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A B S T R A C T   

Ride-sourcing services are increasingly popular because of their ability to accommodate on- 
demand travel needs. A critical issue faced by ride-sourcing platforms is the supply-demand 
imbalance, as a result of which drivers may spend substantial time on idle cruising and picking 
up remote passengers. Some platforms attempt to mitigate the imbalance by providing relocation 
guidance for idle drivers who may have their own self-relocation strategies and decline to follow 
the suggestions. Platforms then seek to induce drivers to system-desirable locations by offering 
them subsidies. This paper proposes a mean-field Markov decision process (MF-MDP) model to 
depict the dynamics in ride-sourcing markets with mixed agents, whereby the platform aims to 
optimize some objectives from a system perspective using spatial-temporal subsidies with pre-
defined subsidy rates, and a number of drivers aim to maximize their individual income by 
following certain self-relocation strategies. To solve the model more efficiently, we further 
develop a representative-agent reinforcement learning algorithm that uses a representative driver 
to model the decision-making process of multiple drivers. This approach is shown to achieve 
significant computational advantages, faster convergence, and better performance. Using case 
studies, we demonstrate that by providing some spatial-temporal subsidies, the platform is able to 
well balance a short-term objective of maximizing immediate revenue and a long-term objective 
of maximizing service rate, while drivers can earn higher income.   

1. Background 

The emergence of advanced information technologies and the surge in smartphone users enable the fast development of ride- 
sourcing services. Provided by transportation network companies (TNCs), such as Uber, Lyft, DiDi, and Grab, ride-sourcing services 
address individuals’ on-demand travel needs. A ride-sourcing market is analogous to a more efficient dial-hailing taxi market, in which 
passengers request services with a few clicks in smartphone apps. Unlike traditional taxi services with large meeting frictions due to 
street-hailing behaviors between drivers and passengers, ride-sourcing services enable passengers to be matched with drivers at a 
certain distance. Upon receiving a travel request from a passenger, the platform assigns the passenger to a near driver who then picks 
up and delivers the passenger. On one hand, the efficiency of supply-demand matching makes ride-sourcing systems indispensable in 
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modern transportation systems. On the other hand, drivers may spend significant amounts of time on idle cruising1 (IC; i.e., waiting for 
dispatches) and on the way to pick up passengers. A market failure, called a “wild-goose chase” (WGC), even occurs when drivers are 
always dispatched to far-away passengers, and waste substantial time on picking them up. These lead to low effective earning rates of 
drivers and cause negative social externalities, such as exacerbating traffic congestion and increasing carbon dioxide emissions. 

The main cause of inefficient IC and the WGC phenomenon is the spatial-temporal supply-demand imbalance. If there is a lack of 
idle drivers in one region, the platform must call remote drivers to enter the region to mitigate the loss of passengers and revenue. 
However, these drivers may suffer from long pick-up time (i.e., as in WGC). By contrast, if there are insufficient passengers in one 
region, drivers may suffer from long idle time (i.e., as in IC). To tackle the issue of supply-demand imbalance, a number of approaches 
have been proposed, including but not limited to order dispatching (Xu et al., 2018; Yang et al., 2020a) and surge pricing (Zha et al., 
2018). In particular, with the fast development of computational power and artificial intelligence technologies, researchers are paying 
increasing attention to the design and optimization of idle-vehicle relocation strategies for improving supply-demand balance (Rong 
et al., 2016; Yu et al., 2019; Lin et al., 2018). 

In practice, based on actual or predicted spatial-temporal information on supply/demand (Ke et al., 2019) and traffic conditions 
(Zhu et al., 2019a), idle drivers are advised/incentivized to cruise to regions with higher potential rewards. These rewards could be 
reflected by the saving on waiting/matching time (Hwang et al., 2015); increase in trip fares and income (Rong et al., 2016; Shou et al., 
2020a); increase in vehicle occupancy/utilization rate (Gao et al., 2018); and saving on idle-cruise distance and operational costs (Lin 
et al., 2018; Yu et al., 2019). These studies aim to generate optimal sequential movements for idle drivers to achieve some maximal 
system-wide total rewards over a time horizon. Dynamic gaming approaches, such as the Markov decision process (MDP), offer a 
convenient framework for formulating and solving these problems. In an MDP model, one or multiple players (also referred to as 
agents) interact with an environment. Each agent has a set of states and a set of actions. In each time slot, each agent chooses one action 
after it perceives the current state. Meanwhile, by taking an action, the agent receives a reward and their state will be updated by the 
current state, action, and the state transition law, moving to the next state. During a time horizon, agents attempt to seek out the 
optimal sequence of actions (determined by a policy that maps the current state to the action) that leads to maximal total rewards. In 
particular, an MDP model with multiple agents is referred to as a multi-agent MDP model. 

Although MDP-based approaches for idle-vehicle relocation have been established in recent studies, research gaps remain. For 
instance, none of the previous studies have examined the designs and analysis of spatial-temporal subsidies for ride-sourcing drivers 
with their own relocation strategies using an MDP framework. To be more specific, each driver aims to maximize their own earning by 
relocating to profitable regions, while the platform tries to incentivize drivers’ relocating behaviors to maximize overall system ef-
ficiency by subsidies. Clearly, the sequential decision-making of drivers and the platform interact with each other, resulting in a very 
complex multi-agent MDP with different (i.e., mixed) types of agents. To well formulate such a complex system, we propose a mean- 
field (MF)-MDP model, which can jointly analyze the platform’s spatial-temporal subsidies and idle drivers’ self-relocation strategies. 
We regard the platform as a major agent that pursues the subsidy to optimize some objectives from a system perspective—e.g., to 
maximize immediate revenue and/or the number of passengers served (service rate). A number of drivers are considered as minor 
agents who choose their self-relocation strategies to maximize their income. The decisions of the platform directly affect the income 
and decisions of the drivers, while the decisions of the drivers, in turn, collectively affect the platform’s decisions via their average 
status (e.g., the spatial-temporal distribution of idle drivers), which is captured by the MF state. By using a simple stochastic process to 
approximate the MF state (instead of computing it based on each driver’s state), we are able to reduce the standard multi-agent MF- 
MDP model to a simplified MF-MDP model with only the platform and one representative driver as agents. We then develop a 
representative-agent reinforcement learning algorithm to solve the simplified model. We conduct a set of numerical studies to examine 
the performance of the proposed representative-agent algorithm. By performing sensitivity analysis, we further investigate the impacts 
of spatial-temporal subsidies on drivers’ self-relocation, drivers’ income, number of passengers served, and platform’s net revenue. The 
results suggest that by providing some spatial-temporal subsidies, the platform is able to achieve a higher total reward, while drivers 
can earn higher income. 

We use the term non-MF-MDPs to denote MDPs in which the MF state of minor agents is not required to compute the dynamics (e.g., 
transition laws and states of agents) in the environment. The main distinctions between the proposed MF-MDP model and other non- 
MF-MDP models, and the features of their targeting research problems are summarized in Fig. 1. 

In a non-MF-MDP model, each agent makes decisions by perceiving the states of all other agents, which may render the algorithm 
hard to converge due to the high stochasticity and instability of the environment. In an MF-MDP model, the states of agents are 
averaged in each zone and each time interval, and each agent makes its decisions according to the averaged (mean-field) state. This 
will help reduce the variance of the states and actions, and thus make the model easy to be trained. In describing a ride-sourcing system 
with one platform and multiple drivers, both non-MF-MDP models and standard MF-MDP models contain multiple agents (the platform 
and drivers). Naturally, these two models can be solved by multi-agent algorithms that treat each driver and the platform as an in-
dependent agent. The only difference is that agents in MF-MDP models could take the MF states as inputs for making actions, while 
non-MF-MDP models should be aware of the states of all other agents at each decision point. 

Additionally, in a complex system with a large number of drivers as agents, multi-agent algorithms need to identify the optimal 
policy for each specific agent, and the underlying solution space (i.e., the Cartesian product of each agent’s state-action set) could be so 
large that optimal strategies are hard to be identify. To address this critical issue, we then propose a simplified MF-MDP model that uses 

1 We use “idle cruising” because in ride-sourcing markets some vacant vehicles are en route to pick up passengers. To distinguish this from 
traditional taxi markets, we note that these vehicles are vacant but not idle. 
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a representative driver to make decisions for all independent drivers. In other words, the simplified MF-MDP model only identifies 
optimal policies for the representative driver (minor player) and the platform (major player), resulting in a much smaller solution 
space. By developing representative-agent solution algorithms, it could be much easier for the simplified MF-MDP model to fast 
converge to high-rewarding policies. 

The main contributions of this paper are:  

• We propose a generalized MF-MDP model to capture the interactive decisions between the platform and a group of drivers with 
different objectives in ride-sourcing markets; in contrast, previous studies in this domain generally assume that the platform has full 
control of ride-sourcing drivers or that the platform and drivers have the same objective.  

• We show theoretically that this generalized multi-agent MF-MDP model (also referred to as the standard MF-MDP) can be 
approximated by a simplified MF-MDP model that attempts to jointly identify the optimal policies of a platform and a represen-
tative driver. The simplified MF-MDP model offers computational advantages for solving multi-agent MDP models.  

• We formulate a specific MF-MDP model to design spatial-temporal subsidies with predefined subsidy rates for drivers with self- 
relocation strategies. A representative-agent reinforcement learning algorithm is developed to solve the simplified MF-MDP 
model. Numerical studies demonstrate the effectiveness of the proposed algorithms in a small market and examine the in-
fluences of spatial-temporal subsidies on a few key measures. 

The rest of the paper is organized as follows. Section 2 reviews the literature on ride-sourcing markets and, in particular, idle- 
vehicle relocation. Section 3 presents the generalized ride-sourcing MF-MDP model with the platform and drivers as mixed agents. 
We discuss the approximation of the MF state and the simplified MF-MDP model with theoretical properties and a dynamic pro-
gramming approach. In Section 4, we adopt the proposed MF-MDP model and formulate the spatial-temporal subsidy problem. A 
representative-agent reinforcement learning algorithm is developed. We conduct a set of numerical studies in Section 5 and 
demonstrate the advantage of the representative-agent algorithm over conventional multi-agent algorithms and the potential impacts 
of the subsidies on the platform and drivers. In Section 6, we discuss different potential subsidy schemes. Section 7 concludes. 

2. Literature review 

With the development and deployment of smartphone and information technologies, ride-sourcing services have had substantial 
impacts on traditional taxis in terms of passengers’ mode choices and mobility efficiency, and therefore have received intensive 

Fig. 1. Features of different models.  
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attention from researchers across fields. General research problems include optimal operating strategy designs in terms of the trip fares 
charged to passengers and wages paid to drivers (Cachon et al., 2017; Castillo et al., 2017; Zha et al., 2016; Bai et al., 2019; Taylor, 
2018; Yang et al. 2020b); implications of governmental policies and regulations (Yu et al., 2019); examination of the elasticities of 
labor supply with respect to driver income level (Sun et al., 2019a; Sun et al., 2019b); on-demand matching and dispatching strategies 
(Xu et al., 2017; Zha et al., 2018; Zhang et al., 2017; Lyu et al. 2019; Yang et al. 2020a); forecasting real-time demand and supply (Ke 
et al., 2017; Ke et al., 2021; Yao et al., 2018; Zhu et al., 2021b); equilibrium in ride-pooling services (Ke et al., 2020); and the impact of 
ride-sourcing on public transit (Zhu et al., 2020). Readers may refer to Wang and Yang (2019) for a comprehensive review. 

One critical problem faced by ride-sourcing platforms is how to mitigate supply-demand imbalance over space and time, which is 
commonly observed due to the stochastic arrivals and heterogeneous distributions of both drivers and passengers. The supply-demand 
imbalance can be alleviated with the help of approaches such as spatial-temporal demand prediction (Ke et al., 2021); fleet-size 
regulation (Yang et al., 2002; Lin et al., 2018; Shehadeh et al., 2020); surge/spatial pricing and rewards (Yang et al., 2010; Zha 
et al., 2018; Zuniga Garcia, 2019; Yang et al. 2020b); driver incentive/subsidy (Qian et al., 2017); efficient large-scale order dispatch 
(Xu et al., 2018; Li et al., 2019); and idle-vehicle relocation guidance (Rong et al., 2016; Yu et al., 2019; Wang and Wang, 2020). 

Of these methods, idle-vehicle relocation, which guides or incentivizes idle vehicles from regions with extra supply to regions with 
inadequate supply, is attracting substantial attention. Braverman et al. (2019) propose a fluid-based optimization approach that 
controls the flow of empty vehicles to optimize system-wide network utility, measured by the availability of idle vehicles upon pas-
senger arrivals. They show that the optimal utility obtained from a fluid-based approach is an upper bound on the utility of a system 
with finite vehicles for any routing policy. Lin et al. (2018) propose a multi-agent deep reinforcement learning approach that controls 
the movements of idle vehicles. Using data from DiDi, they show that the proposed multi-agent model significantly outperforms 
benchmark algorithms. In this study, the multi-agent advanced actor-critic (A2C) algorithm shows its ability to solve large-scale 
multi-agent reinforcement learning problems based on a simulator calibrated by actual data. Most studies on idle-vehicle relocation 
assume that the platform has full control of drivers/vehicles (e.g., Rong et al., 2016; Lin et al., 2018; Shou et al., 2020b). In reality, 
however, the ride-sourcing platform and drivers have different objectives: Drivers aim to maximize their individual rewards (measured 
by income, vehicle occupancy rate, etc.) following certain self-relocation strategies, while the platform aims to maximize overall 
system performances (measured by net revenue, saving on matching times, number of passengers served, etc.) using spatial-temporal 
subsidy/guidance strategies. In this manner, incentives (e.g., subsidies or other rewards to drivers) are critical to motivate drivers to 
move from demand-cool locations (with more supply than demand) to demand-hot locations (with more demand than supply). 
Although subsidies/incentives strategies have been implemented in some ride-sourcing companies, such as DiDi, they have not been 
fully examined in the literature, particularly in a MDP framework. Shou and Di (2020a) propose a multi-agent reinforcement learning 
paradigm to approximate the system’s equilibrating process in a routing game among atomic selfish agents on a network. Sous and Di 
(2020b) examine reward design scenarios with multiple drivers and a constant design across zones and time periods, in which the 
Bayesian optimization is adopted to find the optimal design strategy. Their models can help policymakers to develop optimal oper-
ational and planning countermeasures under different environments. The two studies also consider mean-field approximation within 
the reinforcement learning algorithm; in contrast, our model is a mean-field “oriented” that builds the ride-sourcing simulation based 
on mean-field information. 

From a modeling perspective, the difficulty in mitigating the supply-demand imbalance in ride-sourcing markets lies in the 
complicated dynamic decision processes of the platform, drivers, and passengers, as well as endogenous relationships between de-
cisions and scenarios. Specifically, the platform’s strategies, such as order dispatching, idle-vehicle relocation, and dynamic pricing/ 
subsidies, affect both supply and demand, which in turn affect the platform’s decisions. A promising option for capturing the dynamics 
of ride-sourcing markets is the family of MDP models, which can well describe the sequential interactions between agents and 
environment. For example, Xu et al. (2018) formulate an order-dispatching process for a ride-sourcing system using an MDP model, 
with the order dispatch as action, the numbers of idle drivers and waiting passengers in each time/location as states, and the total gross 
merchandise volume (GMV) as reward. They propose a policy that simultaneously considers the immediate reward and long-term 
rewards, and demonstrate that the proposed policy based on the MDP model can substantially improve the per-day earnings of 
drivers. More recently, various MDP and reinforcement learning models (e.g., Wang et al., 2018; Li et al., 2019; Shou et al., 2020a; Jin 
et al., 2019) have been developed to enhance the supply-demand balance via better dispatching and idle-vehicle relocation strategies. 
However, as stated in Section 1, in a complicated system with a huge number of drivers, it is difficult to identify optimal policies for 
each specific driver. In addition, in most previous studies, drivers and the platform’s objectives are not necessarily coincident with each 
other. While these studies assume the platform’s reward is equal to the summation of the rewards of all drivers (which implies that the 
platform and drivers have the same objective), it is more interesting and realistic to ascertain the platform’s and drivers’ own policies 
in an environment where they mutually affect each other. To be more specific, drivers try to maximize their individual daily earning 
through self-relocation, while the platform attempts to maximize system-wide efficiency by paying subsidies to drivers. 

Inspired by the aforementioned studies and to address the research gaps, we propose a generalized MF-MDP model to analyze the 
dynamics in ride-sourcing markets in which the platform and multiple drivers have different objectives and state-action sets. The MF- 
MDP model is novel to transportation problems which can be solved by an MDP environment with interactive decisions between the 
mixed agents. According to the proposed model, we theoretically show that efficient algorithms can be developed by only considering 
the platform and a representative driver as agents in a simplified MF-MDP model. A specific MF-MDP model and a representative-agent 
reinforcement learning algorithm are developed to analyze the implications of spatial-temporal subsidies for drivers with self- 
relocation strategies. Our numerical results offer insights on the interactions between the platform’s subsidy and idle drivers’ self- 
relocation, as well as the influences of the intensity of subsidy on the platform’s spatial-temporal subsidy strategy and idle drivers’ 
self-relocation strategies. 
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3. Mean-field Markov decision process model for ride-sourcing markets 

In this section, we present a generalized MF-MDP model for depicting the interactive decision processes of the platform and drivers 
in ride-sourcing markets. With generalized definitions and formulas for states, actions, the MF state, state transition laws, and rewards 
for mixed agents, we present some properties of the MF-MDP model. We also discuss simplification of the model to reduce the number 
of agents for computational advantages. 

3.1. General concept of the MF-MDP model 

The development of an MDP model should capture the particular feature of a research problem, which is depicted by the definition 
of states, actions, rewards of agents and the transition law (i.e., how the environment replies to agents’ actions). In a practical problem, 
the number of states and actions for an agent can be large. For instance, in idle-vehicle relocation problems, a driver’s state should 
include time and location and his/her actions may cover a list of locations/directions. Moreover, the transition law could involve 
complex computations that is executed based on spatial-temporal information of each agent and extra information of the environment. 
Given the large sets of states and actions and the complex transition for each agent, solving a multi-agent MDP model with a large 
number of agents results in a massive solution space and thus can be computationally prohibitive. The scenario becomes more 
complicated when different types of agents (who may have distinct objectives) coexist in the environment, resulting in an MDP with 
mixed agents. To capture the interactions between a major agent and a number of minor agents who pursue their individual objectives, 
Huang et al. (2006) propose the concept of an MF-MDP model. In an MF-MDP model, the states and actions of the major agent can 
significantly affect the rewards and actions of minor agents. Meanwhile, each minor agent has a negligible impact on the rewards and 
actions of another minor agent or the major agent. Instead, the transitions, rewards, and actions of the major agent and a minor agent 
are influenced by the mean-field (i.e., MF, average) state of all minor agents collectively (Gomes, 2014). In this manner, the major 
agent or a specific minor agent does not distinguish any individual minor agent in the MF-MDP model, but considers the MF state when 
taking actions. 

In a standard MF-MDP (with one major agent and multiple minor agents), we need to compute the MF state via summarizing each 
minor agents’ state to obtain the transitions and rewards. This can be computationally intractable when the number of minor agents is 
huge. To improve the efficiency, the standard MF-MDP can be simplified by approximating the MF state in a stochastic process and 
using a representative agent to determine actions for multiple minor agents with the same objective, states, and action sets (Huang 
et al., 2006; Huang et al., 2007). Once there are a large number of minor agents in the environment, the simplified MF-MDP can well 
approximate the dynamic nature of the standard MF-MDP. Also, it can significantly reduce computational complexity and achieve 
more efficient solution by optimizing only one policy for the representative minor agent instead of determining a group of independent 
policies for each of the minor agents. Correspondingly, we propose representative-agent dynamic programing/reinforcement learning 
algorithms to solve simplified MF-MDPs (see the next section), while conventional DP/RL algorithms are adopted to solve standard 
MF-MDPs and non-MF-MDPs. 

Literature on the MF-MDP model (e.g., Huang et al., 2006; Huang et al., 2007; Huang, 2012) mainly focuses on the general 
conception, definitions, and mathematical propositions in a simple and stylized case; there is no discussion of how to configure and 
solve such a model when the environment is complicated. Inspired by the concept of the MF-MDP model, this paper aims to develop a 
MDP model that can well delineate the state-action transition laws in a system with one platform and a group of drivers whose actions 
mutually affect each other. At the beginning stage of MF-MDP studies, we develop a specific MF-MDP model for analyzing 
spatial-temporal subsidies for drivers with self-relocation strategies (see Section 4.1) and an efficient solution algorithm for the 
particular MF-MDP model (see Section 4.2). We demonstrate that the algorithm achieves significant computational advantages, faster 
convergence, and better performance on a small-scale market (see Section 5), and aim to examine the general performance on 
actual-size problems in future study. 

3.2. Formulation of the ride-sourcing MF-MDP model 

In a ride-sourcing market, the platform’s operational strategies play important roles in affecting the performance (e.g., daily in-
come, waiting time for order matches, and distances en route to pick up passengers) and decisions (e.g., self-relocation and working 
hours) of drivers. However, if the number of drivers is large, the impact of each individual driver’s decisions and actions on the 
platform or other drivers is trivial and can be ignored without causing significant deviations in general. By contrast, the average (i.e., 
MF) state of all drivers collectively, which captures the spatial-temporal supply information, will significantly influence order 
matching/dispatching, performance (e.g., net revenue, vehicle occupied rate, and the number of passengers served), and other de-
cisions (e.g., spatial-temporal pricing and subsidy) of the platform as well as those of each individual driver. Moreover, the platform 
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sometimes chooses to display heat maps of its spatial-temporal surge pricing and/or subsidy and overall demand and supply to drivers 
on the app. In this manner, the state of the platform and the MF state of drivers are public information to drivers, who then process the 
information and take corresponding actions. Therefore, it is reasonable to describe the ride-sourcing market using an MF-MDP model, 
in which the platform is regarded as the major agent and a number of drivers are treated as minor agents2. 

Suppose there is 1 platform and M homogeneous drivers (i.e., state sets, action sets, and objectives are the same for drivers), and the 
planning horizon consists of T time periods (i.e., time t ∈ {1, 2, …, T}). Let S and Sd denote finite sets of the states of the platform and 
drivers, respectively. Let yt ∈ S represent the state of the platform at time t; specifically, yt can be a vector that contains time index t, the 
spatial-temporal pricing, subsidies, and number of waiting passengers across different regions in the market at time t. We use yt

d,i ∈ Sd 

to represent the state of driver i ∈ {1, 2, …, M} at time t, which could include time index, their location, the number of loaded pas-
sengers, and the destination. Then the MF state of all drivers at any time period t can be represented as a vector zt

d as follows: 

zt
d =

[
zt

d,sd

]

1 ×|Sd |
(1)  

zt
d,sd

=

∑M
i=1I
(

yt
d,i = sd

)

M
(2)  

where I( • ) denotes the identity function and we use Hd to denote the feasible domain of MF state zt
d, i.e., zt

d ∈ Hd. Intuitively, the MF 
vector zt

d represents the distribution of drivers’ states. For instance, if a driver’s state contains their current location and the occupancy 
of their vehicle, then the MF state captures the spatial distribution of all vacant vehicles and occupied vehicles. 

Let A and Ad denote finite sets of the actions of the platform and drivers, respectively. We use xt ∈ A and xt
d,i ∈ Ad, respectively, to 

denote the actions of the platform and driver i at time t. The actions of the platform can include pricing or subsidy strategies (e.g., 1 for 
subsidizing and 0 for not offering subsidy), and the actions of a driver are their self-relocation directions. 

Following the conventions in discrete-time MDPs, the transition probability of a major or minor agent in the MF-MDP is determined 
by their current state and action and the MF state of the minor agents. Specifically, the state transition laws for the platform and a 
specific driver are denoted as Q( • | • ) and Qd( • | • ) in Eqs. (3)–(4), where P( • ) denotes the probability operator3. 

Q(s′|s,hd, a) = P
(
yt+1= s′|yt = s, zt

d =hd, xt = a
)

(3)  

Qd
(
s′

d|sd, hd, ad
)
= P

(
yt+1

d,i = s′

d|y
t
d,i = sd, zt

d =hd, xt
d,i = ad

)
(4) 

The platform or a driver takes sequential actions to maximize their total rewards in T time periods, which can be measured by the 
net revenue, the number of passengers served, and so on. Let r denote the reward of the platform, which is a function of the platform’s 
current state and action and the MF state of drivers. For a particular driver, the reward rd could be measured by their income, saving on 
idle-cruise distance, saving on operational costs, etc., and it is a function of their current state and action, the current state of the 
platform, and the current MF state4. The total rewards of the platform and a specific driver, which are also referred to as value 
functions, are given by 

Vπ(s,hd) = Eπ

(
∑T

t=1
(ρ)tr

(
yt, zt

d, xt)y1 = s, z1
d = hd

)

(5)  

Vπd,i
d (s, sd,hd) = Eπd,i

(
∑T

t=1
(ρ)trd

(
yt, yt

d,i, zt
d, xt

d,i

)
y1 = s, y1

d,i = sd, z1
d = hd

)

(6)  

where Vπ and Vπd,i
d denote the total rewards for the platform and driver i given some specific initial states (i.e., y1 = s, y1

d,i = sd, and z1
d =

hd), respectively; π and πd,i denote the policies (a mapping from states to actions) of the platform and the i-th driver respectively; xt 

2 Note that in real ride-sourcing markets, market conditions have strong time-varying patterns with peak and off-peak hours, which indicate the 
nonstationary states and transitions in a day. However, if we consider a certain period of 2 to 3 hours, market conditions are more stable and thus 
can be approximately described using stationary states and transitions. Readers can refer to Figures in Lyu et al. (2019) for demonstrations of daily 
temporal distributions of demand and supply in a real ride-sourcing market. If we consider a certain period e.g., 8 am to 10 am during peak hours or 
2 pm to 4 pm during off-peak hours market conditions are quite stable and thus can be modeled as stationary MDP, with different transition 
matrices, respectively.  

3 In this paper, we use yt and yt
d,i (also yt

d) to represent random variables of states, xt and xt
d,i (also xt

d) random variables of actions, and zt
d (also ̂zt

d) 
random variables of MF states in the MF-MDP model. We use s and sd to represent values of random states, a and ad values of random actions, and hd 
values of random MF states.  

4 With specific research problems in ride-sourcing markets, we sometimes need to incorporate the previous state (i.e., yt − 1, yt− 1
d,i , and zt− 1

d ) into the 
formulas for rewards (i.e., r and rd). This is because the before-and-after changes in states may affect the reward. For instance, if a subsidy is offered 
to a driver upon a new match with a passenger, we must check the diver’s previous state and include the subsidy in the reward only if the current 
state is “matched/dispatched” and the previous state is “idle”. 
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= π(yt , zt
d) and xt

d,i = πd,i(yt , yt
d,i, z

t
d) represent the actions following the corresponding policies; ρ ∈ (0, 1) is the discount factor that 

measures how the policy balances the trade-off between immediate reward and long-term rewards; and Eπ( • ) and Eπd,i (⋅) are the 
expectation operators under policies π and πd,i, respectively. 

Given specific formulas for rewards and state transition laws, a straightforward approach to solving the ride-sourcing MF-MDP 
model is to regard the platform and each driver as an agent, then try to solve the problem with a decentralized multi-agent MDP 
approach. However, the decentralized multi-agent MDP is generally hard to solve, especially when there are many agents. In reality, 
we will have a large number of minor agents (drivers). The distinct objectives of the major agent (platform) and minor agents (drivers) 
also render the solution-seeking process more unstable and intractable. Alternatively, we approximate the random MF vector zt

d as a 

stationary process and optimize an aggregate policy for all drivers. Namely, as M → ∞, we have zt
d̅→

a.s. ẑt
d. Similar approximations of 

asymptotic processes of homogeneous decision-makers have been adopted in studies of day-to-day traffic dynamics (Hazelton and 
Watling, 2004; Zhu et al., 2019b; Zhu et al., 2021a). In the simplified MF-MDP model, the platform takes actions according to policy π 
(i.e., xt = π(yt , ẑt

d)), and the decision processes of all drivers are determined by policy πd (i.e., xt
d = πd(yt ,yt

d, ẑt
d)) of a representative 

driver5. The MF state at the next time period depends on the current MF state and the platform’s state, which is simplified as an 
updating rule ẑt+1

d = ld(yt , ẑt
d). Note that the updating rule also incorporates the policies (for action taking) of the platform and the 

representative driver. Therefore, the standard multi-agent MF-MDP model with 1 + M agents can be reduced to a simplified MF-MDP 
model with only 2 agents:  

• The ride-sourcing platform that acts as a major agent to design the optimal policy to maximize its total rewards. The optimal value 
function is defined as V∗(s,hd) = max

π
Eπ(
∑T

t=1ρtr(yt , zt
d,x

t)y1 = s, z1
d = hd).  

• A representative driver who acts as a representative minor agent to pursue the optimal policy and maximize their total rewards. The 
total reward is regarded as the average total rewards of all drivers. The optimal value function is defined as V∗

d(s, sd, hd) =

max
πd

Eπd (
∑T

t=1ρtrd(yt ,yt
d, z

t
d,x

t
d)y

1 = s,y1
d = sd, z1

d = hd).

The form of function ld(yt , ẑt
d) determines the consistency between the approximated MF state ̂zt

d and the exact MF state zt
d (i.e., Eqs. 

(1)–(2)). A consistent approximation of the MF states is a critical requirement, such that the simplified MF-MDP model is able to 
represent the complex state transition and decision dynamics characterized by the standard MF-MDP. We discuss the consistency 
requirement in Section 3.3. 

3.3. Optimal policies and the consistency requirement 

An MDP model is generally solved by Bellman equations. We first illustrate the Bellman equations of the simplified MF-MDP model. 
An arbitrary MF state updating rule ld(yt , ẑt

d) is adopted without checking the consistency between ẑt
d and zt

d. The following propo-
sitions are necessary to obtain the optimal policies with Bellman equations: 

Proposition 1. Hd is a continuous and compact set. 

Proposition 2. Given a continuous reward function r(yt , ẑt
d, xt) on Hd, the value function Vπ(s,hd) is continuous on Hd. 

Proposition 3. Given a continuous reward function rd(yt , yt
d, ẑt

d, xt
d) on Hd, the value function Vπd

d (s, sd,hd) is continuous on Hd. where 
Proposition 1 is straightforward because zt

d is continuous as M goes to infinity, and given specific policies π and πd, the reward functions 
(i.e., r and rd) and the corresponding value functions (i.e., Vπ and Vπd

d ) are continuous, leading to Propositions 2 and 3. 

The optimal policy for the platform can be solved based on the following Bellman equation: 

V∗(s, hd) = max
a∈A

{

r(s,hd, a)+ ρ
∑

s′∈S
Q(s′|s,hd, a)V(s′, h′

d)

}

(7)  

where h′ = ld(s,hd). In light of Proposition 2, the existence of an optimal policy π* for Eq. (7) is guaranteed. Suppose the optimal policy 
π* has been implemented in the simplified MF-MDP model. The Bellman equation for the representative driver is given by 

V∗
d (s, sd, hd) = max

ad∈Ad

⎧
⎪⎪⎨

⎪⎪⎩

rd(s, sd,hd, ad)+

ρ
∑

s′∈S,
s′d∈Sd

Q(s′|s,hd, a)Qd(s′d|sd,hd, ad)Vd(s′, s′d,h
′
d)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(8) 

5 For convenience and clarity, we use notation without a driver index to denote the state (yt
d), action (xt

d), and policy (πd) of the representative 
driver in the simplified MF-MDP model. 
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where a = π*(s, hd). 
Similarly, based on Proposition 3, given π*, the optimal policy π∗

d exists for Eq. (8). In other words, there is an optimal policy group 
(π∗, π∗

d) that simultaneously satisfies Eqs. (7)–(8). 
Next, we seek the specific formula of ld(yt , ẑt

d) for a consistent approximation of the MF state. The basic idea is to identify an 
updating rule of the exact MF state zt

d in the simplified MF-MDP model, then adapt this rule to the approximated MF state ̂zt
d. Based on 

Eq. (2), we obtain the asymptotic zt
d as M goes to infinity: 

lim
M→∞

zt
d,sd

= lim
M→∞

∑M
i=1I
(

yt
d,i = sd

)

M
̅→
a.s. P

(
yt

d = sd
)

(9) 

To examine the asymptotic property of zt
d under the optimal policy group (π∗,π∗

d), we introduce the following theorem, which is 
valid for any function ẑt+1

d = ld(yt , ẑt
d). 

Theorem 1. Let policy group (π∗, π∗
d) denote the optimal policies of Eqs. (7)–(8); the underlying vector (yt , yt

d, ẑt
d) forms a stationary 

Markov process. 

Proof. The policy group provides stationary mapping from states to actions, such that xt = π∗(yt , ẑt
d) and xt

d = π∗
d(y

t ,yt
d, ẑ

t
d). The state 

transition probability from state (s, sd,hd) to state (s′, s′d,h′
d) is given by 

P
(
yt+1 = s′, yt+1

d = s′d, ẑt+1
d = h′

d|y
t = s, yt

d = sd, ẑt
d = hd

)

= Q(s′|s,hd, π∗(s,hd))Qd
(
s′d|sd,hd, π∗

d(s, sd,hd)
)
I(h′

d = ld(s,hd))
(10)  

where the LHS only depends on the current state (s, sd,hd).■ 
In light of Theorem 1, the asymptotic zt

d,sd 
and P(yt

d = sd) are also Markov processes. Based on the transition law, the formula of 
P(yt+1

d = s′d) is given by 

P
(
yt+1

d = s′d
)
=
∑

sd∈Sd

P
(
yt

d = sd
)
Qd
(
s′d|sd, ẑt

d, π∗
d

(
yt, sd, ẑt

d

))
(11) 

Eq. (11) is summarized as a matrix product form: 

zt+1
d = zt

d Q̂d
(
yt, ẑt

d

)
(12)  

where Q̂d(yt , ẑt
d) = [Qd(s

′

d|sd, ẑt
d, π∗

d(y
t , sd, ẑt

d))]|Sd | × |Sd |
is a probability transition matrix of the MF state. Let ẑ1

d = z1
d and ld(yt , ẑt

d) =

ẑt
d Q̂d(yt , ẑt

d); for any t ∈ T, we can obtain the following equation by iteratively substituting Eq. (12) and ld(yt , ẑt
d). 

ẑt+1
d = ẑ1

d

∏t

t′=1
Q̂d
(
yt′ , ẑt′

d

)
= z1

d

∏t

t′=1
Q̂d
(
yt′ , ẑt′

d

)
= zt+1

d (13) 

Therefore, we conclude that Eπ∗ ,π∗d
(ẑt

d) = zt
d and the consistency requirement for the approximation of MF states reduces to the 

following updating rule: 

ẑt+1
d = l#d

(
yt, ẑt

d

)
= ẑt

d Q̂d
(
yt, ẑt

d

)
(14)  

where superscript # means that the updating rule is consistent. 
We refer to the combination of the optimal policies for the platform and the representative driver and the consistent updating rule 

for MF states, i.e., (π∗, π∗
d, l

#

d (y
t , ẑt

d)), as a consistent optimal solution of the simplified MF-MDP model. Note that (π∗, π∗
d, l

#

d (y
t , ẑt

d))

satisfies Eqs. (7), (8), and (14) simultaneously. The consistency of the stochastic process depicted in Eq. (14) requires a soft policy for 
the representative driver, i.e., ad|πd ∼ P(xt+1

d = ad|πd(yt ,yt
d, ẑ

t
d)). In contrast to a “hard” policy that selects a deterministic action given 

the observed state, a “soft” policy is a probabilistic distribution over the action set, and the agent stochastically selects an action 
according to the distribution given any observed state. The design of the soft policy enables the model to use a single policy to represent 
the aggregate actions of all drivers, rather than determining different policies for each driver. 

The generalized MF-MDP model and its theoretical guarantees in terms of simplification and optimal solution seeking allow us to 
formulate and solve a variety of research questions in ride-sourcing markets. For instance, we can use this model to delineate the 
dynamics of a ride-sourcing market in which drivers (minor agents) have self-relocating behaviors for maximizing their individual 
earnings while a platform tries to achieve a more efficient system by imposing spatial-temporal pricing/subsidy strategies (see Section 
4). As described in this subsection, the simplified MF-MDP model contributes to the solution algorithm of MDPs with multiple mixed 
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agents. However, due to complex interactions between the platform and drivers, the formulas of Q( • | • ), Qd( • | • ), r and rd can be 
complicated. Moreover, the solution space with respect to states, actions, and time periods can be extremely large. Therefore, it is 
generally difficult to obtain exact optimal policies via solving the Bellman equations. A typical method is to use simulations to 
approximate the interactions between the environment and agents, and attempt to find close-optimal policies through reinforcement 
learning-based algorithms (Wang et al., 2018; Li et al., 2019; Jin et al., 2019; Shou et al., 2020b). The idea of a soft policy6 for the 
representative driver and the consistent updating rule for the approximated MF state are valuable for designing computationally 
efficient simulation processes. 

4. Design and analyze subsidies for drivers with self-relocation 

In this section, we substantialize the proposed generalized MF-MDP model in a specific research problem in which a platform tries 
to better allocate spatial-temporal subsidies for drivers, while drivers attempt to maximize their individual earnings by self-relocation. 
The formulation (in terms of states, actions, and rewards) of this model is introduced in Section 4.1, while a representative-agent 
reinforcement learning algorithm for solving the model is developed in Section 4.2. 

4.1. Formulation of the specific ride-sourcing MF-MDP model 

In this subsection, we provide definitions and intuitive explanations of the states, actions, and rewards of the platform and drivers, 
and introduce a matching rule between passengers and drivers. Readers can refer to Appendix A for detailed mathematical formu-
lations of the state transition laws, order-matching probabilities, and rewards. 

In a ride-sourcing market with spatial-temporal imbalance between demand and supply. We use a hexagonal zone system, which 
has been used in previous studies (Ke et al., 2019; Xu et al. 2018; Lin et al., 2018) and DiDi’s ride-sourcing simulator (Xu et al. 2017). 
There are O hexagonal zones, passenger demand is exogenous, and driver supply can be characterized by the MF state zt

d of M drivers 
(also by the approximate state ̂zt

d in the simplified MF-MDP model). Other notation is the same as in the generalized model in Section 3. 
The platform could lose passengers in zones with high demand and insufficient idle vehicles. To increase net revenue and the number 
of passengers served, the platform may offer spatial-temporal (time- and zone-based) subsidies to incentivize idle drivers to move from 
demand-cool zones to demand-hot zones. Meanwhile, drivers design their self-relocation strategies to increase their own income. 

We begin with the states and actions of the platform. To model the subsidy strategy across different zones, the state of the platform 
is characterized by an 1 +O dimensional vector s = [t, s1,…, sO], where so ∈ {0, β} denotes the subsidy in zone o ∈ {1, 2, …, O} such that 
0 and β refer to “no subsidy” and “offering a subsidy,” respectively, and β is a predefined amount of subsidy per ride (i.e., subsidy rate). 
In theory, we allow β to be non-positive values in the model, and β = 0 means a “non-subsidy” strategy and β < 0 indicates that drivers 
pay an extra “charge” rather than get subsidies. If zone o is subsidized at time t, drivers who are matched and dispatched to passengers 
originating from zone o at time t will be offered the same amount of subsidy (such a scheme is referred to as a uniform subsidy scheme). 
The platform’s action with respect to subsidy is represented by a vector a = [a1,…, aO], where ao ∈ {0, β}. Therefore, we have S = {[t, 
s1,…, sO]so ∈ {0, β}, o ∈ {1, 2, …, O}, t ∈ {1, 2, …, T}} and A = {[a1,…, aO]ao ∈ {0, β}, o ∈ {1, 2, …, O}}. In this manner, both the state 
vector s and the action vector a represent the spatial distribution of subsidy, and the state of the platform for the next time period is 
identical to its current action. Eq (A.1) in Appendix A gives a mathematical formula of the state transition law Q(s′|s, a). 

Next, we introduce the states and actions of drivers. To comprehensively describe a driver’s different status (e.g., idle, on the way to 
pick up passengers, delivering passengers), we formulate a driver’s state as a six-dimensional vector sd = [t, sd1,sd2,sd3,sd4,sd5]. Here, sd1 
∈ {0, 1, 2} denotes the current task of the driver/vehicle with 0, 1, and 2 representing “idle,” “picking up a passenger,” and “delivering 
a passenger,” respectively; sd2 ∈ {1, 2, …, T} denotes the remaining time periods before finishing the current status; sd3 ∈ O denotes the 
idling zone in which the driver is idle and waiting for a match; and sd4 ∈ O and sd5 ∈ O denote the origin and destination of the current 
passenger order, respectively. The value of sd2 depends on the travel time on the zone network. The action of the driver is the 
destination zone of self-relocation. Given the driver’s current idling zone o (i.e., sd3 = o), the set of their actions (i.e., Ad|o) is rep-
resented by set Jo, which is the set of adjacent zones of o plus o itself. The action ad = o means the driver will stay in the current zone, 
and other actions ad ∈ Jo/o indicate that the driver will relocate to an adjacent zone. A self-relocation action is only needed when the 
driver has no picking-up or delivering tasks and is not on the way of cruising to an adjacent zone, i.e., when sd1 = 0 and sd2 = 0 (referred 
to as a “purely idle” state). Therefore, one only optimizes policies in the “purely idle” state-action space (i.e., the Cartesian product of 
set {sd ∈ Sd|sd1 = 0, sd2 = 0} and the action set). Given a large number of drivers, drivers with the “purely idle” state are in different 
pairs of (t, sd3) that could uniformly distribute across the spatial-temporal domain of the scenario, making the state-action-reward 
transitions in the learning process non-sparse. Furthermore, a state with sd1 = 0 and sd2 > 0 indicates a “self-relocating” state with 
a relocation destination such that no action is needed until he/she arrives at the destination and becomes purely idle. Following Eq. (4), 
the state transition law for a driver, i.e., Qd(s

′

d|sd, hd, ad), depends on its current state and action as well as the MF state of drivers; 
detailed formulas are given by Eqs. (A.2)–(A.5) in Appendix A. 

Next, we introduce the order-matching rule between drivers and passengers. If a driver is in a “purely idle” or “self-relocating” state, 

6 The soft policy maps a state to a probability distribution over all possible actions. Given a MF state, the representative driver takes a stochastic 
action based on a probability distribution that is determined by the soft policy. In this way, we can approximate the collective behavior/decision of a 
group of drivers by using one representative driver at the expense of a small measuring error, especially when the number of drivers is large. 
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they have a chance to be matched with a passenger. Therefore, the state transition probability of the driver is substantially affected by 
the matching rule. Generally, the platform considers a maximal matching radius that only prevents passengers from being matched 
with far away drivers. A larger radius allows a lager flexibility in matching; namely, a larger pool of candidate idle drivers is generated 
for each passenger, and thus the matching rate becomes larger; this also indicates a smaller passengers’ expected waiting time. 
However, since some distant drivers may be matched to passengers, a larger matching radius will increase the average pick-up time. 
MDP-based models in the literature usually adopt a small matching radius so that drivers and passengers can be matched only if they 
are in the same zone (e.g., Shou et al., 2020b). Such matching rules ignore the cross-region dispatching and picking-up events that are 
commonly observed in ride-sourcing services, and thus are more suitable for taxi markets rather than for ride-sourcing markets. To 
allow cross-region matching between passengers and drivers, in this paper we propose an edge-based matching rule in calculating 
transition laws (Fig. 2). Termination “edge-based” means that we allow drivers in zone o to be matched with passengers in zones o′ ∈ Jo; 
if the driver is matched with a passenger in zone o′ = o, they immediately pick up the passenger and start the delivering task; if the 
driver is matched with a passenger in an adjacent zone o′ ∈ Jo/o, they must spend some time on the picking up task before delivering 
the passenger. For simplicity, we assume that drivers and passengers in each hexagonal zone is uniformly distributed (which does not 
mean that they are uniform across the network with many zones). The edge-based rule matches drivers and passengers near each 
common edge between zone o and its adjacent zones o′ ∈ Jo/o. 

Let Mo denote the number of idle drivers in zone o (i.e., with state sd1 = 0 and sd3 = o); No the number of passengers with origin in 
zone o; and eoo′ the common edge between two hexagonal zones o and o′. At each time period, Mo is obtained from the MF state and No 
is observable and thus exogenously given. We illustrate the number of matches near edge eoo′ using a simple example. Taking the zone 
indices in Fig. 2, for instance, J4 = {2, 5, 7, 6, 3, 1, 4}, J4/{4} = {2, 5, 7, 6, 3, 1}, and we match drivers and passengers near edge e14. 
With uniformly distributed demand and supply, there are M4

6 idle drivers and N4
6 passengers near e14 in zone 4, and M1

6 idle drivers and N1
6 

passengers near this edge in zone 1. Therefore, there are a total of M1+M4
6 idle drivers and N1+N4

6 passengers to be matched near edge e14; 
for these passengers and drivers, we allow a driver/passenger in zone 4 to be matched with passengers/drivers in either zone 1 or zone 

4. Based on a matching rule in Yu et al. (2019), the number of matches near e14 is approximated as min
{

M1+M4
6 ,N1+N4

6

}

. Similar to this 

example, we can compute the number of matches near an arbitrary edge. 
To approximate the matching probabilities of a driver, we assume that the numbers of matched passengers and drivers are pro-

portional to the corresponding demand and supply near the common edge. To continue with the example above, if a driver is in zone 1, 

the probability that they are near edge e14 equals 16, and the probability that they get a passenger order near edge e14 is 16
min

{
M1+M4

6 ,
N1+N4

6

}

M1
6 +

M4
6 

=

min

{
M1+M4

6 ,
N1+N4

6

}

M1+M4
. Detailed formulas for calculating the number of matches and driver-side matching probabilities are given in Eqs. 

(A.6)–(A.9) in Appendix A. We need the MF state to compute Mo (also denoted as Mo(hd) in Eq. (A.7)) and then the matching prob-
abilities; this explains why the state transition law of a driver depends on the MF state, i.e., Qd(s′d|sd,hd,ad). To our best knowledge, this 
paper is among the first idle vehicle relocation studies that consider cross-zone matches with the proposed edge-based matching rule. 

Last, we discuss the rewards for the platform and drivers. We consider that the platform’s objective is to maximize a weighted sum 
of the net revenue and the service rate, which is defined by the number of passengers served divided by the total passenger demand. 
Intuitively, the service rate reflects passengers’ satisfaction, and a low service rate may cause a decrease in passenger demand in the 
long run and affect the platform’s market share. Our motivation to set this objective structure is that the platform usually needs to 
make a trade-off between net revenue (short-term benefits) and customer service rate (long-term interests). To be more specific, the 
reward (also referred to as the objective value) of the platform is formulated by r(yt = s, zt

d = hd, zt− 1
d = h′

d) = r1(hd) − r2(s,hd,h′
d) +

μr3(s,hd,h′
d), where r1 refers to the commission withheld from trip fares by the platform; r2 is the amount of subsidies offered to drivers; 

r3 is the service rate; and μ denotes the weight of the service rate for the platform7. In addition to the MF state of drivers and the state of 
the platform, the calculation of r involves the following predefined variables: the ride-sourcing trip fare per time period (i.e., trip fare 
rate) α, commission rate for the platform η, and total passenger demand across the entire operational horizon N. Readers can refer to 
Eqs. (A.10)–(A.13) in Appendix A for detailed formulas for r1, r2, and r3. 

A driver’s objective is to maximize the total income. The reward (referred to as income) for a particular driver is the sum of the trip 
fare and subsidy offered by the platform, i.e., rd(yt = s,yt

d,i = sd,yt− 1
d,i = s′d) = rd1(sd)+ rd2(s,sd,s′d), where rd1 and rd2 denote the income 

from the trip fare and the subsidy, respectively. The income from fare is provided gradually during the delivery task, while the subsidy 
is a one-time reward upon a match if the origin of the passenger is subsidized. Similar to r, we need α and η to compute rd. Detailed 
formulas for rd1 and rd2 are given in Eqs. (A.14)–(A.16) in Appendix A. 

To sum up, we provide the formulation of a specific standard MF-MDP model, in which the MF state of drivers is mainly used to 
compute the order-matching probabilities. As a result, the MF state directly determines drivers’ state transition law and the platform’s 
reward; it also affects the matching outcome of an individual driver and their reward. Approximation of the MF state and simplification 
of the MF-MDP model play an important role in solution-finding. For the simplified MF-MDP model, the states, actions, transition laws, 
and rewards for the representative driver are the same as for an arbitrary driver in the standard model. In light of Eq. (14), the 

7 As stated in footnote 3, we consider the previous state zt− 1
d in the formulation of r and consider yt− 1

d,i in rd. 
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consistent updating rule for the approximated MF state is Q̂d(yt , ẑt
d)=Q̂d(ẑ

t
d), which can be summarized based on Eqs. (A.4)–(A.5). 

4.2. Solution algorithms 

Given the state transition laws for the platform and drivers in Eqs. (A.1)–(A.5), the order-matching probabilities in Eqs. (A.6)–(A.9), 
and the rewards in Eqs. (A.10)–(A.16), we have a specific formulation of a standard MF-MDP model with multiple mixed agents. 
Although the rewards of the platform and drivers and the state transition law of the platform have deterministic formulas, drivers’ state 
transitions depend on the stochastic order-matching process with numerous possible outcomes (e.g., different origins and destinations 
of passenger orders), making it difficult to obtain an exact solution via Bellman equations. As discussed in Section 3, reinforcement 
learning algorithms can be adopted to solve such a multi-agent MF-MDP model with large state and action sets, complex state tran-
sition laws, and reward formulas. We consider two solution-seeking approaches below.  

• The multi-agent approach, which solves the standard MF-MDP model with 1 platform and M drivers. In a reinforcement learning 
algorithm, each of the 1 + M agents learns their own decision policy8, which can be characterized by Q-tables, neural networks, etc. 
An agent takes actions based on their policy and updates the parameters of the policy via their experiences under the actions. The 
MF states zt

d are summarized based on the states of all drivers (Eq. (2)).  
• The representative-agent approach, which solves the simplified MF-MDP model with one platform and one representative driver. In 

a reinforcement learning algorithm, we create two decision policies: one for the platform and the other for the representative 
driver. The representative driver takes actions based on a soft policy and updates the parameters via experiences under the actions. 
We adopt the approximated MF state ẑt

d, which is updated according to the previous approximated MF state (Q̂d(ẑ
t
d) summarized 

based on Eqs. (A.4)–(A.5)). 

The multi-agent approach is proposed as a benchmark that solves the standard MF-MDP model. With a large M, the MF space is 
continuous and compact, and Propositions 1 to 3 are valid for the representative-agent approach. Comparing with the benchmark, the 
representative-agent approach meets the consistency requirement with respect to the MF state and could be faster in terms of 
computation and identifying the optimal policies. 

In this paper, the two approaches are implemented via the A2C algorithm, one of the most popular reinforcement learning algo-
rithms (Mnih et al., 2016). For each agent, the A2C algorithm establishes two networks (also referred to as a group of networks): one 
policy network (or critic network) that observes the current states and generates policy, and one value network (or actor network) that 
evaluates the performance of the policy. Both networks are parameterized multi-layer neural networks, and their parameters (e.g., θp 
for the policy network and θv for the value network) are updated iteratively. The parameters of the value network θv can be updated by 
minimizing a loss function L(θv) defined as follows (Lin et al., 2018): 

L(θv) =
[
Vθv (y

t) −
(
r(yt, xt) + ρVθ′v

(yt)
)]2 (15) 

Fig. 2. Edge-based matching.  

8 Note that although the drivers are homogeneous, their optimal policies can differ. That is, idle drivers who are in the same zone might have 
different self-relocation destinations; otherwise, they would relocate to the same destination and compete with each other for passengers, which 
would result in a small matching probability and a low average income. 
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where θv denote the parameters of the value network to be updated, θ′

v denote the parameters of the targeted value network, and r(yt,xt) 
be the current reward. As for the policy network, parameters θp are updated using a gradient descent rule θp ← θp + δ∇θp G(θp), where δ 
is the learning rate and ∇θp G(θp) represents the gradient given below. 

∇θp G
(
θp
)
= ∇θp logπθp (x

t|yt)
[
xt + ρVθ′v

(
yt+1) − Vθ′v

(yt)
]

(16)  

where πθp (xt |yt) refers to the action taken by the agent given state yt according to the policy π parameterized by θp, xt +ρVθ′v
(yt+1) −

Vθ′v
(yt) is an advantage function used to reduce the variance of the value function and approximate the policy gradient9. 
The algorithm for the multi-agent approach is shown in Algorithm 1, which is referred to as the multi-agent actor-critic (MAC) 

algorithm (i.e., the benchmark algorithm). As mentioned previously, in the MAC algorithm each driver or the platform has a specific 
group of networks to characterize their own policy, which leads to a total of 1 + M groups of networks. The algorithm for the 
representative-agent approach is shown in Algorithm 2, which is referred to as the representative-agent actor-critic (RAC) algorithm. 
In the RAC algorithm, we propose two groups of networks: one for the platform and the other for the representative driver. In both 
MAC and RAC algorithms, NE, NS, and D denote the maximal number of learning epochs, the maximal number of learning samples, and 
the replay memory, respectively10. Note that in the MAC algorithm, index i denotes driver ID. We must simulate the transitions of each 
individual driver (i.e., steps 3.2 to 3.7, including states, actions, and rewards) based on the individual policy πd,i; in the RAC algorithm, 
we simulate the transitions of the representative driver (i.e., steps 3.2 to 3.7) according to the soft policy πd and use index j to represent 
the indices of the simulated transitions regardless of the ID of a specific driver who experiences the transition. In steps 4.4 to 4.6 in the 
MAC algorithm, each driver learns and updates the parameters of their own value network and policy network, via a mini-batch of 
samples extracted from the replay memory. In the RAC algorithm, the representative driver learns and updates the soft policy in steps 
4.4 to 4.6. 

Theoretically, given unlimited computational power, the MAC algorithm might learn the optimal self-relocation policy for each 
driver by conducting extensive simulations and sampling sufficient transitions over the huge solution space, which contains all feasible 
policies for each driver and the platform. However, computational resources are generally limited in practice, and thus it is nearly 
impossible to generate a massive number of samples for all possible transitions. In addition, one driver’s self-relocation policy will 
affect other drivers’ rewards, which is reflected by the impact of the MF state on the matching outcomes of each time period. Limited 
computational power and complicated competitive relationships between drivers make it difficult for the MAC to find the right 
pathway and obtain close-optimal policies for all drivers. By contrast, the RAC algorithm has a smaller solution space (the Cartesian 
product of the platform’s and the representative driver’s state-action set), and thus could identify a close-optimal solution more 
efficiently, which may provide solutions better than those obtained with the MAC. 

5. Numerical study 

In this section, we conduct a set of numerical experiments with the MF-MDP model and algorithms developed in Section 4. We show 
(1) the computation time, converging speed for learning policies, and converged total rewards for the agents of the RAC algorithm 
compared with the benchmark MAC algorithm; (2) the impact of spatial-temporal subsidies on drivers’ relocation strategies; and (3) 
the platform’s different spatial-temporal subsidy strategies that balance the trade-offs between net revenue and service rate. 

5.1. Scenario settings 

The zone network of the ride-sourcing market is illustrated in Fig. 3. Zone IDs are shown in the center of the hexagons, and travel 
times (number of time periods) between adjacent zones are shown via underlined numbers near edges. For instance, a driver needs 2 
time periods to travel between zone 1 and zone 2. In this small town with 7 zones, we assume that zone 4 is a residential area, zone 7 is 
a business area, and zone 2 has a railway station. Due to the huge computational costs, numerical studies with a small network were 
usually adopted in reinforcement learning-related studies. For example, Mao et al. (2020) divide Manhattan into 8 zones and examine 
drivers’ optimal repositioning among these zones. Braverman et al. (2019) use a nine-region network with parameters calibrated by 
DiDi data to evaluate their proposed empty-car routing policy. Moreover, by using a small network, we can observe clear patterns of 
drivers’ sequential actions and better understand how self-relocation is affected by subsidies. 

We consider a general ride-sourcing market that consists of both tidal and periodic passenger demand. The pattern of deterministic 
passenger demand is shown in Fig. 411. We consider a total of 40 time periods in the operational horizon, and each period represents 5 
minutes. First, there is tidal demand between zone 4 and zone 7 (see Fig. 4(a)), such that passengers go from the residential area to the 
business center at time periods 1–20 (red bars) and return at time periods 21–40 (blue bars). Each tidal demand has a peak period—i.e., 

9 Note that Eqs. (15)–(18) give the basic formulas of the A2C algorithm. When adopting the A2C algorithm in the MF-MDP model, r, Vθv , Vtarget are 
calculated based on the definitions and formulas in Section 3 and Section 4.1.  
10 These are general terminations in reinforcement learning. A learning epoch refers to an iteration for the algorithm to simulate the transitions of 

the agents and update the parameters of their policies, and a replay memory is used to store and sample the simulated transitions.  
11 Note that the ticks on the horizontal axis, i.e., time index, refer to “time point,” while demand is generated during time periods. Therefore, for 

instance, time period 15 refers to the period between time index 15 and time index 16. The same representations are adopted in Fig. 6. 
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during time periods 8–13 and 28–33. Second, also in Fig. 4(a), we assume that since some passengers live in zone 4 but work outside 
the small town, there is ride-sourcing demand from zone 4 to zone 2 at time periods 1–20(light pink bars); and since some passengers 
work in zone 7 but live out of town, there is ride-sourcing demand from zone 7 to zone 2 at time periods 21–40 (light blue bars). Third, 
in Fig. 4(b), for every 10 time periods (50 minutes), a train arrives at zone 2, and passengers from the train either go to work (red bars 

Algorithm 1 
Multi-Agent Actor-Critic (MAC) to solve the standard MF-MDP model.  

1. Initialize the value network with a fixed value table. 
For ne = 1 to NE do: 

2. Reset simulator, get initial state y1, {y1
d,i}M, and z1

d .  
3. Stage one: collecting experience. 
For t = 1 to T do: 

3.1. Decide action xt based on policy π, and execute xt. 
For i = 1 to M do: 

3.2. Decide action xt
d,i based on policy πd,i, and execute xt

d,i.  
End for. 
3.3. Based on {y1

d,i}M and zt
d , compute Qd( • | • ) for the simulator.  

3.4 Run the simulator and observe next state yt + 1 and {yt+1
d,i }M.  

3.5. Summarize zt+1
d based on {yt+1

d,i }M.  
End for. 
3.6. Observe reward rt(yt , zt

d, z
t− 1
d ), {rt

d(y
t , yt

d,i, y
t− 1
d,i )}M.  

3.7. Store transitions (yt,xt,yt + 1, rt( • )) and {(yt
d,i, x

t
d,i , y

t+1
d,i , rt

d(⋅))}M to D.  
End for. 
4. Stage two: learning the experiences. 
For ns = 1 to NS do: 

4.1. Sample a mini-batch of transitions (yt,xt,yt + 1, rt( • )) from D. 
4.2. Update the platform’s value networks by minimizing L(θv). 
4.3. Update the platform’s policy networks as θp ← θp + δ∇θp G(θp).  
For i = 1 to M do: 

4.4. Sample a mini-batch of transitions (yt
d,i, x

t
d,i , y

t+1
d,i , rt

d(⋅)) from D.  
4.5. Update the ith driver’s value networks by minimizing L(θv). 
4.6. Update the ith driver’s policy networks as θp ← θp + δ∇θp G(θp).

End for. 
End for. 

End for. 
5. Finish.  

Algorithm 2 
Representative-Agent Actor-Critic (RAC) to solve the simplified MF-MDP model.  

1. Initialize the value network with a fixed value table. 
For ne = 1 to NE do: 

2. Reset simulator, get initial state y1, {y1
d,j}M, and ẑ1

d = z1
d .  

3. Stage one: collecting experience. 
For t = 1 to T do: 

3.1. Decide action xt based on policy π, and execute xt. 
3.2. Decide actions {xt

d,j}M based on soft policy πd, and execute {xt
d,j}M.  

3.3. Based on {y1
d,j}M and ẑt

d, compute Qd( • | • ) for the simulator.  

3.4. Observe next state yt + 1 and {yt+1
d,j }M.  

3.5. Calculate ẑt+1
d based on Qd( • | • )and ẑt

d.  

3.6. Observe reward rt(yt , ẑt
d, ẑt− 1

d ), {rt
d(y

t , yt
d,j, y

t− 1
d,j )}M.  

3.7. Store transitions (yt,xt,yt + 1, rt) and {(yt
d,j, x

t
d,j, yt+1

d,j , rt
d(⋅))}M to D.  

End for. 
4. Stage two: learning the experiences. 
For ns = 1 to NS do: 

4.1. Sample a mini-batch of transitions (yt,xt,yt + 1, rt( • )) from D. 
4.2. Update the platform’s value networks by minimizing L(θv). 
4.3. Update the platform’s policy networks as θp ← θp + δ∇θp G(θp).

4.4. Sample a mini-batch of transitions {(yt
d,j, x

t
d,j, yt+1

d,j , r
t
d(⋅))}M from D.  

4.5. Update the representative driver’s value network by minimizing L(θv). 
4.6. Update the representative driver’s policy network as θp ← θp + δ∇θp G(θp).

End for. 
End for. 
5. Finish.  
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before time index 20) or home (blue bars after time index 20). We use this demand setting because it reflects general scenarios with 
both demand-hot areas, demand-cold areas, tide demand, and periodic demand. Based on the edge-based matching rule, idle drivers in 
zones 1, 3, 5, 6 can also get passenger orders. However, the matching probability at zones 1, 3, 5, 6 would be much lower than that at 
zones 2, 4, and 7. In this case, there are trade-offs in the market with competing drivers: a driver can idly cruise to zone 4 to ensure a 
high matching probability; alternatively, the driver can stay in zones 1 or 5 such that he/she has a low probability of getting an order 
from zone 4 or zone 2 (at time periods when a train arrives). 

Other exogenous parameters are set as follows: commission rate η = 0.20, trip fare rate α = 10 CNY per time period, and discount 

Fig. 3. Network of the numerical study.  

Fig. 4. Passenger demand.  
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factor ρ = 0.8. Based on the numerical settings and definitions of states and actions, the cardinality of the platform’s state-action set is 
2, 560; the cardinality of the state-action set for a driver to take actions (i.e., in a purely idle state) is 1, 16012. With multiple drivers, 
since agents take actions independently, the cardinality of the solution space (containing the state-action sets for all the agents) can be 
as large as 2, 560 × 1, 160M, which makes it difficult to solve via the MAC algorithm. In contrast, for the RAC algorithm, the cardinality 
of the solution space reduces to 2, 560 × 1, 160. 

The hyperparameters of the algorithms for all subsequent numerical studies are as follows. In the RAC algorithm, for the platform 
agent, we establish a simple three-layer fully connected network with 24 neurons in the hidden layer for the value network and a three- 
layer fully connected network with 24 neurons in the hidden layer for the policy network. Similarly, for the representative driver agent, 
we use a three-layer fully connected network with 24 neurons in the hidden layer for both the value and policy networks. The acti-
vations of all hidden units are ReLu, while output layers of the value function approximation networks and policy networks use Linear 
and Softmax activations, respectively. The same policy and value network structures are used for each driver agent and the platform 
agent in the MAC algorithm. For both algorithms, the learning rate of the policy network is set at 0.001, and the learning rate of the 
value network is set at 0.01. 

We consider two experiments. First, the platform implements a non-subsidy strategy (i.e., β = 0). We use different numbers of 
drivers (i.e., M = 1, 10, 50, and 100) in the market to evaluate the performance (in terms of achieved total rewards) and efficiency (in 
terms of computation time) of the MAC and RAC algorithms. Second, we assume there are 100 drivers serving in the market and the 
platform must design the spatial-temporal subsidy strategy to maximize its total objective value, which is a weighted sum of net 
revenue and service rate (see Eq. (A.10)). A range of subsidy rates (i.e., β = 0, 2, 4, 6, and 8 CNY per ride) and weights of the service rate 
(i.e., μ = 0, 20, 000, and 40, 000 CNY) are tested13. This is to investigate how the spatial-temporal subsidy affects the self-relocation 
strategies of drivers, as well as the supply-demand situation, and examine how the platform’s subsidy strategy varies with different 
weights for service rate. The execution programming codes for the two experiments are the same except for the settings of number of 
drivers and subsidy rates. Therefore, the specific amount of subsidies have no impact on the computational time and the results in 
Section 5.2 well support the performance of the proposed algorithms. 

5.2. Performance of the representative-agent algorithm 

In the first experiment, we test the computation time for the RAC and MAC algorithms for drivers to pursue high-rewarding self- 
relocation strategies without subsidies. Simulation of the environment (i.e., calculating the matching probabilities and sampling the 
matchings, rewards, and transitions) and reinforcement learning algorithms are conducted on an HP Z4G4 workstation with 12 Inter 
I7-7800 processors and four 16-GB rams. 

In Table 1, we present the computation time for one learning epoch, which consists of simulating the order matches, actions, and 
states in the environment; storing agents’ transitions; and updating the knowledge and value networks of agents (i.e., steps 3 and 4 in 
Algorithms 1 and 2). We note that the RAC algorithm is slower than the MAC algorithm when M = 1; this is because the RAC algorithm 
must derive a comprehensive soft policy that covers all of the state-action sets of the representative driver; in contrast, the MAC al-
gorithm updates 1 driver’s policy based on their own experienced states and actions, ignoring policies that are conditional on unvisited 
states. As M increases, the time for computing the MF state and updating each agent’s policy and value networks will get longer, so that 
the computation time notably increases for the MAC algorithm. By contrast, the RAC algorithm only computes an approximated MF 
state and updates the policy and value networks for the representative driver, and the computation time gets much longer as M in-
creases. As a result, with M = 50 or 100, we note that the RAC algorithm is significantly faster than the MAC algorithm. 

The performance of the two algorithms can be measured by the increase in average driver income (i.e., the average value of the 
total income for M drivers) over learning epochs. In the experiment, the number of total epochs is 1, 000; within each epoch, we 
conduct either 1 simulation or 10 simulations (i.e., for each ne, to repeat step 3 in Algorithms 1 and 2 for 10 times before going to step 4, 
such that more samples of transitions can be generated) to update the policy and value networks. Although global optimality is not 
guaranteed with reinforcement learning algorithms, the 10-simulation case provides much faster convergence and higher total rewards 
than the 1-simulation case. The disadvantage is that the computation time for each epoch will be longer as the number of simulations 
increases. 

We illustrate the performance of the two algorithms with different numbers of drivers in Fig. 5. When M = 1, the MAC algorithm 
with 10 simulations (referred to as 10-MAC) results in higher average driver income than the RAC algorithm with 10 simulations (10- 
RAC; see Fig. 5(a)). This reflects the ineffectiveness of a soft policy in the simplified MF-MDP model when the number of drivers is 
small. In addition, average driver income grows slowly with the 1-MAC and 1-RAC algorithms (i.e., by conducting 1 simulation within 

12 For the platform, since three zones (2, 4, and 7) have passenger demand, we can ignore zones without demand in set S; therefore, there are 23 

possible states, 23 possible actions and 40 time slots in each epoch, and the cardinality of the state-action set is 23 
× 23 

× 40 = 2560. For a driver, we 
consider purely idle states such that a driver must take a relocation action. If the driver is in zone 4 or 7, then they have 3 relocation destinations; 
once they are in zone 1 or 3, then they have 4 relocation destinations; and if the driver is in zone 2, 5, or 6, they have 5 relocation destinations. 
Therefore, the cardinality of a driver’s state-action set is (3 × 2 + 4 × 2 + 5 × 3) × 40 = 1, 160.  
13 In both experiments, we assume that drivers are purely idle and uniformly distributed in zones at the beginning of the simulation. The platform 

would not allow a high subsidy rate that causes low net revenue for a single ride. Since the platform’s net revenue for an order from zone 4 to zone 7 
is 0.2 × 10 × 6 = 12 CNY (α = 10 CNY per time period and η = 0.2), the maximal subsidy rate is set as 8 CNY per ride and the net revenue after 
offering a subsidy is 12 − 8 = 4 CNY per ride. 
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each epoch), because it is difficult for the transitions observed in 1 simulation to cover a large state-action set of the driver (see Fig. 5 
(a)). When M = 10, the RAC algorithm begins to demonstrate its advantages. In Fig. 5(b), we see that the 10-RAC algorithm converges 
much faster and leads to higher average driver income than the 10-MAC algorithm. Unlike the M = 1 scenario, the 1-RAC algorithm 
under M = 10 can also achieve high average driver income because more transitions are sampled and used to update the policy and 
value networks of the representative driver. As M increases to 50, on one hand, the 10-MAC algorithm encounters its bottleneck (at 
around 132 CNY per driver) and can barely increase average income further (see Fig. 5(c)). On the other hand, the 10-RAC algorithm 
still outperforms the other algorithms, but its gaps in both convergence speed and final average income from the 1-RAC algorithm 
become smaller. This is because with a large M, 1 simulation during an epoch can generate sufficient samples of transitions. Finally, in 
Fig. 5(d) under M = 100, the 1-MAC algorithm never improves average driver income due to insufficient transitions sampled over the 
large solution space, and we still observe the bottleneck for the 10-MAC algorithm (at around 128 CNY per driver). Also, the advantage 
of the 10-RAC algorithm over the 1-RAC algorithm becomes negligible. Based on these findings, we conclude that with a large number 
of drivers, the RAC algorithm is capable of identifying policies to further improve average total rewards compared with the MAC 
algorithm on a small-scale network. In addition, a small number of simulations within one epoch is sufficient for the RAC algorithm to 
quickly converge to a policy that leads to high average total rewards. We aim to examine the MAC and RAC algorithms on real-world 
networks in future studies. 

5.3. Spatial-temporal subsidies and drivers’ self-relocation 

In the second experiment, we retain the ride-sourcing market that contains 100 drivers and let the platform to pursue rewardable 
spatial-temporal subsidy strategies with some predefined β. As described in Section 5.1, we assume the platform assigns weights to the 
service rate in the objective and adopts different subsidy rates. Namely, a zero weight (e.g., μ = 0) for the service rate indicates that the 

Table 1 
Computation Time for One Learning Epoch (seconds).  

Fig. 5. Performance of the MAC and RAC algorithms.  
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platform is only concerned with net revenue; a medium weight (e.g., μ = 20, 000) implies a balance between net revenue and the 
service rate; and a large weight (e.g., μ = 40, 000) indicates that the platform mainly focuses on the service rate in the objective. As 
stated previously, the subsidy rates β range from 0 to 8 CNY per ride in steps of 2 CNY per ride. For each combination of parameters (i. 
e., μ and β), we pursue the platform’s optimal subsidy strategy with respect to the total objective value in terms of drivers’ self- 
relocation. We use the RAC algorithm to solve the simplified MF-MDP model for different combinations of μ and β. To balance 
computational cost and performance (i.e., for both the platform and the representative driver), the number of epochs is set at 1, 000 
and 2 simulations are conducted within each epoch (i.e., a 2-RAC algorithm is adopted). 

Results of this experience are illustrated in Table 2. From the 1, 000 epochs with fixed μ and β in the 2-RAC algorithm, we select 5 
epochs with the highest platform objective values and summarize the average metrics14. The relation between β and the metrics with a 
fixed μ can be obtained; the total subsidies offered (i.e., Table 2(e)) reflect the platform’s subsidy strategy. 

When μ = 0, the total amount of subsidies offered to drivers under different values of β is small (i.e., Table 2(e)); this indicates that 
the platform prefers not to provide subsidies, and drivers pursue high-rewarding self-relocation strategies without subsidies. As a 
result, the total objective value for the platform, total net revenue for the platform, average driver income, and service rate (i.e., 
Tables 2(a)–2(d)) across different values of β are more or less the same. Note that the reinforcement learning algorithm cannot 
guarantee the global optimal, and the small differences between the values are mainly due to simulation noise. The “non-subsidy” 
result under μ = 0 is foreseeable for two reasons: (1) the commission rate is low, so that the platform, which only retains a positive but 
small net revenue for an order, might not afford a large subsidy rate; and (2) a small subsidy rate might not motivate enough drivers to 
change their self-relocation strategies in order to gain sufficient benefits from alleviating supply-demand imbalance. Therefore, the 
increased commission withheld by the platform cannot cover the subsidies offered to drivers, which leads to a loss in net revenue while 
implementing subsidy strategies. 

If the platform has a balanced weight with μ = 20, 000, its total objective value first increases and then decreases with β (see Table 2 
(a)). Based on Table 2(d) and (e), we note that as β increases from 0 CNY to 6 CNY per ride, the increased subsidy improves the service 
rate; however, once β = 8 CNY per ride, the subsidy becomes cost-ineffective because the benefits gained from the enhanced weighted 
service rate cannot offset the revenue loss caused by subsidy provisions, and thus the platform is inclined to adopt a non-subsidy 
strategy. 

If the platform mainly prefers a high service rate (i.e., μ = 40, 000), a subsidy less than or equal to 8 CNY per ride is always cost- 
effective for improving the total objective value by reshaping drivers’ self-relocation strategies and increasing the service rate (see 
Table 2(a), Table 2(d), and (e)). 

We refer to μ = 0 and β = 0 as the baseline scenario, in which the platform’s objective consists of only net revenue, and refer to μ =
40, 000 CNY and β = 8 CNY per ride as the subsidy scenario in which the platform focuses more on the service rate. Comparing the 
subsidy scenario with the baseline scenario, spatial-temporal subsidies can lead to a 6.7% and 7.6% increase in the average driver 
income and the service rate, respectively (see Table 2(b) and (d)). We show the spatial-temporal number of passengers served (i.e., 
matched demand) in Fig. 6. Time periods with subsidies are denoted using β in Fig. 6(b): The platform provides subsidies at zone 4 at 
time periods 9–12 and 16–19. Motivated by the subsidy, some drivers “postpone” service by idle cruising before the target (i.e., 
demand-hot) zone is subsidized but relocating to (and thus arriving at) the target zone in time periods with subsidies. As denoted by 
“postpone” in Fig. 6(b), fewer passengers are served at time periods 7–8 and 13 due to the idle cruising and postponing phenomenon; 
instead, more passengers are served during time periods with subsidies. There are 148 passengers served during time periods 1–15 
under both scenarios. In contrast, due to the postponement of services, the number of passengers served after time index 15 notably 
increases from 195 to 223. These results imply that a platform with an emphasis on service rate has the foresight to mitigate the 
imbalance between driver supply and passenger demand. 

To better understand how drivers’ self-relocation strategies are affected in the subsidy scenario, we provide the spatial-temporal 
idle driver supply and soft self-relocation policies in the simplified MF-MDP model in Fig. 7. Black numbers at the top/bottom of 
the zones represent zone IDs; colored numbers at the center of each zone denote the numbers of idle drivers; and arrows with small 
underlined numbers denote relocation destinations and corresponding proportions in percentage (i.e., the soft policy). Blue, yellow, 
and red represent zones with a low matching probability (in demand-cold zones), a medium matching probability (in zones adjacent to 
demand-hot zones), and a high matching probability (in demand-hot zones), respectively. Note that the instances reported in Fig. 7 are 
from a single simulation with the highest objective value for the platform. At t = 3, idle drivers in the baseline scenario move to either 
zone 2 or zone 4 to pick up passengers (see Fig. 7(a)); in the subsidy scenario, some drivers in zones 6 and 7 have diverse relocation 
directions (e.g., drivers in zone 7 have a 60% chance of staying). One reason might be that they first cruise around and wait, then try to 
arrive at zone 4 at t ∈ {9, 10, 11, 12} to earn subsidies. Because of this phenomenon, at t = 9, the number of idle drivers adjacent to zone 
4 in the subsidy scenario is notably higher than in the baseline scenario. The postponing phenomenon also happens at t = 13, when 
some drivers perceive the upcoming subsidies at t ∈ {16, 17, 18, 19} and decide not to immediately serve passengers in zone 2 (see 
Fig. 7(f)). The benefits of the postponing phenomenon can be partially observed in Fig. 7. In the baseline scenario, drivers in the first 

14 Table 2(a), 2(c) and 2(d) shows the total reward, net revenue, and service rate of the platform, respectively, 2(b) the average income (net 
revenue) of drivers (i.e., total income divided by 100 drivers), 2(g) the average time periods in delivery/pickup task for drivers (i.e., total number of 
delivery/pickup times divided by 100 drivers), 2(e) and 2(f) are subsidy related metrics. A value of 0.6 in Table 2(e) under μ = 0 and β = 2 is 
obtained. Note that we select the 5 epochs with the highest platform’s objective values as the average metrics, and in each epoch, we implement 2 
simulations. Clearly, for these 5 epochs (i.e., a total of 10 simulations), the total amount of subsidies offered by the platform to all the drivers in the 
entire horizon is 6 CNY; dividing 6 by 10 simulations, we get 0.6. 
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half of the operational horizon (t ≤ 20) keep relocating to zones 2 and 4 to serve passengers (see Fig. 7(a), (c), and (e)). This leads to 
two results: a shortage of supply during time periods 9–11 and 14–17 (see Fig. 6(a)); and a large number of idle drivers at zone 7 at an 
early time in the second half of the horizon (e.g., time period 23 in Fig. 7(g)). In contrast, in the subsidy scenario, some drivers are 
inclined to idly cruise and postpone their services so that the supply becomes smooth across zones (e.g., at zones 2 and 7) and time 
periods, especially during the second half of the operational horizon (e.g., time period 23 in Fig. 7(h)). Consequently, the supply- 
demand imbalance in this case study is alleviated due to the implementation of spatial-temporal subsidies. 

6. Discussion of subsidy schemes 

The numerical studies in Section 5 offer in-depth insights for ride-sourcing platforms about the effectiveness of a uniform subsidy 
scheme in addressing supply-demand imbalance. In such a scheme, the platform predetermines the amount of subsidy per order (i.e., 
subsidy rate) and offers this amount of subsidy to drivers once they are matched with passengers whose origins are the subsidized 
zones. The strategy of spatial-temporal subsidies under the uniform scheme is largely affected by the objective of the platform. If the 
platform only cares about the immediate net revenue, the effectiveness of this subsidy scheme could be limited. This is because for a 
single order, the subsidy rate generally does not exceed the commission withheld by the platform (otherwise the platform earns 
negative net revenue for an order). Thus, the amount of subsidy offered to a driver is much smaller than they earn from the trip fare and 
is unattractive to drivers, who may not be motivated to move to the designated zones. In this case, offering subsidies could cause a loss 

Table 2 
Results with Spatial-temporal Subsidies for the Entire Horizon.  
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in net revenue because the subsidy provision is higher than the commission gain; therefore, the platform would prefer a non-subsidy 
strategy. By contrast, if the platform pursues a high service rate (i.e., number of passengers served), it would like to offer a subsidy 
sufficient to stimulate drivers to demand-hot zones despite the reduction in immediate revenue. The latter case might occur when a 
platform expands its business and competes with competitors. An example is the price war between DiDi and Uber in mainland China 
in 2016 before they consolidated. 

However, the uniform subsidy scheme is not superior in improving the service rate and net revenue of the platform simultaneously. 
This is because the platform provides the same amount of subsidies to different drivers: (1) those who already have desirable self- 
relocation strategies such that they could relocate to demand-hot zones even without subsidies, and (2) those who are incentivized 
by subsidies but would not relocate to demand-hot zones if no subsidies were provided. Therefore, subsidies offered to drivers 
belonging to the first type would not generate more net revenue for the platform, and only subsidies offered to drivers in the second 
type would help mitigate the supply-demand imbalance and improve the service rate. 

To thoroughly examine the designs of spatial-temporal subsidies for drivers with certain self-relocation strategies, a number of tasks 
must be relayed left to the future studies. Different subsidy schemes must be examined and evaluated using the ride-sourcing MF-MDP 
model. Below, we provide a few sample schemes with potential advantages and feasibility:  

• Surge subsidy (or zone-based) scheme, in which the platform provides higher subsidies at zones with greater supply-demand 
imbalance. Once there is super large passenger demand in a hot area, the platform could offer irresistible subsidies to drivers 
who relocate to and then serve passengers in the area. The revenue loss due to high subsidy provision could be offset by the 
improvement in the service rate, since sufficient drivers will be attracted to the hot area to accommodate the high service needs. 

Fig. 6. Served rides across the time horizon and zones.  
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• Distance-based subsidy scheme, in which the subsidy rate is proportional to the travel distance of the ride order or a subsidy is 
applied only if the travel distance of the order exceeds some threshold. Such a scheme could be beneficial once there is an 
insufficient supply of long-distance passenger demand.  

• Origin-destination-based subsidy scheme, in which the platform offers heterogeneous subsidies based on the origin and destination 
of the ride order. For instance, the platform could provide a high subsidy for trips that originate at a demand-cold area and 
terminate at a demand-hot area. Consequently, the supply-demand imbalance could be improved as the overall driver supply at 
demand-cold areas is incentivized to relocate to demand-hot areas. We can employ the MF-MDP model to determine the critical 
rules with respect to subsidy rates and the characteristics of origins/destinations.  

• Performance-based (or driver-based) subsidy scheme, in which the platform offers subsidies according to drivers’ performance and 
behaviors. For instance, the platform could only offer subsidies to drivers who would not relocate to demand-hot zones without 
incentives. Although this subsidy scheme can reduce the subsidy provided to drivers with high-rewarding self-relocation strategies, 
it could be controversial due to potential discrimination concerns. 

All of these subsidy schemes merit analysis using the MF-MDP model to gain comprehensive insights into the pros and cons of 
diverse spatial-temporal subsidies in ride-sourcing markets. Furthermore, we would examine spatial-temporal subsidies in more 
realistic scenarios in terms of a large-scale zone network, passenger demand derived from actual data, and a flexible setting of subsidy 
levels. Real-world public datasets can be used to generate large-scale ride-sourcing scenarios. In addition, although the current edge- 

Fig. 7. Spatial-temporal idle supply and self-relocation policies.  
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based matching rules (Eqs. A.(6)–A.(9)) analytically capture the cross-zone matching feature of ride-sourcing markets, it can be 
computational inefficient for large-scale analyses when calculating the joint probability distribution of matching results. We aim to 
improve the efficiency of the edge-based matching rule for real-world scenarios in future studies. Also, the predefined subsidy rates (i. 
e., either 0 or β) in this paper could underestimate the effectiveness of a subsidy due to the inflexibility of implementing heterogeneous 
subsidies at different locations and with different traveling distances. Instead, we can predefine a few subsidy levels and apply 
reinforcement learning (e.g., the RAC) algorithms to pursue the optimal subsidy level in each time period to maximize the total 
rewards. 

7. Conclusions 

In this paper, we propose a generalized MF-MDP model to capture sequential and interactive decision processes in a ride-sourcing 
environment with the platform as the major agent and multiple drivers as minor agents. The MF-MDP model is particularly suitable for 
research problems in which the major agent (platform) and minor agents (drivers) have distinct objectives. The decisions/actions of 
the platform can directly affect the drivers’ states, while the drivers’ actions can influence the platform’s state and drivers’ average 
state, which is referred to as the MF state. An approximation of the MF state is employed to simplify the model, such that we only need 
to optimize the policies for the platform and one representative driver instead of the policies for the platform and all individual drivers 
(as in the standard MF-MDP model). Consequently, computational complexity can be notably reduced when there are a large number 
of drivers in the environment. 

In particular, we adopt the MF-MDP model to design the platform’s spatial-temporal subsidy strategies with a predefined subsidy 
rate for drivers who have self-relocation strategies. A representative-agent reinforcement learning algorithm is proposed to solve the 
MF-MDP model. Using numerical studies, we demonstrate that due to the significant reduction of the number of agents and solution 
space, the representative-agent algorithm demonstrates significant computational advantages and fast convergence and achieves 
higher rewards, compared with the conventional multi-agent algorithm. In addition, we investigate the potential impact of spatial- 
temporal subsidies on drivers’ self-relocation strategies and the resulting platform’s objective values and drivers’ income. Based on 
a uniform subsidy scheme, our results suggest that subsidies can improve the service level (number of passengers served) by incen-
tivizing idle drivers to locations with overfull passenger demand and insufficient driver supply. On one hand, if the platform only 
pursues net revenue (measured by commission withheld from trip fares by the platform minus the amount of subsidies offered to 
drivers), a subsidy strategy with predefined subsidy levels is cost-ineffective due to a large reduction in net revenue from a single order 
versus a small increase in the number of passengers served. On the other hand, when the platform pays more attention to the number of 
passengers served (in order to improve the customer satisfaction rate), it is more willing to offer sufficient subsidies to stimulate drivers 
to demand-hot zones and achieve a better supply-demand balance. In this case, the spatial-temporal subsidy strategy leads to a win-win 
situation in which both average driver income and the platform’s total objective value are notably improved. 

This paper makes three major contributions to the literature. First, unlike previous ride-sourcing MDP models that assume the 
platform has full control of drivers, the proposed MF-MDP model considers interactive decision processes between the platform and 
drivers, which are distinctive objectives. Second, we develop a good approximation for the standard MF-MDP model the simplified MF- 
MDP model that jointly seek for the optimal policies of the platform and a representative. We show that, the approximation not only 
saves computational resources but also achieves higher rewards with a faster convergence in our research problem. This is mainly 
because a ride-sourcing market has a large number of drivers, and thus the platform can consider the mean-field state of all drivers 
without tracking the individual state of each driver. Third, we design a representative-agent reinforcement learning algorithm to solve 
the simplified MF-MDP model, and apply the model and algorithm to the spatial-temporal subsidy problem with atomic drivers who 
have self-relocation strategies. Numerical experiments demonstrate that the proposed algorithm can achieve good performance at a 
low computational cost, and provide insights on the impacts of spatial-temporal subsidies on the key market measures. 

There are several important directions for future research. First, some deep learning-based algorithms and MF simulation ap-
proaches can be developed to further enhance performance and reduce computational complexity. We are particularly interested in 
developing edge-based matching rules that are both capable of depicting cross-zone matching processes and powerful for large-scale 
multi-agent problems in practically relevant scenarios. Second, based on the generalized ride-sourcing MF-MDP model, we will 
examine the impacts of other subsidy schemes, such as surge subsidy schemes over time and zones, distance-based subsidy schemes, 
and origin-destination-based subsidy schemes. These subsidy schemes are expected to mitigate supply-demand imbalance more 
efficiently than the uniform subsidy scheme that offers the same amount of subsidy to drivers upon matches with passengers from 
subsidized regions. Third, the framework can be extended to investigate ride-sourcing markets coupled with public transit services, 
and identify optimal coordination between ride-sourcing drivers who aim to improve their earnings by self-relocation and public 
transit operators who attempt to design transit schedules to improve transit usage. For example, the platform’s knowledge of bus 
services’ timeline could incentivize drivers to relocate to transit stations at the appropriate time, as a result of which the cooperation 
and substituting effect between ride-sourcing and public transit services could be enhanced. 
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Appendix A: formulas for the specific MF-MDP model 

In this appendix we provide detailed formulas for state transition laws, matching probability, and rewards in the MF-MDP model 
developed in Section 4. 

First, we illustrate the state transition laws of the platform and a driver in the standard MF-MDP model (or the representative driver 
in the simplified MF-MDF model). With the state vector s = [t, s1,…, sO] and the action vector = [a1,…, aO], the state transition law for 
the platform is given by 

Q(s′|s, a)= {
1 , s′ = [t + 1, a1,…, aO], ∀a ∈ A
0 , otherwise (A.1) 

An intuitive explanation of Eq. (A.1) is that the state of the platform for the next time index equals its action vector. 
With a state vector sd = [t, sd1,sd2,sd3,sd4,sd5] and an action ad ∈ Jsd3 , the state transition law for a driver has different formulas 

according to the current task sd1 and remaining time sd2. Note that for the following formulas, we need sd, s
′

d ∈ Sd, and hd ∈ Hd.  

• The driver is picking up a passenger, i.e., sd = [t, 1, τ, o, o′, o′ ′], τ > 0, o, o′, o′ ′ ∈ {1, 2, …, O}, and o ∕= o′ ∕= o′ ′

Qd
(
s′

d|sd, hd, ad
)
= {

1 , s′

d = [t + 1, 1, τ − 1, o, o′, o′′], τ > 1
1 , s′

d = [t + 1, 2, τo′o′′, o′, o′, o′′], τ = 1
0 , otherwise

(A.2)   

where τo′o′ ′ denotes the average travel time from zone o′ to zone o′ ′, which is exogenous. The first line means that the driver still needs 
more than one time period to finish the current picking-up task; therefore the new remaining time s′d2 decreases by one, while the other 
dimensions of the state vector remain unchanged. The second line means that the driver is about to finish a picking-up task and will 
immediately change the task to delivering the passenger; then the new remaining time s′d2 becomes the average travel time between the 
origin zone and the destination zone, the new task s′d1 becomes 2, and the new idling zone becomes the current picking-up destination, 
which is identical to the origin of the passenger (i.e., s′d3 = sd4 = o′).  

• The driver is delivering a passenger, i.e., sd = [t, 2, τ, o, o, o′], τ > 0, o, o′ ∈ {1, 2, …, O}, and o ∕= o′. 

Qd
(
s′

d|sd, hd, ad
)
= {

1 , s′

d = [t + 1, 2, τ − 1, o, o, o′], τ > 1
1 , s′

d = [t + 1, 0, 0, o′, o′, o′], τ = 1
0 , otherwise

(A.3)   

The first line means that the driver needs more than one time period to finish the current delivering task and the new remaining 
time s′d2 decreases by one, while the other dimensions of the state vector remain the same. The second line indicates that if the driver is 
about to finish a delivering task, the new state becomes a purely idle state (i.e., s′d1 = 0 and s′d2 = 0). Since there is no passenger order, 
we let s′d3 = s′d4 = s′d5 = o′ for convenience.  

• The driver is purely idle, i.e., sd = [t, 0, 0, o, o, o], and o ∈ {1, 2, …, O}. 

Qd(s′d|sd, hd, ad) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mo,o′ ,o′′(hd) , s′d = [t + 1, 1, τoo′ , o, o′, o′′]
mo,o,o′′(hd) , s′d = [t + 1, 2, τoo′′, o, o, o′′]

uo(hd) , s′d = [t + 1, 0, 0, o, o, o], ad = o
uo(hd) , s′d =

[
t + 1, 0, τoad − 1, o, ad, ad

]
, ad ∕= o

0 , otherwise

(A.4)   
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where mo,o′ , o′ ′(hd) denotes the probability of getting a matched passenger order at zone o with the origin and destination of the 
passenger being o′ and o′ ′, respectively, and uo(hd) denotes the probability of not being matched at zone o. Generally, both mo,o′, o′ ′(hd) 
and uo(hd)depend on the MF state of drivers and the exogenous passenger demand. More specific formulas for the probabilities are 
given later in this appendix. The first line in the equation implies that the origin of the newly matched passenger is different from the 
driver’s current idling zone (i.e., s′d4 = o′ ∕= sd3 = o); therefore, a picking-up task is needed and we have s′d1 = 1 and s′d2 = τoo′ . In the 
second line, the matched passenger and the driver are in the same zone (i.e., s′d4 = sd3 = o) and we assume the picking-up process can 
be ignored; therefore, the driver will directly start to deliver the passenger (i.e., s′d1 = 2). The third line indicates that the driver is still 
not matched and their action is to stay in the current idling zone (i.e., ad = o); therefore the state of the driver will remain unchanged. In 
the fourth line, the driver is not matched and will relocate to zone ad; we let s′d4 = s′d5 = ad for convenience, and let s′d2 = τoad − 1 
because we assume the driver is already in the middle of the self-relocating state (i.e., no time is wasted by stopping the vehicle to load 
or drop off passengers).  

• The driver is in a self-relocating state, i.e., sd = [t, 0, τ, o, o′, o′], τ > 0, and o ∕= o′. 

Qd(s′d|sd, hd, ad) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

mo,o′′,o′′′ (hd) , s′d = [t + 1, 1, τoo′′, o, o′′, o′′′ ]

mo,o′ ,o′′′ (hd) , s′d = [t + 1, 1, τ − 1, o, o′, o′′′ ], τ > 1
mo,o′ ,o′′′ (hd) , s′d = [t + 1, 2, τo′o′′′ , o′, o′, o′′′ ], τ = 1
mo,o,o′′′ (hd) , s′d = [t + 1, 2, τoo′′′ , o, o, o′′′ ]

uo(hd) , s′d = [t + 1, 0, τ − 1, o, o′, o′], τ > 1
uo(hd) , s′d = [t + 1, 0, 0, o′, o′, o′], τ = 1

0 , otherwise

(A.5)   

In the first line, the driver is matched with a passenger whose origin s′d4 = o′′ is different from either the driver’s current idling zone 
sd3 = o or the self-relocation destination sd4 = o′; therefore, the driver begins a picking-up task and moves to zone o′ ′ (i.e., s′d1 = 1 and s′d4 

= o′′). The second line indicates that if the self-relocation destination coincides with the origin zone of the matched passenger (i.e., s′d4 

= sd4 = o′), the new remaining time s′d2 decreases by one because we regard the driver as already in the middle of the picking-up task 
(i.e., s′d1 = 1). To continue with the case s′d4 = sd4 = o′, the third line means that if drivers are leaving the self-relocating state (i.e., sd2 

= τ = 1), they immediately load the passenger and begin the delivering task (i.e., s′d1 = 2). In the fourth line, both the matched 
passenger and driver are in zone o (i.e., s′d4 = sd3 = o) and a delivering task starts. The fifth and sixth lines indicate that the driver is not 
matched with passengers, such that he/she either remains in the self-relocating state (the fifth line) or becomes purely idle in zone o′ (i. 
e., s′d1 = 0, s′d2 = 0, and s′d3 = o′ for the sixth line). 

Note that the MF vector hd is used in Qd(s
′

d|sd, hd, ad) to calculate the matching probabilities mo,o′, o′ ′(hd) and uo(hd). Next, we provide 
detailed formula related to the number of matches and matching probabilities. According to the edge-based matching rule in Section 
4.1, the number of matches near an arbitrary edge eoo′, which is denoted by keoo′ is given by 

keoo′
(hd) = min

{
Mo(hd)

Eo
+

Mo′ (hd)

Eo′
,
No

Eo
+

No′

Eo′

}

(A.6)  

Mo(hd) = M

⎛

⎜
⎝hd,[t,0,0,o,o,o] +

∑

τ>0,o′∈Jo/o

hd,[t,0,τ,o,o′ ,o′ ]

⎞

⎟
⎠ (A.7)  

where Eo denote the number of edges of zone o, and assuming hexagonal zones, the value of Eo is 6 unless the zone is located at the 
boundary of the network; and hd,sd is the scalar value in hd and represents the proportion of drivers in state sd (i.e., zt

d,sd 
= hd,sd in Eq. 

(2)), such that hd,[t, 0, 0, o, o, o] denotes the proportion of purely idle drivers and hd,[t, 0, τ, o, o′, o′] the proportion of drivers in self- 
relocating states at time t (see Eq. (A.5)). Since keoo′ is only used to calculate matching probabilities in this paper, we allow the 
value of keoo′ to be a non-integer. 

Since the numbers of matched passengers and drivers are proportional to the demand and supply near the common edge, and 
drivers and passengers are uniformly distributed in the zones (see Section 4.1), we have the formulas for mo,o′ , o′ ′(hd) and uo(h) as 
follows: 
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mo,o′ ,o′′(hd) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
Eo

keoo′
(hd)

Mo(hd)

Eo
+

Mo′ (hd)

Eo′

No′

No + No′

No′o′′

No′
, o′ ∈ Jo

/
o

⎛

⎜
⎜
⎝

∑

o′′′ ∈Jo/o

1
Eo

ke
oo′′′

(hd)

Mo(hd)

Eo
+

Mo′′′ (hd)

Eo′′′

No

No + No′′′

⎞

⎟
⎟
⎠

Noo′′

No
, o′ = o

(A.8)  

uo(hd) = 1 −
∑

o′∈Jo ,o′′∈O
mo,o′ ,o′′(hd) (A.9)  

where No′o′ ′ denotes exogenous passenger demand from zone o′ to zone o′ ′. In the first line we calculate the probability of matching an 
adjacent passenger in zone o (i.e., picking-up is needed); the term 1

Eo 
denotes the probability that the driver is near edge eoo′; the term 

keoo′
Mo/Eo+Mo′ /Eo′

the chance of getting a match for drivers who are near edge eoo′; the term No′
No+No′

the probability that the origin of the 

matched passenger is zone o′; and the term No′o′′
No′

the chance that the matched passenger’s destination is o′ ′. The second line denotes the 
probability of matching a local passenger in zone o (i.e., direct delivery without picking-up), in which we sum the matching proba-
bilities from all common edges between zone o and its adjacent zones (i.e., the summation term for o′ ′ ′ ∈ Jo/o); the explanation for each 
term is similar to that for the first line. The unmatched probability equals one minus all matched probabilities in zone o (i.e., Eq. (A.9)). 

Last, we show the detailed calculation of r(s, hd,h′
d) and rd(s,sd,s′d). The decomposition of the platform reward r(s, hd,h′

d) is given 
by 

r(s, hd,h′
d) = r1(hd) − r2(s,hd, h′

d) + μr3(s,hd, h′
d) (A.10)  

r1(hd) = ηαM
∑

τ,o,o′
hd,[t,2,τ,o,o,o′ ] (A.11)  

r2(s,hd, h′
d) = βM

(
∑

o,o′ ,o′′|so=β

hd,[t,1,τo′o ,o′ ,o,o′′] +
∑

o,o′ ,o′′|so=β

(
hd,[t,2,τoo′′ ,o,o,o′′] − h′

d,[t− 1,1,1,o′ ,o,o′′]

)
+

∑

o,o′ ,o′′,τ>1|so=β

(
hd,[t,1,τ− 1,o′ ,o,o′′] − h′

d,[t− 1,1,τ,o′ ,o,o′′]
)
) (A.12)  

r3(s,hd, h’
d) =

M
N

(
∑

o,o’ ,o’′

hd,[t,1,τo’o ,o
’ ,o,o’′ ] +

∑

o,o’ ,o’′

(
hd,[t,2,τ

oo’′ ,o,o,o’′ ] − h
’

d,[t− 1,1,1,o’ ,o,o’′ ]

)
+

∑

o,o’ ,o’′ ,τ>1

(
hd,[t,1,τ− 1,o’ ,o,o’′ ] − h’

d,[t− 1,1,τ,o’ ,o,o’′ ′′ ]

)
)

(A.13) 

In Eq. (A.11), the commission withheld during one time period is calculated based on the proportion of drivers who are performing 
delivery task hd,[t, 2, τ, o, o, o′] (i.e., the proportion of drivers in state [t, 2, τ, o, o, o′]); the total number of drivers M; commission rate η; 
and trip fare rate α. In Eq. (A.12), the proportion of drivers who are offered subsidies consists of three terms: hd,[t,1,τo′o ,o′ ,o,o′′] denotes 
newly matched/dispatched drivers who are currently neither in nor self-relocating to the subsidized zones but will pick up passengers 
there; hd,[t,2,τoo′′ ,o,o,o′′] − h′

d,[t− 1,1,1,o′ ,o,o′′] denotes newly matched/dispatched drivers who are currently in the subsidized zones; and 
hd,[t,1,τ− 1,o′ ,o,o′′] − h′

d,[t− 1,1,τ,o′ ,o,o′′] (τ > 1) denotes newly matched/dispatched drivers who are coincidentally in the process of self-relocating 
to the subsidized zones. In Eq. (A.13), the service rate is calculated via the number of drivers M, the proportion of drivers who are 
newly matched, and the total number of passenger demand N. Note that in Eqs. (A.12)–(A.13), the term hd,[t,2,τoo′′ ,o,o,o′′] also includes 
previously dispatched drivers who just finished picking-up tasks at subsidized zone o (i.e., the term h′

d,[t− 1,1,1,o′ ,o,o′′]); therefore, we need a 
subtraction, hd,[t,2,τoo′′ ,o,o,o′′] − h′

d,[t− 1,1,1,o′ ,o,o′′], to only count newly matched drivers. Similarly, the term hd,[t, 1, τ − 1, o′ , o, o′ ′] also includes 
previously dispatched drivers who are on the way to pick up passengers in zone o (i.e., the term h′

d,[t− 1,1,τ,o′ ,o,o′′], τ > 1), and we need a 
subtraction to exclude these drivers15. 

The decomposition of a driver’s one-step reward rd(s,sd,s′d) is as follows: 

rd(s, sd, s′d) = rd1(sd) + rd2(s, sd, s′d). (A.14) 

15 Based on Eq. (A.2), for drivers who are in state [t − 1, 1, 1, o′, o, o′ ′] at time t − 1, their states become [t, 2, τoo′ ′,o, o, o′ ′] at time t. Therefore, 
these drivers are counted in the term hd,[t,2,τoo′′ ,o,o,o′′]. Still based on Eq. (A.2), for drivers who are in state [t − 1, 1, τ, o′, o, o′ ′] (τ > 1) at time t − 1, 
their states become [t, 1, τ − 1, o′, o, o′ ′], and these drivers are counted in the term hd,[t, 1, τ − 1, o′ , o, o′ ′]. 
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rd1(sd)= {
(1 − η)α , sd1 = 2

0 , otherwise (A.15)  

rd2(s, sd, s′d) =

⎧
⎨

⎩

β , sd1 = 2, s′d1 = 0, sd3 = o, so = β
β , sd1 = 1, s′d1 = 0, sd3 = o, so = β
0 , otherwise

(A.16) 

In the first line of Eq. (A.15), we assume the fare is uniformly collected when the driver is delivering the passenger, i.e., sd1 = 2. For 
instance, if a driver delivers a passenger from time t1 to t2 (i.e., sd1 = 2 for t ∈ {t1,…, t2}), the driver will receive an income of (1 − η)α 
for each time period during the delivering task, and the total income from trip fare equals (t2 − t1 + 1)(1 − η)α. In Eq. (A.16), a subsidy 
β for drivers is executed immediately after the task switches from “idle” to “picking-up” or “delivering” (i.e., s′d1 = 0 and sd1 ∕= 0) and 
the origin of the matched passenger is subsidized (i.e., sd3 = o and so = β); the first line indicates that the matched passenger is local (i. 
e., sd3 = sd4); and the second line that the matched passenger is in an adjacent zone (i.e., sd3 ∕= sd4). 
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