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A Unified Market Model for

Swaptions and Constant Maturity Swaps

Chyng Wen Tee*† Jeroen Kerkhof‡§

Abstract

Internal-rate-of-return (IRR) settled swaptions are the main interest rate volatility instruments in

the European interest rate markets. Industry practice is to use an approximation formula to price IRR

swaptions based on Black model, which is not arbitrage-free. We formulate a unified market model to

incorporate both swaptions and constant maturity swaps (CMS) pricing under a single, self-consistent

framework. We demonstrate that the model is able to calibrate to market quotes well, and is also able

to efficiently price both IRR-settled and swap-settled swaptions, along with CMS products. We use the

model to illustrate the difference in implied volatilities for IRR-settled payer and receiver swaptions,

the pricing of zero-wide collars and in-the-money (ITM) swaptions, the implication on put-call parity,

and the issue of negative vega. These findings offer important insights to the ongoing reform in the

European swaption market.
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1 Introduction

European interest rate markets trade internal-rate-of-return (IRR) settled swaptions as the main inter-

est rate volatility instrument. In the market only at-the-money (ATM) straddles and out-of-the-money

(OTM) payers and receivers are liquidly quoted to be usable as calibration instruments. Unlike the dol-

lar market in the USA which trades swap-settled swaptions, and can be readily priced by a closed-form

formula via a Black model (Black 1976 and Jamshidian 1997), simplifying assumptions are required

for the euro, sterling, and Swiss franc markets in Europe, which are not arbitrage-free. Nevertheless,

the difference between IRR-settled and swap-settled swaptions is often incorrectly considered to be

minor, hence an approximation formula based on Black model is generally used to price IRR-settled

swaptions across the industry. This pricing framework is not self-consistent, and Mercurio (2008)

and Henrard (2010) have established mathematically that the standard approximation formula is not

arbitrage-free when applied to IRR-settled swaptions.

IRR-settled swaptions are settled in cash, based on the value of the payoff observed on the maturity

date. For this reason IRR-settled swaptions in the European markets are also commonly referred to

as “cash-settled swaptions”. However, we point out that swap-settled swaptions can also be settled

either via a physical swap or by cash. In fact, it is common for swap-settled swaptions in the USD

market to be cash-settled. Hence, in this paper, we adopt the naming convention of “IRR-settled”

and “swap-settled” for greater clarity.

After the European swaption market reform in 20181, market makers have been quoting both

swap-settled and IRR-settled swaptions, alongside zero-wide collars and constant maturity swaps

(CMS) products, without a unified model to price all of these instruments within a single framework.

Over the last few years, the volume of traded swap-settled swaptions in the euro market has steadily

increased. Today, approximately 80% of newly traded swaptions are already of the swap-settled type.

Going forward, the volume of IRR-settled swaptions will likely continue to decline. Nevertheless, there

is a large volume of existing IRR-settled swaptions which will still need to be valued and risk-managed

until their expiry.

The standard approach to swaption and CMS pricing is to first formulate a market model for swap-

settled swaptions before extending it to handle IRR-settled swaptions by means of an approximation
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formula. This extension involves arbitrage-prone assumptions. CMS products are then priced by

performing convexity correction or static replication.

Two major simplifying assumptions are required to arrive at the approximation formula used

widely in the industry to price IRR-settled swaptions. First, the concave and convex nature of the IRR-

settled payer and receiver swaption payoffs, respectively, are ignored when evaluating the expectation

of the swaption payoffs. Second, the expectations are evaluation under a risk-neutral measure that

is not associated to the chosen numeraire (Section 2 for further discussions). Making these two

simplification allows one to recover the standard Black formula for IRR-settled swaption pricing.

There is a strong preference among practitioners to use a market model based on Black formula to

price swaptions in a quick and efficient manner, since swaptions serve as the basis to value exotic

interest rate volatility products. The standard market model used in the swaption market is the

stochastic alpha-beta-rho (SABR) model (Hagan et al. 2002), which provides an analytical expression

for the implied Black volatility. This can then be readily substituted to the Black formula to obtain

the swaption price. Although this approach is exact and accurate for swap-settled swaptions, it is

only an approximation when applied to IRR-settled swaptions due to the simplification involved.

The approximation formula based on Black model used in the industry leads us to a number of

incorrect conclusions in terms of IRR-settled swaption pricing (Tee & Kerkhof 2014). First, according

to the approximation formula, the IRR-settled ATM payers and ATM receivers will have identical

price, which leads to the zero-wide collar pricing problem. Second, the approximation formula

cannot distinguish the difference between the implied volatilities for IRR-settled payers and receivers,

which in turn leads to the in-the-money (ITM) swaptions pricing problem. Third, based on the

approximation formula, an increase in volatilities always lead to an increase in swaption prices. In

reality, this is not always the case, which lead to the negative vega problem. We will demonstrate in

this paper that a unified market model can be formulated to address and resolve all three issues listed

here in a consistent manner.

Moreover, market has been quoting zero-wide collars struck at the forward swap rates at a non-

zero premiums since 2015, which is incompatible with the approximation formula. An important work

Cedervall & Piterbarg (2012) triggered the transformation of how industry prices these products. Both
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Lutz (2015) and Feldman & Portheault (2017) investigate the pricing problem of zero-wide collars and

realize that for IRR-settled swaptions, zero-wide collars worth should not be worth zero in general. As

Pietersz & Sengers (2017) point out, apart from full-fledged term-structure models, a simple arbitrage-

free model to consistently value IRR-settled swaptions has been lacking so far. This lack of an efficient

market model to price IRR-settled swaptions consistently has impacted market liquidity. For instance,

Lutz (2015) points out that liquidity for euro ITM IRR-settled swaptions virtually disappeared due

to uncertainty about the proper pricing of those products. He also examines an alternative pricing

approach in the form of a terminal swap rate model. On the other hand, Pietersz & Sengers (2017)

try to solve this problem by postulating that the swap-annuity numeraire can be modeled as the

cash-annuity formula evaluated at a newly introduced discount forward swap rate—this additional

degree-of-freedom introduced is used to calibrate to market prices. Another alternative approach

explored by Bermin & Williams (2017) is to formulate an arbitrage-free pricing model within the

Markov functional modeling framework to tackle the pricing problem of IRR-settled swaptions and

CMS. They also apply their model to investigate the extent of convexity adjustment and forward

sensitivity. The importance of change of measure as the main component for consistent market price

formation has been further studied in Feldman (2020).

In this paper, we formulate a unified pricing framework in the form of a displaced-diffusion

stochastic volatility model to handle swap-settled and IRR-settled swaptions along with CMS products

in a consistent and arbitrage-free manner. We demonstrate how it can be calibrated to observable

market swaptions and CMS product quotes. Our framework is able to handle the whole range of swap

and CMS markets derivatives without any arbitrary adjustment or simplification. To ensure efficiency,

we use an expansion method to obtain semi-analytical pricing formulae.

Using our unified market model, we demonstrate that IRR-settled ATM payers and receivers are

not worth the same, and zero-wide collar can be efficiently priced. We prove that payer and receiver

implied volatility curves ought to be separated—in other words, one cannot use the OTM implied

volatilities quoted in the market to value ITM IRR-settled swaptions via the approximation formula,

thereby resolving the ITM swaption pricing problem. We also use our unified framework to elaborate

how the two simplifying assumptions made in deriving the approximation formula used in the market
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lead to offsetting errors, resulting in a smaller overall error. This explains why the market has been

able to use the approximation formula without incurring large discrepancies. Finally, we demonstrate

the existence of negative vega in IRR-settled swaptions.

This paper is organized as follows: Section 2 presents an overview of the swap market model,

the approximation and simplifying assumptions required to handle IRR-settled swaptions, and how

convexity correction for CMS can be calculated by a replication approach. In Section 3, we formulate

a unified market model for both swaptions and CMS markets. We also derive semi-analytical pric-

ing formulae for our model based on an expansion method. We present a number of key analyses

and results in Section 4, where numerous important insights including the pricing of ITM swap-

tions and zero-wide collars, the implication on put-call parity, and negative volatility sensitivities are

expounded. Finally, conclusions are drawn in Section 5.

2 Swap Market Model

Market models can be defined as the family of models that takes observable market interest rates, for

instance the swap rate or the LIBOR rate, as the basis for modeling. The main advantage of using this

approach is that standard pricing formulae based on Black model can be used to price liquid vanilla

instruments. Market models generally postulate a geometric Brownian motion for the market rates

under consideration. This approach is formalized after the LIBOR Market Model (LMM) (Miltersen,

Sandmann & Sondermann 1997 and Brace, Gatarek & Musiela 1997) and the Swap Market Model

(SMM) (Jamshidian 1997) were introduced.

Although it is possible to price swap- and IRR-settled swaptions, along with CMS products, in a

consistent and arbitrage-free framework using a short rate model like the Hull-White model (Hull &

White 1990) or a term structure model like the Heath-Jarrow-Morton model (Heath, Jarrow & Morton

1992), practitioners prefer to use market models for liquid volatility instruments, given that market

models are generally more straightforward to calibrate and price, and can fit the volatility smile

profiles better. Moreover, market model avoid having to work on unobservable instantaneous spot or

forward interest rate processes, and is therefore more intuitive.
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2.1 Market Quoting Convention

The swaption market convention is to quote at-the-money (ATM) straddles along with out-of-the-

money (OTM) payers and receivers across a range of strikes — typically ATM ±300 bps (basis points),

with 50 bps spacing between adjacent strikes. The ATM strike is defined as the value of the forward

swap rate evaluated under the swap annuity risk-neutral measure. As Jamshidian (1997) points out,

the natural martingale measure of the swap rate is the risk-neutral measure associated with the swap

annuity numeraire. Consequently, the ATM point is by definition always the expected forward swap

rate evaluated under the swap annuity measure. The quotes provided by swaption brokers can be

either premium or implied volatility, calculated based on a pre-determined discounting convention

(frequently overnight index swap (OIS)). After the 2007-2009 Global Financial Crisis, market has

switched to OIS discounting for collateralized trades (Bianchetti & Carlicchi 2013). In-the-money

(ITM) quotes—low strike payers and high strike receivers—are not readily available, and need to

be priced independently by the trading desks. For swap-settled swaptions, the ITM payers and

receivers can be priced using the same implied volatility as the OTM swaption of the same strike and

maturity. However, this is not the case for IRR-settled ITM swaptions. We will explain in subsequent

sections that IRR-settled ITM swaptions need to be determined using a pricing model. Given that

IRR-settled swaptions are the main interest rate volatility instruments in the European markets, this

has important implication for institutional traders holding large swaption portfolio, as their daily

interest rate portfolio mark-to-market will include a large number of ITM swaptions, whose prices are

model-dependent.

Let K denote the strike of a swaption, and let Vp(K) and Vr(K) denote the price of a receiver

and payer swaptions struck at K , respectively. Exhibit I tabulates the liquid market instruments in

the EUR swaption market that can be used for model calibration. There are brokers screens for ATM

swaptions’ implied normal volatilities of both swap- and IRR-settlement types (Panel A). For volatility

smile, there are broker quotes for for ATM-200bps to ATM+200bps across different expiry-tenor

pairs (Panel B). In addition to these, there are also forward premium quotes for zero-width collars and

straddles for IRR-settled swaptions (Panel C). Overall there is a rich set of liquid swaption market

data available for model calibration.

6

Electronic copy available at: https://ssrn.com/abstract=3441544



Exhibit I: Quoting Convention in the EUR Swaption Market

Panel A: ATM Swaptions (Normal Volatilities)

Tenors

1Y 2Y 3Y 4Y 5Y · · · 10Y 15Y 20Y 25Y 30Y

E
xp

ir
ie
s

1M σ1m1y σ1m2y σ1m3y σ1m4y σ1m5y · · · σ1m10y σ1m15y σ1m20y σ1m25y σ1m30y

2M σ2m1y σ2m2y σ2m3y σ2m4y σ2m5y · · · σ2m10y σ2m15y σ2m20y σ2m25y σ2m30y

3M σ3m1y σ3m2y σ3m3y σ3m4y σ3m5y · · · σ3m10y σ3m15y σ3m20y σ3m25y σ3m30y

6M σ6m1y σ6m2y σ6m3y σ6m4y σ6m5y · · · σ6m10y σ6m15y σ6m20y σ6m25y σ6m30y

9M σ9m1y σ9m2y σ9m3y σ9m4y σ9m5y · · · σ9m10y σ9m15y σ9m20y σ9m25y σ9m30y

1Y σ1y1y σ1y2y σ1y3y σ1y4y σ1y5y · · · σ1y10y σ1y15y σ1y20y σ1y25y σ1y30y

18M σ18m1y σ18m2y σ18m3y σ18m4y σ18m5y · · · σ18m10y σ18m15y σ18m20y σ18m25y σ18m30y

2Y σ2y1y σ2y2y σ2y3y σ2y4y σ2y5y · · · σ2y10y σ2y15y σ2y20y σ2y25y σ2y30y

3Y σ3y1y σ3y2y σ3y3y σ3y4y σ3y5y · · · σ3y10y σ3y15y σ3y20y σ3y25y σ3y30y

4Y σ4y1y σ4y2y σ4y3y σ4y4y σ4y5y · · · σ4y10y σ4y15y σ4y20y σ4y25y σ4y30y

5Y σ5y1y σ5y2y σ5y3y σ5y4y σ5y5y · · · σ5y10y σ5y15y σ5y20y σ5y25y σ5y30y

6Y σ6y1y σ6y2y σ6y3y σ6y4y σ6y5y · · · σ6y10y σ6y15y σ6y20y σ6y25y σ6y30y

7Y σ7y1y σ7y2y σ7y3y σ7y4y σ7y5y · · · σ7y10y σ7y15y σ7y20y σ7y25y σ7y30y

10Y σ10y1y σ10y2y σ10y3y σ10y4y σ10y5y · · · σ10y10y σ10y15y σ10y20y σ10y25y σ10y30y

12Y σ12y1y σ12y2y σ12y3y σ12y4y σ12y5y · · · σ12y10y σ12y15y σ12y20y σ12y25y σ12y30y

15Y σ15y1y σ15y2y σ15y3y σ15y4y σ15y5y · · · σ15y10y σ15y15y σ15y20y σ15y25y σ15y30y

20Y σ20y1y σ20y2y σ20y3y σ20y4y σ20y5y · · · σ20y10y σ20y15y σ20y20y σ20y25y σ20y30y

25Y σ25y1y σ25y2y σ25y3y σ25y4y σ25y5y · · · σ25y10y σ25y15y σ25y20y σ25y25y σ25y30y

30Y σ30y1y σ30y2y σ30y3y σ30y4y σ30y5y · · · σ30y10y σ30y15y σ30y20y σ30y25y σ30y30y

2.2 Pricing Swap-Settled Swaption

In this section, we review the standard market approach of using the SABR model for swap-settled

swaptions pricing. We will then point out the discrepancies in applying the same model to price

IRR-settled swaptions, and how the approximation formula used widely in the market is derived by

making two simplifying assumptions.

A swap-settled payer swaption (denoted here as V Swp
p ) can be priced as

V Swp
p (0,K) = E∗

[
e−

∫ T
0 rt dtAp(T )(S(T )−K)+

]
. (2.1)

Note that receiver swaptions can be priced in the same way. We will use payer swaptions throughout

this paper to illustrate the pricing models discussed. Here, rt is the spot rate at time t, and Ap is the
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Panel B: Swaption Volatility Smile (Normal Volatilities)

Tenor-Expiry −200 −100 −50 −25 ATM 25 50 100 200

1Y 1Y σATM−200
1y1y σATM−100

1y1y σATM−50
1y1y σATM−25

1y1y σATM
1y1y σATM+25

1y1y σATM+50
1y1y σATM+100

1y1y σATM+200
1y1y

3M2Y σATM−200
3m2y σATM−100

3m2y σATM−50
3m2y σATM−25

3m2y σATM
3m2y σATM+25

3m2y σATM+50
3m2y σATM+100

3m2y σATM+200
3m2y

2Y 2Y σATM−200
2y2y σATM−100

2y2y σATM−50
2y2y σATM−25

2y2y σATM
2y2y σATM+25

2y2y σATM+50
2y2y σATM+100

2y2y σATM+200
2y2y

1Y 5Y σATM−200
1y5y σATM−100

1y5y σATM−50
1y5y σATM−25

1y5y σATM
1y5y σATM+25

1y5y σATM+50
1y5y σATM+100

1y5y σATM+200
1y5y

5Y 5Y σATM−200
5y5y σATM−100

5y5y σATM−50
5y5y σATM−25

5y5y σATM
5y5y σATM+25

5y5y σATM+50
5y5y σATM+100

5y5y σATM+200
5y5y

3M10Y σATM−200
3m10y σATM−100

3m10y σATM−50
3m10y σATM−25

3m10y σATM
3m10y σATM+25

3m10y σATM+50
3m10y σATM+100

3m10y σATM+200
3m10y

1Y 10Y σATM−200
1y10y σATM−100

1y10y σATM−50
1y10y σATM−25

1y10y σATM
1y10y σATM+25

1y10y σATM+50
1y10y σATM+100

1y10y σATM+200
1y10y

2Y 10Y σATM−200
2y10y σATM−100

2y10y σATM−50
2y10y σATM−25

2y10y σATM
2y10y σATM+25

2y10y σATM+50
2y10y σATM+100

2y10y σATM+200
2y10y

5Y 10Y σATM−200
5y10y σATM−100

5y10y σATM−50
5y10y σATM−25

5y10y σATM
5y10y σATM+25

5y10y σATM+50
5y10y σATM+100

5y10y σATM+200
5y10y

10Y 10Y σATM−200
10y10y σATM−100

10y10y σATM−50
10y10y σATM−25

10y10y σATM
10y10y σATM+25

10y10y σATM+50
10y10y σATM+100

10y10y σATM+200
10y10y

15Y 15Y σATM−200
15y15y σATM−100

15y15y σATM−50
15y15y σATM−25

15y15y σATM
15y15y σATM+25

15y15y σATM+50
15y15y σATM+100

15y15y σATM+200
15y15y

10Y 20Y σATM−200
10y20y σATM−100

10y20y σATM−50
10y20y σATM−25

10y20y σATM
10y20y σATM+25

10y20y σATM+50
10y20y σATM+100

10y20y σATM+200
10y20y

5Y 30Y σATM−200
5y30y σATM−100

5y30y σATM−50
5y30y σATM−25

5y30y σATM
5y30y σATM+25

5y30y σATM+50
5y30y σATM+100

5y30y σATM+200
5y30y

Panel C: Zero-Width Collars & Straddles (Premium)

Forward Premium (cash settlement)

Zero-Width Collar ATM Straddle

2y 5y 10y 20y 30y 2y 5y 10y 20y 30y

1y V Col
1y2y V Col

1y5y V Col
1y10y V Col

1y20y V Col
1y30y V Col

1y2y V Col
1y5y V Col

1y10y V Col
1y20y V Col

1y30y

2y V Col
2y2y V Col

2y5y V Col
2y10y V Col

2y20y V Col
2y30y V Col

2y2y V Col
2y5y V Col

2y10y V Col
2y20y V Col

2y30y

5y V Col
5y2y V Col

5y5y V Col
5y10y V Col

5y20y V Col
5y30y V Col

5y2y V Col
5y5y V Col

5y10y V Col
5y20y V Col

5y30y

10y V Col
10y2y V Col

10y5y V Col
10y10y V Col

10y20y V Col
10y30y V Col

10y2y V Col
10y5y V Col

10y10y V Col
10y20y V Col

10y30y

15y V Col
15y2y V Col

15y5y V Col
15y10y V Col

15y20y V Col
15y30y V Col

15y2y V Col
15y5y V Col

15y10y V Col
15y20y V Col

15y30y

20y V Col
20y2y V Col

20y5y V Col
20y10y V Col

20y20y V Col
20y30y V Col

20y2y V Col
20y5y V Col

20y10y V Col
20y20y V Col

20y30y

swap annuity, defined as

Ap(0) =

N×m∑
i=1

∆i−1D(0, Ti), (2.2)

where N is the swap tenor in number of years, m is the payment frequency per year, ∆i−1 is the day

count fraction for the period starting at Ti−1 and ending at Ti, and D(0, Ti) is the discount factor

representing the present value at time 0 of 1 unit of currency on Ti. The expectation of the swaption

payoff in Equation (2.1) is evaluated under the risk-neutral measure Q∗ associated with the money-

market account B(t) = B(0)e
∫ t
0 rudu. In Swap Market Model, it is more convenient to work under

QA, the risk-neutral measure associated with the swap annuity as the choice of numeraire (de Jong,
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Driessen & Pelsser 2001). Using the Radon-Nikodym derivative

dQA

dQ∗
=

Ap(T )/Ap(0)

B(T )/B(0)
=

Ap(T )/Ap(0)

e
∫ T
0 rt dt

(2.3)

we can apply Girsanov’s theorem to change the measure from Q∗ to QA:

V Swp
p (0,K) = EA

[
dQ∗

dQA
e−

∫ T
0 rt dtAp(T )(S(T )−K)+

]
= Ap(0)EA

[
(ST −K)+

]
, (2.4)

where the expectation is now taken under the risk-neutral measure QA, associated with the swap

annuity numeraire Ap. It should be clear that the forward swap rate is a martingale under the

measure QA, i.e. EA[S(T )] = S(0), which can be calculated directly from the discount curve D(·, ·)

fitted to the interest rate swap market.

As Pugachevsky (2001) has demonstrated, choosing the appropriate martingale measure to work in

is important. Forward swap rates under the risk-neutral measure associated with the swap annuity are

used in pricing forward starting swaps and swaptions, although the same rates under the risk-neutral

measure associated with the zero-coupon discount bond becomes forward CMS rates to be used to

price CMS swaps and CMS caps and floors. In the next section (Section 3), we will show how the

unifying model can handle this and price both swaptions and CMS products in the same framework.

Swap-settled swaptions can be priced directly by evaluating the expectation of their payoffs under

the risk-neutral measure QA, and we can obtain closed-form formulae. To this end, we postulate a

stochastic model for the swap rate S(t) in the form of a Swap Market Model (SMM)

dS(t) = σS(t)dWA(t), (2.5)

where σ is the lognormal volatility, and WA(t) ∼ N(0, t) is a standard Brownian motion under the

risk-neutral measure QA, associated with the physical swap annuity numeraire Ap(0). Since this is

essentially the Black model for the forward swap rate, the SMM yields closed-form analytical pricing

formulae for swap-settled swaptions in the form of

V Swp
p (0,K) = Ap(0)

[
S(0)Φ(d1)−KΦ(d2)

]
V Swp
r (0,K) = Ap(0)

[
KΦ(−d2)− S(0)Φ(−d1)

] (2.6)
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where

d1 =
log S(0)

K + 1
2σ

2T

σ
√
T

, d2 = d1 − σ
√
T , (2.7)

and Φ(·) denote the cumulative distribution function for the standard normal distribution.

In the swaption markets, the stochastic alpha-beta-rho (SABR) model proposed by Hagan et al.

(2002) is the standard market model used for swaptions pricing. The main advantage of SABR model

lies in its ability to express implied volatility as a closed-form analytical formula, allowing swaptions

to be priced in a quick and efficient manner. Being able to value swaption portfolio efficiently using

analytical formulae is important, as swaptions are used as the basis to price more exotic products,

including Bermudan swaptions, callable swaps, spread options, and others. Having an analytical

expression for swaption prices significantly speeds up the pricing speed of exotic payoffs. The SABR

model postulates that
dS(t) = α(t)S(t)βdWA

1 (t)

dα(t) = να(t)dWA
2 (t)

〈
dWA

1 (·), dWA
2 (·)

〉
(t) = ρ dt (2.8)

where WA
1 (t) and WA

2 (t) are correlated Brownian motions under the risk-neutral measure QA, with

a correlation coefficient of ρ. In addition, β is the constant elasticity of variance parameter, also

commonly referred to as the “backbone” parameter, α(t) is the stochastic volatility with α(0) = α,

and ν is the volatility of volatility. A Black model implied volatility can be obtained for this model,

which is given by (Hagan et al. 2002):

σSABR =
α

(S(0)K)(1−β)/2
{

1 + (1−β)2

24 log2
(
S(0)
K

)
+ (1−β)4

1920 log4
(
S(0)
K

)
+ · · ·

}
× z

x(z)
×
{

1 +

[
(1− β)2

24

α2

(S(0)K)1−β +
1

4

ρβνα

(S(0)K)(1−β)/2
+

2− 3ρ2

24
ν2

]
T + · · ·

(2.9)

where

z =
ν

α
(S(0)K)(1−β)/2 log

(
S(0)

K

)
, (2.10)

and

x(z) = log

[√
1− 2ρz + z2 + z − ρ

1− ρ

]
. (2.11)
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Given this implied volatility, we can price swap-settled swaptions by substituting for this volatility in

place of σ in the Black formula in Equation (2.6).

The four SABR model parameters, α, β, ν, and ρ, can be calibrated to liquid swaption market

quotes by running the following optimization:

min
α, β, ν, ρ

n+k+1∑
i=1

(
V model(0,Ki)− V market(0,Ki)

)2
. (2.12)

In practice, it is common for the trading desks to select the β parameter according to the volatility

backbone in the swaption market (Zhang & Fabozzi 2016 for further discussion on this issue), and

only calibrate α, ν, and ρ to the swaption market, each of which will determine the level, slope, and

smile of the implied volatility surface, respectively.

Note that under SMM, swap-settled swaptions pricing can be expressed analytically in the form

of a Black formula. This is a major advantage, given the size of swaption portfolio and the use of

swaptions as basis for exotic product pricing, it is important to retain analytical tractability for liquid

vanilla products traded in large volume.

2.3 Pricing IRR-Settled Swaption

In this section, we will outline the approach widely adopted in the industry to price IRR-settled

swaptions. As mentioned in previous sections, two simplifying assumptions are required to arrive at

the approximation formula. However, given the efficiency of using the market model along with the

SABR implied volatility in pricing swap-settled swaptions, the same approach is used to price IRR-

settled swaptions, even though the two simplifying assumptions made are not arbitrage-free. Although

the industry on the whole is aware of the issues involved, the error incurred in the approximation

formula is often considered to be minor (Brigo & Mercurio 2006).

When market is quoting and trading cash-settled swaptions (denoted here as V IRR), the pricing

function becomes, under the forward risk-neutral measure QT ,

V IRR
p (0,K) = D(0, T )ET

[
Ac(S(T ))(S(T )−K)+

]
(2.13)
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where Ac is the IRR annuity defined as

Ac(S) =
N×m∑
i=1

1
m

(1 + 1
m · S)i

. (2.14)

Similar to the swap annuity in Equation (2.2), N is the number of years of the swap tenor and m is

the payment frequency. Here 1
m is the day count fraction. The expectation is evaluated under the

risk-neutral measure QT , associated with the discount factor D(0, T ) as numeraire, where 0 is the

pricing date, and T is the maturity date of the swaption.

It is standard market practice to price IRR-settled swaptions using the following approximation:

V IRR
p (0,K)

(1)
≈ D(0, T )Ac(S(0))ET

[
(S(T )−K)+

]
(2)
≈ D(0, T )Ac(S(0))EA

[
(S(T )−K)+

]
,

(2.15)

Compared to Equation (2.13), it is obvious that this approximation incurs two errors: (1) the concave

(convex) payoff profile of the IRR-settled payer (receiver) swaption is not accounted for when Ac(S(T ))

is approximated as Ac(S(0)), which is known today; and (2) the expectation is taken under the risk-

neutral measure QA instead of QT .

The reason for the first approximation is to retain analytical tractability. Market prefers to use

Black-like formulae for pricing due to its speed and efficiency, along with the intuitions practitioners

have built up over time in using them. If one were to keep Ac(S(T )) in the expectation, one will

no longer be able to obtain a closed-form expression. The reason for the second approximation is

to work under the martingale measure of the forward swap rate, even though this incurs an error, as

the forward swap rate is not a martingale under the risk-neutral measure QT measure. If we need to

evaluate the expectation under QT , the value of S(T ) will be unknown.

A common justification given for this approximation is as follows: the IRR-settled swaption can

also be expressed, via a change of measure, as

V IRR
p (0,K) = Ap(0)EA

[
D(T, T )Ac(T )

Ap(T )
(S(T )−K)+

]
. (2.16)

If one argues that the ratio of annuities D(T, T )Ac(T )/Ap(T ) is slow-varying and can be approxi-

mated as its initial value D(0, T )Ac(0)/Ap(0), then one obtains the market approximation formula.

There have also been attempts to model this ratio of annuities separately with a simple low-variance
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process, though it is often difficult to reconcile this simple process for the ratio of annuities with the

model for the swap rates.

2.3.1 Constant Maturity Swap (CMS) Payoffs

A CMS payoff pays a swap rate quoted in the market on a given date. The payment can be made either

in arrears or in advance, corresponding to the end or the start of each accrual period, respectively.

On top of that, a CMS payoff can also be capped or floored. The value of a CMS payoff is sensitive

to the shape of the distribution of the swap rate. In other words, the implied volatility smile profile

plays an important role in determining the convexity correction of CMS products.

It is well known that one can calculate the CMS rates by convexity adjustment or by static payoff

replication (Hagan 2003, Hunt & Kennedy 2000, and Andersen & Piterbarg 2010). Volatility smile

has a significant impact, which, in particular, cannot be ignored when pricing CMS swaps or options.

Boenkost & Schmidt (2009) demonstrated the importance of evaluating popular exotic interest rate

derivatives such as Libor-in-arrears caps or CMS caps by incorporating the volatility smile present

in the cap and swaption market. This section covers how CMS products can be priced by static

replication to ensure consistency with the volatility smile observed in the IRR-settled swaption market.

Pricing CMS products involve evaluating the payoffs under the risk-neutral measure QT . Since

this is not the natural martingale measure of the forward swap rate, convexity correction is required

to evaluate the expectation of the payoff. Different approaches have been formulated to perform

convexity correction for CMS payoffs. In this paper, we focus on the static replication method.

Note that unlike swap-settled swaptions, where the swap annuity Ap is sensitive to the entire

yield curve, IRR-settled swaptions can be thought of as contingent claims on the swap rate itself,

having an exposure solely to the swap rate ST , observed at time T . The seminal paper by Breeden

& Litzenberger (1978) connected option prices with no-arbitrage state prices, the equivalence of

discounted risk-neutral densities. Practical approaches of extracting or inferring the risk-neutral

densities using option prices were developed in Bakshi, Kapadia & Madan (2003) and Jiang & Tian

(2005). A historical review is provided in Zimmermann (2018). Here we outline the application of this

approach to the swaption market.
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Consider an IRR-settled payer swaption, which can be valued as

V IRR
p (K) = D(0, T )

∫ ∞
K

Ac(s)(s−K)+f(s) ds, (2.17)

where f(s) denote the risk-neutral probability density function of the forward swap rate under forward

measure QT . Differentiating twice with respect to strike K , we obtain an expression for the risk-

neutral density

f(K) =
∂2V IRR

p (K)

∂K2
× 1

D(0, T )Ac(K)
. (2.18)

The same result can also be obtained by differentiating the IRR-settled receiver swaption formula

twice. Now suppose we wish to value a CMS contract with the payoff g(S(T )) at time T , let h(K) =

g(K)/Ac(K), following Carr & Madan (2001), and choosing the rate L as the expansion point, we

can show that

V CMS
rate (0) = D(0, T )g(L) + h′(L)[V IRR

p (L)− V IRR
r (L)]

+

∫ L

0
h′′(K)V IRR

r (K) dK +

∫ ∞
L

h′′(K)V IRR
p (K) dK

(2.19)

where the derivatives of h(K) are given by

h(K) =
g(K)

Ac(K)

h′(K) =
Ac(K)g′(K)− g(K)A′c(K)

Ac(K)2

h′′(K) =
Ac(K)g′′(K)−A′′c (K)g(K)− 2A′c(K)g′(K)

Ac(K)2
+

2A′c(K)2g(K)

Ac(K)3
.

(2.20)

Choosing the expansion point to be at the forward swap rate, such that L = S(0), a CMS rate

payment (g(S) = S) for the swap rate at time T can be valued as

V CMS
rate (0) = D(0, T )S(0) +

∫ S(0)

0
h′′(K)V IRR

r (K)dK +

∫ ∞
S(0)

h′′(K)V IRR
p (K)dK (2.21)

using static replication, where

h′′(K) =
−A′′c (K) ·K − 2A′c(K)

Ac(K)2
+

2 ·A′c(K)2 ·K
Ac(K)3

. (2.22)

Based on the discussions in this section, we see that under SMM, swaptions can be priced via analyti-

cal formulae, while CMS products need to be evaluated in a one-dimensional integral. To be specific,
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the formulae for swap-settled swaptions are exact, but the formulae for IRR-settled swaptions involve

two simplifying assumptions and are not arbitrage-free. The evaluation of the CMS static replica-

tion integral over the full continuum of payer and receiver IRR-settled swaptions gives rise to the

sensitivity to the implied volatility smile profile.

3 Unified Market Model

For the European swaption markets which trade IRR-settled swaptions as the main interest rate

volatility instruments, the main limitation in the standard market approach outlined in the previous

section stems from formulating the model of the swap rate process by working under QA, the risk-

neutral measure associated with the swap annuity as numeraire. Jamshidian (1997) has shown that

the forward swap rate is the expectation of the CMS rate under the swap annuity measure, while

CMS swaps and caps require calculation of CMS under a different, forward measure. From Equation

(2.13), we can see that this is also the same measure used for IRR-settled swaption pricing. Instead of

working under the risk-neutral measure QA (which is the case for Swap Market Model), we define the

unified market model as

dS(t) = S(t)(θ(t)dt+ σdW T (t)), (3.1)

where W T (t) is a standard Brownian motion under QT , which is the forward risk-neutral measure

associated with the discount bond D(0, T ). Note that the swap rate S(0) is not a martingale under

QT , hence a drift rate of θ(t) is included in the model, which is a deterministic function of time.

Using this model, we want to value the IRR-settled payer swaptions by evaluating the expectation:

V IRR
p (0,K) = D(0, T )ET [Ac(S(T ))(S(T )−K)+]. (3.2)

The objective is to evaluate the expectations explicitly without making any of the approximations

employed in the market approach presented in the previous section, while retaining as much analytical

tractability as possible. To this end, we formulate a displaced-diffusion stochastic volatility model

under the risk-neutral measure QT . The SABR model postulates a constant elasticity of variance

(CEV) process for the swap rate. In our formulation, we use the displaced-diffusion process instead
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(Rubinstein 1983). The rationale behind this choice is two-fold. First, displaced-diffusion dynamics

allow us to retain a larger degree of analytical tractability. Second, negative rates are admissible

under the displaced-diffusion process, which is consistent with recent interest rate regime in the euro,

Swiss franc, and yen markets. Furthermore, recent research by Svoboda-Greenwood (2009) and Lee

& Wang (2012) have investigated the mathematical properties of the displaced-diffusion dynamics and

demonstrated its ability to fit the market well.

In the euro market, which is also the largest market for IRR-settled swaptions, the spot swap rates

out to approximately 7y are negative as of the time of writing in 2020. Hence, for any model to be

useful to practitioners, it needs to be able to handle negative forward rates. Although the common

displaced-diffusion model formulation

dS(t) = σ[βS(t) + (1− β)S(0)]dW (t) (3.3)

is able to handle negative rates, there are certain limitation in this approach. First, the lower rate

boundary of this displaced-diffusion formulation is (1 − β)/βS(0), and might not be sufficient for

the negative rate domain. Second, if the initial forward swap rate S(0) happens to be zero, then the

swap rate process actually never moves away from zero. For initial forward swap rates close to but

not exactly equal to zero, the formulation may also become numerically unstable. Consequently, we

opted for the alternative formulation based on a simple displacement parameter as follows:

dS(t) = σ
[
S(t) + β

]
dW (t). (3.4)

Let
√
V (t) denote the stochastic volatility, the model is given by:

dS(t) =
[
S(t) + β

](
θ(t)dt+

√
V (t)dZT1 (t)

)
dV (t) = νV (t)dZT2 (t)

(3.5)

where ZT1 (t) and ZT2 (t) are independent Brownian motions under QT . Here β is the displaced-

diffusion parameter, θ(t) is the time-dependent drift rate of the swap rate, ν is the volatility of

volatility. Note that the swap rate process can be allowed to be correlated with the variance process by

writing dV (t) = νV (t)
(
ρdZT1 (t) +

√
1− ρ2dZT2 (t)

)
through the correlation parameter ρ. However,
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following Hull & White (1987), assuming independence allows one to further simplify the model to

obtain semi-analytical pricing formulae, as we elaborate later.

In our model, the stochastic variance is modelled as a lognormal process. We note that the forward

swap rate is a martingale under the risk-neutral measure QA, so that EA[S(T )] = S(0). However,

this is not the case under the risk-neutral measure QT , so the value of ET [S(T )] is unknown, and we

need to explicitly calibrate the drift parameter θ in the model. The swap rate process can be solved

to yield:

S(T ) =
[
S(0) + β

]
exp

[∫ T

0
θ(t) dt− 1

2

∫ T

0
V (t) dt+

∫ T

0

√
V (t) dZT1 (t)

]
− β. (3.6)

We define the mean integrated variance over the time period [0, T ] as

V̄ =
1

T

∫ T

0
V (t) dt. (3.7)

Conditional on this mean integrated variance V̄ , the term

exp

[∫ T

0
θ(t) dt− 1

2

∫ T

0
V (t) dt+

∫ T

0

√
V (t) dZT1 (t)

]
(3.8)

is lognormally distributed, where∫ T

0
θ(t) dt− 1

2

∫ T

0
V (t) dt+

∫ T

0

√
V (t) dZT1 (t) ∼ N

(∫ T

0
θ(t) dt− V̄ T

2
, V̄ T

)
. (3.9)

Therefore, we have the following expectation under QT :

ET [S(T )] =
[
S(0) + β

]
exp

(∫ T

0
θ(t) dt

)
− β. (3.10)

This is a direct consequence of our explicit choice not to work under the natural martingale measure

of the forward swap rate, and the term
∫ T

0 θ(t) dt accounts for the drift. Note that Equation (3.10)

evaluates to S(0) if ∀t ∈ [0, T ] : θ(t) = 0. It should be clear that the distribution of the forward

swap rate S(T ) depends on the paths followed by the stochastic variance process.

3.1 Pricing IRR-Settled Swaptions

Theorem 3.1 (IRR-Settled Swaptions Pricing Formula). Under the unified market model formulated in

Equation (3.5), and the conditional forward swap rate distribution in Equation (3.9), IRR-settled swaptions
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can be priced using the following formula:

V IRR(0,K) =

∫ ∞

0

DD(S(0),K, V̄ , T ) ψ(V̄ ) dV̄

≈ DD(S(0),K, V̄ , T ) +
1

2

∂2DD
∂V̄ 2

(
E[V̄ 2]− E[V̄ ]2

)
+

1

6

∂3DD
∂V̄ 3

(
E[V̄ 3]− 3E[V̄ ]E[V̄ 2] + 3E[V̄ ]E[V̄ ]2 − E[V̄ ]3

)
+

1

24

∂4DD
∂V̄ 4

(
E[V̄ 4]− 4E[V̄ 3]E[V̄ ] + 6E[V̄ 2]E[V̄ ]2 − 4E[V̄ ]E[V̄ ]3 + E[V̄ ]4

)
+

1

120

∂5DD
∂V̄ 5

(
E[V̄ 5]− 5E[V̄ 4]E[V̄ ] + 10E[V̄ 3]E[V̄ ]2 − 10E[V̄ 2]E[V̄ ]3 + 5E[V̄ ]E[V̄ ]4 − E[V̄ ]5

)
+ · · ·

(3.11)

where DD(·) denote the one-dimensional integral

DD
(
S(0),K, V̄ , T

)
=

1√
2π

∫ ∞
−∞

1

S(T )

[
1−

1
m(

1 + 1
m · S(T )

)N×m
](

S(T )−K
)+

e−
x2

2 dx,

(3.12)

for payer swaptions, and

DD
(
S(0),K, V̄ , T

)
=

1√
2π

∫ ∞
−∞

1

S(T )

[
1−

1
m(

1 + 1
m · S(T )

)N×m
](

K − S(T )
)+

e−
x2

2 dx,

(3.13)

for receiver swaptions. The moments of V̄ are given by

E
[
V̄
]

= V0,

E
[
V̄ 2
]

=
V 2

0

T 2

2
(
eν

2T − ν2T − 1
)

ν4
,

E
[
V̄ 3
]

=
V 3

0

T 3

e3ν2T − 9eν
2T + 6ν2T + 8

3ν6
,

E
[
V̄ 4
]

=
V 4

0

T 4

2
(
e6ν2T + 54eν

2T − 10e3ν2T − 30ν2T − 45
)

45ν8
,

E
[
V̄ 5
]

=
V 5

0

T 5

200e3ν2T − 35e6ν2T + 3e10ν2T − 840eν
2T + 84(8 + 5ν2T )

630ν10
.

(3.14)

Proof. To price IRR-settled swaptions, we use the unified market model and work under the risk-

neutral measure QT

V IRR(0,K)

D(0, T )
= ET

[
V IRR(T,K)

D(T, T )

]
. (3.15)
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We start by writing

V (0,K) = D(0, T )

∫ ∞
0

∫ ∞
0

Ac(S(T ))(S(T )−K)+η(S(T ), V̄ ) dS(T ) dV̄ . (3.16)

Here η(S(T ), V̄ ) is the joint probability density function of the forward swap rate and the mean

integrated variance processes. Following our assumption that the forward swap rate process is un-

correlated with the variance process, we can write η(S(T ), V̄ ) = ψ(V̄ )ξ(S(T )|V̄ ), where ψ is the

probability density function for the mean integrated variance V̄ , while ξ is the conditional probability

density function for the swap rate S(T ) given the mean integrated variance, which is assumed to be

independent of the swap rate process. Hence we have

V (0,K) = D(0, T )

∫ ∞
0

(∫ ∞
0

Ac(S(T ))(S(T )−K)+ξ(S(T )|V̄ ) dS(T )

)
ψ(V̄ ) dV̄ . (3.17)

Conditional on the integrated variance V̄ , the swap rate process S(T ) is shifted-lognormally dis-

tributed, and the inner integral for a payer swaption can therefore be written as

DD
(
S(0),K, V̄ , T

)
=

1√
2π

∫ ∞
−∞

1

S(T )

[
1−

1
m(

1 + 1
m · S(T )

)N×m
](

S(T )−K
)+

e−
x2

2 dx,

(3.18)

where, conditional on V̄ , the distribution of the forward swap rate S(T ) is given by equations (3.6)-

(3.9). This is an one-dimensional integral that can be evaluated numerically. Therefore, the value of

an IRR-settled swaption is given by

V (0,K) = D(0, T )

∫ ∞
0

DD
(
S(0),K, V̄ , T

)
ψ
(
V̄
)
dV̄ , (3.19)

Given the stochastic process of the variance, we can obtain the expression for V̄ as

V̄ = V0 +
1

T

∫ T

0
νVu(T − u) dWu. (3.20)

Note that the distribution of the mean integrated variance V̄ as given in Equation (3.7) is unknown.

Nevertheless, in the stochastic volatility model formulated by Hull & White (1987), they point out

that although it is impossible to obtain an analytic form for the distribution of V̄ , its moments

MX(j) = E
[
V̄ j
]
can be derived analytically. In their paper, they provided the first three moments of
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the mean integrated variance. In this paper, we also derive and provide the fourth and fifth moments

to make up a total of five moments.

Under this formulation, the swaption price becomes the weighted sum over the displaced-diffusion

formula DD(·) for different integrated variance. This intuitive and elegant result is often referred to

as the “mixing” theorem, and is first derived by Hull & White (1987). Finally, by Taylor expansion, we

write the value of the IRR-settled payer swaption as follows:∫ ∞

0

DD(S(0),K, V̄ , T ) ψ(V̄ ) dV̄

≈ DD(S(0),K, V̄ , T ) +
1

2

∂2DD
∂V̄ 2

(
E[V̄ 2]− E[V̄ ]2

)
+

1

6

∂3DD
∂V̄ 3

(
E[V̄ 3]− 3E[V̄ ]E[V̄ 2] + 3E[V̄ ]E[V̄ ]2 − E[V̄ ]3

)
+

1

24

∂4DD
∂V̄ 4

(
E[V̄ 4]− 4E[V̄ 3]E[V̄ ] + 6E[V̄ 2]E[V̄ ]2 − 4E[V̄ ]E[V̄ ]3 + E[V̄ ]4

)
+

1

120

∂5DD
∂V̄ 5

(
E[V̄ 5]− 5E[V̄ 4]E[V̄ ] + 10E[V̄ 3]E[V̄ ]2 − 10E[V̄ 2]E[V̄ ]3 + 5E[V̄ ]E[V̄ ]4 − E[V̄ ]5

)
+ · · ·

(3.21)

This results in an IRR-settled swaption pricing formula involving one-dimensional numerical integrals

in the unified market model.

�

3.2 Pricing Swap-Settled Swaptions

Theorem 3.2 (Swap-Settled Swaptions Pricing Formula). Under the unified market model formulated

in Equation (3.5), and the conditional forward swap rate distribution in Equation (3.9), swap-settled

swaptions can be priced using the following formula:

V (0,K) =

∫ ∞

0

D̃D(S(0),K, V̄ , T ) ψ(V̄ ) dV̄

≈ D̃D(S(0),K, V̄ , T ) +
1

2

∂2D̃D
∂V̄ 2

(
E[V̄ 2]− E[V̄ ]2

)
+

1

6

∂3D̃D
∂V̄ 3

(
E[V̄ 3]− 3E[V̄ ]E[V̄ 2] + 3E[V̄ ]E[V̄ ]2 − E[V̄ ]3

)
+

1

24

∂4D̃D
∂V̄ 4

(
E[V̄ 4]− 4E[V̄ 3]E[V̄ ] + 6E[V̄ 2]E[V̄ ]2 − 4E[V̄ ]E[V̄ ]3 + E[V̄ ]4

)
+

1

120

∂5D̃D
∂V̄ 5

(
E[V̄ 5]− 5E[V̄ 4]E[V̄ ] + 10E[V̄ 3]E[V̄ ]2 − 10E[V̄ 2]E[V̄ ]3 + 5E[V̄ ]E[V̄ ]4 − E[V̄ ]5

)
+ · · ·

(3.22)
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where

D̃D
(
S(0),K, V̄ , T

)
= Ap(t)

[
S′(0)Φ

(
log S′(0)

K′ + V̄ ′T
2√

V̄ ′T

)
−K ′Φ

(
log S′(0)

K′ −
V̄ ′T

2√
V̄ ′T

)]
, (3.23)

for payer swaptions, and

D̃D
(
S(0),K, V̄ , T

)
= Ap(t)

[
S′(0)Φ

(
log S′(0)

K′ + V̄ ′T
2√

V̄ ′T

)
−K ′Φ

(
log S′(0)

K′ −
V̄ ′T

2√
V̄ ′T

)]
, (3.24)

for receiver swaptions, and

K ′ = K + β, S′(0) = S(0) + β, and V̄ ′ =
√
βV̄ . (3.25)

Proof. To price swap-settled swaptions, we need to change the measure from QT to QA, which

involves changing the choice of numeraire from D(t, T ) to Ap(t). We note that QA is a risk-neutral

measure equivalent to QT under the Radon-Nikodym derivative

dQA

dQT
= exp

[
−
∫ t

0
κ(u) dZ(u)− 1

2

∫ t

0
κ(u)2 du

]
. (3.26)

Using Girsanov’s theorem, given that Z1 and Z2 are independent, we have

ZA1 (t) = ZT1 (t) +

∫ t

0
κ(u) du

ZA2 (t) = ZT2 (t)

(3.27)

and after substituting we obtain the following model for swap-settled swaptions:
dS(t) =

[
S(t) + β

] [(
θ(t)− κ(t)

√
V (t)

)
dt+

√
V (t)dZA1 (t)

]
dV (t) = νV (t)dZA2 (t)

. (3.28)

However, we know that EA[S(T )] = S(0), since we are now working under the natural martingale

measure QA of the swap rate process, the model simplifies to
dS(t) =

√
V (t)

[
S(t) + β

]
dZA1 (t)

dV (t) = νV (t)dZA2 (t)

. (3.29)

For swap-settled swaptions, we work under the martingale measure QA with its associated numeraire

Ap and write:

V Swp(0,K)

Ap(0)
= EA

[
V Swp(T,K)

Ap(T )

]
, (3.30)
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which yields (for payer swaptions)

V Swp
p (0,K) = Ap(0)

∫ ∞
0

∫ ∞
0

(S(T )−K)+η(S(T ), V̄ ) dS(T ) dV̄ . (3.31)

As before, under our assumption that the forward swap rate process is independent from the variance

process, we have η(S(T ), V̄ ) = ψ(V̄ )ξ(S(T )|V̄ ), and

V Swp
p (0,K) =

∫ ∞
0

(
Ap(0)

∫ ∞
0

(S(T )−K)+ξ(S(T )|V̄ ) dS(T )

)
ψ(V̄ ) dV̄ . (3.32)

Conditional on the integrated variance V̄ , the displaced-diffusion price in the inner integral can

therefore be written as

D̃D
(
S(0),K, V̄ , T

)
= Ap(t)

[
S′(0)Φ

(
log S′(0)

K′ + V̄ ′T
2√

V̄ ′T

)
−K ′Φ

(
log S′(0)

K′ −
V̄ ′T

2√
V̄ ′T

)]
, (3.33)

where

K ′ = K + β, S′(0) = S(0) + β, and V̄ ′ =
√
βV̄ . (3.34)

Therefore, the value of an IRR-settled payer swaption is given by

Vp(0,K) =

∫ ∞
0

D̃D
(
S(0),K, V̄ , T

)
ψ
(
V̄
)
dV̄ , (3.35)

where ψ is the probability density function of the mean integrated variance V̄ . Finally, by Taylor

expansion, we write the value of the swap-settled swaption as follows:∫ ∞

0

D̃D(S(0),K, V̄ , T ) ψ(V̄ ) dV̄

≈ D̃D(S(0),K, V̄ , T ) +
1

2

∂2D̃D
∂V̄ 2

(
E[V̄ 2]− E[V̄ ]2

)
+

1

6

∂3D̃D
∂V̄ 3

(
E[V̄ 3]− 3E[V̄ ]E[V̄ 2] + 3E[V̄ ]E[V̄ ]2 − E[V̄ ]3

)
+

1

24

∂4D̃D
∂V̄ 4

(
E[V̄ 4]− 4E[V̄ 3]E[V̄ ] + 6E[V̄ 2]E[V̄ ]2 − 4E[V̄ ]E[V̄ ]3 + E[V̄ ]4

)
+

1

120

∂5D̃D
∂V̄ 5

(
E[V̄ 5]− 5E[V̄ 4]E[V̄ ] + 10E[V̄ 3]E[V̄ ]2 − 10E[V̄ 2]E[V̄ ]3 + 5E[V̄ ]E[V̄ ]4 − E[V̄ ]5

)
+ · · ·

(3.36)

and the moments of V̄ are the same as provided in Equations (3.14). �
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This results in a swap-settled swaption pricing formula in closed-form due to the Black-like for-

mula. Furthermore, since our model is formulated as a unified market model under QT , CMS products

can be priced readily. Thus, pricing formulae for CMS caplet and floorlet can also be expressed as

Black-like formulae based on the same approach as swaptions in the unified framework.

4 Results and Analyses

This section presents the analyses based on our unified market model on a range of topics that the

approximation formula failed to address. We begin by calibrating the unified model to liquid market

swaption quotes, and show that it can match market instruments as close as existing models. We

move on to demonstrate that if we do not make the same simplifying assumptions required to arrive

at the approximation formula, then IRR-settled payer and receiver swaptions cannot be priced with

the same implied volatility surface. Analyses are also performed to quantify the error incurred by

making the two simplifying assumptions to arrive at the approximation formula. Next, we explore the

pricing of zero-wide collars and ITM swaptions. Finally, we investigate the sensitivities of our model

parameters, and demonstrate the existence of negative vega.

4.1 Model Calibration

As we have elaborated in previous sections, although it is difficult to obtain an analytic form for V̄ ,

the independence assumption (between the forward swap rate and the variance processes) allows one

obtain efficient pricing formulae for both IRR-settled and swap-settled swaptions through the use of

a Taylor expansion. Similarly, we define the integrated drift term θ̄ as

θ̄ =

∫ T

0
θ(t) dt. (4.1)

There are consequently 4 model parameters: θ̄, V0, β, and ν to be calibrated for each expiry-tenor

swaption chain. In order to fit the entire swaption volatility cube, we will need a set of parameters for

each of the expiry-tenor pair. To calibrate our displaced-diffusion stochastic volatility model, we run
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the following optimization

min
θ̄, V0
ν, β

n∑
i=1

(
V model(0,Ki)− V market(0,Ki)

)2
, (4.2)

where n is the number of swaptions available for a given expiry-tenor pair.

The market convention is to quote and trade at-the-money (ATM) straddles and out-of-the-money

(OTM) payer and receiver swaptions. If the pricing function is consistent and arbitrage-free, then

put-call parity will hold for European exercise type, and one can infer ITM swaption prices from

OTM prices using the same implied volatility of the same strike. It will become clear in this section

that this approach only holds for swap-settled swaptions, but not for IRR-settled swaptions. A unified

model should be able to, once calibrated, extrapolate market quotes and produce two different implied

volatility smiles for IRR-settled payer and receiver swaptions. In addition, it should also be able to

produce a third distinct smile for swap-settled swaptions.

Exhibit II plots the market premiums and the quoted implied volatilities of the IRR-settled swap-

tions for a 10y10y swaption chain, overlaid with the unified market model’s premiums and implied

volatilities calculated using a calibrated model. Following market’s quoting convention, all rates and

strikes have been shifted up by 3%. Using standard market convention, implied volatility (σim) is

calculated as

V IRR(0,K) = D(0, T )Ac(0)Black(S(0),K, σim, T ) (4.3)

Note that this is essentially the approximation formula, with σim being the SABR implied volatility.
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Exhibit II: Comparison of premiums and implied volatilities market quotes vs model based values.
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To provide a basis for comparison, we also include the model price calculated using the approxi-

mation formula with a calibrated SABR implied volatility. In the upper figures, it should be clear that

our unified market model prices are able to match observed market premiums extremely well once

calibrated (upper left), comparable to the widely used approximation formula (upper right). In the

lower figures, it is immediately apparent that the IRR-settled payer and receiver swaptions have dif-

ferent implied volatilities under the unified model (lower left), in stark contrast to the approximation

formula, where the payers and receivers have identical implied volatilities (lower right). As discussed

in the earlier sections, the implied volatilities of payers and receivers only become equivalent when

the Black model can be used to price them consistently. This is the case for swap-settled swaptions,

but for IRR-settled swaptions, two simplifying assumptions are required to arrive at the Black model

as an approximation formula. These two simplifying assumptions, which separate the IRR annuity

from the payoff profile, and use the incorrect risk-neutral measure so that S(t) is a martingale, results

in IRR-settled payer and receiver swaptions implied volatilities being indistinguishable.
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As we have documented in Exhibit I, in the market only OTM and ATM implied volatilities are

quoted, and the strikes are spaced at intervals in the range of 25, 50, or 100 bps. Our preceding

analysis has highlighted the fact that IRR-settled payer and receiver swaptions ought to be considered

separately when considering their implied volatilities. Given the rather coarse strike spacing in market

quotes, the kink in the implied volatility due to the transition from OTM receivers to OTM payers

is not directly visible. This sudden switch of implied volatilities between the payers and receivers

only manifest when then strike resolution is refined. We illustrate this effect using our unified pricing

model. Exhibit III compares the implied volatilities calculated using our calibrated exact unified

model (labeled as “exact-pay” for payers, “exact-rec” for receivers, and “exact-mkt” for the market

OTM/ATM quotes) vs. the calibrated approximation formula (labeled as “MA-mkt”). As expected,

under the unified model, the implied volatility curve (“exact-mkt”) shows an kink across the ATM

strike. In addition, the implied volatility curves for payers and receivers are different. On the other

hand, no kink in the implied volatilities is observed for the approximation formula (“MA-mkt”). We

emphasize that this abrupt jump is only observable when the strike grid is sufficiently refined. As

depicted in the inset of Exhibit III, under the standard strike spacing used in market quotes, we

will fail to perceive this as a kink, and get the impression that both approaches give rise to very

comparable implied volatilities.

Exhibit III: Jump in implied volatility curve.
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Next, we move on to illustrate how our unified model is able to price swap-settled and IRR-settled

swaptions in a consistent manner. Exhibit IV compares the premiums and implied volatilities of

IRR-settled and swap-settled swaptions, both priced using the unified model. We see that our unified

model is able to clearly distinguish the difference in settlement methods, and that the kink in implied

volatility curve only manifests for the IRR-settled swaptions. This is expected, as unlike IRR-settled

swaptions, the implied volatilities for swap-settled payer and receiver swaptions are equivalent. A

quick inspection of Equations (3.18) and (3.33) also shows that under the unified model, IRR-settled

swaptions are priced with a 1-D integral of the convex/concave payoff function under the forward risk-

neutral measure, while swap-settled swaptions are priced with a Black-like formula under the swap

annuity measure. On the other hand, if one were to use the approximation formula, swap-settled and

IRR-settled swaptions will share the same implied volatilities, and the difference in prices will only

stem from the different annuities, which clearly misses out the distinctive differences between the two

settlement types.

Exhibit IV: Pricing swaptions using the approximation formula and the unified market model.
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Market is accustomed to use the same implied volatility surface to price both payer and receiver

swaptions. If this is true, then we can price ITM swaptions using the same implied volatility calibrated

to OTM swaptions. For swap-settled swaptions, we have:

V Swp
p (0,K)− V Swp

r (0,K) = Ap(0)[S(0)(Φ(d1) + Φ(−d1))−K(Φ(d2) + Φ(−d2))]

= Ap(0)(S(0)−K).

(4.4)
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If the d1 and d2 used in the payer and receiver swaptions are identical, which occurs when the same

implied volatility is used for both payer and receiver at the same strike, then this relationship is always

satisfied. This is valid for swap-settled swaptions only, but not for IRR-settled swaptions.

Under the unified framework, it should be clear that if we were to use a Black-like formula for the

IRR-settled swaptions, then the implied volatility for payer and receiver must be different. To see this,

simply note that when K = S(0), the Black formula will yield a zero premium for zero-wide collars.

For these to be worth a non-zero amount, we need

V IRR
p (0,K)− V IRR

r (0,K) = D(0, T )ET [Ac(T )(S(T )−K)]

= D(0, T )Ac(0)
[
S(0)(Φ(d1(σp)) + Φ(−d1(σr)))−K(Φ(d2(σp)) + Φ(−d2(σr)))

]
(4.5)

where σp and σr are the implied volatilities for the IRR-settled payer and receiver swaptions, respec-

tively. This goes to show that IRR-settled payer and receiver swaptions of the same strike cannot

share the same implied volatility, otherwise zero-wide collars will always be worth zero. Any term

structure or short rate model that exactly captures the payoff of these zero-wide collars will also show

that these instruments have a non-zero price.

4.2 Decomposition of Errors Incurred in the Approximation Formula

In this section we use our unified model to investigate the errors incurred in the approximation

formula when making the two critical simplifying assumptions. To this end, we study the price

sensitivities when we apply the same simplifying assumptions to our model. The errors incurred for

payers will be:

V IRR
p (0,K)

(a)
= D(0, T )ET [Ac(S(T ))(S(T )−K)+],

(b)
≈ D(0, T )Ac(S(0))ET [(S(T )−K)+]

(c)
≈ D(0, T )EA[Ac(S(T ))(S(T )−K)+]

(d)
≈ D(0, T )Ac(S(0))EA[(S(T )−K)+],

(4.6)
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while the errors incurred for receivers will be:

V IRR
r (0,K)

(a)
= D(0, T )ET [Ac(S(T ))(K − S(T ))+],

(b)
≈ D(0, T )Ac(S(0))ET [(K − S(T ))+]

(c)
≈ D(0, T )EA[Ac(S(T ))(K − S(T ))+]

(d)
≈ D(0, T )Ac(S(0))EA[(K − S(T ))+].

(4.7)

In the derivation above, (a) labels the exact formulation of our unified model, (b) labels the simplifying

assumption of ignoring the concave/convex payoff profiles of IRR-settlement, (c) labels the simplifying

assumption of switching to the swap annuity measure to evaluate the expectations, and (d) labels the

approximation formula of applying both simplifying assumptions simultaneously.

Exhibit V plots the IRR-settled payer and receiver swaption premiums calculated using (a) the

unified model (triangles), (b) the simplified model which ignores the concave/convex payoffs due to the

IRR-annuity (circles), (c) the simplified model which uses the swap-annuity measure (hexagons), and

(d) the final approximation formula (squares). It is interesting to note that although both simplification

(b) and (c) result in deviation from the right price (a), they err on the opposite side, thereby offsetting

and bringing the approximation formula (d) to be closer to the right price than solely making either

one of the two simplification. For IRR-settled payer swaptions, simplification (b) inflates the swaption

prices, as having the concave IRR-annuity function out of the expectation reduce the discounting

effects, while simplification (c) deflates them, since evaluating the expectation under the swap measure

underestimate the forward swap rate, thereby reducing the swaption price. The same argument can

be also applied to IRR-settled receiver swaptions—in this case, ignoring the effect of the IRR-annuity

for receivers leads to underpricing, while using the swap measure underestimates the swap rates,

inflating the receiver swaption prices.
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Exhibit V: Errors incurred in the two simplifying assumptions in the approximation formula.
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Our analysis presented here provides an explanation to why market participants have been able

to use the approximation formula without incurring significant discrepancies—individually the two

simplifying assumptions incur sizeable error, but due to their offsetting nature, the overall error

incurred is dramatically smaller, and much closer to the accurate price.

4.3 ITM IRR-settled Swaptions & Zero-wide Collars

An immediate consequent of having different implied volatility curves for payer and receiver IRR-

settled swaptions is that ITM swaptions could be mispriced due to the lack of calibration data. It

is important to note that although the approximation formula is capable of fitting OTM swaptions

and ATM straddle prices very well, when applying it to the valuation of ITM swaptions, a large

mispricing could manifest given that it does not capture the payoff profile accurately. Exhibit VI

shows the mispricing of ITM IRR-settled swaptions, defined as the difference between our unifying

model and the approximation formula. In general, the approximation formula overprices low strikes

ITM payers (upper figure) and underprices high strikes ITM receivers (lower figure). This observation

has important consequences on the risk management of a swaption portfolio. For instance, as the

market moves into low rates regime after significant rate cuts, a large number of receiver swaptions

also move into-the-money.
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Exhibit VI: Mispricing of in-the-money swaptions.
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As we have discussed in previous sections, using the approximation formula, IRR-settled payer

and receiver swaptions are priced as follows:
V IRR
p (0,K) ≈ D(0, T )Ac(S(0))EA[(S(T )−K)+]

V IRR
r (0,K) ≈ D(0, T )Ac(S(0))EA[(K − S(T ))+].

(4.8)

This implies the following put-call parity relationship:

V IRR
p (0,K)− V IRR

r (0,K) ≈ D(0, T )Ac(S(0))(S(0)−K). (4.9)

When K = EA[S(T )] = S(0), i.e. when the payer and receiver swaptions are both struck at

the forward swap rate, we have V IRR
p (0,K) ≈ V IRR

r (0,K), and consequently ATM zero-wide collars

(struck at the forward swap rate) will be worth 0 under the approximation formula. This is clearly
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incorrect, and is a direct consequence of the simplifying assumptions made in the standard approach.

In fact, euro and sterling markets have begun quoting non-zero premiums for these zero-wide collars

(Lutz 2015 and Pietersz & Sengers 2017). The unified model presented in this paper will allow one to

price zero-wide collars in a consistent manner once calibrated to the swaption market. Note that

V IRR
p (0,K)− V IRR

r (0,K) = D(0, T )ET [Ac(S(T ))(S(T )−K)]. (4.10)

Since in the unified model, we do not work under the martingale measure of the swap rate, zero-wide

collar will be priced consistently when struck at the forward swap rate. In fact, it can be shown that

we only have V IRR
p (0,K) = V IRR

r (0,K) when

K∗ =
ET [Ac(S(T )) · S(T )]

ET [Ac(S(T ))]
. (4.11)

Another manifestation of the zero-wide collars mispricing issue under the approximation formula

is in the pricing of individual ATM payer or receiver. Note that ATM straddles are liquidly quoted

in the market, and the approximation formula will lead us to falsely conclude that ATM payer or

receiver are both worth exactly half the price of the ATM straddle. The implication of this error can

be understood by referring to Equation (2.19), the CMS replication formula. From the equation, It is

clear that in order to price CMS products using the static replication approach, it is vital that one

knows the price of the ATM payer or receiver swaption, as it is the first instrument that comes into

the replication portfolio for a CMS cap and floor, respectively. Using the standard market assumption

(2.15) will result in incorrect valuation of the first instrument in the replication portfolio, despite having

calibrated the volatility surface to match market quotes accurately, thereby affecting the accuracy of

CMS pricing.

4.4 Sensitivities

Here we move on to demonstrate the existence of negative vega under our unified market model.

Exhibit VII plots the sensitivities of IRR-settled swaption prices to the unified model parameters σ

(top figures) and θ (bottom figures). The top figure clearly shows that it is possible for the vega of

IRR-settled payer swaptions to become negative. This is attributed to the fact that when volatility
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increases, the concave payoff profile due to the IRR-annuity discounting can cause the benefit of

a larger volatility to diminish for IRR-settled payer swaptions which are already sufficiently in-the-

money. Naturally, this characteristic is not observed for IRR-settled receiver swaptions, as increments

in volatility coupled with the convex payoff profile due to the IRR-annuity can only be favourable,

given that it increases the value of the swaption. The existence of negative vega, i.e. negative volatility

sensitivity, has been reported earlier in Tee & Kerkhof (2014) and Bermin & Williams (2017).

Exhibit VII: Sensitivities of model parameters.
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As a summary, we tabulate the differences between the swap market model and our unified model

across different product types in Exhibit VIII. The * symbol in the table under the swap market model

column denotes the use of the approximation formula, which leads to pricing discrepancies.
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Exhibit VIII: Comparison of swap market model vs unified market model.

Swap Market Model Unified Market Model

Calibration swaptions only swaptions (both settlement types) + CMS

Market swap-settled swaptions closed-form closed-form

Market IRR-settled swaptions closed-form* 1-d integral

CMS products 1-d integral closed-form

Zero-wide collars 0* 1-d integral

ITM IRR-settled swaptions put-call parity* 1-d integral

5 Conclusions

In this paper, we have derived a general model to price both IRR-settled and swap-settled swaptions,

CMS products, and zero-wide collars in a consistent manner, This has been achieved by formulating a

unified framework which price swaptions of either settlement types and CMS products under a single

market model. The model is able to capture the convex and concave payoff profiles of IRR-settled

swaptions, and evaluate the expectations under a consistent risk-neutral measure.

Practitioners have a strong preference to use a market model to price liquid products. Although

a market model based on Black formula is able to handle swap-settled swaptions consistently, two

simplifying assumptions are required to extend it to handle IRR-settled swaptions. This gives rise

to the zero-wide collar pricing problem, the ITM IRR-settled swaptions pricing problem, and the

negative vega problem. Our unified model is able to resolve all three problems while maintaining a

sufficient degree of analytical tractability.

We have shown that contrary to swap-settled swaptions, when the strike is equal to the forward

swap rate, the values of IRR-settled payer and receiver swaptions are different, which the approxi-

mation formula used widely in the industry fail to capture. In addition, the implied volatilities of

IRR-settled payers and receivers are different when we do not make the two simplifying assumptions

used to derive the approximation formula. We have also demonstrated that using the approximation
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formula leads to mispricings of ITM IRR-settled swaptions. These findings offer important insights

to the ongoing reform in the European swaption market.

Notes

1European swaption market convention has changed to use “colateralized cash price”, i.e. swap-settled with

OIS discounting. Dealers and brokers have committed to quote both IRR-settled and swap-settled swaption

prices. See https://www.isda.org/2018/11/26/market-practice-change-for-settlement-of-eur-

swaptions-to-collateralized-cash-price/
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