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Abstract. Graph embedding, aiming to learn low-dimensional repre-
sentations of nodes while preserving valuable structure information, has
played a key role in graph analysis and inference. However, most exist-
ing methods deal with static homogeneous topologies, while graphs in
real-world scenarios are gradually generated with different-typed tempo-
ral events, containing abundant semantics and dynamics. Limited work
has been done for embedding dynamic heterogeneous graphs since it is
very challenging to model the complete formation process of heteroge-
neous events. In this paper, we propose a novel Heterogeneous Hawkes
Process based dynamic Graph Embedding (HPGE) to handle this prob-
lem. HPGE effectively integrates the Hawkes process into graph embed-
ding to capture the excitation of various historical events on the current
type-wise events. Specifically, HPGE first designs a heterogeneous condi-
tional intensity to model the base rate and temporal influence caused by
heterogeneous historical events. Then the heterogeneous evolved atten-
tion mechanism is designed to determine the fine-grained excitation to
different-typed current events. Besides, we deploy the temporal impor-
tance sampling strategy to sample representative events for efficient exci-
tation propagation. Experimental results demonstrate that HPGE con-
sistently outperforms the state-of-the-art alternatives.

Keywords: Dynamic heterogeneous graph · Graph embedding ·
Heterogeneous Hawkes process · Heterogeneous evolved attention
mechanism

1 Introduction

Graphs, such as social networks, e-commerce platforms and academic graphs,
occur naturally in various real-world applications. Recently, graph embedding,
whose goal is to encode high-dimensional non-Euclidean structures into low-
dimensional vector space [2,10], has shown great popularity in tackling graph
analytic problems such as node classification and link predictions.
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Fig. 1. Toy examples of static and dynamic heterogeneous graphs.

Most existing graph embedding methods focus on modeling static homoge-
neous graphs, where both edges and nodes are of the same type and never change
over time. However, in the real world, complex systems are commonly associated
with multiple temporal interactions between different-typed nodes, forming the
so-called dynamic heterogeneous graphs. Taking Fig. 1(b) as an example, there
are two types of interactions (“co-operation” and “attendance”) between two
types of nodes (authors and venues) and each interaction is marked with a con-
tinuous timestamp to describe when it happened, compared to the static one in
Fig. 1(a). Dynamic heterogeneous graphs indeed describe richer semantics and
dynamics besides structural information, indicating the multiple evolutions of
node representations, compared to static homogeneous graphs.

Paying attention to the abundant semantics, there have been several hetero-
geneous graph embedding methods [5,12,27,34], taking into account both types
of nodes and edges when learning representations. While earlier approaches [5,6]
employ shallow skip-gram models on heterogeneous sequences generated by
meta-paths [24], recent studies [7,12,27,34] apply deeper graph neural networks
(GNNs) which usually gather information from heterogeneous neighborhoods
to enhance node representations. On the other line, to capture the temporal
evolution of dynamic graphs, it is general to split the whole graph into several
snapshots and generate representations by inputting all snapshot-based embed-
dings into sequential models like Long-Short Term Memory (LSTM) and Gated
Recurrent Units (GRU) [8,19,22]. Recently, aware of the fact that historical
events (i.e., temporal edges) consistently influence and excite the generation of
current interactions, recent researchers [17,29,36] attempt to introduce tempo-
ral point process, especially Hawkes process, into graph embedding to model the
formation process of dynamic graphs.

However, limited work has been done for embedding dynamic heterogeneous
graphs. The semantics and dynamics introduce two essential challenges:

First, how to model the continuous dynamics of heterogeneous interactions?
Although several works attempt to describe the formation process as sequen-
tial heterogeneous snapshots [1,18,32], the heterogeneous dynamics can only be
reflected via the number of snapshots, while different-typed edges are indeed
continuously generated over time. For instance, as shown in Fig. 1(a), heteroge-
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neous events like “co-operation” and “attendance” are continuously generated
over time and historical connections can excite current events. A näıve idea is
to integrate Hawkes process into graph embedding, inspired by [17,29,36]. How-
ever, these methods deal with homogeneous events and cannot directly introduce
into heterogeneous graphs.

Second, how to model the complex influence of different semantics? While
different semantics indicate different views of information, they usually impact
current various interactions in different patterns. While existing methods only
model the difference of semantics [27,32], they neglect that the influence to
different-typed current or future events could be very different. For example,
in Fig. 1(b), the co-operation between A1 and A5 at T3 could be excited more
from historical co-operation events of A4 and A5, rather than the attendance
between A4 and V3. Meanwhile, the attendance between A1 and V3 at time t4
would be affected more from the historical attendance events of A4. In a word,
different-typed historical events would excite different-typed current events in
different patterns.

Motivated by these challenges, we propose the Heterogeneous Hawkes
Process for Dynamic Heterogeneous Graph Embedding (HPGE). To handle
the continuous dynamics, we treat heterogeneous interactions as multiple tem-
poral events, which gradually occur over time, and introduce Hawkes process into
heterogeneous graph embedding by designing a heterogeneous conditional inten-
sity to model the excitation of historical heterogeneous events to current events.
To handle the complex influence of semantics, we further design the heteroge-
neous evolved attention mechanism which considers both the intra-typed tem-
poral importance of historical events but also the inter-typed temporal impacts
from multiple historical events to current type-wise events. Moreover, as current
events are influenced more by past important interactions, we adopt the tempo-
ral importance sampling strategy to select representative events from historical
candidates, balancing their importance and recency. The contributions of this
work are summarized as follows.

– We introduce Hawkes process into dynamic heterogeneous graph embedding,
which can preserve both semantics and dynamics by learning the formation
process of all heterogeneous temporal events. Although few works [17,36]
attempt to model the formation process of graphs, they pay no attention to
types of either historical or current events.

– Our proposed approach HPGE not only integrates complex evolved excitation
of events but also enables efficient extraction of representative past events.
To these ends, we respectively design the heterogeneous evolved attention
mechanism and the temporal importance sampling strategy.

– We study the effectiveness and efficiency of HPGE empirically on three public
datasets and the experimental results of node classification and temporal link
prediction demonstrate that HPGE consistently outperforms the state-of-the-
art alternatives.
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2 Related Work

We discuss the related work on two lines, namely, static graph embedding and
dynamic graph embedding, taking both homogeneous and heterogeneous meth-
ods into consideration.

Static Graph Embedding. This line of methods are to embed non-Euclidean
structures into low-dimensional vector space. Earlier methods [9,23] input ran-
dom walk-based contextual sequences into skip-gram framework to preserve rel-
evance of connected nodes. Recently, graph neural networks (GNNs) [11,16,25]
have attached much attention for their ability to integrate neighborhood influ-
ence via message passing. However, they neglect the types of either edges or
nodes, and thus fail to model the abundant semantics in real-world graphs.
Focus on dealing with heterogeneity, previous Metapath2Vec [5] and HIN2Vec
[6] associate nodes by their local proximity through heterogeneous sequences,
while current works focus on heterogeneous GNNs [7,35] to better exploit struc-
tures and semantics over the whole graph. In these methods, various hetero-
geneous attention mechanisms are designed to enhance traditional information
aggregation [3,7,12,27,34]. More detailed discussions are summarized in [2,26].
However, all the above methods cannot deal with dynamic heterogeneous graphs
because of overlooking evolution within interactions.

Dynamic Graph Embedding. On another line, there is significant research
interest in dynamic graph embedding (also called temporal network embedding)
during the past decade. CTDNE [21] considers dynamics as temporal bias and
deploy temporal random walks to learn nodes. TGAT [30] designs a temporal
encoder to project continuous timestamps as temporal vectors. Aware of the
dynamic evolution of graphs, recent works prefer to split a graph into several
snapshots and integrate deep auto-encoders [8] or recurrent neural networks
[20,22] to learn the evolving embeddings. Focusing on handle both dynamics
and semantics, dynamic heterogeneous graph embedding has also been explored
to some extent [12,13,31,32]. Nevertheless, the performance of these methods
is often limited as the timestamps of interactions in a snapshot are removed,
whereas the formation process of graphs remains unknown. Recently, temporal
point processes, most notably the Hawkes process, have become popular for their
ability to simulate the formation history [17,36]. However, they are designed for
homogeneous graphs while the heterogeneity introduces essential challenges to
learn and inference.

3 Preliminaries

In this section, we introduce the definition of dynamic heterogeneous graphs,
the problem of dynamic heterogeneous graph embedding as well as the general
Hawkes process framework.

Definition 1 Dynamic Heterogeneous Graph. A dynamic heterogeneous
graph is G = (V, E , T ,O,R) where V denotes the set of nodes, E denotes the
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temporal edges (i.e., events), T denotes the set of timestamps, O and R respec-
tively denote node and edge types. In addition, there are two corresponding type
mapping functions including φ : V → O and ψ : E → R. Notice that, each event
is a quad e = (vi, vj , t, r) where vi and vj are source and target nodes, t ∈ T is
the continuous timestamp and r ∈ R is the event type.

For instance, the academic graph in Fig. 1(b) consists of two types of nodes
(i.e., authors and venues), two types of events (i.e., “co-operation” and “atten-
dance”) as well as the continuous timestamps t1, t2, t3, t4 and t5 of these hetero-
geneous events, naturally forming a dynamic heterogeneous graphs. Obviously,
heterogeneous events gradually happen and excite future interactions over time,
expressing abundant semantics and dynamics, compared to static graphs.

Definition 2 Dynamic Heterogeneous Graph Embedding. Given a
dynamic heterogeneous graph G, the goal of dynamic heterogeneous graph embed-
ding is to learn a representation function H to project such a high-dimensional
non-Euclidean structures into low-dimensional vector space, namely, H(G) →
H, H ∈ R|V|×d where |V| and d are the size and dimension of nodes, d � |V|.
Meanwhile, both the dynamics and semantics besides structural information
should be preserved as well.

Definition 3 Hawkes process. Hawkes process is a typical temporal point pro-
cess with the assumption that historical events can influence the occurrence of the
current event. Given historical events {eh|th < t} before current time t, a con-
ditional intensity function is defined to characterizes the arrival rate of current
event e, namely,

λ(e) = μ(e) +
∑

eh:th<t

κ(t − th), (1)

where μ(e) is the base intensity (i.e., spontaneous arrival rate) of current event
e, κ(·) is a time decay effect of historical events on the current e.

Obviously, the temporal excitation is well modeled and there are several
works [17,36] attempt to embed dynamic graphs with Hawkes process. Never-
theless, these methods cannot handle the heterogeneity. In this paper, we focus
on introducing Hawkes process into dynamic heterogeneous graph embedding, to
learn the complete temporal formation process of heterogeneous events, keeping
both semantics and dynamics.

4 The Proposed HPGE Model

In this section, we propose our model called HPGE. We begin with an overview,
before zooming into the details.
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Fig. 2. The overall architecture of HPGE. (a) Heterogeneous conditional intensity func-
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probability and the nodes in white are unsampled, in comparison to a näıve cut-off
strategy.

4.1 Overview

There are three main components of HPGE, namely, the heterogeneous condi-
tional intensity function to learn the semantics and dynamics within the for-
mation process of heterogeneous temporal events, the heterogeneous evolved
attention mechanism to measure the importance and evolution from historic
neighborhoods to current type-wise event, and the temporal importance sam-
pling to handle the efficient extraction of representative events. First, as shown
in Fig. 2(a), given the respective temporal heterogeneous neighbors of A1, A3,
and V1, HPGE evaluates the affinity between each node and its neighbors with
a type-wise influence measure. Subsequently, hinged on a heterogeneous con-
ditional intensity function, it accumulates the influence from historical hetero-
geneous neighbors, which characterizes the arrival rate at present. Second, an
attentive manner is designed in 2(b) to capture both the temporal importance of
same-typed neighborhoods (intra-att) and the evolution from historical types to
the current type (inter-att). Third, as the graph evolves, in Fig. 2(c), the number
of events gradually grows. For effective and efficient HPGE, we adopt a Tempo-
ral Importance Sampling (TIS) strategy to extract representative neighbors in
both temporal and structural dimensions, instead of using the full neighborhood
which is inefficient, or the traditional cut-off strategy based on recency only.

4.2 Heterogeneous Conditional Intensity Modeling

On a dynamic heterogeneous graph, various kinds of interactions are constantly
being established over time, which can be regarded as a series of observed hetero-
geneous events. Intuitively, the current events are influenced by past events, and
the heterogeneity of events implies different strengths of influence. For instance,
attendance in a conference at present is influenced by different historical views,
including the past attendance view and author collaboration view. Therefore,
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given current event e = (vi, vj , t, r), we introduce the general heterogeneous
conditional intensity function as follows:

λ̃(e) = μr(vi, vj)︸ ︷︷ ︸
base rate

+ γ1
∑

r′∈R
∑

p∈Ni,r′,<t
α(p, e)z(vp, vj)κi(t − tp)

︸ ︷︷ ︸
neighborhood influence on source vi

+ γ2
∑

r′′∈R
∑

q∈Nj,r′′,<t
α(q, e)z(vq, vi)κj(t − tq)

︸ ︷︷ ︸
neighborhood influence on target vj

, (2)

where γ1 and γ2 are the balance parameters. This conditional intensity function
consists of three major parts, including the type-wise base rate, the heteroge-
neous neighborhood on source node vi and on target node vj . At first, given vi

and vj as well as event type r, the base rate μr(vi, vj) is defined as:

μr(vi, vj) = −σ(f(hiWφ(vi) − hjWφ(vj))Wr + br), (3)

where hi ∈ R
d and hj ∈ R

d are the embedding of vi and vj , d is the dimension
of node embedding, Wφ(·) ∈ R

d×d denotes the type-φ(·) projection matrix, f(·)
denotes the element-level non-negative operation to measure the symmetrical
similarity of vi and vj , and we adopt self Hadamard product in this paper,
namely f(X) = X �X, Wr and br are the projection and bias of type-r events,
σ(·) is the non-linear activate function. In the base rate evaluation, both the
types of nodes and edges are taken into consideration.

Besides, historical neighbors can continuously excite the occurrence of the
current event. Taking the neighborhood influence on source node as an exam-
ple, given its historical neighborhoods {Ni,r′,<t|r′ ∈ R} the excitation is indeed
associated with three aspects, (1) the time span to the current time, (2) the rel-
evant historical neighbors to target node vj and (3) the importance of historical
neighbors to source node vi. As the time decay to different nodes are differ-
ent, we design κi(Δt)as exp(−δi(Δt)), where deltai is the learnable personalized
parameter and the influence become exponentially weak over time. The relevance
between historical neighbors and target nodes are related to their types as well,
namely,

z(vp, vj) = −‖hpWφ(p) − hjWφ(j)‖22, (4)

where ‖ · ‖22 denotes the Euclidean distance measure, and the negative symbol
indicates that closer nodes could affect greater. To measure the importance to
source node, attention mechanisms [7,12,27] have shown powerful performance
on static heterogeneous graphs. However, when dealing with the heterogeneous
formation process, the complex temporal influence between different semantics
remains an essential challenge. To handle the second challenge, we design the
heterogeneous evolved attention mechanism in Sect. 4.3.
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4.3 Heterogeneous Evolved Attention Mechanism

As mentioned in Sect. 1, the excitation of historical interactions not only asso-
ciate with types of historical events but also depend on types of current events.
Thus, the importance to current event α(p, e) is defined as

α(p, e) = ξ(vp, tp|r′, vi, t)β(r|r′, vi, t), (5)

where r′ and r respectively denote the type of historical and current event,
tp and t are the corresponding timestamps, ξ(vp, tp|r′, vi, t) is the intra-type
heterogeneous temporal attention, calculated by

ξ(vp, tp|r′, vi, t) = softmax(σ(κi(t − tp)[hiWφ(vi) ⊕ hjWφ(vj)]Wξ)), (6)

where Wξ ∈ R
2d×1 denotes the attention projection matrix need to

learn, ⊕ denotes the concatenation operation, softmax(x) is in the form of
exp(x)/

∑
x′ exp(x′). Both the heterogeneity and time decay are taken into con-

sideration. Furthermore, we design the inter-typed β(r|r′, vi, t) to model the
relevance from historical types to current types, namely

β(r|r′, vi, t) = softmax(tanh(g̃iWr)wr)T, (7)

where Wr ∈ R
d|R|×dm and wr ∈ R

dm×1 are the projection matrices need to
learn, dm is the length of latent dimension and we set dm = 0.5d here. g̃i is the
concatenation of historical excitation, namely g̃i = [g̃i,1 ⊕ g̃i,2 ⊕· · ·⊕ g̃i,|R|], and
the sub-excitation from type-r′ neighbors is calculated by

g̃i,r′ = σ
([∑

p ξ(vp, tp|r′, vi, t)hpWφ(vp)κi(t − tp)
]
Wβ,r′ + bβ,r′

)
, (8)

where Wβ,r′ ∈ R
d×d and bβ,r′ are the projection matrix and bias need to learn.

It is naturally a intra-typed attention based temporal excitation aggregation.

4.4 Temporal Importance Sampling

As more events are accumulated over time, it becomes expensive to materialize
the heterogeneous conditional intensity function. For efficiency, existing Hawkes
process on homogeneous graphs cut off events happened far away in the past,
and only focus on the most recent events. However, the cut-off point is often
arbitrary and difficult to set. Furthermore, the recency-only strategy risks in
omitting structurally important neighbors that have frequent interactions over
time. As illustrated in Fig. 2(b), A5 would be cut off based on recency only, but
it is desirable to retain A5 for modeling due to its frequent interaction with A1.

To efficiently extract representative candidates with both recency and struc-
tural importance, inspired by importance sampling [4,14], we propose the strat-
egy of Temporal Importance Sampling (TIS). TIS considers both temporal and
structural information to extract representation neighbors. Weighed by the exci-
tation rate and the time decay function, we design the sampler of TIS as follows,

q(vp|vi, r
′, t) =

κi(t − tp)Ni(vp)∑
vp′ ∈Ni,r′,<t

κi(t − t′p)Ni(v′
p)

, (9)



396 Y. Ji et al.

where q(vp|vi, r
′, t) denotes the sampling probability, depending on the impor-

tance of node vh relating to event type r′, times of historical occurrence Ni(vp)
as well as time t. Thus, the estimator of the sampled neighbor influence is given
by

z(v̂p, vj) =
1
n

· z(v̂p, vj)
q(v̂p|vi, r′, t)

, v̂p ∼ q(vp|vi, r
′, t) (10)

where n is the sample size, v̂p denotes a sampled historical neighbor. Thus, both
temporal and structural importance of the neighbors can be retained for influ-
ence modeling. In particular, the estimator ensures the expectation of weighted
sampled excitation is equal to propagate all historical influences.

4.5 Optimization Objective

By modeling the temporal heterogeneous event formation with heterogeneous
Hawkes process, the current neighbor formation events can be inferred from the
heterogeneous conditional intensity. Given all the historical neighborhoods Ni,<t

of vi and Nj,<t of vj before time t, the probability of forming type-r connection
between vi and vj at time t can be inferred as

p(ei,j,r|Ni,t,Nj,t) =
λ(ei,j,r)

∑
r′∈R

(∑
j′∈N r′

i,t
λ(ei,j′,r′) +

∑
i′∈N r′

j,t
λ(ei′,j,r′)

) , (11)

where λ(ei,j,r) = exp( ˜λ(ei,j,r)) denotes the positive intensity. As directed like-
lihood optimization would suffer from the heavily computational complexity of
p(ei,j,r|Ni,t,Nj,t), we consider Eq. (11) as the softmax normalization of λ̃(ei,j,r),
and adopt negative sampling to accelerate learning, thus, the loss of the current
event e is defined as follows,

Lhp(e) = −
∑

e∈E
log σ(λ̃(e))−

∑

k

Ej′ log σ(−λ̃(ej′))−
∑

k

Ei′ log σ(−λ̃(ei′)), (12)

where ei′ and ej′ are the abbreviations of ei′,j,r,t and ei,j′,r,t, k is the size of
negative samples, and Lhp = 1

|E|
∑

e∈E Lhp(e).
Besides, focusing on the downstream tasks like node classification and tem-

poral link prediction, we design the unified loss function as follows:

L = Lhp + ω1Ltask + ω2Ω(Θ), (13)

where Ω(Θ) is the l2-norm regularization of learnt parameters, Ltask is the
loss of specific tasks. For node classification and temporal link prediction, we
input node embedding or the concatenation of embedding pair into a Multi-
Layer Perception to extract the distribution of classifications or the probability
of connections, and then evaluate the cross-entropy loss values, i.e., Ltask. ω1

and ω2 are the weights. We adopt Adam optimizer [15] to minimize the loss
function for each mini-batch.
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Table 1. Statistics of the three public datasets.

Datasets Node types #Nodes Event types #Events Time span

Aminer Author (A) 23,037 A-A 71,121 16 years

Conference (C) 22 A-C 52,399

DBLP Author (A) 34,766 A-A 133,684 10 years

Venue (V) 20 A-V 98,262

Yelp User (U) 494,524 BrU 1,145,070 60 quarters

Business (B) 13,507 BtU 226,728

5 Experiments

In this section, we conduct extensive experiments on three public real-world
dynamic heterogeneous graphs to demonstrate the effectiveness of HPGE.

5.1 Experimental Settings

Datasets. The three real-world datasets are the academic Aminer and DBLP
graphs and the Yelp business graph. The details are introduced as follows and
the statistics are listed in Table 1. (1) Aminer1. This is a benchmark biblio-
graphic graph, which consists of two types of nodes, namely, authors (A) and
conferences (C), as well as two types of temporal events, namely “co-operation”
(A-A) and “attendance” (A-C). Notice that each author is labeled by one of
the five research domains including data mining, database, medical informat-
ics, theory, and visualization. (2) DBLP2. This is another bibliographic graph,
which also consists of two types of temporal events between authors (A) and
venues (V), namely, A-A and A-V. We follow previous work [27] to extract 20
venues in four areas, namely, database, data mining, machine learning, informa-
tion retrieval. The authors are labeled by the research area they focus on. (3)
Yelp3. This is a business review dataset, containing timestamped user reviews
and tips on businesses. There are two types of nodes, users (U) and businesses
(B), and four types of temporal events including “reviewed” (UrB), “tipped”
(UtB), “reviewed by” (BrU) and “tipped by” (BtU). We extract interactions of
three categories of businesses, including “Fast Food”, “Sushi” and “American
(New) Food”, to construct the dynamic graph. Each business is labeled with its
most related category.

Baselines. We compare the proposed HPGE with three groups of graph
embedding models, namely, heterogeneous graph embedding (Metapath2vec [5],
HEP [35], HAN [27] and HGT [12]), dynamic graph embedding (CTDNE [21],

1 Available at Aminer website.
2 Available at DBLP website.
3 Available at Yelp website.

https://www.aminer.cn/topic_paper_author
https://dblp.uni-trier.de/db/
https://www.yelp.com/dataset
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EvolveGCN [22], and M2DNE [17]), and dynamic heterogeneous graph embed-
ding (DHNE [33], DyHNE [28], and DyHATR [31]).

– Metapath2vec [5] and HEP [35]: They are two heterogeneous graph embed-
ding models, where the former learns node embedding with sequences gener-
ated by a meta-path, and the latter propagates embedding information among
different-typed interactions.

– HAN [27] and HGT: They are two attentive heterogeneous GNNs, where the
former designs a hierarchical attention considering both node- and semantic-
levels while the latter takes into account both the types of nodes and edges
to design a heterogeneous mutual attention.

– CTDNE [21], EvolveGCN [22] and M2DNE [17]: They are three typical
dynamic homogeneous graph embedding approaches. CTDNE is a skip-gram
model based on temporal random walks; EvolveGCN learns the evolution
among snapshots by integrating with RNNs to sequentially update convolu-
tional parameters; and M2DNE introduces Hawkes process into modeling the
formation process of dynamic graphs where neighbor influence of both source
and target nodes are simultaneously extracted.

– DHNE [33], DyHNE [28] and DyHATR [31]: These are three represen-
tative temporal heterogeneous graph embedding models. DHNE performs
metapath-based random walk between historical snapshots and the current
snapshot and design a dynamic heterogeneous skip-gram model to capture
representations of nodes; DyHNE splits graphs into several snapshots and
employs eigenvalue perturbation to derive the updated embeddings between
different snapshots; DyHATR uses hierarchical attention to learn heteroge-
neous information and incorporates RNNs with temporal attention to capture
evolutionary patterns between different snapshots.

Parameter Settings. For all methods, we set the embedding dimension d =
128, batch size as 1024, learning rate as 0.001, regularization weight ω2 = 0.01 (if
any), and negative sampling size as k = 5 (if any). These values give robust per-
formance and are consistent with guidelines from the literature. For HAN, HGT,
M2DNE, DyHATR and our HPGE, we respectively limit the size of neighboring
candidates to 5, 5 and 10 on the three datasets, using TIS for our method, recency
cut-off for M2DNE and random sampling for others. For dynamic homogeneous
baselines, we treat events as homogeneous. For Metapath2Vec and DHNE, we
sample sequences via A-A, A-A and B-U-B on the three datasets, respectively.
The other parameters of all baselines follow their original papers. For our HPGE,
we set γ1 = 0.5 and γ2 = 0.5, ω1 = 1. In addition, the max iteration is set as
500, 500 and 50 on the three datasets.

5.2 Effectiveness Analysis

Node Classification. This task is to predict the research area of authors on
Aminer and DBLP and the category of businesses on Yelp. The train/test ratio
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Table 2. Performance evaluation (with standard deviation) on node classification. The
best performance is bolded and the second best is underlined.

Dataset Aminer DBLP Yelp

Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

M2V 0.824(0.029) 0.853(0.032) 0.874(0.024) 0.885(0.029) 0.537(0.023) 0.642(0.017)

HEP 0.949(0.016) 0.952(0.013) 0.903(0.022) 0.913(0.018) 0.622(0.012) 0.694(0.009)

HAN 0.967(0.008) 0.970(0.009) 0.912(0.014) 0.914(0.007) 0.621(0.019) 0.691(0.025)

HGT 0.963(0.007) 0.971(0.011) 0.920(0.002) 0.927(0.001) 0.633(0.026) 0.705(0.022)

CTDNE 0.897(0.038) 0.895(0.025) 0.872(0.001) 0.892(0.005) 0.512(0.011) 0.639(0.011)

E.GCN 0.952(0.020) 0.955(0.018) 0.887(0.009) 0.881(0.010) 0.611(0.009) 0.687(0.008)

M2DNE 0.969(0.015) 0.972(0.018) 0.891(0.022) 0.909(0.027) 0.619(0.003) 0.693(0.005)

DHNE 0.901(0.010) 0.913(0.009) 0.888(0.007) 0.909(0.008) 0.578(0.001) 0.665(0.001)

DyHNE 0.970(0.008) 0.978(0.007) 0.922(0.003) 0.922(0.004) 0.622(0.011) 0.721(0.015)

DyHATR 0.973(0.002) 0.969(0.003) 0.933(0.011) 0.935(0.010) 0.627(0.008) 0.717(0.007)

HPGE 0.988(0.002) 0.984(0.003) 0.951(0.005) 0.952(0.004) 0.649(0.010) 0.731(0.012)

is set to 80%/20%. We run all methods five times and evaluate the average
Micro-F1 and Macro-F1 scores.

As shown in Table 2, our proposed HPGE consistently outperforms all base-
lines on the three datasets. We make the following observations. (1) Compared
with heterogeneous graph embedding approaches (Metapath2vec, HEP, HAN
and HGT), HPGE is able to model the temporal dynamics of heterogeneous
events. Similarly, compared to dynamic graph embedding approaches (CTDNE,
EvolveGCN and M2DNE), HPGE benefits from integrating the abundant seman-
tic information within heterogeneous events. Not surprisingly, the performance
gains of HPGE are larger relative to these baselines. (2) Compared with the
best competitor DyHATR, which considers both the temporal and heteroge-
neous information, our HPGE can still achieve substantial improvements. The
stable improvements demonstrate that modeling the formation process of DHGs
can embed evolving nodes better than just paying attention to the evolution
between snapshots. (3) Compared with Aminer and DBLP, our model improves
more on Yelp. The potential reason is that Yelp is a larger dataset, such that
our temporal importance sampling strategy can benefit more.

Temporal Link Prediction. This task is to predict the type-r interaction at
time t. Given all temporal heterogeneous events before time t and two nodes vi

and vj . We treat all events at time t as the positive link, and randomly sam-
ple 2 negative instances for both vi and vj as the negative links. Subsequently,
we test all baselines and our HPGE five times and report the average perfor-
mance of Accuracy, F1 score, and ROC-AUC in Table 3. Obviously, HPGE still
achieves the best performance on all datasets. Besides the observations on node
classification, HPGE evaluates node proximity based on event types and contin-
uously propagates the influence of types via the temporal point process, while
traditional type-wise projections can only model the heterogeneity rather than
the interactivity. In addition, HAN, HEP, HGT, DyHNE, DyHATR and our
HPGE always performs better than CTDNE, EvolveGCN and M2DNE. This
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Table 3. Performance evaluation on temporal link prediction. The best performance
is bolded and the second best is underlined.

Dataset Aminer Yelp DBLP

Metric ACC F1 AUC ACC F1 AUC ACC F1 AUC

M2V 0.806 0.359 0.759 0.790 0.419 0.702 0.798 0.375 0.656

HEP 0.921 0.814 0.944 0.853 0.566 0.829 0.910 0.753 0.934

HAN 0.923 0.811 0.955 0.855 0.591 0.833 0.903 0.751 0.940

HGT 0.938 0.822 0.963 0.859 0.588 0.833 0.899 0.761 0.941

CTDNE 0.824 0.382 0.763 0.806 0.342 0.635 0.713 0.345 0.653

E.GCN 0.904 0.767 0.922 0.822 0.526 0.785 0.853 0.714 0.905

M2DNE 0.929 0.790 0.951 0.854 0.547 0.818 0.896 0.734 0.939

DHNE 0.875 0.634 0.827 0.831 0.504 0.717 0.821 0.668 0.808

DyHNE 0.928 0.838 0.959 0.861 0.592 0.831 0.909 0.767 0.940

DyHATR 0.941 0.832 0.966 0.870 0.598 0.843 0.914 0.773 0.936

HPGE 0.953 0.835 0.976 0.873 0.603 0.850 0.938 0.793 0.957
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Fig. 3. Effect of hierarchical attention mechanism on node classification.

phenomenon indicates that integrating semantics into link formation can ben-
efit temporal link prediction more, compared with simply preserving evolving
structures.

5.3 Model Analysis

Effect of Heterogeneous Evolved Attention Mechanism. We further dis-
cuss the effect of heterogeneous evolved attention mechanism by comparing with
three model variants including no attention (no-att), intra-type temporal atten-
tion (intra-att) and inter-type temporal attention (inter-att), as well as HPGE
(all-att). The results for the node classification task are shown in Fig. 3. We
observe the following. (1) Simultaneously modeling both intra- and inter-type
temporal attention achieves the most improvements, while the no-attention vari-
ant performs the worst on all datasets. (2) Compared with the intra-attention
variant, HPGE has the ability to evaluate the importance of influence of different
types of historical events to current type of interactions. Meanwhile, HPGE can
filter the neighborhoods via intra-typed attention, compared with the inter-typed
variant. These observations demonstrate the effectiveness of our heterogeneous
evolved attention mechanism.
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Fig. 4. Efficacy of TIS and the ability of evolution modeling.

Efficacy of Temporal Importance Sampling. The other key design is our
temporal importance sampling (TIS), which considers both structural impor-
tance and time decay. We analyze the effectiveness of TIS by comparing with
the often used random sampling and recency-based cut-off, as well as the effi-
ciency of TIS under the effective sample size. (1) Comparison of sampling strate-
gies. Figure 4(a) reports the Micro-F1 scores of different sampling strategies for
the node classification task. Notice that the sample size is set as 5, 5 and 10
for all strategies on the three datasets, respectively. Among the three sampling
strategies, it is clear that our TIS strategy performs the best, especially on the
larger datasets DBLP and Yelp. The results are intuitive since the cut-off strat-
egy ignores structurally important neighbors, while the random sampling, which
performs the worst, pays no attention to either structure or dynamics. (2) Effec-
tive sample size. Effective sample size plays an important role in sampling to
achieve the balance between effectiveness and efficiency. As shown in Fig. 4(b),
we increase the sample size from 5 to 25 and showcase both the Micro-F1 score
(solid lines) and time cost (dotted lines). A larger sample size gradually increases
Micro-F1, which converges quickly around 5 or 10. Here 5 or 10 is the effective
samples size, which is much smaller than the full neighborhoods. In particular,
when using a larger sample size (e.g., 25 or even the full size), the time cost
becomes unbearable.

Ability of Modeling Evolution. As the dynamics of graphs are in the form of
timestamps, we “coarsen” the timestamps by considering time spans of varying
size. In Fig. 4(c), on the Aminer dataset, we vary the size of time span from every
1 year (i.e., finest time units) to 16 year (i.e., the entire graph consists of a single
time span of 16 years, which effectively become a static graph), and showcase
the performance on temporal link prediction. The performance of HPGE consis-
tently degrades with the increasing size of time span, indicating that modeling
evolving dynamics with finer granularity (i.e., smaller time span) lead to better
performance. Notice that when the time span is 16, the graph becomes a static
graph and our HPGE also degrades to a static model. Overall, the results further
illustrate the effectiveness of HPGE in handling evolution.



402 Y. Ji et al.

6 Conclusion

In this paper, we propose the HPGE model which introduces Hawkes process to
handle the challenging dynamic heterogeneous graph embedding problem. Focus-
ing on modeling the formation process of temporal heterogeneous events, we
respectively design the heterogeneous conditional intensity function to capture
the excitation from historical multiple events, the heterogeneous evolved atten-
tion mechanism to learn fine-grained representations considering both intra- and
inter-typed temporal influences. HPGE hinges on a novel temporal importance
sampling strategy, to enable efficient extraction of representative events. Exper-
imental results on three public datasets demonstrate that HPGE outperforms
the alternatives on fundamental graph tasks.
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