
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2021

Disambiguating mentions of API methods in stack overflow via Disambiguating mentions of API methods in stack overflow via

type scoping type scoping

Kien LUONG

Ferdian THUNG

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Citation Citation
LUONG, Kien; THUNG, Ferdian; and LO, David. Disambiguating mentions of API methods in stack overflow
via type scoping. (2021). 37th IEEE International Conference on Software Maintenance and Evolution
(ICSME 2021). 679-683.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6874

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6874&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Disambiguating Mentions of API Methods in Stack
Overflow via Type Scoping

Kien Luong, Ferdian Thung, and David Lo
School of Computing and Information Systems, Singapore Management University

{kiengialuong, ferdianthung, davidlo}@smu.edu.sg

Abstract—Stack Overflow is one of the most popular venues
for developers to find answers to their API-related questions.
However, API mentions in informal text content of Stack Over-
flow are often ambiguous and thus it could be difficult to find the
APIs and learn their usages. Disambiguating these API mentions
is not trivial, as an API mention can match with names of APIs
from different libraries or even the same one. In this paper,
we propose an approach called DATYS to disambiguate API
mentions in informal text content of Stack Overflow using type
scoping. With type scoping, we consider API methods whose type
(i.e. class or interface) appear in more parts (i.e., scopes) of a
Stack Overflow thread as more likely to be the API method
that the mention refers to. We have evaluated our approach
on a dataset of 807 API mentions from 380 threads containing
discussions of API methods from four popular third-party Java
libraries. Our experiment shows that our approach beats the
state-of-the-art by 42.86% in terms of F1-score.

Index Terms—API linking, Mining, Disambiguation

I. INTRODUCTION

In an effort to understand APIs1, developers often discuss

and mention them in natural language texts of online forums

such as Stack Overflow. Mentions of API methods sharing the

same name would be ambiguous to developers or automated

tools that are looking for a specific API. Therefore, API disam-

biguation important when finding APIs in Stack Overflow. It

supports several downstream tasks such as API recommenda-

tion [1], [2] and API mining [3], [4] since correctly associating

the ambiguous API mentions to their actual APIs is necessary

to properly index and link the APIs to their related information

in various data sources (Stack Overflow, Javadoc, etc.).

To disambiguate API mentions in informal text content,

two steps are involved: (1) API mention extraction; and (2)

API mention disambiguation. API mention extraction aims to

identify common words that refer to APIs. On the other hand,

API mention disambiguation aims to link API mentions to

APIs that they refer to. Some works [5]–[9] deal with both

steps. Some [10], [11] only deal with API mention extraction.

Our work deals with the second step, which is API mention

disambiguation. It can be used together with any API mention

extraction approaches proposed in all of the above work.

In this paper, we propose an approach named DATYS

to disambiguate API method mentions via type scoping in

informal text content of Stack Overflow. It exploits type
scoping to resolve ambiguous mentions of Java API methods

in informal text context of Stack Overflow, in the scenario

1In this paper, we use the term API and API method interchangeably.

where the mentions have been identified. DATYS first extracts

API method candidates from input Java libraries. Given a

Stack Overflow thread with identified API mentions, it scores

API method candidates based on how often their types (i.e.,

classes or interfaces) appear in different parts (i.e., scopes)

of the thread. We consider three scopes: (1) mention scope,

which covers the mention itself; (2) text scope, which covers

the textual content of the thread including the mentions; and

(3) code scope, which covers the code snippets in the thread.

An API candidate score is higher if its type appears in more

scopes. For each API mention in the thread, API candidates

are ranked based on their scores. DATYS takes the top-1 API

candidate with a non-zero score as the API that the mention

actually refers to. If the top-1 API candidate has a zero score,

it considers the mention refers to an unknown API.

APIReal is the state-of-the-art approach in resolving am-

biguous mentions of Python APIs in the textual content of

Stack Overflow thread [9]. It leverages mention-mention simi-

larity, mention-entry similarity, and scope filter. The mention-

mention similarity checks if there are similar mentions in the

thread that are unambiguous. The mention-entry similarity

computes the similarity between the thread and the API

documentation. The scope filter shrinks the number of API

candidates by checking the existence of their types in the

code snippets and their library names in the thread’s tags

or title. Different than APIReal, our approach does not use

a similarity metric. Also, instead of filtering, our approach

leverages scopes for scoring API candidates. APIReal’s scopes

are only tags, URLs, title, and code snippets. Ours are more

exhaustive. It covers all the different parts of the thread

(i.e., title, tags, URL, text, and code snippets), allowing us

to capture the types that APIReal would have missed. This

exhaustiveness, paired with our scoring mechanism, can rank

the types based on its relevancy within the scopes of the thread.

We evaluate DATYS and compare it with APIReal on a

dataset collected from Stack Overflow. Because there is no

available dataset for disambiguating Java API mentions in

textual content of Stack Overflow (i.e., APIReal dataset is on

Python while datasets used in [5]–[8] are not from Stack

Overflow), we collect our own dataset. Our dataset contains

API mentions in informal texts of Stack Overflow threads

discussing APIs from 4 Java libraries. The dataset is labeled

by participants with at least 2 years of experience in Java.

Hard to disambiguate cases that are discussed carefully by

both participants until a consensus is reached. Additionally, we

679

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSME52107.2021.00080

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(IC

SM
E)

 |
 9

78
-1

-6
65

4-
28

82
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SM

E5
21

07
.2

02
1.

00
08

0

perform an ablation study where we remove one of the three

scopes for scoring API candidates and observe its impact on

F1-score. We observe that removing any scope reduces the F1-
score, demonstrating the utility of considering different scopes.

The contributions of this paper are:

• We propose DATYS, an approach that uses type scoping

to disambiguate mentions of Java API methods in informal

text content of Stack Overflow.

• We build a ground truth dataset containing 807 Java API

mentions from 380 threads in Stack Overflow and evaluate

our approach on the ground truth dataset and achieves an

F1-score of 0.760, which beats the state-of-the-art baseline

by 42.86%.

II. APPROACH

The overview of DATYS is presented in Figure 1. DATYS

takes as inputs a Stack Overflow thread, a recognized API

mention (i.e., an already identified API mention), and Java

libraries. It extracts API method candidates from the Java

libraries and filters out the candidates whose simple name

does not match the mention. Code snippets from the thread

are then passed into the Possible Types Extraction step to

extract a list of possible types (i.e. class or interface) that the

method referred by the mention may have. The recognized

API mention, the list of possible types, the content of the

thread, and the API method candidates are then fed into the

Type Scoping. Type Scoping scores an API method candidate

based on the occurrences of its type (i.e., class or interface) in

various scopes of the thread. An API method candidate with

the highest score is more likely to be the method that the

mention refers to. Type Scoping returns a ranked list of API

method candidates based on their scores. The API method

candidate with the highest non-zero score is chosen as the

API method referred to by the mention. If more than one

candidate holds the highest non-zero score, we randomly pick

the candidate as the API method referred to by the mention.

If the top-1 API candidate has a zero score, the mention is not

associated with any API method in the candidates.

We describe in detail how DATYS extracts possible types

from code snippets in Section II-A and how it scores API

method candidates with type scoping in Section II-B.

A. Possible Types Extraction

In order to extract possible types of API mention from code

snippets, we analyze the code elements by considering the two

cases below. Since the code snippet is often unparsable, we

capture the code elements using regular expressions.

Static method import. We consider the class of the imported

static method as a possible type of API mention having the

same name as the imported static method. For example, for

imported static method org.mockito.Mockito.mock,

org.mockito.Mockito is a possible type for API mention

mock. For methods imported by wildcard imports, we first

check if the class of the imported methods is the same as the

class of any API method candidate. If it does, we consider the

Possible Types
Extraction

Type Scoping

Code snippets

Stack Overflow
thread

Recognized
API method mention

List of
Possible Types

Java libraries

API method
candidates

Automatically
extract

Automatically
extract

Ranked first API
method candidate

Selected
candidate has non-zero

score

Associate
candidate to API
method mention

Not associate
the candidateNo

Yes

Content of the
thread

Fig. 1. Overview of DATYS

class as a possible type of API mention matching the name of

any of the imported static methods.

Method invocation. Given a method invocation in the form

of 〈prefix〉.〈method〉, we check if prefix term (i.e., we call it

method caller) starts with a capital letter, which indicates that

the caller is a class. We then check the class import statements.

If the fully qualified name of the imported class ends with

the class name, we consider it as the fully qualified name

of the class. At this point, we consider the fully qualified

name as a possible type of API mention that matches the

name of the invoked method. For example, an invocation

Mockito.mock(...) means that Mockito is a class

name. If we have a class import statement such as import
org.mockito.Mockito;, in which the fully qualified

name of the imported class name ends with Mockito, it is

the fully qualified name of Mockito.

We also check if the method caller is declared in any

of the variable declaration statements. If so, we resolve the

caller to its type as defined in the statement. Next, we would

try to resolve the fully qualified name of the caller type by

checking the class/interface import statements. If the fully

qualified name of the imported class/interface ends with the

caller type, we consider it as the fully qualified name of the

caller type. At this point, we consider either the caller type

or its fully qualified name (if resolved through class/interface

import statements) as a possible type of API mention that

matches the name of the invoked method.

B. Scoring with Type Scoping

Type scoping scores an API method candidate based on

three types of scopes. Each scope contributes to an API

method candidate APIMethodCandidate a score of either

0 or 1. Therefore, the maximum score of an API method

candidate is 3. Algorithm 1 shows the scoring algorithm.

APIMention, PTypeList, APIMethodCandidate stand

for the API mention, the list of possible types extracted

680

Algorithm 1 Scoring an API Candidate with Type Scoping

Input: ApiMention, PTypesList, APIMethodCandidate,
ThreadContent

Output: CandScore
1: CandScore = 0
2: CandType = getType(APIMethodCandidate)
3: if hasPrefix(ApiMention) then
4: Prefix = getPrefix(ApiMention)
5: if endsWith(Prefix, CandType) then
6: CandScore = CandScore+ 1
7: end if
8: end if
9: Tokens = tokenize(ThreadContent)

10: if CandType in Tokens then
11: CandScore = CandScore+ 1
12: end if
13: for PType in PTypesList do
14: if isSameType(PType, CandType) then
15: CandScore = CandScore+ 1
16: end if
17: end for
18: return CandScore

from code snippets of the thread (see Section II-A), the API

method candidates the mention may refer to, respectively.

ThreadContent is the thread’s content including the text, the

title, and the tags. The score of the API candidate CandScore
is first initialized to zero (Line 1) and the type of the API

candidate CandType is extracted (Line 2). CandScore is

increased by one if CandType appears in these scopes:

1) Mention Scope (Lines 3-8). The algorithm increases

CandScore when CandType appears within the scope

of the mention itself. Given API mention in the form

of 〈prefix〉.〈method〉, Prefix helps associate the API

mention with the right API among the candidates. Prefix
can be either a variable or a type. Having Prefix
which matches CandType would increase the likelihood

of correctly linking the mention. Hence, by utilizing

Prefix , the algorithm increases CandScore by one when

Prefix and CandType are matched (i.e., CandType ends

with Prefix). Figure 2 shows an example of API men-

tion MockitoAnnotations.initMocks. The Men-

tion Scope finds a prefix in the scope of the API mention,

i.e., it gets the prefix MockitoAnnotations from the

mention. The scores of API method candidates having the

type MockitoAnnotations are then increased by one.

2) Text Scope (Lines 9-12). The algorithm increases

CandScore when CandType appears within the scope

of textual content of the thread, including the mention. It

first tokenizes the content of ThreadContent by splitting it

into alphanumerical tokens Tokens . If CandType appears

in Tokens , the algorithm increases CandScore by one.

Consider an example in Figure 3, in the Text Scope, due

to the occurrence of the term OngoingStubbing in the

thread, the scores of the API method candidates having the

type OngoingStubbing are increased by one.

3) Code Scope (Lines 13-17). The algorithm increases

CandScore when CandType appears within the scope

of the code snippet in the thread. It iterates the list of

possible types for an API mention PTypeList, which is

API Mention Scope

Text Scope

Fig. 2. Example 1 from thread 32065666 in Stack Overflow

API Mention Scope 1
Token matched type of API

method candidate (Text Scope)

Extracted Possible
Type (Code Scope)

Token matched type of API
method candidate (Text Scope)API Mention Scope 2

Code ScopeText Scope

Fig. 3. Example 2 from thread 26026018 in Stack Overflow

extracted from code snippet as described in Section II-A.

If CandType matches one of the possible types PType
in PTypeList, the algorithm increases CandScore by

one. Consider the example in Figure 3, from the code

snippets, we can perform Possible Type Extraction and get

the possible type OngoingStubbing for API mention

thenReturn. The scores of API method candidates with type

OngoingStubbing are then increased by one.

III. DATASET AND EXPERIMENTAL SETTINGS

A. API candidates from top-4 popular Java libraries

Top-4 most used libraries from Maven Repository2 are

selected as the source of our API method candidates. These

libraries are Guava, Mockito, AssertJ, and Fastjson. Fully

qualified names of all public methods in the libraries are

extracted. There is a total of 38 134 API methods extracted

where Guava, Mockito, AssertJ and Fastjson have 10 485,

4 033, 21 785, and 1 831 unique API methods, respectively.

B. Selected Stack Overflow threads

As there is no available ground truth dataset of Java API

method mentions in Stack Overflow, we collected the dataset

ourselves. The Stack Overflow data used in this study is a

subset of Stack Exchange Data Dump published on 09/2020.

The Stack Overflow posts tagged with at least a library

in the top-4 popular libraries are extracted. Also, answer

posts referring to the same question post are grouped into a

thread. Next, threads having accepted answer are kept while

the ones without accepted answer (including those having

no answer) are discarded. We also remove the non-accepted

answers from the threads. This is because we assume that

threads with accepted answer are of higher quality since they

2https://mvnrepository.com/

681

are deemed useful by the users posting the questions. Non-

accepted answers may also be wrong.

To exclude irrelevant threads (i.e., threads not containing

mentions of API methods in the 4 libraries), we select threads

for each API method in our API method candidates (see

Section III-A) by searching if the method name appears in

the thread. Furthermore, a ranked list of relevant threads is

established for each method in order to select threads that are

more likely to contain mentions of our API method candidates.

The threads are first fit into a vector space model [12]. For each

API method candidate, we use the fully qualified name of the

method as a query and select top-5 relevant threads based on

their score. The reason of selecting the top-5 relevant threads

is to filter out threads not containing any mention of API

methods and limit the number of threads to label. Note that a

thread might appear in the top-5 relevant threads of more than

one query. Therefore, we take only of the unique threads that

appear in the top-5 relevant threads of any method. Moreover,

since manual labeling is costly, in this preliminary evaluation,

we sample 20% of the unique threads. Therefore, we further

remove threads discussing non-Java code (e.g., Scala, Groovy)

since they can import Java libraries and end up with 380

threads.

For the 380 selected threads, we search the textual content

of the threads for terms that match the name of API method

and manually label whether the terms are API mentions. For

terms that are mentions, we further label them with the names

of API methods from the API method candidates. In case the

mentions do not refer to any method in the candidates, we label

the mention to refer to an unknown method. There are a total

of 807 labelled method mentions. The mentions are labelled by

four participants with at least 2 years of experience in Java.

They discuss cases which are difficult to disambiguate with

each other until they reach an agreement.

C. Evaluation Metrics

We use precision, recall, and F1-score to measure the

performance of our techniques. In detail, each API method

mention is either linked to a unique API method from API

method candidates or not linked to any candidates. We define

ground truth as a candidate in the candidate list which the

mention actually refers to. The predicted API method for a

mention is a True Candidate Prediction (TCP) if it is the same

as the ground truth. A False Candidate Prediction (FCP) case

occurs whenever the predicted API method refers to an API

method that is different from the ground truth. A False Non-

linking Prediction (FNN) occurs whenever the predicted API

method is an unknown API and the ground truth is a method

in the candidates. We then calculate Precision = TCP
TCP+FCP ,

Recall = TCP
TCP+FNN , and F1-score = 2×Precision×Recall

Precision+Recall .

D. Baseline

APIReal [9] works with Python APIs in the textual content

of Stack Overflow. Thus, we have to adapt it when using it as a

baseline. APIReal uses type mentions to disambiguate method

mentions. Since our dataset does not have type mentions,

TABLE I
EFFECTIVENESS OF OUR APPROACH

Precision Recall F1-score
DATYS 0.696 0.837 0.760
APIReal 0.367 0.967 0.532

TABLE II
CONTRIBUTION OF EACH TYPE SCOPE

Precision Recall F1-score
all Type Scopes 0.696 0.837 0.760
w/o Code Scope 0.695 0.822 0.752

w/o Mention Scope 0.682 0.834 0.75
w/o Text Scope 0.815 0.418 0.552

we find terms matching the type names and manually label

whether they are type mentions. Moreover, APIReal has a

knowledge base containing various information about APIs.

We fill the knowledge base with different forms of method

names of our API method candidates: simple names and fully

qualified names.

IV. RESULTS

Performance. Table I shows the effectiveness of DATYS

compared to APIReal. Our approach and APIReal achieve F1-
scores of 0.760 and 0.532, respectively. When compared to

APIReal, DATYS also has a higher precision, which indicates

that it is better in predicting a correct API method for a given

mention. While APIReal has a higher recall, it often assigns

incorrect API methods to mentions. Its low precision score

highlights this problem.

Ablation study. To evaluate the contribution of each type

scope, we remove one of the three scopes of our API candidate

scoring algorithm and observe its impact on the effectiveness

of DATYS. As shown in Table II, removing each of the scopes

reduces the effectiveness in terms of F1-score, which indicates

that each scope contributes to the overall effectiveness of our

approach. Based on the reductions of F1-score, the ranked

list of most important scopes is text scope (most important),

mention scope, and code scope (least important).

Qualitative study. We investigate cases where DATYS fails

to disambiguate API mentions. The first failed case (i.e.,

thread 25850491 in Table III) occurs when the API mention

assertThat refers to a method that is defined in the code snippet

of the thread. Since it is not an API method from a third-party

library, it should not be linked to any API method candidates.

However, because of the appearance of token Assertions
in the textual content of the thread, our approach links the API

mention to a wrong type. To avoid this issue, the algorithm

can learn the semantic context surrounding the API mention

to determine if the method the mention refers to is defined in

the thread or not. If the method is defined in the thread, the

algorithm should not link it to any API method candidates.

For the second failed case (i.e., thread 30668168 in Ta-

ble III), due to the lack of occurrences of the corresponding

type in the scopes, our approach does not link the API mention

to any method. However, we observe that some methods

often co-occur together. We can exploit the co-occurrence of

mentions referring to these methods.

682

TABLE III
FAILED CASES (API METHOD MENTIONS ARE BOLDED)

Thread
ID

Thread content Ground
truth

Prediction

25850491 [...] assertThat method to ex-
tend AssertJ. [...] The com-
piler doesn’t know whether as-
sertThat(Iterable) ([...]Asser-
tions.java#L194) or my method
should be used.

Not
linked

org.
assertj.
core.api.
Assertions.
assertThat

30668168 [...] verify(x,times(1)).
doSomething(any(B.class));
//fails. verify times(1) fails...

org.
mockito.
Mockito.
verify

Not
linked

V. RELATED WORK

Prior works [5]–[9], [13]–[15] worked on API disambigua-

tion. We can divide them into two groups: informal text

disambiguation [5]–[9] and code snippet disambiguation [13]–

[15]. The first group disambiguates API mentions in textual

contents. The second group strives to find the fully qualified

name of code elements available in code snippets. Our method,

DATYS, belongs to the first group.

For disambiguating API mentions in informal text, there

are studies that leverage IR techniques (Vector Space Model,

Latent Semantic Indexing) [5]–[7] and heuristics [8]. Bacchelli

et al [7] developed Miler, which utilized string matchings and

IR techniques in linking emails to source code entities in

software systems such as classes in object-oriented systems

and function in procedural language systems. Dagenais and

Robillard [8] applied filtering heuristics to link Java APIs

mentioned in support channels (e.g., mailing list, forums),

documents, and code snippets. Recently, Ye et al. [9] work

on API mention recognition and disambiguation in the textual

content of Stack Overflow thread. They develop three mod-

ules: mention-mention similarity, mention-entry similarity, and

scope filter. We provided a comparison between our approach

and APIReal in Section I.

To disambiguate API mentions (i.e., code elements) in code

snippets, Baker [14] iteratively performs a deductive linking

technique to identify the fully qualified name of the code

elements. COSTER [13] and STATTYPE [15] capture and

learn the tokens around the code element and associate them

to the identified element with similar tokens that they have

learnt. These studies aim at disambiguating API mentions in

code snippets while we focus on disambiguating API mentions

in natural language text of Stack Overflow.

VI. THREATS TO VALIDITY

We may incorrectly adapt the baseline (i.e., APIReal).

APIReal uses type mentions to disambiguate method men-

tions.To provide type mentions, we manually label terms

mentioning type and feed them into APIReal. This can be

considered as APIReal accurately identified all type mentions,

which should benefit its performance rather than harm it.

Regarding the knowledge base of APIReal, we adapted it by

importing the equivalent information about the API method

candidates in Java (whenever possible). Therefore, we believe

that the impact of our adaptation should be minimal. We may

also wrongly label API mentions. In some cases, it is difficult

to determine which API a mention is referring to. To minimize

labeling errors, our participants discussed the hard cases with

each other.

VII. CONCLUSION AND FUTURE WORK

We present DATYS, an approach to disambiguate API

mentions in informal text of Stack Overflow. We exploit the

type occurrence of Java API method candidate in the various

scopes of StackOverflow thread (code, text, and mention

scope). Our evaluation shows that our approach is better than

prior work on disambiguating API mentions in textual content

of Stack Overflow. In the future, we plan to improve our

approach by utilizing machine learning algorithm to learn

the semantic context of text around the mention to better

disambiguate it. We also plan to experiment with more threads

and libraries. Also, we would like to make our approach

language agnostic so it can be directly applied to different

programming languages without any modifications.

Replication Package. The source code for DATYS is available

at https://github.com/Kienlgk/DATYS.

Acknowledgment. This work was supported by The Ministry

of Education Academic Research Fund Tier 2 (MOE2019-T2-

1-193).

REFERENCES

[1] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge gap,”
in ASE. IEEE, 2018.

[2] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api recommen-
dation using crowdsourced knowledge,” in SANER 2016, vol. 1. IEEE,
2016.

[3] G. Uddin, F. Khomh, and C. K. Roy, “Mining api usage scenarios from
stack overflow,” Information and Software Technology, vol. 122, 2020.

[4] G. Uddin and F. Khomh, “Automatic mining of opinions expressed about
apis in stack overflow,” TSE, 2019.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” TSE,
vol. 28, no. 10, 2002.

[6] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in ICSE. IEEE, 2003.

[7] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in ICSE, 2010.

[8] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an api and its learning resources,” in ICSE. IEEE, 2012.

[9] D. Ye, L. Bao, Z. Xing, and S.-W. Lin, “Apireal: an api recognition
and linking approach for online developer forums,” Empirical Software
Engineering, vol. 23, no. 6, 2018.

[10] S. Ma, Z. Xing, C. Chen, C. Chen, L. Qu, and G. Li, “Easy-to-deploy
api extraction by multi-level feature embedding and transfer learning,”
TSE, 2019.

[11] D. Ye, Z. Xing, C. Y. Foo, J. Li, and N. Kapre, “Learning to extract
api mentions from informal natural language discussions,” in ICSME.
IEEE, 2016.

[12] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to informa-
tion retrieval. Cambridge University Press Cambridge, 2008, vol. 39.

[13] C. K. Saifullah, M. Asaduzzaman, and C. K. Roy, “Learning from
examples to find fully qualified names of api elements in code snippets,”
in ASE. IEEE, 2019.

[14] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in ICSE, 2014.

[15] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen, and
T. N. Nguyen, “Statistical learning of api fully qualified names in code
snippets of online forums,” in ICSE. IEEE, 2018.

683

	Disambiguating mentions of API methods in stack overflow via type scoping
	Citation

	Disambiguating Mentions of API Methods in Stack Overflow via Type Scoping

