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Online Fault Detection of Induction Motors Using Independent 
Component Analysis and Fuzzy Neural Network 

Zhao-Xia Wang, C. S. Chang*, X. German, W.W. Tan 
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260 

* eleccs@nus.edu.sg 

Abstract— This paper proposes the use of independent 
component analysis and fuzzy neural network for online fault 
detection of induction motors. The most dominating components 
of the stator currents measured from laboratory motors are 
directly identified by an improved method of independent 
component analysis, which are then used to obtain signatures of 
the stator current with different faults. The signatures are used 
to train a fuzzy neural network for detecting induction-motor 
problems such as broken rotor bars and bearing fault. Using 
signals collected from laboratory motors, the robustness of the 
proposed method for online fault detection is demonstrated for 
various motor load conditions. 

Index Terms— Online Fault Detection, Induction Motors, 
Independent Component Analysis, Fuzzy neural network 

I. INTRODUCTION 
Equipment failure leads to the loss of productivity or even 

human lives. Proper maintenance strategies are very desirable 
for minimizing operating and maintenance costs of energy 
systems without sacrificing reliability. Condition-based 
maintenance has largely replaced time-based maintenance due 
to the potential economic benefits of the former, where 
apparatus is maintained according to its working conditions, 
as evaluated by appropriate methods for continuous 
monitoring or periodic inspections to provide early warnings 
against failure [1-4]. Induction motors are an indispensable 
part of industries. The early detection of anomalies in 
electrical or mechanical parts of induction motors is important 
for the safe and economic operation of industrial processes.  

One popular technique for online monitoring or periodic 
inspections on induction motors is stator current analysis, 
which is well known for providing continuous monitoring in a 
nonintrusive way [5]. Analysis of fault features from such 
signals is effective, as stator currents of running induction 
motors with different faults will show some kinds of 
difference from that in normal condition [6]. This is because 
different faults affect the running of the motor in different 
ways [7-8]. The stator current monitoring is thus viewed as an 
important fault detection scheme without requiring special 
access to the motor [6-8]. Bearing fault and broken rotor bars 
are two main types of faults of induction motors, and 
signature analysis for detecting these faults had been reviewed 
[6]. Most research works were performed by decomposing 
and analyzing the stator current using various methods such as: 
Fourier analysis, wavelets, neural networks, model-based 
techniques, and other statistical analysis [9-13]. The accuracy 
of these algorithms depends on the clarity and quantity of the 
data provided [14].  

Independent Component Analysis (ICA) is a fascinating 
computational method for separating a multivariate signal into 
additive subcomponents supposing the mutual statistical 
independence of the non-Gaussian source signals [28-30]. It is 
a special case of blind source separation, and has many 
practical applications. It has received great attention in a 
variety of areas such as image processing [15-16], biomedical 
engineering [17] and load estimation of power systems [18]. 
Our previous work [19] employed ICA to perform reliable 
insulation diagnosis and online source recognition of partial 
discharge for gas insulated substations. However, there are 
only a limited number of publications on the application of 
ICA to fault detection of induction motors. 

The trend in varying applications has been to automate the 
analysis of the measured signals by incorporating expert 
systems or neural networks into the online monitoring 
schemes to detect only single fault condition [5, 34]. There are 
many researchers studying the fault classification or diagnosis 
using fuzzy neural network (FNN). FNN has been used in 
detecting weld defects [20], fault diagnosis of power 
transformers [21], and other classification problems [22-27]. 
Employing FNN to detect or classify motor faults is rarely 
reported. 

This paper exploits the ability of ICA for extracting the 
intrinsic features of the signals to compress the signals to a 
smaller working set [19].  It also exploits the classification 
ability of FNN [25-27] for handling uncertainties.  An 
integration of these two techniques is thus proposed for 
detecting and classifying the bearing fault and broken rotor 
bar of induction motors.  The procedure of the proposed 
scheme is shown in Fig. 1. ICA is employed to analyze the 
stator current and to compute the healthy and faulty motor 
signatures using the stator current waveforms collected from 
laboratory motors. These signatures are further analyzed by 
FNN for fault detection of induction motors. Experiment 
results show that the proposed method is robust and effective. 

ICA

FNN

ICA

FNN

Fig. 1 Layout of the Proposed Scheme               
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This paper is organized into six sections. Section 2 outlines 
the proposed scheme and presents the setup of fault detection, 
classification and monitoring on laboratory motors. Section 3 
describes the ICA technique used for healthy and faulty 
current analysis, followed by the classification procedure of 
FNN presented in Section 4. In Section 5, the results of 
healthy and faulty signatures under no load are discussed and 
compared with results obtained under varying loads. The 
robustness and performance of this method demonstrate the 
potentials of the proposed approach for the online fault 
detection and diagnosis of industrial motors. Section 6 
concludes the paper.

II. LAYOUT OF PROPOSED SCHEME AND
EXPERIMENTAL SETUP 

A. Layout of the Combined ICA and FNN Scheme  
As shown in Fig.1, the independent component features 

extracted by ICA are inputted to train the FNN and tune its 
parameters and structure and provide classification of 
induction-motor faults. 

B. Experimental Setup 
Fig. 2 shows the experimental setup for collecting healthy 

and faulty stator current waveforms from one healthy motor, 
one motor with broken rotor bars, and one motor with faulty 
bearing. The three motors are of the same model, being 3-
phase 4-pole and rated at 1.1KW, 420 V and 50 Hz.   During 
test, each motor drives a DC generator loaded with a variable 
resistance. The stator currents are sampled by a digital 
oscilloscope at a frequency of 500MHz.  

Computer

Digital Oscilloscope

Induction Motor

Power supply

Load

Computer

Digital Oscilloscope

Induction Motor

Power supply

Load

Fig. 2 Laboratory Setup for Fault Detection & Classification of 
Induction-motor Faults 

III. HEALTHY & FAULTY CURRENT ANALYSIS BY ICA
A. Principle of ICA  

ICA is a method to find underlying factors or components 
from multivariate statistical data [28]. One of the promising 
applications of ICA is feature extraction [19]. The popular 
way of formulating the ICA algorithm is to consider the 
estimation of the following generative model from the data 
[28-31] 

Asx                                      (1) 
where x  is an observed m-dimensional vector, s is an n-

dimensional random vector whose components are assumed 
mutually independent, and A  is a constant nm matrix to 
be estimated. It is usually further assumed that the dimensions 
of x  and s  are equal. 

Taking a set of measured signal vector, x , and extracting 
from them a set of statistically independent components, y ,
thus the ICA problem is formulated as [31]  

Wxy                                      (2) 

The matrix W , defining the transformation matrix, is then 
obtained as the inverse of the estimate of the matrix A .

It is particularly interesting to express mutual information 
I using negentropy, constraining the variables to be 
uncorrelated [29, 33 & 35]: 

i
in yJyJyyyI )()(),...,,( 21                        (3) 

The definition of negentropy, J , is given by 
)()()( yHyHyJ gauss                              (4) 

where gaussy is a Gaussian random variable with the same 

covariance matrix as y .
Because mutual information is the information-theoretic 

measure of the independence of random variables, it is 
naturally used as the criterion to obtain the decomposition in 
terms of independent components. Most ICA methods are 
based on the minimization or maximization of an objective 
function [28-33 & 35]. This makes them exhibiting a 
drawback: each run yields slightly different results [33].  

In this paper, a modified ICA method is employed to avoid 
the drawbacks for the detection of the motor faults. ICA is 
applied many times to extract the independent components 
from extended data. The most independent components are 
selected from all the results and kept as the global 
independent components to compress the measured data to the 
smaller data sets, which are formed by projecting the 
measured signal onto the directions of the most independent 
components [19].   

The process of ICA-based feature extraction is carried out 
in 2 stages, namely: the identification of the most dominating 
independent components and the feature extraction.  
B. Identification of Most Dominating Independent 
Components  

The ICA algorithm is adopted to find all the independent 
components from a chosen set of measured signals. ICA 
extracts the independent components from the measured 
signals. The components are time series with the same length 
and unit as the measured signals.  Using more signals should 
result in the same set of dominating independent components 
[19]. After performing ICA on the chosen sets of signals, the 
independent components are obtained as shown in Fig. 3(b). 
The total number of independent components is the same as 
the number of chosen signal sets. 

Each component in Fig. 3(b) is calculated from all the 
chosen signals shown in Fig.3 (a). On the other hand, each 
chosen set of signals 6,...2,1ixi can be represented as a 
linear combination of all the independent components [19]: 

6

1
, 6,...,2,1,

j
jjii iICAx                (5) 
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jIC  is the thj  independent component that has a size of 

501001 , where j runs from 1 to the number of 
independent components. 
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Fig.3. Typical Signals and Independent Components 

(a1)- (a2): Healthy; (a3)-(a4): Bearing; (a5)-(a6): Broken Rotor Bar  
 (b1)- (b6): Independent Components 

C. Feature Extraction of Stator current Signals by ICA 
Each set of selected signals as in Fig. 3 (a) has a length of 

50100 elements. It is highly desirable to compress the 
measured set to a smaller working set in order to improve the 
efficiency of on line classification without sacrificing much of 
the discriminating power of the original signals [19]. In order 
to reduce the complexity of the involved problem, two most 
dominating independent components are being identified with 
the calculation of the projection variance. The variance of the 
projections onto the thp  independent component is defined 
as [19]:  

          
26

1
,5

1
i

ppip uaVar              (6) 

where pia ,  is the projection of thi signal set on the 

direction of thp  component, pu is the mean of the 

vector ],...,,[ ,6,2,1 ppp aaa . As a result, only two independent 
components with the biggest variance are selected as the most 
dominating independent components. 

All the measured signals, which describe three types of 
motor conditions, are compressed into a smaller working data 
by projecting them onto the two most dominating independent 
components by the equation [19]: 

T
nmnm ICASignalICF ,                           (7) 

where 2,1;,...,2,1 nNm ; nmICF ,  are the 

independent component features of the signals. mSignal  is 

the thm measured signal and T
nICA  is the most dominating 

independent component.  
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Fig. 4 FNN Structure 

IV. HEALTHY & FAULTY PATTERN CLASSIFICATION
USING FUZZY NEURAL NETWORK 

The FNN aims to achieve robust and online classification 
of data. Independent component features are used to train and 
to test the FNN for classifying between the healthy & faulty 
patterns. 
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Fig. 5 FNN Membership Functions 

FNN has been successfully used for prediction, detection 
and classification [20-27]. The FNN structure as shown in Fig. 
4 is described in [24-26]. In this paper, the input layer of the 
FNN has more than two neurons if the number of input 
variables of the antecedent is more than two. The output layer 
of it has only one output neuron. The number of membership 
functions of every input is 3 or more than 3 as the problem 
became more complicated. The Gaussian membership 
functions are selected as input membership function in this 
FNN.
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Fig. 5 presents the membership functions of the FNN. Fig. 
5 (a1) and (a2) represent the membership function of the two 
input of its initial structure. Fig. 5 (b1) and (b2) represent the 
membership function of two inputs of the FNN structure after 
being trained using the healthy and faulty patterns of motor 
signals. Fig. 6 illustrates the training curve of the FNN. The 
training usually converges in less than 20 epochs. Details 
about the motor fault detection will be discussed in the next 
sections. 

V. RESULTS AND DISCUSSIONS 
As shown in Table I, there are 30 sets of no-load (level 0) 

signals and 15 sets of signals under each other load level (1-5) 
to be collected from each of the healthy motor, the motor with 
bearing fault, and the motor with broken rotor bars.  
Altogether, 315 set of the data are collected. 

Fault detection results based on ICA and FNN are 
presented and discussed. Different lengths of signal data are 
obtained by setting different sample rates. However, all 
measured signals are preprocessed and a fixed number of 
50100 samples are packed in each data set for analysis by ICA 
& FNN for a common basis of comparisons.  

TABLE I. DATA USED IN STUDY 

Motor Load level Number of the 
signals 

0 30 
1 15 
2 15 
3 15 
4 15 

Healthy 

5 15 
0 30 
1 15 
2 15 
3 15 
4 15 

Bearing fault 

5 15 
0 30 
1 15 
2 15 

Broken rotor bars 

3 15 

4 15 
5 15 

(A) Health & Fault Signatures Generated by ICA 
Figs. 3(a1)-(a2), 3(a3)-(a4) & 3(a5)-(a6) each shows two 

typical signals measured from the three motors. It is difficult 
to use visual examination for detecting the respective motor 
fault from these signals. In contrast, the task would be much 
easier by visually examining the waveforms of the most 
dominating independent components, as shown in Figs. 3(b1)-
(b2), 3(b3)-(b4) & 3(b5)-(b6), as these waveforms have now 
contained the most essential information about the health or 
fault signature of each motor.  

Using Eqn. 7, these waveforms are each compressed into a 
feature which also preserves the essential information about 
the healthy or fault signature of each motor as shown in Figs. 
7 & 8.  Only the two most dominating independent 
components are sufficient for representing the health or fault 
signature of each motor. Great dimensional reduction is thus 
achieved, as only 630 (=2 features per data set x 315 data sets) 
features are needed to represent all the health or fault 
signatures.  As shown in Figs. 7 & 9, the fault detection is 
reliable and robust under all six load levels of the motors. The 
ICA is thus seen to be an ideal candidate for detecting faults 
on motors running with changing loads.  

                    Fig. 7 No-load Healthy & Faulty Signatures     

Increasing loadIncreasing load

Fig. 8 On-load Healthy & Faulty Signatures 
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(B) Fault Classification by FNN 
The FNN is trained using 1/3 of the 90×2 features of the 

three motors under no-load. Training converges in less than 
20 epochs. As illustrated in Fig. 9, the number of 
misclassified patterns in the test is zero. The FNN is then 
trained using 1/3 of all the 315×2 features extracted from all 
three motors running under all six load levels. The training 
converges in 20 epochs. As shown in Fig. 10, there are 2 
misclassified patterns. After increasing the number of 
membership functions of every input to 5, the number of 
misclassified patterns is zero as shown in Fig. 11. 
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Table II shows the improved classification accuracies with 
other increased numbers of membership functions in its two 
inputs. The observation is consistent with those made in our 
previous paper and other literature. 

TABLE  II CLASSIFICATION WITH
DIFFERENT NUMBER OF MEMBERSHIP FUNCTIONS IN ITS INPUTS 

The number of the 
membership 
functions about 
the two inputs 

Training
convergence 
time(s) at the 
20th epoch 

Number of the 
misclassified 
patterns on the 
test

2, 2 0.04 2/315 
3, 3 0.09 2/315 
4, 4 0.19 1/315 
5, 5 0.37 0/315 
6, 6 0.67 0/315 

VI. CONCLUSIONS 
A new scheme for online fault detection of induction 

motor is presented. This scheme utilizes ICA to extract the 
signatures of the stator currents under different loads and 
FNN to classify motor faults in on-line environment. Signals 
taken from the stator currents are analyzed by an improved 
ICA and the most dominating independent components are 
extracted over an extended data set. After training, the FNN is 
demonstrated to provide robust, fast, flexible and reliable fault 
detection on induction motors under varying load conditions, 
which is suited for online applications. 

Our work is being extended to induction motors being fed 
from inverters, which supply noise-corrupted voltages at 
variable frequencies.  Our initial results are promising, and 
details about this phase of work will be reported soon. 
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