
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2021

CloudNPlay: Resource optimization for a cloud-native gaming CloudNPlay: Resource optimization for a cloud-native gaming

system system

Angelus WIBOWO
Nanyang Technological University

Nguyen Binh Duong TA
Singapore Management University, donta@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
WIBOWO, Angelus and TA, Nguyen Binh Duong. CloudNPlay: Resource optimization for a cloud-native
gaming system. (2021). 2021 30th IEEE International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises WETICE: Bayonne, France, 27-29 October: Proceedings. 33-38.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6853

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6853&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

CloudNPlay: Resource Optimization for A
Cloud-Native Gaming System

Angelus Wibowo
School of Computer Science and Engineering

Nanyang Technological University

Ta Nguyen Binh Duong
School of Computing and Information Systems

Singapore Management University

Abstract—Cloud gaming enables people playing graphically
intensive games from their less powerful, or even outdated
computing devices. It is challenging to realize cloud gaming as
it requires minimal latency in server-side processing, render-
ing and streaming, which are expensive in terms of resource
requirements, e.g., powerful GPU servers. Commercial gaming
providers, e.g., Google Stadia, Amazon Luna, etc., hardly disclose
any information on how they optimize gaming performance
and cloud cost. In this work, we aim to investigate resource
cost optimization for such cloud gaming systems. In contrast
to previous work which have been focusing more on theoretical
approaches, we deliver a fully functional, cost-optimized cloud-
native gaming system, called CloudNPlay, implemented entirely
on AWS Lambda, EC2 and other AWS services. We have
conducted extensive evaluations on the gaming performance
including latency and frame rates; as well as cloud resource cost
reduction. The results indicate that games hosted on CloudNPlay
are highly playable. More importantly, CloudNPlay reduces the
resource cost by around 24% compared to a non-optimized
deployment. We plan to open-source CloudNPlay to facilitate
further research in cloud gaming.

Index Terms—cloud gaming, video streaming, latency, cost
optimization

I. INTRODUCTION

Video games these days can be found on almost every
computing platform, from PC to consoles and mobile phones.
As technology advances, the graphics quality of video games
is also getting better. This has resulted in much bigger file
sizes, e.g., 100GB or more, for certain games. Not only that,
games with high graphics quality demand good hardware to
run smoothly; normally a decent GPU is needed. The needs for
more storage and better GPUs force people to upgrade their
hardware, so that they can play the most up-to-date high-end
games with better experience. However, upgrading hardware
does not make much sense especially when you only play
occasionally.

With the development of cloud computing, it is now possible
to serve various applications and pay for computing resources
on a pay-as-you-go basis. In cloud gaming, all the processing
and rendering tasks will be handled on cloud servers; then
the rendered video will be streamed to the client over the
Internet. The client device displays the streamed content,
captures user inputs, and sends them back to cloud servers for
further processing [1]. In this way, the cloud server handles
most of the computationally demanding tasks, so that we
are able to play games with high-end graphics without the

need of constantly upgrading our hardware. In addition, game
developers can support more platforms easily with less cost
and effort.

However, there are a few critical issues that any cloud
gaming solutions have to consider. First, since the input data
needs to be sent to the server and the game rendering needs
to be streamed back to the client via the Internet, game
playability is highly dependent on the network conditions
and server-side processing. Latency is often a bottleneck,
causing noticeable lags during gameplay and may degrade
user experience significantly [2]. Second, the cost of using
GPU servers for game rendering can be expensive, e.g., on
Amazon EC2, a Windows GPU instance can be charged an
hourly rate of several dollars; and this is just one server. A
cloud gaming service provider handling many concurrent users
should manage such cost properly to stay in business.

Various commercial cloud gaming solutions have been in-
troduced in the past few years. Notably, OnLive and Gaikai
were launched in 2010 and 2012, respectively, but later both
were acquired and closed down by Sony. Recently, Google,
NVIDIA and Sony announced their own proprietary cloud
gaming platforms named Stadia, GeForce Now and PS Now,
respectively. At the time of writing, Microsoft xCloud and
Amazon Luna are available in early access mode. It is clear
that cloud gaming is a highly competitive area right now; and
it is very challenging for new entrants to the market. This
is partly because these big cloud gaming providers typically
do not reveal much information on how their services are
designed, implemented and optimized [3]. GamingAnywhere
[4] has traditionally been used in cloud gaming performance
research, but it has not been updated for many years (latest
release was in 2014).

In this work, we design and implement a cloud-native
gaming architecture, named CloudNPlay, which might serve
as a reference and an extensible solution for new cloud
gaming services. In particular, we have made the following
contributions:

• We design and implement a fully functional cloud gaming
solution using AWS EC2 and Lambda, among other AWS
services. The system is cloud-native; it has been designed
as a set of loosely coupled cloud services which can
be extended, deployed and scaled quickly with minimal
initial capital expenditure.

• We consider the problem of resource optimization in such
a cloud-native gaming service taking into considerations
of various realistic cost and billing constraints. We then
implement a simple but practical cost optimization algo-
rithm into CloudNPlay. This is in contrast with previous
research, e.g., [5], [6], [7], [8], which mostly consider
theoretical approaches and do not implement their pro-
posal in an actual cloud gaming system.

• We evaluate the performance of cloud gaming in realistic
conditions, and found that our system delivers acceptable
latency and frame rate for a good gaming experience. On
top of that, we demonstrate that our resource optimization
produces a total cost saving of up to 24%.

II. CLOUDNPLAY: SYSTEM DESIGN

A. Architecture

Our design considers a typical cloud gaming service [1],
which includes the following components:

• User authentication: to enable user logins to the system
which then shows their account information and a list of
available games. User can then select a game to play.

• Game server management: the cloud gaming system
needs to provision the selected games on appropriate
servers (normally with GPUs). User is then redirected
to a game server and starts playing. The game server
processes user inputs based on a game-specific logic,
and renders the game screen accordingly. The game
server then captures and encodes the game screen using
a video/audio encoder, and streams it to the client device.
We have to perform resource optimization to reduce cloud
cost in the long run.

• Client rendering and input handling: the client soft-
ware captures user inputs and sends them to the game
server via the network. The client software also decodes
the received stream using a video decoder, and displays
it on user device.

• Front-end web interface: for user login, registration,
account details, billing, etc.

Fig. 1. CloudNPlay: cloud-native gaming architecture

CloudNPlay is cloud-native; it consists of a set of loosely
coupled cloud services implemented using serverless (AWS

Lambda), CloudWatch, EC2, etc. Adopting serverless reduces
back-end infrastructure maintenance and management tasks,
thus providing more time for developers to focus on the
application logic. It might also be more cost effective, since
we do not need to pay for idle computing time.

Various AWS and other services are used in CloudNPlay as
shown in Figure 1. In particular: 1) game server management
which includes provisioning and optimization algorithms are
handled with AWS Lambda and Amazon CloudWatch Events;
2) user authentication is implemented via Amazon Cognito;
3) front-end React web interface is hosted on Amazon S3;
4) AWS Amplify and AWS SDK for Javascript are used to
integrate the web app with cloud services; 5) Amazon EC2 is
used for on-demand provisioning of game server instances,
and 6) NICE DCV (https://www.nice-dcv.com) and Parsec
(https://parsec.app) are used for game streaming.

B. Resource optimization

We identify two main server management tasks that require
resource optimization in CloudNPlay, which are “get instance”
and “release instance”. These two tasks need to be run each
time a player requests to play a game, and when he/she decides
to stop playing, respectively. Each AWS EC2 instance is a
game server used for rendering, streaming, and processing
game-related logic. In this work, we mainly use Windows
instances on EC2; as there are many popular game titles
released for Windows. In order to optimize instance cost, we
note that AWS EC2 charges Windows instance usage on a
hourly basis. For each partial instance-hour consumed, AWS
will charge it as one full hour even though the instance has
only been used for a few minutes1. Considering this fact,
CloudNPlay implements a flexible instance sharing mechanism
between different users, using the following key ideas:

1) Instance requests will be handled by the system; users
are not allowed to select a particular instance or instance
type.

2) When user requests for an instance, the system will first
find a running instance that is available instead of a
stopped instance. If there are multiple running instances
available, we select the instance having the longest
residual duration. We define the residual duration as the
amount of time an instance can continue to run until its
current 1-hour billing cycle is up.

3) When user releases an instance, i.e., he has stopped
playing, the instance will be kept running until its
residual time becomes negligible, e.g., 1-2 minutes left.
When this instance is still on, the system will try to
assign the running instance to another user request.

4) We create an Amazon machine image (AMI) containing
the most popular games offered in the system. In this
way, any running EC2 instance created from the image
will have most of the popular games, so it would be able
to handle most user requests for different games. In this
paper, we focus on instance cost optimization, as game

1https://aws.amazon.com/ec2/pricing/on-demand

storage optimization is a separate problem that has been
studied previously [8].

With the proposed instance sharing mechanism, one full
instance-hour can actually be shared among several users who
only needs to use the instance for a fraction of the hour. In
this way, the total instance cost can be reduced. Below we
describe the detailed algorithm for each server management
task in our system:

1) Get instance: as shown in the pseudo-code below, the
system prioritizes getting a running instance to host a user’s
game instead of a stopped one. This is done to maximize
the usage of an already running instance, due to the per-hour
billing. After a running instance is assigned to a user, the
system will remove the scheduled stop event to prevent it from
stopping automatically when the residual time ends.

1. User requests to play a game
2. Check if any running instances

2.1. Yes: return a running instance
with the longest residual duration

2.1.1. Remove the scheduled stop on
the selected instance

2.2. No: select a stopped instance
2.2.1. Start the stopped instance
2.2.2. No stopped instance: start
a new instance

3. Return instance detail to user
4. Start game streaming

2) Release instance: when the user is done playing, we
need to release the EC2 instance to save cost. The system
will need to calculate the residual time of that instance. If the
residual time is less than a given threshold t, e.g., 2 minutes,
then the instance will be stopped immediately. Otherwise, a
schedule is set using CloudWatch Events to stop the instance
when the residual time ends. This is done to prevent AWS from
charging another hour of instance usage when the instance
is actually not being used. The instance is then tagged as
available so it can be used to run another user’s game. If the
instance is not utilized by other users, and the residual time
ends, CloudWatch Events will trigger a Lambda function to
stop the instance.

1. User chooses to stop playing
2. Get residual time R of the instance

2.1. If R < t: stop the instance
2.2. Else:

2.2.1. Add a scheduled stop for the
instance
2.2.2. Tag the instance as available

III. IMPLEMENTATION DETAILS

This section provides specific implementation details for our
system, including game hosting, game streaming, algorithm
implementation, and the front-end web interface.

A. Game hosting

Microsoft Windows Server 2016 Base AMI is used for game
instances. Windows AMI is chosen since most popular games
are available on Windows. EC2 instance type of g3.4xlarge
is selected; it is equipped with NVIDIA Tesla M60 GPU and
optimized for graphics-intensive applications. Another reason
for choosing this instance type is that its price is relatively
cheaper compared to the other GPU instances. Since the
instance does not have any audio device by default, a virtual
sound card called “VB Audio Virtual Cable” is installed. In
this way, the instance can output sound which can be captured
by the game streaming software.

B. Game streaming

To stream games from EC2 instances to clients, Parsec
is installed on both game servers and clients. Parsec can
handle multiplayer sessions and has good supports for a variety
of game controllers. To optimize performance and gaming
experience, we adjust the following Parsec settings.

The following are applied for hosting settings:
• Bandwidth limit is set to “100Mbps”: adding “en-

coder bitrate = 100” into the Parsec configuration file.
• Resolution is set to “1920x1080”.
• H.265 is set to “Off” since not all devices are equipped

with H.265 codec.
• Display adapter is set to “NVIDIA Tesla M60”.
The following are applied for client settings:
• V-sync is set to “On” to avoid screen tearing due to the

difference between the frame rate of the game and the
display refresh rate.

• Windowed mode is set to “Fullscreen” to improve gaming
experience.

• Renderer is set to “DirectX” which can perform better on
Windows clients.

Since game servers do not have display devices, and Parsec
works by capturing screen output, NICE DCV is used as a
remote desktop software. NICE DCV is capable of streaming
graphics-intensive applications; and free to be used on AWS
EC2 instances. In our system, NICE DCV Server (64-bit)
is installed on the game server instance. NICE DCV also
provides a web browser client for users to establish the
connection directly via HTTPS.

C. Resource optimizing

The resource optimization algorithm described above is
implemented with Amazon CloudWatch Events and AWS
Lambda. CloudWatch Events is used to set a schedule for
when an instance needs to be stopped. On the other hand,
a Lambda function is implemented in Python to carry out
the actual shutdown of unused instances. This Lambda func-
tion is triggered by CloudWatch Events schedules. To en-
sure proper execution of the function, we need an IAM
(Identity and Access Management) role configured with
AmazonEC2FullAccess, AWSLambdaFullAccess, and Cloud-
WatchEventsFullAccess policies. We take note of the function

execution cost, measured in GB-seconds, as it might affect
the total operating cost. Empirical data indicate around 0.1536
GB-seconds for each function invocation.

D. Web front-end

Using the web front-end, users are able to start/stop gaming
sessions with ease. The user interface is built using React,
providing authentication, account creation, available game
listing, and game playing options. Amazon Cognito is used
to handle user authentication. The web front-end is hosted in
Amazon S3, and it is publicly accessible. It is integrated with
the cloud backend via: 1) AWS Amplify for connecting to
Amazon Cognito and deployment to Amazon S3; and 2) AWS
SDK for JavaScript for accessing AWS EC2 (game hosting),
as well as CloudWatch Events and AWS Lambda.

IV. SYSTEM EVALUATION

We evaluate CloudNPlay in two different aspects, namely
the gaming performance and the cost optimization mechanism.

A. Gaming performance

In this section, we present our evaluation of important
performance considerations in a cloud gaming system; includ-
ing instance startup time, graphics performance, and game
streaming performance.

1) Instance startup time: The startup time is defined as the
amount of time needed for the system to start a new game
instance. We found that it takes around 12 seconds to start a
stopped g3.4xlarge instance, which is quite normal for EC2
Windows instances. A long startup time may negatively affect
the user experience. If there are more users, it is good to keep
more running instances [9] to reduce game startup time.

2) CPU and GPU performance: We measure the perfor-
mance of the selected EC2 instance type using 3DMark to
ensure that it is suitable for gaming purposes. In particular,
3DMark Time Spy, a DirectX 12 benchmark for gaming PCs,
is used. 3DMark Time Spy renders scenes with 2560 x 1440
resolution; and includes both graphics and CPU tests. We
observe that g3.4xlarge scored 3575 points in the test, which
is better than a typical gaming PC with Intel Core i5-4590 and
NVIDIA GeForce GTX 970 (scored 3362).

3) Cloud gaming performance: We measure actual cloud
gaming performance by streaming “Life is Strange”, created
by Dontnod Entertainment, on our system for roughly 30
minutes. The game was running in borderless mode with V-
sync turned on. Screen resolution was set to the popular setting
of 1920 x 1080. We then measure the bitrate, frame rate, and
response delay during the game streaming process.

• Bitrate is defined as the amount of data being transmitted
to the client per second. With higher bitrates, higher
stream quality can be achieved. Bitrate values can be
obtained from the Parsec console during game streaming.
We measured values of 2Mbps, 40.4Mpbs, and 23.9Mpbs
as the minimum, maximum and average bitrates, respec-
tively. From the result, it can be observed that the bitrate
is good enough for game streaming. As a comparison,

game streamers on Twitch use bitrate between 3 to 6
Mbps to stream their 1080p videos at 60fps [10].

• Frame rate is defined as the amount of frames rendered
per second (fps). Our system was able to maintain a frame
rate of 60fps most of the time, which is considered the
ideal target for most games [11]. More specifically, we
measured a minimum fps of 56.6, a maximum fps of 60.1,
and an average fps of 59.92 from CloudNPlay.

• Response delay can be defined as the total time it
takes from the time a user input is received until the
corresponding change is seen by the user. Such response
delay can be segmented further into three components: 1)
network delay, i.e., the round trip time between client and
server; processing delay - the time needed for a server to
process game logic and do rendering; and playout delay -
the time required to decode and display the game scenes
on the client [12]. We do not consider the last component
as it is not something a cloud gaming system can control.
In our experiments, we measured the network latency
and the processing delay. The average total delay was
around 11.6ms, which is considered great for interactive
gameplay [13], [14].

B. Cost optimization

CloudNPlay can perform instance sharing between different
users to reduce resource cost. As it is not economically feasible
to evaluate CloudNPlay with thousands of actual users, in this
paper we describe a large-scale simulation based analysis of
the cost optimization algorithm implemented in CloudNPlay.
The Python-based simulation makes use of an actual game
trace obtained from the Game Trace Archive2. In particular,
we use the WoWSession dataset containing records of “World
of Warcraft” game sessions of more than one hundred players
from May to July 2009. The dataset provides timestamps of
when a gaming session starts and ends. The maximum number
of users playing at the same time is 35 in the trace.

Figure 2 shows the number of instance-hours consumed
with, and without the cost optimization algorithm based on
instance sharing. We note that there are a total of 35 instances
that have been started in both cases. When cost optimization is
applied, different users can actually reuse the same instances
that have been running. In this figure, we can see that the first
few instances have been more utilized to serve many different
users - the system did not have to shut them down with cost
optimization. It is observed that CloudNPlay can save around
3571 instance-hours, i.e., 30.6% reduction in instance cost.

We further calculate the total resource cost which includes
not just the instance-hours, but also data storage fee, data
transfer for game streaming, Lambda request cost, etc. This
is to better assess the overall cost saving from implementing
the resource optimization algorithm. We use the following
parameters from running the game trace simulation, and from
measurements of CloudNPlay:

2http://gta.st.ewi.tudelft.nl/

Fig. 2. Number of instance-hours consumed: with and without cost optimization

• The dataset records game activities from around a hun-
dred users for 2 months, in which all users play the same
game (World of Warcraft).

• There are roughly 7000 game sessions in the data set -
we assume that on average we have 3500 game sessions
for a month.

• Average duration of the game sessions is 3628.31 sec-
onds, i.e., roughly 1 hour.

• The system consumes 11671 instance-hours without cost
optimization; and 8100 instance-hours with cost op-
timization. Therefore we assume that there are 5836
instance-hours and 4050 instance-hours consumed for a
month, respectively.

• The Lambda function is triggered 1723 times to run the
cost optimization algorithm, i.e., roughly 862 times for a
month. The Lambda cost is 0.1536GB-seconds each time.

• The game size is assumed to be 70GB, which is based
on World of Warcraft system requirements.

• Average data transfer rate is 23.90Mbps, i.e., 10.755GB
per hour.

Table I shows the rate of all services used by CloudNPlay
as well as the total cost calculations without and with cost
optimization. We observe a total cost saving of 24% approxi-
mately. We envisage that if there are more consecutive players,
there can be more instance-hour savings and vice versa.

V. RELATED WORK

Research in cloud gaming have been mostly focused on
two distinct aspects: 1) improving the interactivity via more
efficient game rendering and streaming performance; and
2) optimizing the cloud resource cost. In [15], the authors
described a distributed game engine with a loosely coupled
graphical renderer, enabling rendering operations to be exe-
cuted across different cloud instances. [16] presents techniques
to improve cloud gaming video encoding via enhancing the
perceived video quality with regard to network bandwidth
constraints, as well as reducing the computational complexity.
In [17], the authors proposed game-agnostic techniques to

reduce the network bandwidth requirement for game streaming
by exploiting weaknesses of the human visual system. In
[7], the authors considered cloud rendering optimization via
reusing common information between hundreds of concurrent
players to minimize rendering server rental cost. In this paper,
we focus more on cost reduction techniques; but at the same
time we conduct measurements of the game rendering and
streaming process to ensure that CloudNPlay is able to deliver
good interactive performance.

Much research has been conducted in the area of resource
optimization for cloud gaming, for instance [5], [8], [18], [19],
etc. In [8], the authors argued that in cloud gaming systems,
storage cost could be substantial compared to instance cost.
They then proposed cloud server provisioning approaches that
can optimize both instance cost and storage cost. Similarly,
[20] considers a multiplayer cloud gaming architecture in
which a game server and several rendering servers should be
provisioned for a set of players. In this case, it is important
to minimize both server rental cost and network bandwidth
cost. CloudNPlay only considers single-player games in its
current version. [19] considers game theory to optimize virtual
machine placement in mobile cloud gaming. In [5], the authors
considered consolidating several games on to the same cloud
server to improve utilization and cost. Such consolidation
requires careful considerations on performance interference
between games. Our work differs in the sense that we use a
fully functional cloud gaming implementation. In addition, we
allow only one running game on a sufficiently sized instance,
and implement instance-sharing to minimize resource wastage
due to per-hour billing for Windows instances.

Currently, there are several providers offering commercial
cloud gaming services, e.g., Google Stadia, GeForce Now,
PS Now, Amazon Luna, etc. However, not much details on
how they have optimized gaming interactivity and cost have
been published. Very recently, there have been some attempts
to study these gaming services. For instance, [3] analyzes
network performance of Stadia, GeForce Now and PS Now
from a user-perspective. In contrast, our work delivers a fully

TABLE I
MONTHLY COST CALCULATIONS

Service Rate Not optimized Optimized
AWS EC2 instance (g3.4xlarge) $2.406 per instance-hour 5938hrs x $2.406 = $14041.42 4050hrs x $2.406 = $9744.3

Amazon EBS (Storage) $0.12 per GB-month 35 instances x 70GB x $0.12 = $294
Data Transfer (In) Free $0

Data Transfer (Out) Free up to 1GB/month 10.755GB/hr x 3500hrs = 37642.5GB
$0.12 per GB for next 9.999TB/month 9999 x $0.12 + 27642.5 x $0.085 = $3549.49
$0.085 per GB for next 40TB/month

AWS Lambda request Free up to 1M requests/month $0 (Not used) $0 (Still within free tier)
$0.20 per 1M requests thereafter

AWS Lambda compute time Free up to 400000GB-seconds/month $0 (Not used) $0 (Still within free tier)
$0.00001667 per GB-second thereafter

Amazon CloudWatch Events Free $0 (Not used) $0
Total $17884.91 $13587.79

functional cloud gaming system to encourage more practical
research in performance issues and resource cost optimization
from the service provider perspective. GamingAnywhere [4]
has been traditionally used for this purpose. However, it has
not been updated for many years, and it is not known whether
latest games and cloud-native services can be supported on the
platform.

VI. CONCLUSION

In this paper, we have described CloudNPlay, a cloud-
native system designed to demonstrate that it is possible to
build a cloud gaming system entirely based on existing cloud
services. CloudNPlay implements the full application stack
from user management, authentication, game streaming, and
game client. On top of that, we have developed a simple but
practical resource optimization algorithm to reduce cloud cost,
which could be a huge barrier of entry for new cloud gaming
providers.

We conducted empirical performance evaluation of Cloud-
NPlay in both gaming performance and cost saving aspects.
We demonstrated that it is possible to play graphics-intensive
games in CloudNPlay with good resolution, frame rates, and
responsiveness. At the same time, CloudNPlay can signif-
icantly reduce cloud resource cost with a simple instance-
sharing mechanism. Our evaluation showed a total cost saving
of around 24% considering all factors such as instance-hour,
storage, data transfer and serverless request costs. We plan
to release CloudNPlay as an open-source project to facilitate
further research in this area.

REFERENCES

[1] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” IEEE network, vol. 27, no. 4, pp. 16–21, 2013.

[2] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, B. Naderi, C. Griwodz,
and S. Möller, “A latency compensation technique based on game
characteristics to mitigate the influence of delay on cloud gaming quality
of experience,” in Proceedings of the 11th ACM Multimedia Systems
Conference, pp. 15–25, 2020.

[3] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano,
“A network analysis on cloud gaming: Stadia, geforce now and psnow,”
arXiv preprint arXiv:2012.06774, 2020.

[4] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
“Gaminganywhere: The first open source cloud gaming system,” ACM
Transactions on Multimedia Computing, Communications, and Applica-
tions (TOMM), vol. 10, no. 1s, pp. 1–25, 2014.

[5] Y. Li, C. Zhao, X. Tang, W. Cai, X. Liu, G. Wang, and X. Gong, “To-
wards minimizing resource usage with qos guarantee in cloud gaming,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2,
pp. 426–440, 2020.

[6] Y. Deng, Y. Li, R. Seet, X. Tang, and W. Cai, “The server allocation
problem for session-based multiplayer cloud gaming,” IEEE Transac-
tions on Multimedia, vol. 20, no. 5, pp. 1233–1245, 2017.

[7] I. Jaya, W. Cai, and Y. Li, “Rendering server allocation for mmorpg
players in cloud gaming,” in 49th International Conference on Parallel
Processing-ICPP, pp. 1–11, 2020.

[8] Y. Li, Y. Deng, X. Tang, W. Cai, X. Liu, and G. Wang, “Cost-efficient
server provisioning for cloud gaming,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), vol. 14, no. 3s,
pp. 1–22, 2018.

[9] T. N. B. Duong, X. Li, R. S. M. Goh, X. Tang, and W. Cai, “Qos-aware
revenue-cost optimization for latency-sensitive services in iaas clouds,”
in 2012 IEEE/ACM 16th International Symposium on Distributed Sim-
ulation and Real Time Applications, pp. 11–18, IEEE, 2012.

[10] “Twitch Streamers - Twitch Video Encoding.”
https://stream.twitch.tv/encoding/. Accessed: 2021-02-27.

[11] “What Is The Best FPS For Gaming?.”
https://www.gamingscan.com/best-fps-gaming/. Accessed: 2021-02-27.

[12] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proceedings of
the 19th ACM international conference on Multimedia, pp. 1269–1272,
2011.

[13] K. Raaen, R. Eg, and C. Griwodz, “Can gamers detect cloud delay?,”
in 2014 13th Annual Workshop on Network and Systems Support for
Games, pp. 1–3, IEEE, 2014.

[14] I. Lee, S. Kim, and B. Lee, “Geometrically compensating effect of end-
to-end latency in moving-target selection games,” in Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, pp. 1–
12, 2019.

[15] J. Bulman and P. Garraghan, “A cloud gaming framework for dynamic
graphical rendering towards achieving distributed game engines,” in 12th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 20),
2020.

[16] Y. Liu, S. Dey, and Y. Lu, “Enhancing video encoding for cloud
gaming using rendering information,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 12, pp. 1960–1974, 2015.

[17] G. K. Illahi, T. V. Gemert, M. Siekkinen, E. Masala, A. Oulasvirta,
and A. Ylä-Jääski, “Cloud gaming with foveated video encoding,”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 16, no. 1, pp. 1–24, 2020.

[18] I. Slivar, L. Skorin-Kapov, and M. Suznjevic, “Qoe-aware resource
allocation for multiple cloud gaming users sharing a bottleneck link,” in
2019 22nd conference on innovation in clouds, internet and networks
and workshops (ICIN), pp. 118–123, IEEE, 2019.

[19] Y. Han, D. Guo, W. Cai, X. Wang, and V. Leung, “Virtual machine
placement optimization in mobile cloud gaming through qoe-oriented
resource competition,” IEEE Transactions on Cloud Computing, 2020.

[20] Y. Deng, Y. Li, X. Tang, and W. Cai, “Server allocation for multiplayer
cloud gaming,” in Proceedings of the 24th ACM international conference
on Multimedia, pp. 918–927, 2016.

	CloudNPlay: Resource optimization for a cloud-native gaming system
	Citation

	tmp.1644232788.pdf.2FeNS

