
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2021

Assessing generalizability of CodeBERT Assessing generalizability of CodeBERT

Xin ZHOU
Singapore Management University, xinzhou.2020@phdcs.smu.edu.sg

DongGyun HAN
Singapore Management University, dhan@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
ZHOU, Xin; HAN, DongGyun; and LO, David. Assessing generalizability of CodeBERT. (2021). Proceedings
of the 37th IEEE International Conference on Software Maintenance and Evolution (ICSME 2021), Virtual
Conference, September 27- October 1. 425-436.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6854

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6854&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6854&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6854&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Assessing Generalizability of CodeBERT

Xin Zhou, DongGyun Han, and David Lo
School of Computing and Information Systems, Singapore Management University

xinzhou.2020@phdcs.smu.edu.sg, {dhan, davidlo}@smu.edu.sg

Abstract—Pre-trained models like BERT have achieved strong
improvements on many natural language processing (NLP) tasks,
showing their great generalizability. The success of pre-trained
models in NLP inspires pre-trained models for programming
language. Recently, CodeBERT, a model for both natural lan-
guage (NL) and programming language (PL), pre-trained on code
search dataset, is proposed. Although promising, CodeBERT has
not been evaluated beyond its pre-trained dataset for NL-PL
tasks. Also, it has only been shown effective on two tasks that are
close in nature to its pre-trained data. This raises two questions:
Can CodeBERT generalize beyond its pre-trained data? Can it
generalize to various software engineering tasks involving NL
and PL?

Our work answers these questions by performing an empirical
investigation into the generalizability of CodeBERT. First, we
assess the generalizability of CodeBERT to datasets other than its
pre-training data. Specifically, considering the code search task,
we conduct experiments on another dataset containing Python
code snippets and their corresponding documentation. We also
consider yet another dataset of questions and answers collected
from Stack Overflow about Python programming. Second, to
assess the generalizability of CodeBERT to various software
engineering tasks, we apply CodeBERT to the just-in-time defect
prediction task. Our empirical results support the generalizability
of CodeBERT on the additional data and task. CodeBERT-based
solutions can achieve higher or comparable performance than
specialized solutions designed for the code search and just-in-
time defect prediction tasks. However, the superior performance
of the CodeBERT requires a tradeoff; for example, it requires
much more computation resources as compared to specialized
code search approaches.

Index Terms—pre-trained model, generalizability, CodeBERT

I. INTRODUCTION

With recent success of deep learning, applying deep learn-

ing became popular to automate Software Engineering (SE)

tasks [1]–[4]. However, deep learning solutions usually require

numerical vector representation of the object of interest as

input [3]–[11]. This numerical vector representation is also

called embedding. Recently, there are many works on source

code embedding; they learn an embedding for a piece of

code [3], [4], [9]–[11]. Though these source code embedding

models work well in their dedicated tasks, the generalizability

of their embeddings to other downstream tasks requires further

investigation. For example, Kang et al. found that source

code token embeddings extracted by code2vec [9] cannot be

readily utilized for other downstream tasks, i.e. code comments

generation, code authorship identification, and code clone

detection [12].

Recently, in the natural language processing (NLP) area,

BERT [13] has been a breakthrough in learning embedding

of a natural language word. BERT outperformed state-of-the-

art techniques by a large margin on many NLP tasks, such as

question answering, natural language inference, named entity

recognition, sentiment binary classification, text classification,

etc. [14]–[19]. BERT is a typical pre-trained model, which has

generalizability across many datasets and downstream NLP
tasks. Inspired by a variant of BERT, i.e., RoBERTa [20],

Feng et al. [21] proposed CodeBERT, a pre-trained model

for source code and natural language texts. The released

CodeBERT model is pre-trained on a code search dataset

(CodeSearchNet) provided by Husain et al. [22], containing

2.1 million bimodal code-documentation pairs and 6.4 million

unimodal code snippets.

CodeBERT has been evaluated on two natural language

and programming language (NL-PL) based tasks: code search

and code documentation generation [21]. For its evaluation,

however, they used data from CodeSearchNet. Generalizability

of BERT has been demonstrated on NLP data outside its

pre-trained dataset [23]–[25]; however, this has not been

demonstrated for CodeBERT. This leads us to investigate the

following research question:

RQ1 Can CodeBERT generalize beyond its pre-trained

data?

To answer RQ1, we evaluated the CodeBERT pre-trained

model for the code search task on test datasets other than
its pre-training corpus. First, we conducted experiments on

a public dataset containing Python code snippets and their

corresponding documentations (i.e., code comments) collected

by Barone and Sennrich [26]. The nature of this dataset (code-

documentation pairs) is the same as the dataset used in the

original CodeBERT evaluation [21]. Second, we used another

dataset of questions and answers about Python programming

collected from Stack Overflow [27]. Using this dataset, we

can further test the generalizability of CodeBERT on NL-

PL paired data of a slightly different nature (than the one

considered in the original evaluation). Moreover, while the

original CodeBERT evaluation compares CodeBERT with

generic models (e.g., CNN, RNN) as baselines, in this study,

we use specialized deep learning approaches designed for code

search, i.e., NCS [28] and UNIF [1] as baselines.

The results of our experiments show that CodeBERT can

outperform all specialized approaches by about 31–38% in

terms of the average mean reciprocal rank (MRR) scores,

showing its generalizability across different datasets on the

code search task. However, we also find that the superior

425

2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSME52107.2021.00044

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(IC

SM
E)

 |
 9

78
-1

-6
65

4-
28

82
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SM

E5
21

07
.2

02
1.

00
04

4

performance of CodeBERT comes at a cost; CodeBERT is

8–23 times slower than the baselines in producing a ranked

list of code snippets given a query.

Considering another aspect of generalizability, CodeBERT

was only evaluated on two tasks involving natural language

and programming language (NL-PL tasks): code search and

code documentation generation. Generalizability of BERT has

been demonstrated on many different tasks [13], [14], [14]–

[19]; however, this has not been demonstrated for CodeBERT.

This leads us to investigate the following research question:

RQ2 Can CodeBERT generalize to more NL-PL tasks?

To answer RQ2, we evaluated the CodeBERT pre-trained

model on another NL-PL task: just-in-time (JIT) defect pre-

diction task, which is to predict the defectiveness of commits

considering their NL descriptions and PL code snippets. We

choose the JIT defect prediction task because it is a popular

task (investigated in many prior works [2], [29]–[34]), is

of high relevance to software engineers, and involves both

source code and natural language. It is also of different nature

compared to the two NL-PL tasks considered in the original

CodeBERT evaluation: in the code search task, it takes NL

descriptions as input and produces code; in the documentation

generation task, it takes code as input and produces NL

descriptions; in this task, it takes NL descriptions plus code

as input and produces defectiveness label (i.e., defective or

clean). We choose two recent deep learning based approaches,

i.e., DeepJIT [2] and CC2Vec [34] as baselines.

The results of our experiments show that a simple ap-

plication of the CodeBERT model can achieve performance

near the state-of-the-art approach and outperform one recently

published approach by 3.7–4.2% in terms of AUC scores,

which shows the generalizability of CodeBERT to this NL-

PL downstream task.

The main contributions of our work are:

• We assess the generalizability of CodeBERT in terms of

its ability to work beyond its pre-trained data, and provide

empirical evidence that demonstrates its effectiveness.

• We assess the generalizability of CodeBERT on another

popular automated software engineering task (just-in-time

defect prediction) and provide evidence that demonstrates

its effectiveness.

• In our assessments, we compare CodeBERT with recently

proposed specialized approaches for code search and just-

in-time defect prediction. This comparison was missing

in the original paper (CodeBERT was only compared to

generic solutions, e.g., CNN).

The paper is organized as follows. Section II presents some

background information on CodeBERT and the downstream

tasks. Section III presents our experiments to answer RQ1

and their findings. Section IV describes our experiments

to answer RQ2 and their findings. Section V presents our

discussion. Section VI analyzes the threats to validity. Section

VII discusses the related work. Conclusion and future work

are presented in Section VIII.

II. BACKGROUND

A. Pre-training of CodeBERT

CodeBERT is a bimodal pre-trained model for both pro-

gramming language (PL) and natural language (NL) [21].

CodeBERT is pre-trained on a large-scale code search dataset

CodeSearchNet provided by Husain et al. [22]. Though Code-

SearchNet is for the code search task, its NL queries for code

snippets are documentation of the code snippets (i.e., code

comments) rather than real questions asked by programmers.

CodeBERT is pre-trained considering two objectives. The

first objective is masked language modeling (MLM), which

considers the generation of masked code and NL tokens [13].

MLM is proven effective to learn a generalizable model to

downstream tasks [13], [20], [35]. The second objective is the

replaced token detection (RTD) proposed by Clark et al. [36]

to consider the identification of replaced code and NL tokens.

CodeBERT uses bimodal data (NL-PL pairs) to train the model

for the MLM target and uses unimodal data to continue to train

the model for the RTD target.

B. Fine-tuning of CodeBERT

As the pre-trained model is trained on its pre-training

datasets, the trained model may not fit a specific downstream

task at the beginning [12]. To use pre-trained CodeBERT in

a specific downstream task, we need to fine-tune CodeBERT

on datasets of that specific task [13], [21].

In this study, we mainly utilize CodeBERT for classification,

and simply leverage CodeBERT as a sentence encoder: embed

a sequence of tokens (either NL tokens or PL tokens) to a

fixed dimension vector (embedding) that contains the semantic

meaning of the sequence at the input.

As CodeBERT requires a specific format of the input, we

need to do pre-processing on the input (a sequence of NL

or PL tokens): special tokens [CLS] and [EOS] are added at

the start and the end of the whole sequence respectively. In

CodeBERT

Code Tokens Text Tokens

… …[SEP] [EOS]

Classification

CodeBERT Embedding

Input

[CLS]

Fully-connected layer

Fig. 1. Example of CodeBERT fine-tuning framework for classification.
[CLS] and [EOS] are special tokens added at the start and the end of the
whole sequence respectively and [SEP] is a separation token added between
different segments. We use the token embedding of [CLS] at the output as
the CodeBERT embedding for the whole input.

426

addition, if the given data is a pair of sequences, the special

token [SEP] should be added in the middle of two sequences,

as shown in Figure 1.

For classification, CodeBERT first encodes the input (a

sequence of NL or PL tokens) into its CodeBERT embedding.

As shown in Figure 1, for tasks of paired data (NL-PL pairs

in code search), a pair of data (two sequences of NL or PL

tokens) will be concatenated into one single sequence. This

concatenated sequence is then fed into CodeBERT to get

an embedding representing this pair. Following the previous

work [21], we use the token embedding of [CLS] at the output

as the embedding for the whole input in this study. Then, it

feeds the embedding to a fully connected layer and either a

softmax layer (for multi-class classification) or sigmoid func-

tion (for binary classification) to compute the classification.

Then the loss is computed based on the gap between the

classification and the ground truth, e.g., the defectiveness label

(defective or clean) in the JIT defect prediction, and the loss

is back-propagated to adjust the parameters of CodeBERT and

the fully-connected layer. The tuned CodeBERT will fit these

specific datasets better and is applied on a test data.

C. Downstream tasks

We choose two NL-PL downstream tasks to assess the

generalizability of CodeBERT.

a) Code search: The task of code search is given a

natural language query as input, find the most semantically

similar code snippet to this query in a collection of code

snippet candidates. Code search task can assess models’ ability

to capture the semantic similarity between code snippets and

NL texts. In other words, the ability to distinguish semantically

related NL-PL pairs from unrelated pairs. For this task, we

select RoBERTa [20] and two recent specialized deep learning

based code search tools: Neural Code Search (NCS) [28] and

UNIF [1] as baselines.

b) Just-in-time defect prediction: Just-in-time defect pre-

diction is a task of predicting whether a given commit is

buggy or clean according to the extracted features from NL

commit messages and PL code changes [37], [38]. A commit

consists of code changes and a commit message summarizing

the commit. A commit may modify several different files in

a project at the same time, which means code changes spread

over the files. It is necessary to consider features extracted

from different files to make a prediction, because code changes

in any one of the files may bring in a bug to a project. We

select two recent specialized deep learning approaches, namely

DeepJIT [2] and CC2Vec [34] as baselines.

III. RQ1: CAN CODEBERT GENERALIZE BEYOND ITS

PRE-TRAINED DATA?

In this part, we evaluated the CodeBERT pre-trained model

for the code search task to test its generalizability to datasets

other than its pre-training data.

We first used a public dataset of Python code snippets

and their corresponding documentations (code comments) that

was released by Barone and Sennrich [26], denoted as the

TABLE I
STATISTICS OF THE CODE SEARCH DATASETS

Datasets Question-Code Doc-Code
Train 51,176 67,864

Validation 17,058 22,621

Test 17,060 22,623

Unique tokens in PL code 136,552 127,398

Unique tokens in NL text 25,117 67,895

Common tokens percentage 7.86% 22.91%

Doc-Code dataset; this dataset has the same nature (code-

documentation pairs) as the CodeSearchNet dataset. In a typi-

cal scenario of code search, users typically use questions about

programming instead of entering code comments as queries.

Thus, we also conducted experiments on another dataset

containing questions and answers about Python programming

collected from Stack Overflow [27], denoted as the Question-

Code dataset. Using this dataset, we can further assess whether

CodeBERT can be generalized to a dataset of question-answers

pairs. For the Question-Code dataset, specifically, we used the

Single-Code Answer Posts data collected by Yao et al. [27],

which paired a complete code snippet in an (accepted) answer

with the question title as a question-code pair.

A. Datasets

We conducted our experiments on two publicly available

datasets: the Doc-Code dataset and the Question-Code dataset.

Table I shows the detailed statistics of the two datasets,

including the number of code-text pairs in the training, vali-

dation, and test set respectively, the number of unique tokens

in PL code and NL text, and the average percentage of

common unique tokens shared between code snippets and

their corresponding NL texts (documentations or questions).

In the Doc-Code dataset, a code snippet shares 22.91% of

unique tokens with its corresponding documentation on aver-

age. However, for the Question-Code dataset, code snippets

and questions have only 7.86% of unique tokens in common

on average, which indicates questions and theirs corresponding

code snippet answers are less similar than the documentations

and code snippets in the Doc-Code dataset in terms of the

co-occurrence of tokens.

B. Baselines and CodeBERT for Code Search

Many deep learning based specialized code search ap-

proaches [1], [22], [28], [39], [40] have two separate em-

bedding modules: the Code Embedding Network to embed a

code snippet into a vector, and the Text Embedding Network
to embed a NL query into a vector. These two modules are

shown in Figure 2. If a code snippet and a description have

similar semantic meaning, their embedded vectors should be

close to each other in the joint embedding space; and for an

unrelated code and description pair, their embeddings should

be far away from each other [39]. This goal is represented by

the ranking loss function [41], [42]:

L(θ) =
∑

〈c,q+,q−〉∈P
max(0, η − cos(c, q+) + cos(c, q−))

427

where c is a code embedding of a code snippet and q+ is

the embedding of the corresponding description of the code

snippet c, called a positive sample; q− is the embedding of a

negative sample of code snippet c, which is randomly chosen

from the pool of descriptions and is not likely to have a similar

semantic meaning to code snippet c; P denotes the training

data set. Intuitively, the ranking loss encourages the cosine

similarity score between a code snippet and its corresponding

NL text to be large, and the cosine similarity scores between

a code snippet and irrelevant NL descriptions to be small.

In this study, we select two recently published specialized

models for code search: namely NCS [28], UNIF [1], and

an NLP model, RoBERTa [20], as baselines. We will briefly

introduce the selected baselines and the usage of CodeBERT.

Distance

… …

Code Embedding Network

Text Tokens

Code Embedding Text Embedding

FastText Embedding

c1 c2 cn…

FastText Embedding

t1 t2 tn…

Text Embedding Network

Code Tokens
Fig. 2. The framework of Neural Code Search (NCS) and UNIF

a) NCS: The neural code search (NCS) [28] is an

unsupervised learning model for the code search task. For the

input layer, NCS directly uses FastText [43] token embeddings.

FastText is similar to the Word2Vec model, which can learn a

token-level representation according to a given corpus. For

the code embedding module, NCS simply sums the token

embeddings of a code snippet by their corresponding TF–IDF

weights:

c =

n∑

i=1

tfidf(ei) · ei

where ei is the embedding for the i-th token in this code

snippet and tfidf(ei) is the TF-IDF value of the token ei. For

query embedding module, NCS simply calculates the average

of embedding of all tokens in a query.

b) UNIF: UNIF [1] is a supervised version of NCS.

For code embedding, UNIF also directly utilizes the FastText

model for initialization of token embeddings. But UNIF tunes

the token embeddings during the training process. For the code

embedding module, instead of using fixed weights like TF-

IDF values, they used the attention mechanism [9] to compute

attention weights. The attention mechanism can highlight the

different importance of tokens in a code snippet. Given the

embedding of all tokens in a code snippet, i.e. e1, e2, ..., en,

the attention weight αi for ei is computed as follows:

αi =
exp(ac · eTi)∑n
j=1 exp(ac · eTj)

where ac is a code context vector trained according to the loss

function. After getting the weights αi, the single vector for this

code snippet is computed as a weighted average across all

tokens in this code snippet. For the query embedding module,

UNIF also calculates the average of embeddings of all tokens

in a query as query embedding.

c) CodeBERT: CodeBERT modeled the code search

task as a binary classification problem: given any code-

documentation pair, the model identifies whether this pair is

semantically related or not. They first concatenated the code

snippet and the query into one single sequence: [CLS], w1,
w2, ..wn, [SEP], c1, c2, ..., cm, [EOS], where [CLS] and

[EOS] are special tokens added at the start and the end of the

concatenated sequence respectively and [SEP] is a separation

token added between the natural language query (w1,, wn)

and the code snippet (c1, ..., cm). Second, they fed the concate-

nated sequence into the CodeBERT and considered the [CLS]
representation returned by the CodeBERT as the CodeBERT

embedding. Then the CodeBERT embedding was fed into a

fully connected layer and a sigmoid function to give predic-

tion. As the framework of CodeBERT and RoBERTa is the

same, for brevity sake, we omit the explanation for RoBERTa.

C. Experimental Details

Train-Test Pipeline: The data split of each code search

dataset is shown in Table I. Datasets are divided into the

training, validation and test sets. We use the same data split

for all methods, including the three baseline methods. Before

training, NCS and UNIF require FastText token embeddings

for initialization. We use the FastText library1 to train a

FastText model on each dataset, which can turn a code or

NL token into a corresponding FastText token embedding.

NCS, which is an unsupervised code search method, does

not learn the embeddings of code or NL texts but rather di-

rectly uses the weighted average of FastText token embeddings

as the embeddings of code or NL texts. For training UNIF,

RoBERTa and CodeBERT, which are supervised code search

methods, we first build a positive-negative balanced dataset

from the training set of each dataset by pairing the correspond-

ing description and an irrelevant description sampled from the

training set to each code snippet in the training set. UNIF then

is trained on the built balanced dataset to minimize the ranking

loss function. For RoBERTa and CodeBERT, the code search

task is modeled as a binary classification problem; specifically,

we assign a label 1 for the pair of code and its corresponding

description and assign 0 for the pair of code and the sampled

irrelevant description. Thus, these two methods are trained to

predict the label of each pair of data in the balanced dataset.

For validation, similar to the training set, we build another

positive-negative balanced dataset from the validation set of

each dataset. We use the validation loss of the balanced

dataset built upon the validation set to tune the models.

We tune each model using a grid search procedure [44]

considering the following set of hyper-parameters and their

1https://github.com/facebookresearch/fastText

428

TABLE II
MRR SCORES OF ALL CODE SEARCH MODELS ON THE DOC-CODE AND

QUESTION-CODE DATASETS

Datasets Models MRR

Doc-Code

CodeBERT 0.98
RoBERTa 0.97
NCS 0.60
UNIF 0.67

Question-Code

CodeBERT 0.74
RoBERTa 0.50
NCS 0.43
UNIF 0.43

possible values: the batch size is in {8, 16, 32} and the learning

rate is in {5e−6, 1e−5, 5e−5}. We select the combination of

hyper-parameters that lead to the smallest validation loss. The

resultant model trained using the selected hyper-parameters is

used for evaluation on the test sets.

For testing, the evaluation is performed on a hold-out test

set which is the test set of the each dataset. We use the

same evaluation method for all approaches. When evaluating,

for each NL query Q in the test set, we considered the

corresponding code snippet C as the positive sample because

C is semantically related to the query Q. To assess the

ability of a model to distinguish the semantically related code

snippet from irrelevant code snippets, we randomly sampled

K irrelevant code snippets C− from the test set as negative

samples and mix the correct code snippet C with the irrelevant

code snippets. Following previous work [27], [45], we set

K = 49. In this case, for each query, there are 50 code

snippet candidates and among them, only one code snippet

is semantically related to that query. We then pair the query

with all code candidates and input each pair into the trained

model to get a prediction score. Then we rank all code snippets

from high to low according to scores.

Evaluation Metric: Following the previous works [1], [27],

[39], [45], the code search performance of a model is evaluated

by the average mean reciprocal rank (MRR) metric [46] across

the whole test set T :

MRR =
1

|T |
∑

i=1

|T | 1

ranki
,

where ranki is the rank of the corresponding code snippet

C for the i-th query in all code snippets candidates of the i-

th query. A higher MRR score indicates a better code search

performance.

D. Results and Discussions

a) Generalizability of CodeBERT: The results of the

code search for two datasets are shown in Table II. For the

Doc-Code dataset, CodeBERT outperformed all specialized

code search approaches with a large margin: CodeBERT

achieved a 0.98 MRR score, which means that it can rank the

correct code snippet in the first place for most of the queries.

However, two specialized approaches NCS and UNIF only

achieved MRR scores of 0.60 and 0.67 respectively. For the

Doc-Code dataset, RoBERTa also achieved a very high MRR

score of 0.97, which is slightly worse than CodeBERT.

As RoBERTa can also achieve such a high MRR score, it

indicates that the Doc-Code dataset seems to be simple for

BERT’s variants like RoBERTa and CodeBERT. As shown

in Table I, the Doc-Code dataset contains many common

tokens between code and documentation (22.91% on average),

which makes it easier to predict the relationship between two

sequences of tokens.

For the Question-Code dataset, CodeBERT outperformed

all specialized code search approaches by 31% in terms of

the MRR scores: CodeBERT achieved an MRR score of 0.74,

while NCS and UNIF both achieved 0.43 MRR score. For the

Question-Code dataset, RoBERTa got an MRR score of 0.50,

which is slightly better than NCS and UNIF.

Comparing CodeBERT with RoBERTa in the Question-

Code dataset, CodeBERT has a large improvement over

RoBERTa (more than 24% MRR score), indicating the superi-

ority of CodeBERT over the NLP pre-trained model RoBERTa

on the NL-PL tasks. In addition, the significant drop of per-

formance of RoBERTa on the Question-Code dataset indicates

that this dataset requires a model to capture more semantic

meanings of both code and NL texts to do prediction.

Generally, CodeBERT can perform better compared to

other recent specialized code search approaches, showing its

generalizability on different datasets other than its pre-trained

dataset for the code search task.

b) Time efficiency of CodeBERT: Though CodeBERT

showed superior performance compared to the specialized

code search approaches, the time efficiency of the CodeBERT

can be a concern in practice. We report the training (fine-

tuning, for CodeBERT and RoBERTa) and evaluation time of

all the approaches in Table III. We ran all the approaches on

a desktop computer with Nvidia GeForce RTX 2080 Ti and

Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz.

TABLE III
TRAINING (TRAIN.) AND EVALUATION (EVAL.) TIME IN MINUTES OF

CODEBERT AND BASELINES

Phase Datasets NCS UNIF RoBERTa CodeBERT

Train.
Doc-Code - 16 253 231
Question-Code - 12 211 186

Eval.
Doc-Code 7 3 64 56
Question-Code 5 2 53 46

For the training time, CodeBERT required 231 minutes and

186 minutes for the Doc-Code dataset and the Question-Code

dataset respectively, which are 14–15 times longer than UNIF.

The training time for NCS is zero because it is an unsupervised

method that does not require training. For the evaluation time,

CodeBERT required 8–9 times as much evaluation time as

NCS’s for the two datasets and required 18–23 times as

much evaluation time as what UNIF needed. In addition,

CodeBERT is slightly faster than RoBERTa for both training

and evaluation.

429

RQ1 Main Findings: CodeBERT is generalizable to

datasets other than its pre-trained dataset for the code

search task. CodeBERT outperforms the recent spe-

cialized deep learning based code search approaches

consistently across the two datasets. The improvements

achieved by the CodeBERT model range from 31%

to 38% in terms of the average mean reciprocal rank

metric. However, the superior performance of the Code-

BERT comes at a cost; CodeBERT requires 8–23 times

more time than that of the specialized code search

baselines in producing an output given a query.

IV. RQ2: CAN CODEBERT GENERALIZE TO MORE NL-PL

TASKS?

In this part, we evaluated the CodeBERT model on another

NL-PL task, i.e., just-in-time defect prediction, and compare

it with the recent specialized approaches to assess its gener-

alizability to this NL-PL task. We aim to investigate whether

CodeBERT can transfer the knowledge from the code search

dataset (CodeSearchNet) to the just-in-time defect prediction

task.

We choose the just-in-time defect prediction task for three

reasons. First, just-in-time defect prediction is a popular task

that has been studied in many previous works [2], [29]–[34].

This task can potentially identify defects in an early stage

(even before new code changes are introduced into the code

base), which is one of the best cost-saving practice [2]. Second,

this task involves both source code, i.e., code changes, and

natural language, i.e., commit messages, which is suitable to

assess CodeBERT’s generalizability to a specific NL-PL task.

Third, this task is dissimilar to the evaluated two NL-PL tasks.

The code search task retrieves code given NL descriptions as

input considering the semantic similarity between code and

NL descriptions. The documentation generation task produces

NL descriptions given code as input. This task predicts the

defectiveness of commits considering their NL descriptions

and PL code snippets as input.

A. Just-in-time defect prediction

Just-in-time (JIT) defect prediction is the task of pre-

dicting whether a given commit is buggy or not according

to the extracted features from commit messages and code

changes [37], [38]. The core part of this task is to design

a feature extraction model that can properly capture the buggy
probability of a commit. Machine learning techniques with

carefully hand-crafted features are common solutions to JIT

defect prediction [29]–[32]. Recently, some works use deep

learning techniques, like deep belief network [33] and con-

volutional neural network (CNN) [2], to solve JIT defect

prediction and outperform the hand-crafted features with a

large margin. We choose two deep learning based approaches

as baselines: DeepJIT [2] and CC2Vec [34]. DeepJIT used a

specific CNN [47] to extract features from code changes and

commit messages [2]. CC2Vec is a deep learning based model

that learns the distributed representation of code changes

guided by their log messages [34].

B. Dataset

We use the same datasets used by Hoang et al. [34]:

OpenStack dataset and Qt dataset, which are commits collected

from the OpenStack and Qt software projects respectively by

McIntosh and Kamei [48]. The Qt dataset contains 25,704

commits and among them 1,825 commits are defective. The

OpenStack dataset contains 13,304 commits in total and

1,627 of them are defective. We use the data released in

the replication package of CC2Vec2 and use the original data

split. For OpenStack dataset, the training set contains 11,973

commits and the test set has 1,331 commits. For Qt dataset,

the training set contains 23,133 commits and the test set has

2,571 commits.

C. Baselines

Convolutional Network
for Code Lines

Commit Message Vector

Fully-connected layer Prediction

Code File 1

C1

… Code File n

Convolutional Network
for Natural Language

…

Commit Message

M

Convolutional Network
for Code Files

Code Change Vector

Cn

Fig. 3. The framework of DeepJIT

1) DeepJIT: DeepJIT is an end-to-end deep learning frame-

work that first represents code tokens and commit message

words in fixed dimension word embedding and then uses CNN

to automatically extract features from code changes embedding

and commit messages embedding [2]. As both code changes

and commit messages are considered as input, the JIT defect

prediction model is related to both natural language and pro-

gramming language. In DeepJIT, the embeddings of commit

message and code change tokens are randomly initialized and

tuned during the training process. After the initialization, all

tokens in both the commit message and code changes are

turned into a fixed dimension vector. As shown in Figure 3,

for a commit message (a sequence of tokens), DeepJIT uses

a specific CNN model for text classification task [47] to fuse

the embeddings of all tokens in this commit message into a

single vector, called the commit message vector.

As code changes are a list of code lines, DeepJIT uses CNN,

in a hierarchical way, to fuse the code changes into a single

vector. First, for all code lines, DeepJIT uses a CNN module to

embed a code line (a sequence of code tokens) into a vector

representing that line. After the first CNN module, all code

lines in the code changes are embedded into vectors. Then,

DeepJIT uses a second CNN module to fuse all embeddings

of all code lines into a single vector, which is referred to

as code change vector; this vector represents the whole code

changes for this commit. Finally, the model concatenates

2https://github.com/CC2Vec/CC2Vec

430

vectors for code changes and commit messages and feeds the

concatenated vector into a fully connected layer for prediction.

2) CC2Vec: CC2Vec is an end-to-end deep learning model

that learns distributed representations of code changes super-

vised by the words in log messages. The training goal of

CC2Vec is to learn an embedding of a code change that can

predict whether a word from the word vocabulary exists in its

log message or not. As log messages are the descriptions of the

semantic meaning of corresponding code changes, this training

goal can force the learned embeddings of code changes to

capture the semantic meaning of code changes [34]. CC2Vec

uses a hierarchical attention network (HAN) [49] as the feature

extraction layer to aggregate the embeddings of all tokens in

a code change into a single vector that captures the semantic

meaning of the whole code change. CC2Vec is not a model

designed for just-in-time defect prediction, but a model to learn

the representation of code changes. However, Hoang et al. [34]

concatenated the feature extracted by CC2Vec with the original

DeepJIT to boost the performance of DeepJIT.

D. JIT defect prediction using CodeBERT

To utilize CodeBERT in the just-in-time defect prediction

task, we need to design a model for JIT defect prediction.

Hereafter, we call it as CodeBERT4JIT for short. As we

mentioned before, CodeBERT essentially is a sentence en-

coder, which encodes a sequence of tokens (sentence) into

a single vector and this vector contains the semantic meaning

of the sentence. In addition, CodeBERT is a bimodal sentence

encoder that can encode both code lines and NL descriptions.

Inspired by the framework of DeepJIT, as shown in Figure 3,

we find that the first layer of CNNs for both code lines and

commit messages (the convolutional network for code lines

and the convolutional network for the commit message) are

encoders that turn a sentence (i.e., a sequence of NL or PL

tokens) into a single vector. The function of these CNNs is

the same as the CodeBERT, i.e., encoding a sequence into a

vector that contains semantic meanings of the sequence. Thus,

we simply replace the CNN sentence encoders in DeepJIT

with the CodeBERT model to build a simple application of

the CodeBERT model for the just-in-time defect prediction

task. We do not design a complex network because we only

want to see the ability and generalizability of CodeBERT on

this task. A complicated design makes it harder to investigate

the effectiveness of CodeBERT in the just-in-time defect

prediction task.

Given a commit message m which is a sequence of NL

tokens [w1, w2, ..., w|m|], we feed it into the CodeBERT and

get its sentence embedding:

Zm = CodeBERT(m)

where Zm ∈ Rd is the CodeBERT embedding of this commit

message and d is the dimension of the embedding output by

the CodeBERT. A code change C contains changed code lines

in (potentially different) source code files [C1, C2, ..., C|C|]
and Ci stands all changed code lines in i-th source code file.

We aim to embed these code lines into a single vector ZC that

contains the semantic meaning of this code change C.

We first concatenate all code lines in one source code

file (Ci) into one single sentence (Ĉi) and then feed this

concatenated sentence into the CodeBERT to get its sentence

embedding:

ZCi
= CodeBERT(Ĉi)

where ZCi ∈ Rd is the CodeBERT embedding of the code file

Ci. For code files in each code change, i.e. Ci, we compute its

CodeBERT embedding vector ZCi
. These embedding vectors

are then fed into a CNN module and a max-pooling layer to

form an embedding vector (ZC) for the code change C.

To fuse the embeddings of different files, a filter f ∈ Rk×d

is utilized to a window of k files to compute a new feature:

xi = α(f ∗ Ci:i+k−1 + bi)

where ∗ is a sum of element-wise product, α(.) is a non-linear

activation function, and bi ∈ R is the bias value. The filter f
is applied to every k-files of the code change. The generated

features are then concatenated to form a vector X such that:

X = [x1, x2, ..., x|C|−k+1]

Following prior work [2], for each filter, we then use a max-

pooling layer [50] to process the feature vector X to obtain

the highest value:

ZC = max
1≤i≤|C|−k+1

xi

After getting the embedding for the commit message and

the code change, we concatenate these two embeddings to

generate a feature representation, i.e., Z representing this

commit:

Z = Zm ⊕ ZC

where ⊕ is the concatenation operator. Finally, the vector Z
for a commit is then fed into a fully-connected (FC) layer with

a sigmoid function to map the high dimensional vector to a

1-dimensional vector to compute a prediction on this binary

classification task:

y = sigmoid(α(wh · Z + bh))

where · is a dot product, wh is a weight matrix of the FC layer,

bh is the bias term, α(.) is a non-linear activation function, and

sigmoid(.) is a function to do normalization on the prediction.

E. Experimental Details

Train-Test Pipeline: We use the data released in the replica-

tion package of CC2Vec and the dataset is divided into the

training set and test set. We use 10% data of the training set

for validation. The data split is the same for all approaches in

this study.

For training of two baselines, we use scripts in the repli-

cation packages and use the default hyper-parameters in the

packages. For training CodeBERT, we set the learning rate

as 1e−5 , the batch size as 8, the max sequence length (the

maximum number of tokens considered in a sequence) as

431

120. We use the Adam optimizer to update model parameters.

As JIT defect prediction datasets often have an imbalance

problem: only a few commits are buggy while a large number

of commits are clean, we use the same loss function as the

previous work [2] to address this issue.

For validation, we tune the hyper-parameters of each model

by observing the performance of the model trained using a set

of hyper-parameter values on the validation set. Specifically,

we tune the hyper-parameters using a grid search procedure

with the following set of parameters and their possible val-

ues: the learning rate is in {5e−6, 1e−5, 5e−5} and the max

sequence length is in {100, 120, 150}. We choose the combi-

nation of hyper-parameters that lead to the best performance

in the validation process. The model that performs best in the

validation process is used for evaluation on the test sets.

For testing, following the previous work [2], the evaluation

is performed on the hold-out test sets which are the test sets

of the released datasets. For each approach (CodeBERT4JIT,

DeepJIT, and CC2Vec), we feed all commits in the test sets

into the chosen model (the best-performing model identified

in the validation process) to get the predictions (defective or

clean) and calculate the AUC scores based on the predictions

and the ground truths.

Evaluation Metric: Similar to the previous studies [2], [34],

[48], to evaluate the effectiveness of the JIT approaches, we

use the area under the receiver operator characteristics curve

(AUC), a threshold-independent metric to measure their ability

to differentiate between defective or benign commits. The

values of AUC range between 0 (the worst prediction) and

1 (the best prediction).

F. Results and Findings

a) Generalizability of CodeBERT: Table IV presents that

the proposed approach using CodeBERT outperforms the spe-

cialized approach DeepJIT by 0.037 and 0.042 improvement in

terms of AUC scores on the OpenStack dataset and Qt dataset

respectively. Though this simple application of CodeBERT on

the JIT defect prediction cannot outperform the state-of-the-

art approach CC2Vec on all datasets, CodeBERT achieved

comparable results with CC2Vec on the OpenStack dataset.

Considering that CC2Vec is dedicatedly designed for code

changes while CodeBERT is not designed for this task, the

great performance of CodeBERT indicates its generalizability

to this specific NL-PL tasks.

We also employed an ablation test [51], [52] to analyze

the contribution of each component of commit data, by only

feeding code changes or a commit message in a commit and

evaluate their AUC scores separately. As Table V shows, for

predicting a defective commit, the proposed model benefits

more from code changes than the commit message. For code

TABLE IV
AUC RESULTS OF JUST-IN-TIME DEFECT PREDICTION

Datasets DeepJIT DeepJIT+CC2Vec CodeBERT
OpenStack 0.771 0.797 0.808
Qt 0.765 0.822 0.807

TABLE V
AUC SCORES OF VARIANT MODELS USING DIFFERENT PARTS OF DATA

Model OpenStack Qt
Commit Message 0.731 0.726

Code Changes 0.775 0.771

All 0.808 0.807

changes, CodeBERT4JIT achieved AUC scores of 0.775 and

0.771 for the OpenStack dataset and the Qt dataset respec-

tively, while it can only got AUC scores of 0.731 and 0.726

by only using commit messages.

RQ2 Main Findings: A simple adaptation of Code-

BERT (CodeBERT4JIT) outperformed the specialized

approach DeepJIT by 3.7–4.2% in terms of AUC and

achieved comparable performance with the state-of-the-

art approach on the OpenStack dataset, indicating its

generalizability to this specific NL-PL task.

V. DISCUSSION

A. Lessons Learned

From the 2 tasks above, we see that the pre-trained Code-

BERT model is promising for NL-PL tasks. In the code search

task, the fine-tunned CodeBERT model outperformed the

specialized approaches, i.e., NCS and UNIF, by 31% to 38%

in terms of the average mean reciprocal rank metric. In the

case of the JIT defect prediction task, fine-tuned CodeBERT

achieved comparable performance with the state-of-the-art

approach (CC2Vec) on the OpenStack dataset. Though the

performance of CodeBERT was worse than that of the state-

of-the-art approach on the Qt dataset, it still outperformed

a recent specialized approach DeepJIT consistently on two

datasets by 3.7–4.2% in terms of the receiver operator charac-

teristics curve metric. Based on these promising results, we
encourage researchers to consider the fine-tuning of pre-
trained CodeBERT approaches as the baseline in future
work involving NL-PL tasks.

In the JIT defect prediction task, though CodeBERT

achieved improvements compared to DeepJIT, CC2Vec

brought larger improvements to DeepJIT than the CodeBERT.

Compared with the superior performance of the CodeBERT

on the code search task, the relatively worse performance

in the JIT defect prediction task indicates that CodeBERT

may not be equipped to perfectly adapt to the dataset that is

different from the one it has been pre-trained on. Howard and

Ruder had raised this issue before in the NLP domain [53].

They suggested that even using a very diverse corpus for pre-

training, the data of the target task will likely come from a dif-

ferent distribution. To mitigate this issue, they proposed task-

adaptive fine-tuning, which fine-tuned the pre-trained model

with the pre-training objective on the task training data. This

approach brought significant improvements for the pre-trained

model in their experiments. Thus, researchers can consider

the task-adaptive fine-tuning approach, which further fine-

tunes the pre-trained CodeBERT model on the task-specific

datasets with the pre-training objectives: MLM and RTD.

432

It is recommended to fine-tune the CodeBERT on the
downstream task datasets with the pre-training objectives
first.

B. Challenges in Computation Time

Though CodeBERT showed great performance on the 2

tasks above, the time efficiency of the CodeBERT can be a

concern in practice, especially for retrieval-related tasks like

code search.

The solution of CodeBERT for code search is expensive in

terms of computation time when doing realistic code search

tasks with over millions of code snippet candidates for each

query in the search corpus. To illustrate this issue, we report

the evaluation time for one query when the search space is

10,000 (i.e., one correct code snippets and 9,999 unrelated

code snippets) in Table VI. In this setting, CodeBERT took

34.2 seconds to provide recommendations for one query, which

is 9–24 times slower than NCS and UNIF. Teevan et al. [54]

found that slightly slower retrieval can lead to a dramatic drop

in the perceived quality of results. Eric and Jake [55] also

found that increasing the load time of the result page in Google

by 100 milliseconds can lead to a decrease in the number of

searches per person. For CodeBERT, 34 seconds of waiting

time for one query may not be acceptable for users and this

waiting time will go up when the number of code snippets in

the search corpus increases.

Another issue about the computation time of CodeBERT is

related to the framework. Suppose we have A queries waiting

to be answered by a code search system that has B code

snippets in the search corpus. Note that both A and B can be

a large number. For specialized code search approaches like

NCS and UNIF, they have separate Code Embedding Network

and Text Embedding Network as shown in Figure 2. In this

case, they only need to encode the B code snippets once by the

trained model and store all code snippet embeddings. When

a new query comes, they can encode the new query once by

the trained model and compute the cosine similarity scores

between this query’s embedding and all stored the code snippet

embeddings. So for specialized code search approaches such

as NCS and UNIF, they only need to encode all queries and

code snippets into corresponding embeddings separately for

A+B times in total.

However, when it comes to the framework of CodeBERT,

the code snippet and the corresponding query are concatenated

into one single sequence that is fed to the CodeBERT model as

a whole. In this case, we cannot split the embedding process

of code and queries separately. To build a realistic code search

system by this implementation, it needs to encode for A×B
times to get embeddings for all possible code-query pairs.

TABLE VI
EVALUATION TIME IN SECONDS FOR ONE QUERY WHEN THE SEARCH

SPACE IS 10,000

Dataset NCS UNIF CodeBERT
Question-Code 3.8 1.4 34.2

There are some potential solutions to mitigate this issue. For

instance, to reduce the time complexity of the CodeBERT in

the code search task, we can separately encode the PL code

snippets and the NL descriptions by the CodeBERT model,

instead of encoding a sentence concatenated by an NL-PL

pair. By doing so, the number of times the CodeBERT needs to

encode for A queries and B codes snippets drops from A×B,

for all possible pairs between code and queries, to A+B, for

code and queries separately. However, the effectiveness of this

idea requires further investigation in future work.
Nogueira and Cho also addressed this issue in the document

retrieval task before [15]. They proposed a two-step approach

to mitigate this computation time issue: first, a large number

of possibly relevant documents to a given question were

ranked by a standard and fast mechanism, such as BM25,

to narrow down the search space [15]; second, they used a

more powerful but more computationally-intensive method,

e.g., BERT, to re-rank the top K documents returned by the

first step. Their approach outperformed the previous state of

the art by 27% (relative) in terms of MRR@10 [15]. We will

leave the exploration of a feasible code search approach that

combines both powerful models like CodeBERT and efficient

models like the NCS in future work.

VI. THREATS TO VALIDITY

Threats to Internal Validity. Threats to internal validity are

concerned with the factors that may affect our results. In the

code search task, we have compared CodeBERT against two

recently published approaches for the code search task [1],

[28]. Since the source code of these two approaches was

not made publicly available, we needed to re-implement our

version of those techniques. We tried our best to closely follow

the description in their original work. We released a replication

package for others to check. For the JIT defect prediction task,

we use scripts in the replication packages of baselines and

retain the default hyperparameters in the replication packages

unchanged.

Threats to External Validity. Threats to external validity are

concerned with the generalizability of our findings. We have

conducted experiments on two different NL-PL tasks with

four publicly available datasets and these datasets are diverse

from several aspects, e.g., scale, type of query, number of

PL code per data item, etc. The two NL-PL tasks are also

of different nature: the code search takes NL description as

input and produces the code snippets; the JIT defect prediction

takes both NL descriptions and PL code snippets as input

and predicts a defectiveness label. While we try to ensure

the diversity of datasets and tasks, our findings may not

generalize to all NL-PL tasks and datasets. Further studies

are needed to confirm our results for other NL-PL tasks.

Besides, in this work, we focus only on the embedding of

a whole code snippet or a code-text pair. In other words,

we use CodeBERT to embed a sequence of NL/PL tokens

into a single vector to represent this sequence. We haven’t

investigated other granularity of CodeBERT embeddings, e.g.,

embeddings of source code tokens.

433

Threats to Construct Validity. Threats to construct validity

are concerned with the evaluation metrics we choose. For

the code search task, we followed the previous works to use

the average mean reciprocal rank (MRR) metric [1], [27],

[39], [45]. For the JIT defect prediction, we followed Hoang

et al. [2], [34] to use the area under the receiver operator

characteristics curve (AUC), which is a performance measure

recommended for assessing the discriminatory power of defect

prediction models [56].

VII. RELATED WORK

Recently, in the natural language processing (NLP) area,

BERT outperformed the word2vec techniques by a large

margin on many NLP tasks [14]–[19], showing its superi-

ority over word2vec. Inspired by the success of pre-trained

embeddings for natural languages [13], Feng et al. proposed

CodeBERT [21], a pre-trained model for both NL and PL. In

this paper, we investigate the generalizability of CodeBERT

in terms of additional datasets and an additional downstream

task, as compared to the state-of-the-art approaches that are

specifically designed for downstream tasks.

There are some pre-trained models for PL or NL-PL data.

Kanade et al. used masked language modeling and next

sentence prediction as the pre-training objectives to train a

BERT model on Python source code, namely CuBERT [57].

The authors evaluated the CuBERT on several downstream

tasks and outperformed generic baselines like LSTM and

Transformers. Svyatkovskiy et al. proposed a multi-layer gen-

erative transformer model for code (GPT-C) [58], which is a

variant of the GPT-2 [59]. GPT-C is trained from scratch on a

large unsupervised source code dataset. Buratti et al. proposed

a transformer-based language model called C-BERT [60],

which is pre-trained on top-100 starred GitHub C language

repositories. C-BERT achieved good performance in the ab-

stract syntax tree (AST) tagging task and the vulnerability

identification task. Guo et al. proposed a pre-trained model

for programming language considering the inherent structure

of code [61]. They used masked language modeling, edge

prediction, and node alignment as pre-training targets and

outperformed the baselines on several downstream tasks such

as code refinement and code translation.

Lachaux et al. proposed neural source-to-source translator

by leveraging the cross-lingual language model (XLM) [62].

They aimed to design a better approach based on unsuper-

vised principles like XLM, while we aimed to evaluate the

generalizability of CodeBERT. Mastropaolo et al. examined

the ability of a pre-trained Text-To-Text Transfer Transformer

(T5) model to generalize to several downstream tasks such

as automatic bug-fixing and code summarization [63]. In our

work, we evaluated the generalizability of CodeBERT on

different downstream tasks which are not covered by their

work. Whether T5 or CodeBERT is better is still unknown,

which may need further investigation in the future, and outside

the scope of this work. Recently, Tian et al. evaluated the ben-

efit of pretrained BERT model on predicting the correctness

of patches in the program repair task [64]. They evaluated

a BERT model trained on NL texts, while we evaluated a

CodeBERT model trained on both NL and PL data. Besides,

they focused on the program repair task only, while our work

focused on two other NL-PL tasks. Another closely related

work, that is developed in parallel with our work, is the

work by Lu et al. named CodeXGLUE that is described in

their arXiv manuscript [65]. The main contribution of their

work is different from ours; they create a benchmark dataset

for ten programming language tasks while we assess the

generalizability of the CodeBERT model. Still, as part of their

study, they evaluate CodeBERT on several tasks. Our work

is different from theirs in several aspects: (1) CodeXGLUE

used generic deep learning models (e.g. BiLSTM) as baselines,

while we chose the state-of-the-art approaches of each task

as baselines. Thus, our study can shed light on whether

CodeBERT is competitive against the state-of-the-art. (2) They

did not consider the just-in-time defect prediction task that

is considered in this work. Their findings and our findings

complement each other to provide empirical evidence for the

effectiveness of pretrained models like CodeBERT.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have conducted experiments to study on

the generalizability of CodeBERT, the first pre-trained model

for both natural language (NL) and programming language

(PL). Our experiments include the code search task and the

just-in-time defect prediction task. For the code search task,

our experimental results reveal that the fine-tuned CodeBERT

model outperforms the specialized code search approach by

31% to 38% in terms of MRR metric on datasets that are not

included in its training dataset and have different query types.

The experiment results indicate CodeBERT is generalizable to

more data that is not included in its training dataset.

For the just-in-time defect prediction task, a simple applica-

tion of CodeBERT achieves comparable performance the state-

of-the-art on one dataset and outperforms a recent specialized

approach by 3.7–4.2% in terms of the AUC scores. It indicates

that CodeBERT is generalizable to datasets of a specific NL-

PL task, though the tasks and datasets are of different nature of

evaluated tasks: the code search and the code documentation

generation. In the future, we are interested in a few directions:

(1) investigating the effectiveness of the CodeBERT model

for other SE tasks (e.g., bug localization), and (2) applying

the CodeBERT model to improve the baselines of further

downstream tasks.

Dataset and Code. The dataset and code for this

work are available at: https://github.com/Xin-Zhou-smu/

Assessing-generalizability-of-CodeBERT.

Acknowledgement. This research / project is supported by

the National Research Foundation, Singapore, under its In-

dustry Alignment Fund – Pre-positioning (IAF-PP) Funding

Initiative. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the author(s)

and do not reflect the views of National Research Foundation,

Singapore and Singapore Data Science Consortium.

434

REFERENCES

[1] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019.

[2] T. Hoang, K. H. Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit: An
end-to-end deep learning framework for just-in-time defect prediction,”
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), pp. 34–45, 2019.

[3] J. Devlin, J. Uesato, R. Singh, and P. Kohli, “Semantic code repair using
neuro-symbolic transformation networks,” ArXiv, vol. abs/1710.11054,
2017.

[4] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 95–104, 2019.

[5] J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta,
A. Rangamani, L. H. Hamilton, G. Centeno, J. R. Key, P. M. Ellingwood,
M. W. McConley, J. M. Opper, S. Chin, and T. Lazovich, “Automated
software vulnerability detection with machine learning,” ArXiv, vol.
abs/1803.04497, 2018.

[6] M. White, M. Tufano, M. Martinez, M. Martin, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 479–490, 2019.

[7] D. Azcona, P. Arora, I. Hsiao, and A. Smeaton, “user2code2vec:
Embeddings for profiling students based on distributional representations
of source code,” Proceedings of the 9th International Conference on
Learning Analytics & Knowledge, 2019.

[8] Z. Chen and M. Martin, “The remarkable role of similarity in
redundancy-based program repair,” ArXiv, vol. abs/1811.05703, 2018.

[9] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, pp. 1 – 29, 2019.

[10] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generat-
ing sequences from structured representations of code,” ArXiv, vol.
abs/1808.01400, 2019.

[11] D. DeFreez, A. Thakur, and C. Rubio-González, “Path-based function
embedding and its application to specification mining,” ArXiv, vol.
abs/1802.07779, 2018.

[12] H. Kang, T. F. Bissyandé, and D. Lo, “Assessing the generalizability
of code2vec token embeddings,” 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 1–12, 2019.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[14] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing [review article],” IEEE
Computational Intelligence Magazine, vol. 13, pp. 55–75, 2018.

[15] R. Nogueira and K. Cho, “Passage re-ranking with bert,” ArXiv, vol.
abs/1901.04085, 2019.

[16] M. A. S. Cabezudo, M. Inácio, A. C. Rodrigues, E. Casanova, and
R. F. D. Sousa, “Natural language inference for portuguese using bert
and multilingual information,” in PROPOR, 2020.

[17] C. Liang, Y. Yu, H. Jiang, S. Er, R. Wang, T. Zhao, and C. Zhang,
“Bond: Bert-assisted open-domain named entity recognition with distant
supervision,” Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020.

[18] M. Munikar, S. Shakya, and A. Shrestha, “Fine-grained sentiment
classification using bert,” 2019 Artificial Intelligence for Transforming
Business and Society (AITB), vol. 1, pp. 1–5, 2019.

[19] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert for text
classification?” ArXiv, vol. abs/1905.05583, 2019.

[20] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” ArXiv, vol. abs/1907.11692, 2019.

[21] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in EMNLP, 2020.

[22] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
ArXiv, vol. abs/1909.09436, 2019.

[23] R. Zellers, Y. Bisk, R. Schwartz, and Y. Choi, “Swag: A large-scale
adversarial dataset for grounded commonsense inference,” in EMNLP,
2018.

[24] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100, 000+
questions for machine comprehension of text,” in EMNLP, 2016.

[25] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural lan-
guage understanding,” in BlackboxNLP@EMNLP, 2018.

[26] A. V. Miceli Barone and R. Sennrich, “A parallel corpus of python
functions and documentation strings for automated code documentation
and code generation,” in Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 2: Short Papers).
Taipei, Taiwan: Asian Federation of Natural Language Processing, Nov.
2017, pp. 314–319.

[27] Z. Yao, D. S. Weld, W. Chen, and H. Sun, “Staqc: A systematically
mined question-code dataset from stack overflow,” Proceedings of the
2018 World Wide Web Conference, 2018.

[28] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval
on source code: a neural code search,” Proceedings of the 2nd ACM SIG-
PLAN International Workshop on Machine Learning and Programming
Languages, 2018.

[29] A. Mockus and D. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, pp. 169–180, 2000.

[30] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. Godfrey,
“Investigating code review quality: Do people and participation matter?”
2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 111–120, 2015.

[31] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:
Clean or buggy?” IEEE Transactions on Software Engineering, vol. 34,
pp. 181–196, 2008.

[32] Y. Kamei, E. Shihab, B. Adams, A. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, pp.
757–773, 2013.

[33] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for
just-in-time defect prediction,” 2015 IEEE International Conference on
Software Quality, Reliability and Security, pp. 17–26, 2015.

[34] T. Hoang, H. Kang, J. L. Lawall, and D. Lo, “Cc2vec: Distributed
representations of code changes,” 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pp. 518–529, 2020.

[35] C. Sun, A. Myers, C. Vondrick, K. Murphy, and C. Schmid, “Videobert:
A joint model for video and language representation learning,” 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pp.
7463–7472, 2019.

[36] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-
training text encoders as discriminators rather than generators,” ArXiv,
vol. abs/2003.10555, 2020.

[37] Y. Kamei and E. Shihab, “Defect prediction: Accomplishments and fu-
ture challenges,” 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol. 5, pp. 33–45,
2016.

[38] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: a benchmark and an extensive comparison,” Empirical
Software Engineering, vol. 17, pp. 531–577, 2011.

[39] X. Gu, H. Zhang, and S. Kim, “Deep code search,” 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 933–944,
2018.

[40] W. Ye, R. Xie, J. lei Zhang, T. xiang Hu, X. Wang, and S. Zhang, “Lever-
aging code generation to improve code retrieval and summarization via
dual learning,” Proceedings of The Web Conference 2020, 2020.

[41] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12, pp. 2493–2537, 2011.

[42] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato,
and T. Mikolov, “Devise: A deep visual-semantic embedding model,” in
NIPS, 2013.

[43] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[44] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search, ge-
netic algorithm: A big comparison for nas,” ArXiv, vol. abs/1912.06059,
2019.

[45] Q. Chen and M. Zhou, “A neural framework for retrieval and summa-
rization of source code,” 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 826–831, 2018.

[46] E. Voorhees, “The trec-8 question answering track report,” in TREC,
1999.

435

[47] Y. Kim, “Convolutional neural networks for sentence classification,” in
EMNLP, 2014.

[48] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving tar-
get? a longitudinal case study of just-in-time defect prediction,” IEEE
Transactions on Software Engineering, vol. 44, pp. 412–428, 2018.

[49] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in HLT-NAACL, 2016.

[50] I. Goodfellow, Y. Bengio, and A. C. Courville, “Deep learning,” Nature,
vol. 521, pp. 436–444, 2015.

[51] B. Korbar, A. M. Olofson, A. P. Miraflor, K. M. Nicka, M. A.
Suriawinata, L. Torresani, A. Suriawinata, and S. Hassanpour, “Deep
learning for classification of colorectal polyps on whole-slide images,”
Journal of Pathology Informatics, vol. 8, 2017.

[52] J. Liu, W.-C. Chang, Y. Wu, and Y. Yang, “Deep learning for extreme
multi-label text classification,” Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2017.

[53] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” in ACL, 2018.

[54] J. Teevan, K. Collins-Thompson, R. W. White, S. Dumais, and Y. Kim,
“Slow search: Information retrieval without time constraints,” in HCIR
’13, 2013.

[55] E. Schurman and J. Brutlag, “Performance related changes and their
user impact,” in velocity web performance and operations conference,
2009.

[56] C. Tantithamthavorn, A. Hassan, and K. Matsumoto, “The impact of
class rebalancing techniques on the performance and interpretation of
defect prediction models,” IEEE Transactions on Software Engineering,
vol. 46, pp. 1200–1219, 2020.

[57] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in ICML, 2020.

[58] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “Intellicode

compose: code generation using transformer,” Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020.

[59] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI blog,
2019.

[60] L. Buratti, S. Pujar, M. A. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang, and G. Domeniconi, “Ex-
ploring software naturalness through neural language models,” ArXiv,
vol. abs/2006.12641, 2020.

[61] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-training code
representations with data flow,” ArXiv, vol. abs/2009.08366, 2020.

[62] M.-A. Lachaux, B. Rozière, L. Chanussot, and G. Lample, “Un-
supervised translation of programming languages,” ArXiv, vol.
abs/2006.03511, 2020.

[63] A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text
transfer transformer to support code-related tasks,” 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE), pp.
336–347, 2021.

[64] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and
T. F. Bissyandé, “Evaluating representation learning of code changes for
predicting patch correctness in program repair,” 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp.
981–992, 2020.

[65] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou,
L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,
S. K. Deng, S. Fu, and S. Liu, “Codexglue: A machine learning
benchmark dataset for code understanding and generation,” ArXiv, vol.
abs/2102.04664, 2021.

436

	Assessing generalizability of CodeBERT
	Citation

	Assessing Generalizability of CodeBERT

