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AComprehensive Examination of the Cross-Validity of Pareto-Optimal Versus
Fixed-Weight Selection Systems in the Biobjective Selection Context

Wilfried De Corte1, Filip Lievens2, and Paul R. Sackett3
1 Department of Data-Analysis, Faculty of Psychology, Ghent University
2 Lee Kong Chian School of Business, Singapore Management University

3 Department of Psychology, University of Minnesota

The article presents evidence for the cross-validity potential of fixed-weight (FW) versus Pareto-Optimal
(PO) selection systems in biobjective selection situations where both the goals of diversity and quality are
valued and the importance of the goals is undecided a priori. The article extends previous research by also
studying the cross-validity potential of selection systems in the practically most important sample-to-sample
cross-validity scenario. We address three research questions: (a) Do different PO systems show comparable
levels of relative (i.e., proportional) achievement upon cross-validation? (b) Do PO systems achieve higher
levels of relative achievement upon cross-validation than FW selection systems?, and (c) How does the
achievement of PO and FW systems, in terms of adverse impact ratios and average performance of the
selected applicants, evolve under cross-validation? As a key result, in case of sufficiently large applicant
pools (typically 100 applicants or more), PO systems had on average a higher cross-validity potential than
the corresponding FW systems. Yet, even for applicant pools as large as 500, FW systems may match the
merits of PO systems and we present a straightforward procedure to decide which FW systems may offer a
comparable cross-validation potential than the PO systems.

Keywords: cross-validity, adverse impact, personnel selection, Pareto-Optimal, selection design
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For decades, the diversity/quality trade-off has been a challenge
in personnel selection because some of the most valid predictors of
job performance, such as cognitive ability tests, show substantial
mean differences between majority and minority group applicant
populations, resulting in adverse impact (Ployhart & Holtz, 2008;
Sackett et al., 2001). The joint role of mean differences and selec-
tion ratios in determining adverse impact is well documented
(Sackett & Ellingson, 1997). In recent years, the Pareto-Optimal
(PO) approach (e.g., De Corte et al., 2007, 2011; Wee et al., 2014)
has emerged as a promising proposal for designing selections in the
biobjective selection context (Cortina et al., 2017); that is, for
settings in which both the goals of diversity and quality are valued
but the importance of the goals is undetermined a priori (i.e., a
solution is chosen after the range of PO solutions is examined).1 The
PO approach identifies selection systems that are expected to result
in the best possible selection diversity (quality) for given levels of
quality (diversity). The systems are called PO because the level of

diversity (quality) attained by any other feasible system is at best as
good as the diversity (quality) level of the PO system, whereas the
quality (diversity) level is less than that of the PO system.

Some evidence attests to the increasing use of PO approaches by
organizations. First, the original article introducing the PO approach
offered a computer program for identifying PO solutions (De et al.,
2007). That program has been requested by a wide variety of
organizations, in the U.S. and Europe, including private sector
firms, government agencies, and consulting firms. Second, recently
Rupp et al. (2020) published an article that will undoubtedly help to
further disseminate the PO approach among practitioners. This
article presented not only flow charts, checklists, and practical
guidance on how to use PO but also a very accessible app (i.e., the
ParetoR Shiny app) to implement the approach. Third, we conducted
a small informal survey among U.S. top employers of industrial and
organizational psychologists. Results revealed that some have
already used the PO approach in their personnel selection practice
for several years. For others, the PO approach is still in a research
stage, with its usage restricted to the development of demonstration
projects. Besides a concern for ease of application and mathematical
sophistication (where the Rupp et al. article should help a lot to
remove this concern), the survey also indicated two worries about
using the PO approach. At present, the approach focuses on the
design of selection systems that are PO with respect to a single
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protected group, whereas practitioners typically deal with situations
involving multiple protected groups. Second, there are doubts that
PO systems developed for an initial setting will continue to perform
well when applied to similar but new settings. In other words, there
exist concerns about the cross-validity of PO systems. The present
article addresses exactly this cross-validity issue.
At present, little is indeed known about the cross-validity of PO

systems, although this information is critically important to assess
the practical value of PO selection system design. Research on the
cross-validity of biobjective selection systems, as compared to
that of single-objective systems, poses particular challenges. For
single-objective systems, estimating the achievement (i.e., the
criterion-related validity) of the system under cross-validation is
straightforward (i.e., estimate the achievement of a predictive
model, derived in the initial calibration setting, in the cross-
validation setting). However, biobjective systems (i.e., those pursu-
ing both the diversity and the quality achieved by the system) are
more challenging, given that achievement is assessed on two
dimensions. And, importantly, the biobjective PO approach results
in an infinite set of PO systems instead of a single optimal system
(i.e., the regression-based system) as is the case in single-objective
system design. This requires rethinking cross-validation for biob-
jective selection systems.
Cross-validation research in the biobjective selection context

is usefully aided by also examining what we term “relative”
(or “proportional”) achievement.2 Conceptually, we can express
achievement on both quality and diversity dimensions as a propor-
tion of the achievement that can possibly be attained upon cross-
validation on each dimension. This puts quality and diversity on
comparable metrics. It also permits combining (e.g., averaging) the
relative achievement on the quality and diversity dimensions into an
overall relative achievement index. This relative achievement metric
is useful for a variety of purposes. One is the important research
question of whether PO systems hold up comparably upon cross-
validation across the full range of possible PO systems. PO systems
range from the quality-maximizing system at one extreme to the
diversity-maximizing system at the other. So, in the initial calibra-
tion setting, the achievement on both the quality and diversity
dimensions can vary dramatically across PO systems. In terms of
the absolute level of achievement, one would expect, for example,
that a PO system high on the quality dimension in the calibration
setting would show a higher level of quality in the cross-validation
setting than would a PO system with a lower level of quality in the
calibration setting, with a reversed pattern found on the diversity
dimension. At first glance, one might say that the two differ in how
well they cross-validate, given these differences in absolute achieve-
ment. However, it might prove the case that in terms of relative
achievement, both show the same proportion of achievement rela-
tive to the achievement that is possible in the cross-validation
setting.
A second type of question aided by relative achievement indices

involves comparisons between PO systems and other predictor
weighting schemes, such as fixed weights (FW). Using standard
metrics (average job performance of the selected applicants [AJP],
for the quality and adverse impact ratio [AIR], for the diversity
objective), comparisons are of necessity limited. As the dimensions
of interest are in different noncomparable metrics, results are limited
to rough categories: PO beats FW on both dimensions, FW beats PO
on both dimensions, or PO and FW each win on one dimension.

While this is of some value, using the relative achievement metric
has the benefit that it puts both dimensions on a common metric and
permits combining the two for an overall quantitative comparison.

The present article addresses the following three research ques-
tions: (a) Do different systems across the calibration PO front show
comparable relative achievement upon cross-validation? (b) Do
calibration PO systems show higher relative achievement upon
cross-validation than FW systems?, and (c) How does the achieve-
ment of the calibration PO systems in their original metrics
(i.e., AJP and AIR) evolve when the systems are applied in
cross-validation conditions? Each of these questions addresses a
key important issue in evaluating the real incremental contribution
of PO as compared to ad hoc and FW systems when designing
biobjective selection systems. The answer to the first question may
offer an extra criterion for choosing between different PO systems;
the relevance of the entire practice of PO selection systems (vis-à-vis
FW systems) depends on the answer to the second question, and the
answer to the last question addresses the actual as compared to
the promised diversity/quality trade-off when implementing PO
systems.

We answer the research questions with respect to the three basic
cross-validation contexts. The first context involves developing a
selection system on a full population and investigating the degree of
cross-validation to a subsequent sample drawn from that population
(hereafter, population-to-sample). The second deals with develop-
ing a selection system-based on a sample and investigating the
degree of cross-validation to the population from which that sample
was drawn (hereafter, sample-to-population). The third involves
developing a selection system on a sample and investigating cross-
validation to a subsequent sample drawn from the same population
(hereafter, sample-to-sample).

We offer important contributions beyond earlier related research
(cf. De Corte et al., 2020; Song et al., 2017). We are the first to
address the sample-to-sample cross-validation context, which
represents the most realistic setting (e.g., Cattin, 1980) because
selection systems are typically developed using sample-based
predictor/criterion information and are always applied to finite
applicant pools. We extend existing findings on the cross-validity
of single-objective selection designs (e.g., Bobko et al., 2007;
Schmidt, 1971; Van Iddekinge & Ployhart, 2008) to the consider-
ably more complicated case of biobjective single- and multistage
selection design. Crucially, the results that we obtain do not only
generalize answers to old questions about the way the calibration
achievement of different selection designs evolves under cross-
validation but also answer new questions (e.g., about the relative
achievement of different PO systems upon cross-validation) that
have no counterpart in single-objective selection design.

Overview of Previous Research

The cross-validity of single stage, single-objective selection
systems, and more generally the cross-validity of linear predictor
composites has been a topic of active research for almost a century.
As indicated by the very name “cross-validity,” this research
essentially studied the criterion-related validity of linear predictor
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2 Relative achievement and the corresponding measures are discussed in
detail in the section “Assessing the Cross-Validity of Bi-Objective Selection
Systems.”
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composites in both the sample-to-population and the sample-to-
sample cross-validity scenarios (e.g., Cattin, 1980). Validity shrink-
age formulas have been developed for both scenarios (e.g., Browne,
1975; Wherry, 1931), whereas simulation and analytic studies
examined the conditions under which regression composites out-
perform FW composites (e.g., Bobko et al., 2007; Cattin, 1978;
Einhorn & Hogarth, 1975; Raju et al., 1999). This large body of
research led to two results that are particularly relevant for our
research questions. The first is that samples of no less than 100 are
typically required to expect at least equal cross-validity of regression
and FW composites. Our simulation studies, therefore, include only
applicant samples of at least 100 because there is reason to expect
that the smallest applicant samples for which biobjective optimized
PO systems may cross-validate equal or better than FW systems
are at least equal to the samples sizes at which single-objective
optimized regression composites cross-validate better than FW
composites. The second result relates to the difference in population
validity between the regression and the FW composites: The
smaller this difference, the larger the required sample sizes for
regression composites to cross-validate better than FW composites
(e.g., Cattin, 1978) and we examine whether this result is also valid
in the biobjective context.
Compared to the long-standing literature on the cross-validity of

regression and FW composites, the research on the cross-validity of
PO versus FW systems has just started. Only two recent articles
(i.e., De Corte et al., 2020; Song et al., 2017) focus on the issue.
Song et al. (2017) gauged the sample-to-population cross-validity3

potential of the FW and PO systems as the difference between the
average diversity/quality trade-off of the systems in the calibration
and the validation conditions. They referred to this difference as the
Pareto shrinkage, with the term diversity (quality) shrinkage used
for the difference in average calibration and validation diversity
(quality) trade-off value of the systems. Larger calibration applicant
samples led to decreased diversity and quality shrinkage and, for
equal-sized calibration applicant samples, the PO systems with
larger population diversity4 (quality) trade-off values showed larger
diversity (quality) shrinkage as compared to the PO systems with
smaller population diversity (quality) trade-off values. Nonetheless,
the diversity/validity trade-off upon cross-validation of the FW was
dominated by the trade-off of some of the studied PO systems
(i.e., either the validity or the diversity value of the FW system was
smaller than the corresponding value of the PO system, whereas the
other trade-off value was at most equal to that of the PO system) for
all but the smallest studied calibration applicant sample size (cf.
Song et al., 2017, p. 1647).
De Corte et al. (2020) also used simulation methods, focusing on

the population-to-sample cross-validity potential of FW and PO
systems using both the diversity/quality trade-off and a newly
introduced relative achievement measure for the assessment.
They were able to calculate the relative quality achievement
upon cross-validation of the systems, but available methods were
unable to assess the relative validation diversity achievement. Due
to this computational problem, De Corte et al. presented results only
with respect to the relative validation quality achievement of the
systems. Online material also provided some initial results on the
sample-to-population cross-validity of PO systems: For the popula-
tion-to-sample cross-validity case, PO systems had a higher relative
quality achievement upon cross-validation than corresponding FW
systems, even at the smallest studied validation applicant pool size

of 80. They also observed a monotonically increasing relationship
between the population quality trade-off value and the relative
validation quality achievement value of PO systems. Online mate-
rial confirmed the Song et al. (2017) finding that PO systems with a
higher population diversity (quality) value showed larger diversity
(quality) shrinkage than PO systems with a lower population
diversity (quality) value. Yet, larger (smaller) diversity (quality)
shrinkage did not correspond to lower (higher) relative validation
diversity (quality) achievement, but rather to higher (lower) relative
validation diversity (quality) achievement.

In sum, these two prior studies reported rather favorable results on
the cross-validity of PO systems. Yet, the three key issues on the
cross-validity of PO and FW systems that we discussed in the intro
(e.g., cross-validation in the typical sample-to-sample context) have
remained largely unresolved.

Method

Simulation Design and Procedure

We used simulation methods in a factorial design, where the cells
of the design correspond to crossing three factors. The first two
factors relate to the size of the calibration and cross-validation
applicant pool, each having five levels with values of 100, 200,
500, 1000, and infinite, respectively. Together, the two factors
represent various instances of the three cross-validation scenarios.
For example, the combination of any level of the first factor (except
for the last) with the last level of the second factor reflects sample-
to-population cross-validation. Any combination of one of the finite
valued levels of the first and second factor reflects sample-to-sample
cross-validation. Finally, any combination of the last level of the first
factor with a finite valued level of the second factor reflects
population-to-sample cross-validation.

The third factor in the design, with two levels, represents the
number of stages (either one or two) in the studied selection situation
where five predictors (see Table 1) are available in the selection
process. The predictor/criterion data in Table 1 derive from the
seminal work of Schmitt et al. (1997), Bobko et al. (1999) and
Roth et al. (2011) and were also used by both Song et al. (2017) and
De Corte et al. (2020). For the single-stage selection setting, the set
of feasible selection systems corresponds to the set of all systems
that assign a nonnegative weight to the predictors. In the two-stage
setting, the set of feasible selection systems consists of all systems
using a nonnegative weighed composite of the cognitive ability, the
conscientiousness, and the biodata predictor in stage 1 and a
nonnegative weighed composite of the structured interview and
the integrity predictors in stage 2, implementing a retention rate
between .25 and .40 after the first stage and a final selection rate
equal to 0.1.

Within each cell of the design we repeatedly applied the compu-
tational cycle detailed in Appendix B. The average (across the
repetitions) results for the measures described in the next section are
subsequently used to answer our research questions.
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3 Song et al. (2017) studied the sample to population cross-validity with a
validation sample of 10,000 as a proxy for the validation applicant
population.

4 The population diversity/quality trade-off value of a selection system
refers to the diversity/quality trade-off value of the system when applied to
the applicant population.
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Assessing the Cross-Validity of Biobjective
Selection Systems

Measure

The research questions of the article relate to either the absolute
achievement (i.e., the diversity/quality and, more specifically, the
AIR/AJP trade-off) or the relative (i.e., proportional) achievement
of different biobjective selection systems. The AIR/AJP trade-off
achieved by a selection system is used to assess the achievement of a
system when addressing how the trade-offs of PO and FW systems
evolve under cross-validation. To distinguish calibration and vali-
dation conditions, we use the terms calibration diversity/quality and
validation diversity/quality trade-off, respectively.
The AIR/AJP trade-off measure is unfit to study the cross-

validation potential of different PO systems and offers only limited
help for comparing the cross-validation potential of PO and FW
systems. For biobjective selections, the trade-off is a bivalued out-
come with component values that involve incommensurable dimen-
sions (i.e., AJP and AIR are on different, inconvertible metrics).
Aggregating the AJP and AIR values to a single-valued assessment of
the level of achievement of the systems is therefore only possible
when the importance of the goals is determined in which case the
selection is no longer biobjective (see footnote 1). The incommensu-
rability problem further implies that the outcomes of different biob-
jective systems can only be compared, and are therefore called
comparable, if the component differences of the systems are not
in a different direction (e.g., in comparing PO and FW systems, one
wins on one dimension and the other wins on the other dimensions).
Only if one approach wins on both dimensions or wins on one
dimension and scores equal on the other can one make an overall
evaluative statement as to which approach is superior in that setting.
Unfortunately, previous research by De Corte et al. (2020) and Song
et al. (2017) shows that the trade-offs of different PO systems and FW
systems are often incomparable. Even when the systems have com-
parable trade-offs, the extent that one of the systems has a better trade-
off as compared to the other cannot be assessed.
Using diversity and quality shrinkage measures (see Song et al.,

2017) instead of the validation trade-off is no real alternative.
Aggregating the diversity and quality shrinkage values to a Pareto
shrinkage value (cf. Figure 5 in Song et al., 2017) also collides with
the incommensurability of the diversity and quality scales, which

explains why Song et al. (2017) present no results with respect to
overall Pareto shrinkage but only with respect to diversity and
quality shrinkage separately. Also, prior cross-validity research on
single-objective selection designs documented that shrinkage and
level of achievement are quite different things. Whereas FW
composites, as compared to regression composites, almost invari-
ably show substantially less validity shrinkage this does not imply
that FW composites have a higher or even an equal cross-validity
value (i.e., show an equal or better level of achievement upon cross-
validation), especially with growing sample sizes.

To address the limitations of the trade-off and shrinkage
measures, we adopt a set of three new measures: the relative
diversity achievement, the relative quality achievement, and the
global relative achievement measure. The new measures, first
proposed in De Corte et al. (2020), avoid the problem of aggre-
gating the incommensurable diversity and quality dimensions by
rescaling these dimensions to the same, dimensionless scale with
an identical effective range using the well-known zero-one linear
normalization technique from the field of multiobjective program-
ming (Tamiz & Jones, 1997). More specifically, the validation
diversity and quality of a selection system are first rescaled as the
proportion of the maximum possible (over the set of all feasible
selection systems) diversity and quality gain achievable in the
validation sample at the quality (diversity) level of the system.
The resulting proportions constitute the relative diversity and the
relative quality achievement value of the system. In sharing the
same 0–1 anchored scale, the two relative achievement values can
be meaningfully aggregated to a single number, using equal
weights for both values to reflect the condition that the importance
of the objectives is undetermined. The resulting global relative
achievement measure therefore captures the relative achievement
of the systems independent from the importance of the diversity
and quality objectives as is consistent with the biobjective selection
situation (cf. footnote 1).

Except for cross-validation conditions involving very small
samples (see below), the global relative achievement measure is
almost always applicable and leads to a quantification instead of a
mere ordinal assessment of the relative achievement of the systems.
The terms relative calibration diversity (quality) achievement,
relative validation diversity (quality) achievement, and global rela-
tive calibration (validation) achievement are used as needed for
clarification.

Illustration

Figure 1 illustrates the calculation of the new measures. The
illustration pertains to the single-stage selection setting detailed in
Table 1 where the set of feasible selection systems corresponds to all
systems that assign a nonnegative weight to the predictors. The
figure represents the gamut of attainable (across the set of feasible
systems) diversity/quality trade-offs in both the calibration and
the validation conditions. The dashed/dotted red curves enclose
the calibration gamut, whereas the solid blue curves enclose the
validation gamut. Both gamuts are computed for the same selection
rate of .10 and an identical .20/.80 minority/majority applicant
representation, but use different predictor/criterion correlation and
effect size data in the calculations. The Table 1 population correla-
tion and effect size values are used for the validation gamut, whereas
the calibration gamut is based on correlation and effect size data
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Table 1
Predictor/Criterion Population Data for the Studied Selection
Situation

Predictor d# 1 2 3 4 5

1. Cognitive ability 0.72
2. Structured interview 0.32 .31
3. Conscientiousness −0.09 .03 .13
4. Biodata 0.39 .37 .16 .51
5. Integrity 0.04 .02 −.02 .34 .25

Criterion

1. Performance 0.38 .52 .48 .22 .32 .20

Note. # d corresponds to the standardized mean difference between the
majority and the minority applicant populations. The data in Table 1
correspond to results presented in Bobko et al. (1999); Roth et al. (2011);
Schmitt et al. (1997), and Song et al. (2017).
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derived from a sample of size 100. The gamuts therefore exemplify
the sample-to-population cross-validation situation.
The figure also represents the calibration and validation PO front

(i.e., the set of PO trade-offs in the calibration and validation
condition) using the red bold dashed and the blue bold solid curve
segments respectively, with three PO trade-offs, indicated by the
red-filled circle points 1 to 3, highlighted on the calibration PO
front. The PO trade-offs 1 and 3 correspond to the quality and
diversity-maximizing calibration PO systems respectively whereas
PO trade-off 2 represents a balanced diversity/quality PO system.

The validation trade-off of the PO systems is indicated by the blue-
hollow circle points 1–3 respectively. Note that none of the calibra-
tion PO systems is PO in the validation condition and that for each of
the three pairs (1, 2), (1, 3), and (2, 3) the validation quality value of
the first PO system in the pair exceeds the second system’s
corresponding value, whereas the reverse is true for the validation
diversity value. It is thus not possible to decide whether the three
PO systems cross-validate differently by looking only at the
AIR/AJP trade-off values of the systems.

Finally, the figure also depicts the quantities used in obtaining the
global relative validation achievement value for PO system 2. Thus,
the blue-hollow square points 2q− and 2q+ (2d− and 2d+) show
the minimum and maximum (over the set of feasible selection
systems) attainable quality (diversity) value at the validation diver-
sity (quality) level of PO system 2 in the validation condition. The
difference between the quality (diversity) value of the points
2q+ (2d+) and 2q− (2d−) indicates the maximum gain (across
all feasible systems) in quality (diversity) attainable at the diversity
(quality) value of System 2 in the validation condition. From the
validation diversity/quality trade-off value of System 2, equal to
0.33/1.35, and the minimum and maximum possible diversity value
attainable at the validation quality value of 1.35 of the system,
equal to 0.48 (cf. point 2d+) and 0.22 (cf. point 2d−) respectively,
the relative validation diversity value of System 2 is obtained as
(0.33–0.22)/(0.48–0.22) = .40. Similarly, but this time using the
quality values of the points 2q+ and 2q−, the relative validation
quality achievement of System 2 is equal to (1.35–1.12)/
(1.47–1.12) = .67. Averaging both values results in the global
relative validation achievement of System 2 of .535 = (.40 + .67)/2.

Further Comments on the Relative Validation
Achievement Measure

It is of key importance to distinguish the single-valued global
relative validation achievement measure, which quantifies the
global level of achievement of a system in a given validation
condition, from the double valued validation diversity/quality
trade-off of the system expressing the level of AIR and AJP
achieved upon cross-validation. As the importance of the selection
objectives is undetermined, the new measure assigns the same value
to systems that vary in relative validation diversity and quality
achievement but have the same total on the two components.
However, note that this only means that the two systems show
the same global level of achievement; it does not imply equal
achievement (i.e., equal validation diversity/quality trade-offs).

The central purpose of the global relative achievement measure is
to provide the means for addressing our research questions about
how different PO systems perform upon cross-validation and how
PO and FW systems compare upon cross-validation. We already
noted that the measure achieves this purpose by avoiding the
incommensurability problem. Here, we point to an additional
consideration that further explains the format of the constituent
relative diversity and quality achievement measures. When applied
in any particular validation sample, the diversity (quality) value of a
selection system stems from two sources, the first related to the
system, which is the effect of interest, and the second related to the
particularities of the validation sample. However, the impact of
the latter source harbors a confound in that the effect varies across
the quality (diversity) dimension and, hence, is different for different

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 1
Computation of the Relative Validation Diversity and Quality
Achievement of PO System 2

Note. PO = Pareto-Optimal. The red dashed and blue solid curves enclose
the gamut of achievable diversity/quality trade-offs in the calibration
(N = 100) and the validation condition (N = Infinity), respectively. The
red points identify three systems that are PO in the calibration condition and
the corresponding blue points indicate the validation trade-off of these
systems. The blue points 2q+ and 2q− (2d+ and 2d−) show the maximal
and minimal quality (diversity) value attainable (across the feasible systems)
in the validation condition at the validation diversity (quality) level of
PO system 2. The relative validation quality (diversity) achievement of
PO system 2 equals the ratio of (a) the distance between the blue points 2 and
2q− (2d−) and (b) the distance between the blue points 2q+ (2d+) and
2q− (2d−). See the online article for the color version of this figure.
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PO and FW systems. In particular, the effect depends on the range of
diversity (quality) values achievable (across the set of feasible
systems) at each possible quality (diversity) level (cf., the irregular
shape of the gamut of attainable trade-offs in the Figures 1 and 2).

The rescaling components (i.e., themaximum/minimumpossible diver-
sity/quality values) used in the relative diversity and quality achievement
measures serve to remove this sample specific confound and are
therefore also sample specific. Any other choice for these component
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Figure 2
Population Quality/Diversity Trade-Off of the PO and FW Selection Systems in the
Single- and Two-Stage 5-Predictor Situation

Note. PO = Pareto-Optimal; FW = Fixed weight. The upper two panels refer to the single-
stage 5-predictor situation, whereas the bottom panel refers to the two-stage predictor situation.
In the panels, the red diamond points depict the population diversity/quality trade-off of the FW
Systems detailed in Table 2. The blue-filled circle (green-filled triangle) points represent the
population diversity/quality trade-off of the diversity (quality) corresponding PO systems. The
curved solid lines enclose the gamut of attainable diversity/quality trade-off; whereas the bold
solid line segments represent the front of PO trade-offs. The upper (middle) panel illustrates the
computation of the relative quality (diversity) achievement of FW system 2. See the online article
for the color version of this figure.
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values (e.g., using a constant value of zero for the minimum possible
AIR) would be inappropriate. Also, note that the rescaling components
are well-defined and free of any arbitrariness because they all pertain to
the validation condition (sample) and are obtained across the set of
feasible selection systems that must be defined as a first step in deriving
PO systems (cf. De Corte et al., 2007, 2011).
Applying the relative achievement measures is not without

challenges, however. First, the relative diversity (quality) achieve-
ment measure is undefined when the denominator of the measure
equals zero, but the problem is essentially limited to settings
involving small applicant samples (100 or less) with a low minority
representation (.20 or less) and a small selection ratio (.10 or less).
For larger sample sizes zero denominator values quickly become
increasingly rare so that the limitation is not really critical, especially
because the practice of PO design systems is not intended for such
small sample situations (cf. De Corte et al., 2011). Second, the
calculation of the relative achievement values of the systems in a
validation sample poses a computational challenge. Whereas
De Corte et al. (2020) partly addressed this computational problem,
we solved it via a modified version of the hybrid ant colony
optimization algorithm (Schlueter et al., 2009). Details of the
new algorithm and an additional study investigating its accuracy
are reported in Appendix A. Our study is, therefore, the first to
exploit the full potential of the relative achievement measures in
studying the cross-validity of PO and FW systems.

Computational Cycle

To address our research questions a computational cycle consisting
of four steps was repeated 2000 times in each cell of the design.
AppendixB details the steps of the computational cycle. Here, we note
that each cycle starts from calibration and validation applicant pool
data sampled with a fixed .2/.8 minority/majority proportion from the
predictors/criterion population distribution with mean and correlation
structure given in Table 1. At the end, each cycle returns the
calibration and validation trade-off, the relative validation diver-
sity and quality achievement as well as the global relative valida-
tion achievement of 5 FW and 10 PO systems. The five FW
systems vary only across the two selection settings (i.e., single-
and two-stage selection) and are chosen so that the population
diversity/quality trade-off of the systems varied substantially
across the diversity/quality dimension. The 10 PO systems consist
of 5 pairs, each of which corresponds to one of the FW systems.
The first PO system within a pair is the diversity equivalent PO
system, whereas the other is the quality equivalent system. The
diversity equivalent PO system has the same population diversity
level as the FW system it corresponds to, whereas the quality
equivalent PO system shares the quality level of the corresponding
FW systems. Table 2 details the studied FW systems and Figure 2
depicts the population diversity/quality trade-offs of the FW and
PO systems in both the single- and two-stage selection situation.

Results

Research Question 1: Do Different PO Systems Show
Comparable Levels of Relative Validation Achievement?

We started by analyzing the relationship between the
population diversity trade-off value and the average (across the

2000 repetitions) relative validation (diversity/quality/-) achieve-
ment of the PO systems studied in the selection environments for
the different calibration/validation sample-size conditions. The
panels in Figure 3 display the results of the analyses for both
selection settings and a representative subset of the sample-
to-sample cross-validation conditions. Per panel, the scatter
plot5 of the green triangle, the blue circle, and the red diamond
points shows the relationship between the population diversity
trade-off and the relative validation quality, the relative validation
diversity, and the global relative validation achievement of the
PO systems, respectively. In general, the plots confirm that PO
systems with a higher (lower) population diversity (quality) trade-
off value show a higher (lower) relative validation diversity
(quality) achievement value. The plots also indicate that all
different PO systems show approximately the same global relative
validation achievement value. Finally, we inspected the plots
corresponding to the population-to-sample and sample-to-
population cross-validation conditions: Again, all different PO
systems show a fairly equal global relative validation achievement
in each selection environment.

The above results imply that the question of the cross-validity
potential of PO systems can be addressed without making a distinc-
tion among different PO systems: The average (across the 10 PO
systems and the 2000 repetitions) global relative validation achieve-
ment of the systems provides an adequate summary of their cross-
validation potential. The upper part of Table 3 summarizes these
average global relative validation achievement values, and the
middle and lower part of the table detail the averages obtained
for the population-to-sample and the sample-to-population cross-
validation conditions.
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Table 2
Studied Fixed-Weight (FW) Selection Systems

5-Predictor selection situation

FW system Single-stage

Two-stage

Stage 1 Stage 2 RRate

1 1 + 2 + 3 + 4 1 + 3 4 .40
2 1 + 2 + 3 + 4 + 5 1 + 2 + 3 4 + 5 .25
3 1 + 3 + 4 + 5 1 + 3 5 .36
4 2 + 3 + 4 + 5 2 + 3 4 .25
5 2 + 3 + 5 1 + 2 + 3 5 .40

Note. Predictors: 1 = Cognitive Ability; 2 = Structured Interview;
3 = Conscientiousness; 4 = Biodata (BI); 5 = Integrity (IN). RRate:
Retention rate after stage 1; Final selection rate is 0.1. Each row of the table
identifies a particular FW system used in either the single- or two-stage setting.
For example, the first row indicates that in the single-stage setting FW system 1
corresponds to using the unit weighed composite of the predictors 1, 2, and 3;
whereas in the two-stage setting the system corresponds to using the unit weighed
composite of the predictors 1 and 3 in stage 1 and predictor 4 in stage 2.

5 The scatter plots for the calibration/validation sample size of 100 are
based on some 60% of the replications because the relative validation
diversity achievement is undefined in the remaining 40% of the cases.
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Not surprisingly, the PO systems show both a substantially higher
sample-to-population and a slightly higher6 population-to-sample
cross-validity compared to the corresponding sample-to-sample
cross-validity. The cross-validity values also increase for higher
calibration and/or validation sample sizes, but the sample-to-sample
and the population-to-sample cross-validity values remain rather
modest even in the largest calibration and/or validation size con-
ditions. The global relative validation achievement of these systems
hovers on average between .54 and .66 in the sample-to-sample
cross-validation conditions.
We also studied the variability of the global relative validation

achievement values of the PO systems across the repetitions. Results
showed that the different PO systems have a virtually equal sam-
pling variability. Table 3 reports the average value (across PO
systems and repetitions) of the standard deviation of the global
relative validation achievement between brackets. As the maximum
possible standard deviation is .29 (i.e., the standard deviation of the

uniform distribution on the 0–1 interval), Table 3 indicates that the
cross-validity of the PO systems varies considerably (from near zero
to near one) across the repetitions for all cross-validation cases,
thereby extending De Corte et al.'s (2020) findings to the sample-
to-sample cross-validity case. However, the variability of the global
relative achievement decreases with larger calibration and/or vali-
dation sample sizes.
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Figure 3
Relationship Between the Population Diversity and the Relative Validation Diversity, the Relative Validation Quality and the Global Relative
Validation Achievement of the PO Systems

Note. FW = Fixed weight. In the panels, the population diversity corresponds to the adverse impact ratio (AIR). The blue circle points indicate the relative
validation diversity achievement, the green triangle points correspond to the relative validation quality achievement and the red diamond points indicate the
global relative validation achievement of the PO systems. Each panel corresponds to a particular sample-to-sample cross-validation scenario, with SC and SV
referring to the size of the calibration and validation sample, respectively. See the online article for the color version of this figure.

6 The similarity of the population-to-sample and the sample-to-sample
results can be explained by first noting that the PO systems in step 3 of the
computational cycle are computed using the procedure presented in De Corte
et al. (2006), implying that the PO systems are not PO with respect to the
sample but with respect to the population that corresponds to the sample.
Second, repeating the computational cycle many times assures that the
average of the latter population statistics and the corresponding averages
of the relative achievement values of the PO systems converge to the initial
population statistics and the corresponding population to sample relative
achievement values respectively.
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Research Question 2: Do PO Systems Achieve Higher
Levels of Relative Achievement Upon Cross-Validation
Than FW Systems?

Below we discuss the results obtained using the relative achieve-
ment measures, postponing the presentation of the findings related to
the AJP/AIR trade-off until the next section because of the obvious
relevance of the latter findings when addressing the third research
question on how the calibration trade-off of the FW and PO systems
evolves under cross-validation. In addition to the average global
relative validation achievement values of the PO systems, Table 3
also summarizes the corresponding average values of the FW
systems (across the five systems and the repetitions) in the different
cross-validation conditions. The comparison of both sets of values
reveals that the average global relative validation achievement of the
PO systems exceeds the corresponding average of the FW systems
for sample sizes of at least 100.7 The difference in cross-validation
potential also grows for larger sample sizes as PO systems cross-
validate better for larger sample-size conditions, whereas the FW
systems show no such effect. The difference in average cross-
validity potential is small to modest, however, except for the
sample-to-population cross-validity.
The above result only partly answers the question about the cross-

validity potential of PO and FW systems, however. Whereas the PO
systems all show approximately the same global relative validation
achievement, this is not the case for FW systems. The global relative
validation achievement of the FW systems correlates substantially
with their population global relative achievement (i.e., the global
relative achievement in the population). Hence, a complete compar-
ison of PO and FW systems must focus not only on the average
global relative validation achievement of the two, but also on the
difference between the individual FW and their two corresponding
PO systems.
Figures 4 and 5 compare the individual FW and the correspond-

ing diversity equivalent and quality equivalent PO systems. The bar

plots in Figure 4 represent the difference in the average global
relative validation achievement of the PO and FW systems, whereas
Figure 5 addresses the proportion (across repetitions) with which
FW systems result in a lower (higher) global relative validation
achievement value. In Figure 5, the blue solid lines (red dashed
lines) connect the proportion of times that the global relative
validation achievement of the two companion PO systems (FW
system) exceeds the achievement of the corresponding FW system
(two companion PO systems). In the panels of both figures, the FW
systems are ordered from left to right according to increasing
population global relative achievement explaining why the order
of the FW systems differs from one selection setting to another
(i.e., the single-stage vs. the two-stage setting).

In general, the Figure 4 plots reveal an inverse relationship
between the population relative achievement of the FW systems
and the average difference in global relative validation achievement
between the system and its corresponding two PO systems. The
Figure 5 plots show a similar inverse relationship, but this time with
respect to the likelihood that the companion PO systems result in a
higher global relative validation achievement than the FW system.
Although not shown in a separate figure, the plots for the studied
sample-to-population and population-to-sample cross-validation
condition further confirm the conclusion that the difference in
cross-validation potential of the FW and corresponding PO systems,
in favor of the PO systems, decreases for FW systems with
increasing population global relative achievement. Also, FW sys-
tems with a very high global population relative achievement cross-
validate as well or even better than corresponding PO systems in
medium-to-large calibration/validation sample-size conditions
(see results of FW system number 5 in the upper row panels of
Figures 4 and 5).
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Table 3
Sample-to-Sample, Population-to-Sample and Sample-to-Population Cross-Validity of PO and Fixed-Weight (FW) Systems

Sample-to-sample cross-validity

CS = VS = 100 CS = VS = 200 CS = VS = 500 CS = VS = 1000

Situation PO FW PO FW PO FW PO FW

Single-stage .55 (.26) .54 (.26) .56 (.20) .52 (.19) .61 (.15) .53 (.14) .66 (.13) .55 (.12)
Two-stage .54 (.26) .49 (.27) .55 (.21) .45 (.21) .58 (.16) .44 (.16) .63 (.14) .43 (.14)

Population-to-sample cross-validity

CS = Inf; VS = 100 CS = Inf; VS = 200 CS = Inf; VS = 500 CS = Inf; VS = 1000

Situation PO FW PO FW PO FW PO FW

Single-stage .60 (.26) .55 (.26) .60 (.20) .52 (.19) .63 (.15) .53 (.14) .68 (.13) .55 (.12)
Two-stage .57 (.26) .49 (.27) .57 (.21) .46 (.21) .59 (.15) .44 (.14) .63 (.13) .43 (.12)

Sample-to-population cross-validity

CS = 100; VS = Inf CS = 200; VS = Inf CS = 500; VS = Inf CS = 1000; VS = Inf

Situation PO FW PO FW PO FW PO FW

Single-stage .79 (.17) .70 (.15) .86 (.12) .70 (.15) .94 (.06) .70 (.15) .97 (.03) .70 (.15)
Two-stage .79 (.20) .40 (.25) .87 (.14) .40 (.25) .94 (.07) .40 (.25) .96 (.04) .40 (.25)

Note. CS = Calibration sample size; VS = Validation sample size; Inf = Infinity; PO = Pareto-Optimal; FW = Fixed weight. In each cell, the first value
corresponds to the average (across the repetitions and across the different PO or FW systems) global relative validation achievement and the second value,
between parenthesis, to the standard deviation of the global relative validation achievement.

7 However, note that the results for the N = 100 condition are less reliable
because they are based on only about 60% of the replications due to
undefined relative achievement values.
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Research Question 3: How Does the Achievement of PO
and FW Systems Evolve Under Cross-Validation?

Apart from knowing that PO systems may promise a better
global relative validation achievement than FW systems, it is also
important to assess how the diversity/quality trade-off of the PO
and FW systems behaves under cross-validation. We first address
the issue in terms of the average (across the repetitions) calibration
and validation trade-off of the different systems. Figure 6 displays
these averages for a selected set of sample-to-sample cross-
validation scenarios in the studied selection settings. In each
panel, the blue-filled circle points and the green-filled triangle
points correspond to the average calibration trade-off of the
diversity equivalent and the quality equivalent PO systems respec-
tively, whereas the blue-hollow circle points and the green-hollow
triangle points indicate the corresponding average validation
trade-off of the systems. In turn, the red-hollow diamond points
show the average validation trade-off of the FW systems. Finally,
the solid and dashed lines in each panel represent the interpolated

front of the average calibration and validation trade-offs of the PO
systems in the cross-validation scenarios.

Figure 6 shows that the shrinkage results obtained by Song et al.
(2017) for sample-to-population cross-validation generalize to
sample-to-sample cross-validation. The average calibration trade-
off of the PO systems typically dominates the corresponding
validation trade-off and the domination is more pronounced with
smaller samples. The claim that PO systems with a high (low)
population diversity (quality) trade-off value show more (less)
diversity (quality) than quality (diversity) shrinkage also receives
support, especially in single-stage selection. Finally, ancillary anal-
yses, similar to those reported in Figure 6, confirmed the above
findings for the sample-to-population but not for the population-to-
sample scenarios.8
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Figure 4
Difference in Global Relative Validation Achievement Between Corresponding Sets of PO and FW Systems

Note. PO = Pareto-Optimal; FW = Fixed weight. Each panel corresponds to a particular sample-to-sample cross-validation condition, with CS and VS
indicating the size of the calibration and validation sample respectively. The bars show the difference in global relative validation achievement for
corresponding sets of PO and FW systems. In each panel, the systems are ordered in increasing population relative achievement along the horizontal axis and
the numbering on the horizontal axis corresponds to the numbering of the systems in Figure 2. See the online article for the color version of this figure.

8 This is explained by the fact that equal deviations in sample predictor
composite effect sizes result in quite different AIR deviations when the
sample predictor composite effect size is smaller as compared to when it is
larger than the population predictor composite effect size.
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Although Figure 6 suggests considerable diversity and quality
shrinkage of the calibration PO trade-offs under cross-validation,
especially in the smallest applicant sample sizes of 100 and 200, the
actual practical importance of the shrinkage remains rather insig-
nificant. To illustrate this, consider, for example, the shrinkage
results obtained in the single-stage selection situation for the
diversity equivalent PO system number 3 in the 100, 200, and
1000 applicant pool size condition (cf. the blue-filled and the blue-
hollow circle point 3 in the upper panels of Figure 6). The average
(across repetitions) calibration diversity/quality (i.e., the AJP/AIR)
trade-off of the PO system is 1.42/.52, 1.40/.50, and 1.37/.48 in the
100, 200, and 1000 sample-size conditions respectively; whereas the
corresponding average validation trade-offs are 1.33/.44, 1.34/.46,
and 1.35/.47. So, even in the smallest sample-size condition of 100,
the drop in AJP is only 6% (i.e., 100 (1.42–1.33)/1.42 = 6). For the
same sample condition, the corresponding drop in AIR, when
translated to the corresponding drop in a number of minority hires,
is equally unimpressive. Given the .2/.8 proportional representation
of the minority/majority candidates and the .1 total selection rate, the

average (across repetitions) calibration AIR trade-off value .52 of
PO system 3 corresponds to the selection of 1.15 minority appli-
cants; whereas the corresponding average validation diversity trade-
off value of .44 of the system translates to the hiring of 1 minority
applicant. In practice, this means that the same number of 1 minority
applicant is expected to be hired in both the calibration and the
validation condition.

Figure 6 also illustrates the potential of using the AJP/AIR trade-
off instead of the relative achievement measures to address the
research question on the cross-validation potential of PO and FW
systems. In particular, the panels in the figure show that the average
validation trade-off of the FW systems typically lies below the
interpolated front of the average PO validation trade-offs and this is
more obvious in the larger calibration/validation sample-size con-
ditions and for FW systems with a low population relative achieve-
ment. The result indicates that PO systems with the same average
validation diversity (quality) trade-off as an FW system have on
average a higher validation quality (diversity) trade-off and that the
average trade-off of the FW systems is dominated by a subset of the
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Figure 5
Probability That the Global Relative Validation Achievement of PO (FW) Systems Exceeds the Global Relative Validation Achievement of the
Corresponding FW (PO) Systems

Note. PO = Pareto-Optimal; FW = Fixed weight. Each panel corresponds to a particular sample-to-sample cross-validation condition, with CS and VS
indicating the size of the calibration and validation sample, respectively. The blue circle points, connected by a blue solid line (red circle points connected by a
red dashed line) indicate the probability that the global relative validation achievement of PO (FW) systems exceeds the global relative validation achievement
of the corresponding FW (PO) systems. The numbering on the horizontal axis corresponds to the numbering of the systems in Figure 2 and the systems are
ordered in increasing population relative achievement along the horizontal axis. See the online article for the color version of this figure.

CROSS-VALIDITY POTENTIAL OF PO AND FW SYSTEMS 11



interpolated PO trade-offs. Yet, these findings essentially relate to
the average trade-off of the FW systems as compared to interpolated
average PO trade-offs and not to the average trade-offs of the
actually studied PO systems. Neither do they permit a general
conclusion about which of the systems, PO versus FW, cross-
validate better because the respective trade-offs of the systems
are often incomparable (i.e., PO superior on one dimension and
FW superior on the other). In fact, across all possible pairs of FW
and actually studied PO systems the percentage of incomparable
average validation trade-offs lies between 76 and 86 across the
different sample-to-sample cross-validation conditions.
The findings reported in Figure 7 further detail the incompara-

bility issue at the level of the individual trade-offs of the FW and
the two corresponding PO systems within each repetition instead
of at the level of the average (across the 2000 repetitions within
each cell of the design) trade-offs across all pairs of FW and PO
systems. In the panels of the figure, the red downward shaded bars

represent the proportion (across) the trials that the FW systems
(ordered from left to right according to increasing population
relative achievement value) and the two corresponding PO sys-
tems have an incomparable trade-off. These proportions show that
the PO and FW systems have incomparable trade-offs in roughly
30%–50% of the trials even when considering only the triads of
the FW and the diversity and quality equivalent PO systems. For
the remaining cases where the validation trade-offs of the FW and
the corresponding PO systems are comparable, the proportions
represented by the blue upside shaded bars show that the valida-
tion trade-off of the FW systems is more often dominated by the
corresponding PO systems than the reverse is the case. The excess
domination of the validation trade-off of the PO systems also
increases with sample size, but FW systems with a higher popu-
lation relative achievement result less frequently in dominated
validation trade-offs than FW systems with a lower population
relative achievement.
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Figure 6
Calibration and Validation Diversity)/Quality Trade-Off of the PO Systems for a Representative Set of Sample-to-Sample Cross-Validation
Conditions

Note. PO = Pareto-Optimal. Each panel corresponds to a particular sample-to-sample cross-validation condition, with CS and VS indicating the size of the
calibration and validation sample, respectively. The filled circle and triangle points, connected by solid line segments (hollow circle and triangle points,
connected by dashed-line segments) depict the calibration (validation) diversity/quality trade-off of the PO systems. Diversity is gauged by the adverse impact
ratio (AIR), whereas quality corresponds to the average job performance of the selected applicants. See the online article for the color version of this figure.
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Additional Studies

Our Supplemental Online Material reports additional studies using
the 9-predictor selection situation of De Corte et al. (2020). We also
examined the cross-validation potential of PO and FW systems for a
selection rate of .4 instead of .1. Results echoed and extended our
above findings by showing that also with a selection rate of .4 the PO
systems continue to maintain an advantage for cross-validation con-
ditions with a validation applicant pool of at least 100, although the
advantage is somewhat smaller in the 9-predictor situation.

Discussion

Key Contributions

The article presents the first all-round examination of the cross-
validity potential of PO as compared to FW selection systems.

As argued above, this examination requires developing and using a
new set of measures (i.e., the relative achievement measures)
for gauging the cross-validity of biobjective selection systems.
Shrinkage and trade-off measures, as applied in previous research
on the cross-validity of both single- and biobjective selection
systems, fall short to fully capture the cross-validity of biobjective
systems because these systems simultaneously pursue two goals
(i.e., quality and diversity) that relate to incommensurable dimen-
sions. As a consequence, separate results on the quality and diversity
shrinkage of different selection systems under cross-validation
cannot be combined to a single number quantifying the extent
that these systems cross-validate. In contrast, our study is the first
to fully implement the new relative achievement measures and, in
particular, the global relative validation achievement measure, that
overcomes the incommensurability issue that plagues the study of
the cross-validity of biobjective selection systems.
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Figure 7
Difference Proportion PO Validation Trade-Off Dominates/Is Dominated by the Corresponding FW Trade-Off and Likelihood of
Incomparable Trade-Offs

Note. PO = Pareto-optimal; FW = Fixed weight. Each panel corresponds to a particular sample-to-sample cross-validation condition, with CS and VS
indicating the size of the calibration and validation sample respectively. The numbering on the horizontal axis corresponds to the numbering of the systems in
Figure 2 and the systems are ordered in increasing population relative achievement along the horizontal axis. In each panel, the blue upward shaded bars
indicate the difference in proportion that the PO validation trade-off dominates/is dominated by the validation trade-off of the corresponding FW system;
whereas the red downward shaded bars show the likelihood that the validation trade-off of the PO and FW systems are incomparable. See the online article for
the color version of this figure.
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Our study is, therefore, also unprecedented in comparing the
cross-validity of different PO systems as well as in comparing the
cross-validity of PO and FW systems for any pair of PO or PO and
FW systems. Whereas previous research on the cross-validity of
biobjective systems (e.g., Song et al., 2017) necessarily stops with
the separate evaluation of the extent of diversity and quality
shrinkage under cross-validation and ends up with two sets of
incomparable shrinkage results, our study goes the full mile by
virtue of using the global relative validation achievement measure.
However, note that the relative achievement measures are not used
when studying the way in which the diversity/quality trade-off of
selection systems evolves under cross-validation. For this, the
present study adopts the same procedure as previous research by
studying the expected trade-off of the systems in the different cross-
validation conditions.
Besides presenting and using new measures for quantifying the

cross-validity potential of biobjective selection systems, the article
offers two more unique contributions. Thus, we extend previous
results on the sample-to-sample cross-validity of regression and FW
systems in the single-objective selection context (e.g., Raju et al.,
1999; Schmidt, 1971) to corresponding results for PO and FW
systems in the biobjective situation. As selection systems are always
initially developed on (aggregated) sample data and subsequently
always applied to finite-sized applicant groups, sample-to-sample
cross-validity, instead of population-to-sample or sample-to-
population cross-validity, is the most informative type of cross-
validity for the selection practitioner.
Second, the focus on biobjective selection systems leads to

studying and answering research questions that have no counterpart
in the single-objective cross-validity literature. In the latter litera-
ture, the cross-validity issue boils down to a single research question
about how the cross-validity of the regression composite compares
to the cross-validity of the FW composite. In contrast, the same issue
implies multiple and new research questions in the biobjective
selection context as many (in fact, an infinite number of) different
PO systems are now possible, instead of only a single regression
system. One of these new questions is whether the different PO
systems have approximately the same cross-validation potential
(our first research question). Other additional, new research ques-
tions concern the relation between the cross-validity of FW and PO
systems (our second research question). Answering the latter ques-
tion requires a more elaborate procedure than the procedure used to
address the corresponding question in the single-objective selection
context. For a start, we now have to compare FW and multiple PO
systems. Also, as PO systems vary across the range of feasible
diversity and quality trade-off values, it is natural to compare their
cross-validity to FW systems that also vary on these dimensions.
This implies studying not only the FW system where all available
predictors are equally weighted (as is the case in the previous
cross-validity literature in the single-objective selection context)
but also FW systems where only a subset of the available predictors
are equally weighted to form the selection predictor composite.
As discussed in the next section, examining the considerably more
complex comparison of the sample-to-sample cross-validity of
FW and PO systems not only leads to new insights that apply
specifically to the biobjective selection context, but also to a
renewed interest for the traditional cross-validity research in the
single-objective situation.

Main Findings and Conclusions

The first main finding is that different PO systems all show
approximately the same global relative validation achievement
value in each of our conditions. As a key implication, selection
practitioners retain all options when choosing between the different
PO systems, as these systems cross-validate equally well. Deciding
between the PO systems remains a value-based judgment reflecting
where organizations stand on trading off diversity and quality.
We further discovered that the cross-validation potential of PO
systems, as gauged by the relative validation achievement criterion,
is quite modest (i.e., in the .54−.68 range) in both the sample-to-
sample and population-to-sample cross-validation scenarios, even
for validation sample sizes of 1000.

Second, our results confirm and generalize the claim of previous
research that PO systems maintain an advantage over FW systems
under cross-validation. The results based on the validation trade-off
criterion, although limited to pairs of FW and PO systems with a
comparable validation trade-off, as well as the more general results
obtained when using the relative achievement measures corroborate
the claim. In particular, the latter results show that the average global
relative validation achievement of the PO systems exceeds the
corresponding average of the FW systems for applicant pool sizes
of at least 100. However, we also found that FW systems are
differently outperformed by the corresponding PO systems.
Whereas all PO systems result in more or less the same global
relative validation achievement, FW systems show considerable
variability, depending on the population relative achievement value
of the systems. The higher the population relative achievement value
of an FW system, the higher its global relative validation achieve-
ment, such that FW systems with a (very) high population relative
achievement continue to outperform corresponding PO systems for
calibration/validation sample sizes up to 500 and even larger. This
result leads to perhaps the study’s single most important advice to
the selection practitioner when facing the choice between alternative
selection system designs. The practitioner should, as a first task,
estimate the diversity/quality trade-off and the global relative
achievement value of the feasible FW systems using available
predictor/criterion effect size and correlation data, whether obtained
locally, from meta-analyses, or a combination of both. A program to
perform this task can be downloaded from https://users.ugent.be/
~wdecorte/software.html. If any of the systems shows a high to very
high global relative achievement value (i.e., a value of at least .90),
if an applicant pool of at most 1000 is anticipated, and if the FW
system shows an acceptable diversity/quality trade-off, then it
should probably be preferred above any PO system. The latter
condition is of key importance, however. If an FWmeets the former
two conditions, but results in a diversity/quality trade-off that runs
against the organization’s position on trading off diversity for
quality, then it is still better to decide in favor of a PO system
that shows the desired trade-off as this system will cross-validate
almost as well as the FW system.

The result that the cross-validity (whatever the type of cross-
validity) of the FW systems varies proportionally with the popula-
tion relative achievement of the FW systems mirrors a finding
already established in the earlier studies on the cross-validation
potential of single-objective selection systems. Although frequently
left unmentioned at least some of these studies (e.g., Cattin, 1978;
Einhorn & Hogarth, 1975) explicitly indicate that the tendency for
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regression composites to cross-validate better than FW systems
relates to the comparative population validity of the regression and
the FW systems.
As to the finding that PO systems cross-validate on average equal

or better than FW systems for applicant samples as less as 100we see
two possible explanations. First, the average of the ratio between the
population global relative achievement of the FW and the corre-
sponding PO system was quite low in our study and was definitely
substantially lower than the corresponding ratio between the FW and
the regression population validity in many earlier cross-validity
studies in the single-objective cross-validity literature. For example,
in the study of Raju et al. (1999), the ratio between the FW
population validity and the regression composite population validity
was .466/.479 = .973, whereas in our study the average of the ratio
between the population global relative achievement of the FW and
the corresponding PO system was only .704. Second, we studied
only PO systems using nonnegatively weighted predictor compo-
sites because negative weights imply that the scores of the applicants
on some of the valid predictors are counted against the candidates.
Because constrained linear composites (as compared to uncon-
strained ones) have lesser tendency for overfitting (cf., the logic
behind ridge, lasso, and elastic net regression) PO systems based on
nonnegatively constrained composites are expected to cross-validate
better than PO systems using unconstrained predictor composites.
As a further consequence, the sample sizes at which constrained PO
systems cross-validate on par with FW systems will be lower. Given
the above argument, surprisingly, none of the previous research on
the cross-validity of regression and FW composites in the single-
objective selection context studied and compared FW and nonnega-
tively constrained regression composites.
The results reported in Table 3 also show that the variability of

the relative validation achievement of PO systems across replica-
tions only minimally exceeds the corresponding variability of FW
systems. Although the variability decreases for larger validation
applicant pool conditions, the achievement values of both PO and
FW systems span almost the entire maximum possible 0–1 range,
even for the largest studied validation sample-size conditions.
Finally, we also examined whether PO systems are expected to

result in a better diversity/quality trade-off than FW systems under
cross-validation. The expected quality/diversity trade-off of FW
systems is typically below the interpolated front of the PO trade-
offs, but the result is less clear for smaller validation sample sizes
and a larger number of predictors. Although the result is by itself
insufficient to justify the general conclusion that PO systems cross-
validate better than FW systems because it applies only to PO and
FW systems with a comparable (average) validation trade-off it
indicates that it is virtually always possible to construct PO systems
that cross-validate better than any given FW system. When the
trade-offs of the PO and the FW systems are comparable, we finally
showed that the likelihood that the trade-off of FW systems is
dominated by the trade-off of the corresponding PO systems is
higher than the reverse, especially in cross-validation conditions
with larger validation applicant pools and a smaller number of
predictors.

Limitations and Avenues for Further Research

Our study does not address the possibility that the calibration
and validation conditions relate to different populations and that

the applicant pools in the calibration and validation conditions
come from different populations. The calibration and/or validation
applicant pools might also not be random samples from the
population. For example, applicant pools might be preselected
or prone to self-selection, leading to range restriction and/or
different effect sizes for selection predictors in the validation
condition. As another limitation, our study left out the possibility
of applicant withdrawal or job refusal and that the focal criterion
behavior is multidimensional instead of unidimensional. Future
research can tackle these issues (e.g., by mimicking the preselec-
tion/self-selection process when generating validation pools).

Future research should focus on reducing the considerable loss in
relative achievement of PO systems in future applications. Inspired
by general linear modeling developments (e.g., Putka et al., 2018),
the introduction of regularization techniques in the computation of
PO systems might be particularly promising (see Song, 2018). As a
final avenue of future research, we suggest the further development
of methods for computing selection systems that are PO with respect
to several, instead of just one protected group (cf. Song & Tang,
2020, for an initial approach) and the implementation of these
methods in the study of the cross-validity of PO systems.

Conclusion

Our study provides much-needed evidence for claims
(cf. De Corte et al., 2020; Song et al., 2017) that PO systems maintain
an advantage over FW systems under cross-validation. We conducted
an all-round examination of the cross-validation potential of these
systems by examining not only sample-to-population, population-to-
sample but also sample-to-sample cross-validation scenarios. When
selections involve sufficiently large applicant pools (at least 100
applicants), PO systems had on average a higher cross-validity
potential than the corresponding FW systems. Yet, even for applicant
pools as large as 1000, in limited situations FW systemsmaymatch the
merits of PO systems and we provide selection specialists with a
straightforward procedure to decide whether FW systems may offer a
comparable or better cross-validation potential than the PO systems.
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Appendix A

Computation of the Relative Achievement Measures

We first recapitulate the procedure for assessing the relative
achievement of a given selection system when the system is
applied in the applicant population (i.e., an applicant pool of
infinite size). In that case, the population formula for computing
the selection outcomes in general, including multistage, selec-
tions proposed by De Corte et al. (2006) can be applied to
calculate the diversity value (e.g., the AIR) and the quality
value (e.g., the average criterion performance of the selected
applicants) of the selection system. Next, standard, gradient-
based algorithms (e.g., sequential quadratic programming) can
be used to reliably address the nonlinear constrained optimiza-
tion problems that solve for the maximum and the minimum
possible diversity (quality) value at the given quality (diversity)
value of the selection system (cf. De Corte et al., 2020). The
standard algorithms can in this case be applied because both the
objective function (i.e., the function related to the quantity—
either the diversity or the quality—that must be optimized) and
the nonlinear constraints (related to the condition that the
maximum/minimum must be determined for a given value of
the other selection objective) are continuous, differentiable
functions.
For the same reasons, the standard optimization algorithms can

also be used for calculating the relative validation achievement in
case of a finite applicant pool, provided that the effect size and the
validity of the selection composite are chosen for gauging the
selection objectives. With other metrics for the selection objec-
tives and, in particular when using the AIR and the average job
performance of the selected applicants as is required for multi-
stage selections, the objective and constraints are no longer
analytic functions, leaving only metaheuristic methods to solve
for the relative (diversity/quality/-) achievement of the selection
systems. Thus, De Corte et al. (2020) apply a method based on the
NSGA-2 evolutionary optimization algorithm of Deb et al.

(2002). However, the procedure fails to calculate the relative
diversity achievement, primarily because of difficulties related to
the implementation of the nonlinear equality constraint that the
maximum/minimum of the diversity must be determined at the
given quality trade-off value of the system. Because the relative
achievement of a selection system equals the average of its relative
diversity and relative quality achievement, the failure also blocks
the computation of the relative achievement of selection systems in
finite applicant samples.
We resolved the computational problems related to the assess-

ment of the relative diversity achievement via a modified version of
the hybrid ant colony optimization algorithm of Schlueter et al.
(2009). The new algorithm first invokes a Latin hypercube sam-
pling strategy to obtain an initial set of feasible (but not optimal)
solutions to the maximization/minimization problems implied by
the calculation of the relative diversity achievement. The resulting
set is subsequently used within a relaxation strategy to solve the
maximum/minimum validation diversity value at the validation
quality value of the selection system. Instead of implementing the
nonlinear validation quality constraint in full precision, a relaxed
version of the constraint involving three digits precision is used
instead.
In a subsequent study, we tested the accuracy of the new

computational procedure. The study exploits the fact that, for
single-stage selections, the relative validation achievement of
selection systems can be assessed using both the standard
gradient-based as well as the nonstandard metaheuristic algorithm
when the effect size and validity metrics are used to represent the
selection diversity and quality objectives. The results show that
the average relative validation achievement values of the systems,
obtained by the three-digit precision metaheuristic algorithm, are
very similar to the corresponding averages obtained using the
gradient-based algorithm.

Appendix B

Computational Cycle

The computational cycle comprises the following four steps: (a)
randomly generating a calibration and a validation data sample; (b)
computing the diversity/quality trade-off attained by the five fixed-
weight systems in the calibration data sample; (c) computing two
corresponding sets of calibration PO systems; and (d) applying the FW
and calibration PO weight systems to the validation sample and
calculating the validation trade-off and relative validation achievement
values of the systems. The average, across the repetitions, of the thus
obtained trade-off and achievement values is subsequently used as an
estimate of the expected trade-off and relative achievement of the
studied selection, whereas the standard deviation of the values across
the repetitions will occasionally serve to represent the variability.

Step 1: Sampling the Calibration and Validation
Applicant Pools

The formula for computing PO selection systems assumes that
the predictors and the criterion follow a multivariate normal finite
mixture distribution in the total applicant population (cf. De Corte
et al., 2006, 2007). The calibration and validation applicant pools
therefore correspond to random samples from this mixture distri-
bution with the given size and minority/majority applicant repre-
sentation. When the calibration (validation) condition of the cell
corresponds to the applicant population, the applicant pool is the
population.
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Step 2: Computation of the Calibration Trade-Off of the
Five FW systems

The formula in De Corte et al. (2006) is used to calculate the
calibration trade-off of the FW systems. The calculations are based
on the predictor effect size and predictor/criterion intercorrelation
values derived from the calibration sample predictor/criterion
score data.

Step 3: Computation of the Two Sets of Corresponding
Calibration PO Systems

The calculation of the calibration PO systems is also based on
the formula of De Corte et al. (2006) such that standard gradient-
based optimization methods can be used to compute the systems.
As with the computation of the calibration trade-off of the FW
system, the computation of the PO systems also starts from the
predictor effect size and predictor/criterion intercorrelation values
derived from the calibration sample predictor/criterion score data.
The calibration PO systems of the first set have the same diversity
level as one of the fixed-weight systems, whereas the calibration
PO systems of the second set share the quality level of one of the
fixed-weight systems. Because the diversity/quality trade-off
value of the fixed-weight systems varies across repetitions, the
resulting calibration PO systems also vary from one repetition to
the other. An adapted version of the program described in De Corte
et al. (2011) is used to perform the calculation of the calibration
PO systems. The adapted program adds an equality constraint to
the nonlinear programs used to calculate the PO systems. The
equality constraint enforces the requirement that the PO system
should have the same diversity (quality) value as its corresponding
FW system.

Step 4: Computation of the Validation Trade-Off and the
Relative Validation Achievement of the

FW and Calibration PO Systems

The final step calculates the validation diversity/quality trade-off and
the relative validation achievement (i.e., the triple of relative validation
diversity, relative validation quality, and global relative validation
achievement) of the fixed-weight and corresponding calibration PO
systems when applied to the validation applicant pool data. For finite
applicant pool conditions, the metaheuristic algorithm described in
Appendix A is used to perform the calculation of the relative validation
achievement, whereas a classic gradient-based algorithm is invoked to
obtain the results in case of an infinite applicant pool. To compute the
validation trade-off of the systems, the formula of De Corte et al.
(2006) is used in case of an infinite validation applicant pool. With
finite applicant pools, the validation trade-off can be calculated directly
from the validation applicant pool predictor/criterion score data.
At the end of the computational cycle, calibration and validation

trade-off values as well as relative validation diversity, relative
validation quality, and global relative validation achievement
values are available for both the 5 FW and the 10 calibration
PO systems. Averaging these values across the 2000 repetitions
within each cell of the study design provides an accurate estimate
of the trade-off and global relative achievement one may expect to
obtain under the selection conditions specified by the cell of the
design. This is particularly the case for the average relative
achievement values because the standard error of these values is at
most equal to .288/sqrt(2000) < .007.
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