \

p u b l i c  v o i d  t e s t F i l t e r L i s t _ f r o m A r r a y ( )  t h r o w s  E x c e p t i o n  { /

f i n a l  I O F i l e F i l t e r  f i l t e r  =  F i l e F i l t e r U t i l s . n a m e F i l e F i l t e r ( ” A” ) ;  G

}

(c) Partial changes of FileFilterTestCase.java from commit 6aa007 of (PM)

a s s e r t E q u a l s ( m s g + ” : a r r a y  : 

c o s  . w r i t e ( i ) ;

m i s m a t c h ” , e n d - s t a r t ,  a r r a y .  l e n g t h )  ;  -  

MTD

(a) Partial changes of CountOutputStreamTestjava from commit 4ab6a3 of Commons IO (NIT)

-  p r i v a t e  s t a t i c  b o o l e a n  i s A p p X m l ( S t r i n g  m i m e ) { . . . }

s t a t i c  b o o le <  

s t a t i c  b o o l e

i s A p p X m l ( S t r i n g  m i m e ) { . . . }

. i s T e s t X m l { S t r i n g  m im e } { . . . } «

PM characterizes whether the parent nodes of a pair 

of mapped statements are also mapped. We observe that 

statements with mapped parent nodes are more likely to be 

mapped. For a pair of mapped statements, we check if mapping 

one of the statements to another statement with mapped parent 

nodes can achieve the same NIT. For instance, in Fig. 5(c), IJM 

maps the statements at lines 1 and 2 with mapped parent nodes, 

while GT maps the statements at lines 1 and 3 with parent 

nodes not mapped. We determine that IJM is more accurate 

than GT in mapping the statement at line 1. Furthermore, 

we notice a special type of statements, i.e., blocks. A block 

is a group of statements between balanced braces (i.e., “{” 

and “}”). We observe that a block should be mapped along 

with its parent nodes, e.g., the “{” following the method 

testFilterSet in Fig. 5(c) should be mapped along with 

the method declaration. Thus, mapped blocks with unmapped 

parent nodes are determined to be inaccurate.

TYPE characterizes whether mapped tokens have the same 

type. For a token whose directly relevant node is not a name 

node, we define the type of the token as the label of its 

directly relevant node. For tokens whose directly relevant node 

is a name node, we define four types: variable name, type 

name, method name and declaration name. Following Frick 

et al. [12], we consider the mapping of tokens with different 

types as inaccurate. For instance, in Fig. 6(a), GT maps a 

variable name value to a method name bytevalue, we 

determine that such a mapping is inaccurate.

STMT characterizes whether mapped tokens belong to a pair 

of mapped statements. Two tokens from mapped statements 

are more likely to be mapped. We observe that mapping tokens

-  r e t u r n  ( v a l u e  == ( ( M u t a b le B y te )  o b j ) . v a l u e ) ;

'  GT

+ r e t u r n  v a l u e  == ( ( M u t a b le B y te )  o b j ) . b y t e V a l u e ( ) ;

IJM  d o e s  n o t  map 

t h e  tw o  t o k e n s .

(a) P a rtia l changes o f  M u tab leB y te .java  from  com m it 49e1f1 o f  Com m ons L ang  (T Y P E )

-  a p p e n d D e t a i l ( b u f f e r ,  f i e l d N a m e ,  ( O b j e c t )  v a l u e ) ;

IJM  d o e s  n o t  map

+ a p p e n d D e t a i l ( b u f f e r ,  f i e l d N a m e ,  v a l u e ) ;

(b) P a rtia l changes o f  T o S trin g S ty le ja v a  from  com m it 85d334 o f  C om m ons L ang  (S T M T )

1 -  p r i v a t e  H a s h M a p C I n te g e r ,  I n t e g e r >  p o r tM a p p in g  = new  H a s h M a p C I n te g e r ,  I n t e g e r > ( ) ;  

IJM  \

2 +  p r i v a t e  M a p C I n te g e r ,  I n t e g e r >  p o r tM a p p in g  = new  H a s h M a p C I n te g e r ,  I n t e g e r > ( ) ;

3 +  p r i v a t e  M a p C S t r in g ,  S t r i n g >  h o s tM a p p in g  = new  H a s h M a p C S tr in g , S t r i n g > ( ) ;
GT

(c) P a rtia l changes o f  P ub lishedA ddressPolicy .java  from  com m it 4800a7  o f  A ctiveM Q  (S T M T )

1 -  b u f . w r i t e B y t e s ( r e q u e s t . g e t U R I ( ) . t o A S C I I S t r i n g ( ) . g e t B y t e s ( ) ) ;

i j m  „ G T __________________________________ _
2 + b u f . w r i t e B y t e s ( r e q u e s t . g e t U r i ( ) . g e t B y t e s ( ) ) ;

(d) P a rtia l changes o f  H ttp R eq u e stE n co d e rjav a  from  com m it 2d9277  o f  N etty  (V A LU E)

1 -  F i l t e r a b l e  f i l t e r a b l e =  ( F i l t e r a b l e ) r u n n e r ;

/ i j m

2 + F i l t e r a b l e  f i l t e r a b l e =  ( F i l t e r a b l e )  c h i l d ;

(e) P a rtia l changes o f  F i lte r ja v a  from  com m it 42beed  o f  Jun it4  (L C S T )

Fig. 6: Illustrative examples of inaccurately mapped tokens 

that can be identified using our measures.

from mapped statements is better than (1) not mapping the 

tokens and (2) mapping tokens from unmapped statements. 

For instance, in Fig. 6(b), the two value tokens are both 

variable names and they belong to a pair of mapped statements. 

GT maps the two tokens, while IJM does not map them. We 

determine that GT is more accurate than IJM in mapping the 

two tokens. As another example, we find that both GT and 

IJM map the statement at line 1 to the statement at line 2 

in Fig. 6(c). GT maps the two HashMap tokens in unmapped 

statements, while IJM maps the HashMap to the Map from the 

mapped statements. Using the STMT measure, we determine 

that IJM is more accurate in mapping the HashMap at line 1 

than GT.

VAL characterizes whether mapped tokens have the same 

string value. Two identical tokens in a pair of mapped 

statements are more likely to be mapped. We consider that 

mapping such two tokens is better than mapping one of the 

tokens to another token with different values between the two 

statements. For instance, in Fig. 6(d), GT maps getBytes to 

writeBytes, while IJM maps the two getBytes tokens. 

Using the VAL measure, we determine that IJM is more 

accurate in mapping the getBytes tokens than GT.

LLCS is defined as the length of the longest common 

subsequence (LCS) [16] that is calculated using the mapped 

tokens between mapped statements. We observe that the order 

of tokens is infrequently changed in a statement. We use 

LLCS to quantify the number of tokens that are sequentially 

mapped between the mapped statements. For instance, in
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Fig. 6(e), GT changes the orders of the two Filterable 
tokens in the statement at line 1. As a result, at most three 

tokens are sequentially mapped between the statements, i.e., 

Filterable, = and runner. The LLCS for the mapped 

tokens is calculated as three. IJM sequentially maps the 

five tokens between the two statements. The LLCS for the 

mapped tokens is calculated as five. Using the LLCS measure, 

we determine that IJM is more accurate in mapping the 

Filterable tokens than GT.

Table II shows the number of statements that are categorized 

along the measures. The measures can identify 157 (85%), 

208 (86%) and 178 (86%) of the statements with inaccurate 

mappings for GT, MTD and IJM, respectively. The other 

statements with inaccurate mappings are categorized into the 

Other category. For these statements, we find that determining 

the accuracy of the mappings of statements and tokens requires 

more comprehension of the changes.

Usage of the similarity measures. We compare the generated 

mappings by two algorithms using the following steps.

Step 1. If an algorithm maps two non-block statements with 

an NIT of 0, we determine the mapping as inaccurate. If an 

algorithm maps two blocks with unmapped parent nodes, we 

determine the mapping as inaccurate. If an algorithm maps 

two tokens with different types, we determine the mapping as 

inaccurate.

Step 2. When the two algorithms map a statement to 

different statements, mapping statements with a larger NIT is 

considered to be more accurate. If the two pairs of statements 

have the same NIT, mapping statements with mapped parent 

nodes is considered to be more accurate than mapping 

statements with unmapped parent nodes.

Step 3. When the two algorithms consistently map a statement, * VI.

we assume that the two algorithms accurately map the 

statement. From the statement, we retrieve all the tokens that 

are inconsistently mapped by the two algorithms. For a token 

that is inconsistently mapped by the two algorithms, we first 

use the STMT measure to compare the generated mappings 

for the token by the two algorithms. If both algorithms map 

tokens from the mapped statements, mapping identical tokens 

is considered to be more accurate than mapping tokens with 

different values. If both algorithms map identical tokens from 

the mapped statements, the mapped tokens with larger LLCS 

are considered to be more accurate.

VI. Evaluation

We evaluate our approach by answering three research 

questions. In this section, we present the three research 

questions and our answer to each question.

A. (RQ1) How effective is our approach in detecting 

statements with inaccurate mappings for the studied 

algorithms?
Motivation. By answering this research question, we 

investigate if our approach can effectively find the statements 

with inaccurate mappings as generated by the studied 

algorithms.

Method. Our approach may be over-fit on the used dataset in 

our manual analysis. Thus, we conduct an experiment with 12 

external experts. The experts include PhD students and post-

doctors majoring in software engineering. They have three to 

seven years of programming experience in Java. Seven experts 

have prior experience working in industry. For each project, 

we randomly select 20 statements from all the file revisions. 

For each selected statement, at least two studied algorithms 

inconsistently map the statement or its tokens. In total, we 

select 200 of such statements with inconsistent mappings. The 

selected statements involve various change patterns including 

adding, deleting, moving and updating statements and tokens.
We randomly divide the 200 statements into four groups 

with each group having 50 statements. We also divide the 

experts into four groups with each group having three experts. 

We invite the four groups of experts to analyze the four groups 

of statements, respectively. For each statement, we provide 

the mappings of the statement and its tokens as generated 

by each of the studied algorithms. Notice that we do not 

provide the algorithm that generates the mappings. We let the 

experts determine if the mapping of the statement or a token 

of the statement is inaccurate. For each group of statements, 

we calculate Fleiss’ Kappa [10] to estimate the agreement of 

the three experts’ determination results.
For each studied algorithm, we have three determination 

results on the accuracy of algorithm in mapping each statement 

and its tokens. For each statement and the generated mappings 

of the statement and its tokens by an algorithm, we label the 

mappings as inaccurate if at least two experts determine that 

inaccurate mappings exist.
Then, we run our approach to determine statements with 

inaccurate mappings for GT, MTD and IJM from the 200 

statements. Finally, we compare the determination results of 

our approach with the experts’ determination results. We 

define a true positive as a statement with inaccurate mappings 

for an algorithm that is determined as such by both our 

approach and experts. We define a false positive as a statement 

with inaccurate mappings for an algorithm that is determined 

as such by our approach but not determined as such by experts. 

We define a false negative as a statement with inaccurate 

mappings for an algorithm that is determined as such by 

experts but not determined as such by our approach. Let us 

denote the number of true positives, false positives and false 

negatives as TP, FP and FN. We calculate the precision of 

our approach as t j t +F_p . And we calculate the recall of our 

approach as Tp+FN.
Results. For the four groups of statements, the Kappa values 

for the experts’ determination results are 0.81, 0.82, 0.84 

and 0.78, respectively. Thus, the experts’ determination results 

have an excellent agreement.
Table III presents the TP, FP, FN, precision and recall of our 

approach in determining statements with inaccurate mappings 

for the studied algorithms. As shown in the table, our approach 

achieves a precision of 0.98-1.00 and a recall of 0.65-0.75. 

Almost all of the statements with inaccurate mappings as 

determined by our approach are also determined as such by
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1 - LOG.trace(”redelivery #” + redeliveryCount + ” of: ” + messageReference.getMessageId() + ” with delay:
+ delay + ”, dest: ” + messageReference.getRegionDestination().getActiveMQDestinationO);

geR,
GT, IJM

2+ Destination regionDestination = (Destination) messageReference.getRegionDestination();
3+ LOG.trace(”redelivery #” + redeliveryCount + ” of: ” + messageReference.getMessageId() + ” with delay: 

+ delay + ”, dest: ” + regionDestination.getActiveMQDestination());
MTD

Fig. 7: GT and IJM generates accurate mappings but our approach determines the mapping of a token as inaccurate.

TABLE III: TP, FP, FN, precision and recall of our approach.

Alg. TP FP FN Precision Recall

GT 56 1 27 0.98 0.67

MTD 90 0 30 1.00 0.75

IJM 59 1 32 0.98 0.65

experts.

For the false positives and false negatives, we further 

asked the experts why they considered that an algorithm 

inaccurately maps a statement or tokens of the statement. 

We analyze cases of false positives and false negatives. For 

the two false positives, we find that GT and IJM generate 

the accurate mappings for a statement and its tokens but our 

approach determines the mapping of a token as inaccurate. 

We show this case in Fig. 7. As shown in Fig. 7, the code 

involves a refactoring that extracts the method invocation 

messageReference.getRegionDestination in the 

statement at line 1 as a new variable. GT and IJM accurately 

map the invocation to the statement at line 2, while MTD 

maps messageReference in the statement at line 1 to 

the regionDestination in the statement at line 3. In 

this case, mapping tokens from unmapped statements is better 

than mapping tokens from mapped statements. However, when 

comparing the generated mappings by GT, IJM and MTD, our 

approach considers that MTD generates a better mapping than 

GT and IJM. This case indicates that our approach can be 

further improved by considering refactoring changes.

For 11 cases of false negatives, we find that our similarity 

measures can distinguish the accurate and inaccurate mappings 

of statements or tokens. However, all three algorithms generate 

inaccurate mappings. Hence, the inaccurate mappings cannot 

be detected by comparing the similarity measures of the 

mapped statements and tokens between different algorithms. 

We observe 38 cases where an algorithm maps two tokens 

from unmapped statements and another algorithm separately 

maps the two tokens to empty elements. We observe 33 

cases where an algorithm maps two statements and another 

algorithm separately maps the two statements to empty 

elements. We further observe 7 cases where two algorithms 

map a statement or token to different statements or tokens 

but our similarity measures cannot distinguish accurate and 

inaccurate mappings. In these 78 cases, determining the 

inaccurate algorithm requires more syntactic information to 

determine if mapping two tokens or two statements helps 

understand the changes.

Summary. Our approach achieves a precision of 0.98-1.00 

and a recall of 0.65-0.75 in determining the statements

TABLE IV: TP, FP, FN, precision and recall of our approach 

when comparing an algorithm with another algorithm.

Comparison Alg. TP FP FN Precision Recall

GT vs. MTD
GT 44 1 39 0.98 0.53

MTD 83 0 37 1.00 0.69

GT vs. IJM
GT 47 0 36 1.00 0.57

IJM 51 0 40 1.00 0.56

MTD vs. IJM
MTD 74 0 46 1.00 0.62

IJM 49 1 42 0.98 0.54

with inaccurate mappings for the studied algorithms. Any 

statements with inaccurate mappings that we detect are 

highly likely to be correct, although there may be additional 

inaccurate mappings that we cannot detect. Our approach can 

be used to estimate the lower bound on the effectiveness of 

AST mapping algorithms.

B. (RQ2) How effective is our approach when comparing an 

algorithm with multiple algorithms than when comparing it 
with another algorithm?
Motivation. As described in Section V-E, we separately 

compare an algorithm with the other two algorithms. Then, we 

calculate a union set of statements with inaccurate mappings 

for the algorithm. We investigate if comparing an algorithm 

with the other two algorithms is more effective in detecting 

statements with inaccurate mappings than comparing it with 

another algorithm.

Method. We have three pairs of studied algorithms, namely 

GT vs. MTD, GT vs. IJM and MTD vs. IJM. For the 200 

analyzed statements in RQ1, we use our approach to compare 

the generated mappings for statements and tokens by each 

pair of algorithms. For each pair of algorithms, we calculate 

a set of statements with inaccurate mappings. In such a case, 

we compare an algorithm with another algorithm. Then, we 

calculate the precision and recall of our approach in detecting 

statements with inaccurate mappings for the two algorithms. 

The precision and recall of our approach that compares an 

algorithm with the other two algorithms are shown in Table III. 

Finally, we compare the results shown in the table with 

the precision and recall of our approach that compares an 

algorithm with another algorithm.

Results. Table IV presents TP, FP, FN, precision and recall 

of our approach when comparing an algorithm with another 

algorithm. By comparing the results show in Tables III and IV, 

we find that our approach achieves a better recall with a 

difference of 9%-23% when comparing an algorithm with two 

algorithms than when comparing it with another algorithm. On 

the other hand, the precision of our approach is not impacted.
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TABLE V: Number of statements and file revisions for which the studied algorithms are determined to generate inaccurate 

mappings.

Projects
Statements File Revisions

GT MTD IJM GT MTD IJM

ActiveMQ 53,083 191,566 39,669 5,817 8,523 5,786

Commons IO 7,932 16,978 5,883 546 713 656

Commons Lang 23,306 53,533 21,567 1,501 1,823 1,641

Commons Math 43,450 101,194 34,440 3,703 4,588 3,881

Junit4 6,997 13,800 5,750 924 1,083 984

Hibernate ORM 127,770 356,412 93,146 13,026 16,414 13,069

Hibernate Search 43,942 112,419 38,919 6,012 7,326 6,964

Spring Framework 164,545 440,480 145,374 17,120 20,484 20,215

Spring Roo 54,245 172,454 38,397 4,573 5,764 4,963

Netty 130,249 374,883 91,795 11,584 14,191 11,451

As described in Section V-F, two algorithms may 

generate the same mapping that is inaccurate. Such an 

inaccurate mapping cannot be detected by comparing the 

two algorithms. If another algorithm generates the accurate 

mapping, comparing the third algorithm with the former 

two algorithms may reveal the inaccurate mapping. Thus, 

comparing an algorithm with multiple algorithms can detect 

more inaccurate mappings.

Summary. Our approach can detect 9%-23% more statements 

with inaccurate mappings when comparing an algorithm with 

the other two algorithms than when comparing it with another 

algorithm.

C. (RQ3) Do state-of-the-art AST mapping algorithms 

generate many inaccurate mappings?
Motivation. We show that our approach achieves a nearly 

perfect precision in finding statements with inaccurate 

mappings for the studied algorithms. Hence, we leverage 

our approach to investigate whether the studied algorithms 

generate many inaccurate mappings.
Method. We leverage GT, MTD and IJM to calculate the 

mappings of the AST nodes for all the file revisions of the ten 

studied projects. For each file revision, we use our approach 

to detect the statements with inaccurate mappings for each 

studied algorithm. For each project, we count the detected 

statements with inaccurate mappings for each algorithm. We 

also count the file revisions for which the studied algorithms 

are determined to generate inaccurate mappings.

Results. Table V presents the number of statements with 

inaccurate mappings as detected by our approach. We also 

show the number of file revisions for which the studied 

algorithms are determined to generate inaccurate mappings. 

As shown in the table, the three studied algorithms may 

generate a considerable number of inaccurate mappings. For 

each project, we further calculate the ratio of file revisions 

for which the studied algorithms are determined to generate 

inaccurate mappings. We find that GT, MTD and IJM are 

determined to generate inaccurate mappings for 20%-29%, 

25%-36% and 21%-30% of the file revisions, respectively. 

Summary. GT, MTD and IJM are determined to generate 

inaccurate mappings for a considerable number of file 

revisions. State-of-the-art AST mapping algorithms still have 

room for improvement.

VII. Discussion

A. Threats to Validity
The primary threats to the validity of our experiments are 

twofold. First, we compare the determination results of our 

approach and experts on the accuracy of generated mappings 

by the studied algorithms for 200 statements. The number of 

analyzed statements is not very large-scale. This is because 

such a manual analysis is time-consuming, with understanding 

mappings of each statement and each token. On average, 

each expert takes 1.5 hours to analyze the allocated 50 

statements. The 200 statements are randomly taken from 10 

different projects, and they are from different file revisions. 

Dotzler et al. analyzed only 10 file revisions when evaluating 

MTD [8]. Our analysis involves much more file revisions 

than their analysis. second, when we select the statements, 

we require that at least two studied algorithms inconsistently 

map the statement or its tokens. There may exist cases where 

the studied algorithms consistently map a statement and its 

tokens, but the mapping of the statement or a token of 

the statement is inaccurate. The selected statements do not 

consider such cases, and our approach cannot detect the 

inaccurate mapping in such cases. We manually analyzed 

100 statements for which the studied algorithms generate 

consistent mappings at both statement and token levels. We 

did not observe the cases where the three algorithms produce 

inaccurate mappings. Nevertheless, our code and data are 

made publicly available [1], and researchers are encouraged 

to investigate this possibility.

B. Limitations
From our experiments, we observe two limitations of 

our approach. First, as described in our answer to RQ1, 

refactoring changes may impact the precision of our approach. 

In refactoring changes, mapping tokens from unmapped 

statements may be better than mapping tokens from mapped 

statements. We note that researchers proposed several 

refactoring detection tools, e.g., [30]. Incorporating such tools 

into our approach may deal with this limitation. On the other 

hand, there still exists a considerable number of inaccurate 

mappings that cannot be detected by our approach. According 

to our answer to RQ2, comparing an algorithm with more 

algorithms may detect more inaccurate mappings as generated
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by the algorithm. Moreover, researchers have proposed various 

heuristics to map program elements [20]. Additional similarity 

measures can be derived from these heuristics. Such measures 

may further improve the recall of our approach. Our code 

and data are made publicly available [1], and researchers are 

encouraged to extend our approach.

VIII. Re l a t e d  Wo r k

A. AST mapping algorithms
Many AST mapping algorithms were proposed in prior 

studies. Yang proposed an AST mapping algorithm using 

a branch-and-bound implementation of the largest common 

subtree problem [33]. This algorithm does not consider moved 

AST nodes. Fluri et al. proposed ChangeDistiller, an AST 

mapping algorithm that uses a reduced AST, in which code 

statements are encoded as leaf nodes [11]. Hashimoto et al. 

proposed Diff/TS, an algorithm that works with raw ASTs 

and supports multiple languages [14]. Nguyen et al. proposed 

Jsync, which leverages a classic text-based mapping algorithm 

to map AST nodes [28]. Recently, researchers proposed 

GumTree [9], MTDiff [8] and IJM [12]. These algorithms are 

the state-of-the-art AST mapping algorithms and are analyzed 

in our paper. Different from them, we focus on evaluating 

AST mapping algorithms rather than proposing a new AST 

mapping algorithm.

B. Use of AST mapping algorithms
AST mapping algorithms are widely used in several SE 

research areas. ChangeDistiller has been used to identify non-

essential modifications [19] and automate repetitive edits [26]. 

Nguyen et al. used Jsync to track cloned code in the software 

evolution process [28]. Moreover, many studies used GumTree 

to analyze code patterns of changes such as bug-fixing 

changes [5], [13], [18], [21], [23], [29], logging changes [22] 

and changes to online code examples [34]. Also, prior work 

trained models based on the edit actions of changes that are 

calculated using GumTree [7], [15], [24], [31], [32]. Such 

models are used to recommend changes such as patches [32] 

and logging changes [22]. Different from them, we focus 

on evaluating AST mapping algorithms instead of using the 

algorithms to analyze changes.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a differential testing approach that 

can automatically determine the statements with inaccurate 

mappings for AST mapping algorithms. Given a file revision, 

we first compare the generated mappings by different 

algorithms and extract the statements with inconsistent 

mappings. Then, we use six similarity measures collectively 

to compare the mapped statements and tokens by different 

algorithms. By doing so, we determine the statements with 

inaccurate mappings for each of the algorithms.

By conducting an experiment with 12 experts, we show that 

our approach achieves a precision of 0.98-1.00 and a recall of 

0.65-0.75. The studied algorithms are determined to generate 

inaccurate mappings for a considerable number (20%-36%)

of file revisions in our studied projects. Hence, state-of-the- 

art AST mapping algorithms still need improvements. AST 

mapping algorithms play a foundational role in many existing 

studies. It is necessary to investigate if the inaccurate mappings 

as generated by the algorithms impact the conclusions of 

existing studies.
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